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Given any fixed nonnegative integer values h and k, the L(h, k)-
labelling problem consists in an assignment of nonnegative integers
to the nodes of a graph such that adjacent nodes receive values which
differ by at least h, and nodes connected by a 2 length path receive
values which differ by at least k. The span of an L(h, k)-labelling is the
difference between the largest and the smallest assigned frequency.
The goal of the problem is to find out an L(h, k)-labelling with

minimum span.
The L(h, k)-labelling problem has been intensively studied following
many approaches and restricted to many special cases, concerning

both the values of h and k and the considered classes of graphs.
This paper reviews the results from previous by published literature,
looking at the problem with a graph algorithmic approach. It is an

update of a previous survey written by the same author.
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1. INTRODUCTION

One of the key topics in graph theory is graph
coloring. Fascinating generalizations of the no-
tion of graph coloring are motivated by prob-
lems of channel assignment in wireless commu-
nications, traffic phasing, fleet maintenance,
task assignment, and other applications. (See
[156] for a survey.)
While in the classical vertex coloring

problem [105] a condition is imposed only on
colors of adjacent nodes, many generalizations
require colors to respect stronger conditions,
e.g. restrictions are imposed on colors both of
adjacent nodes and of nodes at distance 2 in
the graph.
This paper will focus on a specific graph

coloring generalization that arose from a
channel assignment problem in radio networks
[90]: the L(h, k)-labelling problem, defined as

follows:

Definition 1.1. Given a graph G =
(V,E) and two nonnegative integers h and

k, an L(h, k)-labelling is an assignment of

nonnegative integers to the nodes of G such

that adjacent nodes are labelled using colors

at least h apart, and nodes having a common

neighbour are labelled using colors at least

k apart. The aim of the L(h, k)-labelling
problem is to minimize the span σh,k(G),
i.e. the difference between the largest and the

smallest used colors. The minimum span over

all possible labelling functions is denoted by

λh,k(G) and is called λh,k-number of G.

Observe that this definition imposes a
condition on labels of nodes connected by a
2 length path instead of using the concept
of distance 2, that is very common in the
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literature. The reason is that this definition
works both when h ≥ k and when h < k.
The present formulation allows the nodes of a
triangle to be labelled with three colors at least
max{h, k} apart from each other, although
they are at mutual distance 1; when h ≥ k
the two definitions coincide.
Furthermore, as the smallest used color

is usually 0, an L(h, k)-labelling with span
σh,k(G) can use σh,k(G) + 1 different colors;
this feature is slightly counter-intuitive, but is
kept for historical reasons.
The notion of L(h, k)-labelling was intro-

duced by Griggs and Yeh in the special case
h = 2 and k = 1 [89, 184] in connection
with the problem of assigning frequencies in a
multihop radio network (for a survey on the
class of frequency assignment problems, see
e.g. [2, 58, 123, 144]), although it has been
previously mentioned by Roberts [155] in his
summary on T -colorings and investigated in
the special case h = 1 and k = 1 as a com-
binatorial problem and hence without any ref-
erence to channel assignment (see for instance
[180]).
After its definition, the L(h, k)-labelling

problem has been used to model several
problems, for certain values of h and k.
Some examples are the following: Bertossi
and Bonuccelli [16] introduced a kind of
integer ”control code” assignment in packet
radio networks to avoid hidden collisions,
equivalent to the L(0, 1)-labelling problem;
channel assignment in optical cluster based
networks [10] can be seen either as the L(0, 1)-
or as the L(1, 1)-labelling problem, depending
on the fact that the clusters can contain one
ore more nodes; more in general, channel
assignment problems, with a channel defined
as a frequency, a time slot, a control code,
etc., can be modeled by an L(h, k)-labelling
problem, for convenient values of h and k.
Besides the practical aspects, also purely
theoretical questions are very interesting.
These are only some reasons why there is
considerable literature devoted to the study
of the L(h, k)-labelling problem, following
many different approaches, including graph
theory and combinatorics [156, 169], simulated
annealing [54, 141], genetic algorithms [50,
132], tabu search [39], and neural networks
[76, 131]. In all these contexts, the problem
has been called with different names; among
others, we recall: L(h, k)-labelling problem,

L(p, q)-coloring problem, distance-2-coloring
and D2-vertex coloring problem (when h =
k = 1), radiocoloring problem and λ-coloring
problem (when h = 2 and k = 1).
Many variants of the problem have been

introduced in the literature, as well: instead of
minimizing the span, seek the L(h, k)-labelling
that minimizes the order, i.e. the number of
effectively used colors [90]; given a span σ,
decide whether it is possible to L(h, k)-label
the input graph using all colors between 0 and
σ (no-hole L(h, k)-labelling) [157]; consider the
color set as a cyclic interval, i.e. the distance
between two labels i, j ∈ {0, 1, . . . , σ} defined
as min{|i − j|, σ + 1 − |i − j|} [101]; use a
more general model in which the labels and
separations are real numbers [86]; generalize
the problem to the case when the metric is
described by a graph H (H(h, k)-labelling)
[68]; consider the precoloring extension, where
some nodes of the graph are given as already
(pre)colored, and the question is if this
precoloring can be extended to a proper
coloring of the entire graph using a given
number of colors [71]; consider a one-to-
one L(h, k)-labelling (L′(h, k)-labelling) [42];
L(h, k)-label a digraph, where the distance
from a node x to a node y is the length of
a shortest dipath from x to y [40]; study
another parameter, called edge-span, defined
as the minimum, over all feasible labellings,
of the max{|f(u) − f(v)| : (u, v) ∈ E(G)}
[185]; impose the labelling to be balanced, i.e.
all colors must be used more or less the same
number of times (equitable coloring) [133].
Some of these generalizations are considered

in [183].

The extent of the literature and the huge
number of papers concerning the L(h, k)-
labelling problem have been the main moti-
vation of the surveys [2, 29, 183], each one ap-
proaching the problem from a different point
of view (operative research, graph algorithms
and extremal combinatorial, respectively), but
they are all published at least five years ago.
Since a substantial progress has been achieved
in the last years, the author thinks that an
updated survey and annotated bibliography
would be useful. The present paper is an up-
date of [29].
In this work, the case k = 0, for any fixed h,

is not considered as this problem becomes the
classical vertex coloring problem. Instead, a
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particular accent is posed on the special cases
h = 0, 1, 2 and k = 1: the first one is equivalent
to the problem of optimally coloring the square
of the input graph and the second one has been
considered in the seminal works by Roberts,
Griggs and Yeh. Both these problems have
been intensively studied.

The decision version of the L(h, k)-labelling
problem has been proved to be NP-complete,
even under restrictive hypotheses. Section 2
lists these results. In Section 3 some general
lower and upper bounds on the value of λh,k

are summarized.
For some special classes of graphs a labelling

can be computed efficiently, while for other
classes of graphs only approximate algorithms
are known. Both these kinds of results are
described in Section 4.

In the rest of this paper we will consider
simple and loopless graphs with n nodes,
maximum degree ∆, chromatic number χ(G),
clique number ω(G) and girth (i.e. the
length of the shortest cycle in G) g(G). For
all graph theoretic concepts, definitions and
graph classes inclusions not given in this
review we refer either to [26] or to the related
reference.

2. NP-COMPLETENESS RESULTS

In this section some general complexity results
are listed, divided by different values of h and
k. More specific results concerning classes of
graphs are given in Section 4.

L(0, 1)-labelling. In [16] the NP-
completeness result for the decision version of
the L(0, 1)-labelling problem is derived when
the graph is planar by means of a reduction
from 3-VERTEX COLORING of straight-line
planar graphs.

L(1, 1)-labelling. Also the decision version
of the L(1, 1)-labelling problem, (that is
equivalent to the L(2, 1)-labelling problem
where the order must be minimized instead
of the span [74]) is proved to be NP-complete
with a reduction from 3-SAT [142]. The
problem remains NP-complete for unit disk
graphs [161], for planar graphs [151] and even
for planar graphs of bounded degree [150]. It
is also NP-complete to decide whether 4 colors
suffice to L(1, 1)-label a cubic graph. On the
contrary, it is polynomial to decide if 3 colors
are enough [99].

Studying a completely different problem
(Hessian matrices of certain non linear func-
tions), McCormick [142] gives a greedy algo-
rithm that guarantees a O(

√
n)-approximation

for coloring the square of a graph. The algo-
rithm is based on the greedy technique: con-
sider the nodes in any order, then the color
assigned to node vi is the smallest color that
has not been used by any node which is at
distance at most 2 from vi; the performance
ratio is obtained by simple considerations on
the degree of G and of its square.
Approaching an equivalent scheduling prob-

lem, Ramanathan and Lloyd [152] present an
approximation algorithm with a performance
guarantee of O(θ), where θ is the thickness of
the graph. Intuitively, the thickness of a graph
measures ”its nearness to planarity”. More
formally, the thickness of a graph G = (V,E)
is the minimum number of subsets into which
the edge set E must be partitioned so that each
subset in the partition forms a planar graph on
V .

L(2, 1)-labelling. To decide whether a
given graph G admits an L(2, 1)-labelling of
span at most n is NP-complete [89]. This
result is obtained by a double reduction:
from HAMILTONIAN PATH to the decision
problem asking for the existence of an injection
f : V → [0, n− 1] such that |f(x) − f(y)| ≥ 2
whenever (x, y) ∈ E, and from this problem
to the decisonal version of the L(2, 1)-labelling
problem. The problem remains NP-complete
if we ask whether there exists a labelling of
span at most σ, where σ is a fixed constant
≥ 4, while it is polynomial if σ ≤ 3 (this case
occurs only when G is a disjoint union of paths
of length at most 3). A fortiori, the problem
is not fixed parameter tractable [67].
The problems of finding the λ2,1-number

of graphs with diameter 2 [89, 184], planar
graphs [20, 57], bipartite, split and chordal
graphs [20] are all NP-hard.
Finally, Fiala and Kratochv́ıl [69] prove that

for every integer p ≥ 3 it is NP-complete to
decide whether a p-regular graph admits an
L(2, 1)-labelling of span (at most) p+ 2.

We conclude this paragraph citing some
results where the authors present exact
exponential time algorithms for the L(2, 1)-
labelling problem of fixed span σ. In
[128], the authors design algorithms that are
faster than the naive O((σ + 1)n) algorithm
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that would try all possible labellings. In
the first NP-complete case (σ = 4), the
running time of their algorithm is O(1.3006n),
which beats not only O(σn) but also O((σ −
1)n). For what concerns the larger values
of σ, an exact algorithm for the so called
Channel Assignment Problem [125] implies an
a O(4n) algorithm for the L(2, 1)-labelling
problem. This has been improved in [96] to
an O(3.8739n) algorithm. Some modifications
of the algorithm and a refinement of the
running time analysis has allowed to improve
the time complexity to O(3.2361n) [115]. A
lower-bound of Ω(3.0731n) on the worst-case
running time is also provided. After this
result, the base of the exponential running
time function seemed hardly decreaseable to
a value lower than 3. Nevertheless, in [116]
the authors provide a breakthrough in this
question by providing an algorithm running
in O(2.6488n) time, based on a reduction of
the number of operations performed in the
recursive step of the dynamic programming
algorithm.

L(h, k)-labelling. Nobody would expect
the L(h, k)-labelling problem for h > k ≥ 1
to be easier than the L(2, 1)-labelling problem,
however, the actual NP-hardness proofs seem
tedious and not easily achievable in full
generality. In [67] the authors conjecture that
for every h ≥ k ≥ 1, there is a σ (depending
on h and k) such that deciding whether
λh,k(G) ≤ σ is NP-complete. In support of
their conjecture, the authors prove that there
is at least one NP-complete fixed parameter
instance, namely that it is NP-complete to
decide whether λh,k(G) ≤ h+k⌈h

k ⌉ for all fixed
h > k ≥ 1. Under less general conditions they
prove that there are infinitely many instances:
the problem whether λh,k(G) ≤ h+ pk is NP-
complete for any fixed p ≥ h

k and h > 2k. It
follows that for k = 1 (and more generally h
divisible by k), there are only finitely many
polynomial instances (unless P=NP), namely
if h > 2 then the decision version of the
L(h, 1)-labelling problem is NP-complete for
every fixed σ ≥ 2h. In this case it is possible
a little more: for every h > 2, the problem of
deciding whether λh,1(G) ≤ σ is NP-complete
if σ ≥ h+5 while it is polynomially solvable if
σ ≤ h+ 2.

Open Problem: For p ≥ 5 this result
leaves the cases σ = h + 3 and σ =

h + 4 as the last open cases for the
fixed parameter complexity of the L(h, 1)-
labelling problem.

3. LOWER AND UPPER BOUNDS

We list here some general bounds on the λh,k-
number, divided by different values of h and
k. Bounds for particular classes of graphs will
be given in the corresponding subsections.

L(1, 1)-labelling. Define f(∆, g) as the
maximum possible value of λ1,1(G) = χ(G2)−
1 over graphs with maximum degree ∆ and
girth g. Since the maximum degree of G2 is
at most ∆2, it follows that f(∆, g) ≤ ∆2 for
every g. This bound is tight as equality holds
for ∆ = 2 and g ≤ 5, as shown by the 5-cycle,
for ∆ = 3 and g ≤ 5, as shown by the Petersen
graph, and for ∆ = 7 and g ≤ 5, as shown by
the Hoffman-Singleton graph. (The Hoffman-

Singleton graph – see Figure 1 – is the graph
on 50 nodes and 175 edges that is the only
regular graph of node degree 7, diameter 2,
and girth 5; it is the unique (7, 5)-cage graph
and Moore graph, and contains many copies
of the Petersen graph). Moreover, by Brooks
theorem (stating that if G is connected then
χ(G) ≤ ∆(G), unless G is complete or G is
an odd cycle; cf. e.g. [105]) it follows that
the equality can hold only for g ≤ 5 and only
if there exists a ∆-regular graph of diameter
2 on ∆2 + 1 nodes. If such graph exists then
∆ ∈ {2, 3, 7, 57}. It is also possible to see that
f(2, g) = 4 for all g ≥ 6. Alon and Mohar [9]
prove that f(∆, g) is (1+ o(1))∆2 if g = 3, 4, 5
and is Θ(∆2/ log∆) if g ≥ 7. In [145] a new
approach is followed in order to provide a new
upper bound on λ1,1. Namely, utilizing the
probabilistic method, the authors prove that
f(∆, g) ≤

(

1− 2
3e6

)

∆2 if the graph is regular
of girth g ≥ 7 and ∆ sufficiently large.

L(2, 1)-labelling. As in the case of λ1,1,
even for the bounds on λ2,1, ∆ is the most
common used parameter.
The obvious lower bound for λ2,1(G) is

∆ + 1, achieved for the star K1,∆, but Griggs
and Yeh [89] describe a graph requiring span
∆2 − ∆. This graph is the incidence graph

of a projective plane π(n) of order n, i.e. the
bipartite graph G = (U ∪ V,E) such that:
i. |U | = |V | = n2 + n+ 1,
ii. each u ∈ U corresponds to a point pu in
π(n) and each v ∈ V corresponds to a line lv
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FIGURE 1. The Hoffman-Singleton graph, constructed from the 10 5-cycles illustrated, with node i of
Pj joined to node i+ jk(mod 5) of Qk.

in π(n), and
iii. E = {(u, v) : u ∈ U, v ∈ V such that
pu ∈ lv in π(n)}.
By definition of π(n), G is (n+ 1)-regular.
By a simple greedy algorithm, that labels

each node with the smallest color that does not
induce conflicts, the same authors prove that
λ2,1(G) ≤ ∆2 + 2∆ and improve this upper
bound to λ2,1(G) ≤ ∆2 + 2∆ − 3 when G is
3-connected and λ2,1(G) ≤ ∆2 when G is of
diameter 2. They conjecture λ2,1(G) ≤ ∆2

for any graph G. This conjecture has been
motivation of some research since. In fact,
we can claim that this is the most famous
open problem in this area for more than
fifteen years. In his invited talk, during the
conference CIAC 2010, Reed has claimed that
the Griggs and Yeh’s conjecture has raised an
interest that can be compared with the one
given to the Four Colors’ conjecture.
Observe that the upper bound set by the

conjecture would be tight: there are graphs
with degree ∆, diameter 2 and ∆2 + 1 nodes,
namely the 5-cycle, the Petersen graph and the
Hoffman-Singleton graph, so the span of every
L(2, 1)-labelling is at least ∆2. Nevertheless,
notice that the conjecture is not true for ∆ =
1. For example, ∆(K2) = 1 but λ2,1(K2) = 2.

Open Problem: The Moore graphs (i.e.
graphs having the minimum number of
nodes possible for a regular graph with
given diameter and maximum degree)
are at the moment the only graphs
known to require span ∆2, and it is

an open problem to understand if there
are infinitely many graphs G satisfying
λ2,1(G) > ∆2 − o(∆).

Using constructive labelling schemes, Jonas
[112] improves the upper bound by showing
that λ2,1(G) ≤ ∆2 + 2∆ − 4 if ∆ ≥ 2
and, successively, Chang and Kuo [42] further
decrease the bound to ∆2 +∆. The algorithm
by Chang and Kuo is funded on the concept of
2-stable set of a graph G, that is a subset S of
V (G) such that every two distinct nodes in S
are of distance greater than 2. At each step i
of the algorithm, a subset of nodes Si is built,
and all nodes of Si are labelled with i. Si is
a maximal 2-stable set of the set of unlabelled
nodes at distance ≥ 2 from any node in Si−1.
Then, it has been proven the analogue of

Brook’s theorem for some channel assignment
problems, deriving as corollary of a more
general result that λ2,1(G) ≤ ∆2 + ∆ − 1 for
any graph G [127], and successively Gonçalves
[84] proved λ2,1(G) ≤ ∆2 + ∆ − 2 using the
algorithm of Chang and Kuo. In 2008, Havet,
Reed and Sereni [97] have finally proven that
the Griggs and Yeh’s conjecture is true, for
sufficiently large values of ∆ (about ∆ ≥ 1069).
This is the first paper addressing the solution
of the conjecture for general graphs, although
it does not completely close it. The same
authors prove in [98] that for every graph G
of maximum degree ∆, λ2,1(G) ≤ ∆2 + c,
for some constant c. Of course, the bound of
∆2+c is better than ∆2+∆−1 as ∆ increases
enough, but c is unfortunately a rather huge
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number. The interest of this result lies in
having exactly determined the growth of the
function to be added to ∆2. Now, it is a
very interesting issue to find a tight value for
c (hopefully as close to 0 as possible).

Open Problem: The Griggs and Yeh’s
conjecture is still unproved for ∆ < 1069

and hence it is not considered closed yet.

For what concerns the relationship between
λ2,1 and the graph parameters, it is not
difficult to see that λ2,1 ≥ 2ω(G)− 2.
A relationship between λ2,1 and the chro-

matic number of G is stated in [89]: λ2,1(G) ≤
n+χ(G)−2 and for complete k-partite graphs
the equality holds, i.e. λ2,1(G) = n+ k − 2.
In [83] the authors investigate the relation-

ship between λ2,1(G) and another graph in-
variant, i.e. the path covering number c of
the complement graph GC (the path cover-

ing number of a graph is the smallest num-
ber of node-disjoint paths needed to cover the
nodes of the graph) proving that λ2,1(G) =
n+ c(GC)− 2 if and only if c(GC) ≥ 1.
It is quite simple to see that λ2,1 and λ1,1

are related: the number of colors necessary
for an L(2, 1)-labelling of a graph G is at
least λ1,1 + 1, and conversely from an optimal
L(1, 1)-labelling of G we can easily obtain an
L(2, 1)-labelling of G with colors between 0
and 2λ1,1 − 1. Hence, an algorithm solving
the L(1, 1)-labelling problem for a class of
graphs also provides a 2-approximation for the
L(2, 1)-labelling problem.
In [13], Balakrishnan and Deo give upper

and lower bounds on the sum and product of
the λ2,1-number of an n node graph and that
of its complement:

2
√
n− 2 ≤ λ2,1(G) + λ2,1(G

C) ≤ 3n− 3

0 ≤ λ2,1(G) · λ2,1(G
C) ≤

(

3n− 3

2

)2

These bounds are similar to the well consoli-
dated bounds given by Nordhaus and Gaddum
[146] on the chromatic number of a graph and
that of its complement.

L(h, k)-labelling. Passing to the general
L(h, k)-labelling problem, for any positive
integers h ≥ k, λh,k ≥ h + (∆ + 1)k [43],
as a generalization of the known results for
h = 2, it is easy to state that λh,1(G) ≤
∆2 + (h − 1)∆ for any graph of maximum

degree ∆. This bound has been improved to
λh,1(G) ≤ ∆2 + (h − 1)∆ − 2 when ∆ ≥ 3

[84]. Furthermore, lim h→∞
λh+1,1(G)
λh,1(G) = 1 [41].

Havet, Reed and Sereni [97] generalize their
proof of the Griggs and Yeh’s conjecture for
sufficiently large values of ∆ to any h and k,
proving that λh,1(G) ≤ ∆2 for any ∆ ≥ 1069

and λh,1 ≤ ∆2 + c(h) for every integer ∆ and
for an opportune constant c(h), depending on
the parameter h.
It is easy to see that λh,k(G) ≥ h+(∆−1)k

for h ≥ k. Moreover, if h > k and the equality
holds in the previous formula and h > k, then
for any L(h, k)-labelling of G, each node of
degree ∆ must be labeled 0 (or h+ (∆− 1)k)
and its neighbors must be labeled h + ik (or
ik) for i = 0, 1, . . .∆− 1.
The structures of graphs with ∆ ≥ 1 and

λh,k(G) = h+(∆− 1)k are studied in [43] and
they are called λh,k-minimal graphs.

A basic result, implicitly taken into account
in any work on the L(h, k)-labelling, states
that for all G, there exists an optimal L(h, k)-
labelling of G such that each label is of the
form αh + βk, α and β being non negative
integers. Hence, in particular, λh,k(G) =
αh+ βk for some non negative integers α and
β [78]. It is also worthy to notice that, for
any positive integer c, c · λh,k(G) = λch,ck(G)
and that if h′ ≥ h and k′ ≥ k, then for any
graph G, λh′,k′(G) ≥ λh,k(G) [78]. Finally, let
G have maximum degree ∆. Suppose there is
a node with ∆ neighbors, each of which has
degree ∆. Then λh,k(G) ≥ h + (2∆ − 2)k if
h ≥ ∆k and λh,k(G) ≥ 2h+(∆−2)k if h ≤ ∆k.
Of course, these lower bounds fit particularly
well for regular graphs.
In [38], by stating a strong relationship

between the L(h, k)-labelling problem and
the problem of coloring the square of a
graph, it is exploited the algorithm by
McCormick for approximating the L(1, 1)-
labelling problem [142] to provide a (h

√
n +

o(h
√
n))-approximation algorithm for the

L(h, k)-labelling problem. This result has
been improved by Halldórson [92] proving
that the performance ratio of the First Fit
algorithm (consisting in processing the nodes
in an arbitrary order, so that each node is
assigned the smallest color compatible with its
neighborhood) is at most O(min(∆, h

k +
√
n)).

This is tight within a constant factor, for all
values of the parameters. The author shows
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that this is close to the best possible, as it is
NP-hard to approximate the L(h, k)-labelling
problem within a factor of n1/2−ǫ for any ǫ > 0
and h in the range [n1/2−ǫ, n]. On the positive
side, it is never harder to approximate than
the ordinary vertex coloring problem, hence an
upper bound of O(n(log logn)2/ log3 n) holds
[91].

4. KNOWN RESULTS ON GRAPH

CLASSES

In view of the hardness results described in
Section 2 and of the gap between upper and
lower bounds on the λh,k-number listed in
Section 3, further bounds, exact results and
approximation algorithms have been found
by restricting the classes of graphs under
consideration. This is the topic of the present
section.
The L(h, k)-labelling problem has been

intensively studied on various graph classes
in its general version (any h and k) but
above all in some of its specializations (e.g.
h = 2, 1 and k = 1); some of these classes
have been considered because they well model
real networks, others for their theoretical
interest. In the following we analyze a number
of graph classes, describe the known results
concerning each of them, and propose some
interesting problems still open. This section
is organized listing first the graph classes
for which exact results are known, and then
the graph classes for which only approximate
bounds and labeling algorithms have been
found. In view of this organization, not all
correlated classes are treated in consecutive
subsections.

4.1. Paths, Cycles, Cliques and Wheels

Let Pn, Cn and Kn be a path, a cycle and
a clique, respectively, of n nodes. The wheel

Wn is obtained by Cn by adding a new node
adjacent to all nodes in Cn.
Paths (i.e. buses), cycles (i.e. rings),

cliques (i.e. completely connected networks)
and wheels are the simplest and most common
networks one can consider; the decision
version of the L(h, k)-labelling problem is
polynomially solvable on each of them.

L(0, 1)- and L(1, 1)-labelling. Optimal
L(0, 1)-labellings are known for paths, needing
2 colors (i.e. λ0,1(Pn) = 1) [139], and for

cycles, having λ0,1(Cn) equal to 1 if n is
multiple of 4, and 2 otherwise [16]. In Figure
2 these labellings are shown.
It is easy to check that λ0,1(Kn) =

λ1,1(Kn) = n − 1 and that λ0,1(Wn) =
λ1,1(Wn) = n according to our definition of
L(h, k)-labelling; on the contrary, λ0,1(Wn) =

⌊ (n−1)
2 ⌋ according to the definition based on

the concept of distance.
Furthermore, λ1,1(P2) = 1 and λ1,1(Pn) = 2

for each n ≥ 3; λ1,1(Cn) is 2 if n is a multiple
of 3 and it is 3 otherwise [14] (see Figure 3).

L(2, 1)-labelling. It is simple to prove
that λ2,1(P1) = 0, λ2,1(P2) = 2, λ2,1(P3) =
λ2,1(P4) = 3, and λ2,1(Pn) = 4 for n ≥ 5,
that λ2,1(Kn) = 2(n − 1), that λ2,1(W3) =
λ2,1(W4) = 6 and λ2,1(Wn) = n + 1 for each
n ≥ 5. Finally, λ2,1(Cn) = 4 for each n ≥ 3
[89, 184].
As an example, we recall here how to label

a cycle. If n ≤ 4 the result is trivial to
verify. Thus, suppose that n ≥ 5, and Cn must
contain a P5 as a subgraph, hence λ2,1(Cn) ≥
λ2,1(P5) = 4. Now, let us show an L(2, 1)-
labelling l of Cn with span 4. Let v0, . . . , vn−1

be nodes of Cn such that vi is adjacent to vi+1,
0 ≤ i ≤ n−2 and v0 is adjacent to vn−1. Then,
consider the following labelling:
if n ≡ 0 mod 3 then

l(vi) =







0 if i ≡ 0 mod 3
2 if i ≡ 1 mod 3
4 if i ≡ 2 mod 3

if n ≡ 1 mod 3 then redefine l at
vn−4, . . . , vn−1 as

l(vi) =















0 if i ≡ n− 4
3 if i ≡ n− 3
1 if i ≡ n− 2
4 if i ≡ n− 1

if n ≡ 2 mod 3 then redefine l at vn−2 and
at vn−1 as

l(vi) =

{

1 if i = n− 2
3 if i = n− 1

Polynomial results concerning L(2, 1)-labelling
are found also for classes of cycle-related
graphs such as cacti, unicycles and bicycles

[112]. (A cactus is a connected finite graph
in which every edge is contained in at most
one cycle; a unicycle – respectively, bicycle

– is a connected graph having only one –
respectively, two – cycles.)
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FIGURE 2. a. L(0, 1)-labelling of a path; b. L(0, 1)-labelling of a cycle whose number of nodes is
multiple of 4; c. L(0, 1)-labelling of a cycle whose number of nodes is not multiple of 4.
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FIGURE 3. a. L(1, 1)-labelling of a path; b. L(1, 1)-labelling of a cycle whose number of nodes is
multiple of 3; c. and d. L(1, 1)-labellings of cycles whose numbers of nodes are not multiple of 3.

L(h, k)-labelling. Georges and Mauro [78]
evaluate the span of cycles and paths for any
h and k (with h ≥ k) showing that

λh,k(Pn) =























0 if n = 1
h if n = 2
h+ k if n = 3 or 4
h+ 2k if n ≥ 5 and h ≥ 2k
2h if n ≥ 5 and h ≤ 2k

and

λh,k(Cn) =















































2h if n odd, n ≥ 3 and h ≥ 2k,
or if n ≡ 0 mod 3 and h ≤ 2k

h+ 2k if n = 0 mod 4 and h ≥ 2k,
or if n 6 ≡0 mod 3, n 6= 5 and h ≤ 2k

2h if n = 2 mod 4 and h ≤ 3k
h+ 3k if n = 2 mod 4 and h ≥ 3k
2h if n ≥ 5 and h ≤ 2k
4k if n = 5

It is straightforward to see that an optimal
L(h, k)-labelling of an n node clique requires
span (n − 1)h, for each h ≥ k and that
λh,k(Wn) = n + h − 1 for sufficiently large
values of n and h ≥ k.
Finally, we point out that the λh,1-number

of cacti is investigated in [121].

4.2. Regular Grids

Let G∆, ∆ = 3, 4, 6, 8, denote the hexagonal,
squared, triangular and octagonal grid, respec-

tively. Portions of these grids are shown in
Figure 4.
The hexagonal grid is a natural model for

cellular networks, and its interference graphs
is the triangular grid, also called cellular graph,
according to the notation introduced in [163].
The L(h, k)-labelling problem has been

extensively studied on regular grids, and
shown to be polynomially solvable. More
detailed results are given in the following.
Note that some grids are equivalent to some
special products of paths, so other related
results can be found in Subsection 4.3.

L(0, 1)-, L(1, 1)- and L(2, 1)-labelling.
An optimal L(0, 1)-labelling for squared grids
and an optimal L(1, 1)-labelling for hexagonal,
squared and triangular grids are given in [139]
and in [14], respectively.
The λ2,1-number of regular grids has been

proved to be λ2,1(G∆) = ∆ + 2 by means
of optimal labelling algorithms [35] . All of
these algoithms are based on the replication
of a labelling pattern, depending on ∆. An
example is given in Figure 5.
A natural generalization of squared grids is

obtained by adding wrap-around edges on each
row and column: these graphs are known as
tori. In spite of the similarity between squared
grids and tori, the presence of wrap-around
edges prevents the labelling of the squared grid
from being extended to tori unless both the
number of rows and the number of columns
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a. b. c. d.

FIGURE 4. A portion of: a. hexagonal grid G3; b. squared grid G4; c. triangular grid G6; d. octagonal
grid G8.
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FIGURE 5. An example of L(2, 1)-labelling of regular grids by means of labelling patterns; function
f1 subtracts 1 to each label, f2 sums 2 and f3 sums 1; all the operations must be considered mod
(λ2,1(G∆) + 1).

are multiples of 5. If this is not the case, an
L(1, 1)-labelling exists using at most 8 colors,
which is nearly-optimal since 6 is a lower
bound [52]. Exact results concerning the λ2,1-
number of tori are reported in Subsection 4.3.

Open Problem: To find the optimal L(1, 1)-
labelling of tori is an interesting issue.

L(h, k)-labelling. In 1995 Georges and
Mauro [78] give some results concerning the
L(h, k)-labelling of squared grids as a special
result of their investigation on the λh,k-
number of product of paths. Only in 2006
the problem has been systematically handled
and the union of the results presented in [30]
and in [31] provides the exact value of function
λh,k(G∆), where ∆ = 3, 4, 6, 8 for almost all
values of h and k.
The exact results are obtained by means

of two series of proofs: lower bounds proofs,
based on exhaustive considerations, deducing
that λh,k(G∆) cannot be less than certain
values, and upper bounds proofs, based on
labelling schemes. Of course, the results

obtained for any h and k include as special
case the previous ones for h = 1, 2 and k = 1.
All the aforementioned results lead to assign

a color to any node in constant time in a
distributed fashion, provided that the relative
positions of the nodes in the grid are locally
known.
Later, Griggs and Jin [87] close all gaps for

the squared and hexagonal grids, and all gaps
except when k/2 ≤ h ≤ 4k/5 for the triangular
grids; they do not handle the octagonal grid.
A summary of all the known results is plotted
in Figure 6.

Open Problem: It remains to compute the
exact value of λh,k(G∆) in those intervals
where lower and upper bounds do not
coincide when ∆ = 6 and ∆ = 8.

Open Problem: Almost all the proofs for
the lower bounds are based on exhaustive
reasonings, and so are very long and
difficult to follow. Furthermore, the range
of h/k is divided into several intervals,
and a different proof is given for each
∆ and for each interval. It would
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FIGURE 6. State of the art concerning the L(h, k)-labelling of regular grids. Grey areas represent the
gaps to be still closed.

be interesting to design a new proof
technique in order to simplify all these
proofs and to propose a unifying approach
useful to reduce the number of the proofs
and to increase their elegance.

A generalization of the squared grid is
the d-dimensional grid. A motivation for
studying higher dimensional grids is that
when the networks of several service providers
overlap geographically, they must use different
channels for their clients. The overall network
can then be modelled in a suitably higher
dimension. Optimal L(2, 1)-labellings for d-
dimensional square grids, for each d ≥ 1 are
presented in [53]. These results are extended
to any h, k for each d ≥ 1 in [61]. The authors
give lower and upper bounds on λh,k for d-
dimensional grids, and show that in some cases
these bounds coincide. In particular, in the
case k = 1, the results are optimal.

Open Problem: It is still an open ques-
tion to find optimal, or nearly-optimal,
labellings for higher dimensional triangu-
lar grids, even for special values of h and
k. Nevertheless, it is in the opinion of the
author that such a result would be only

technical, without any particular practi-
cal relevance.

4.3. Product of Paths, Cycles and

Cliques

The cartesian product (or simply product)
G2H and the direct product G × H of
graphs G and H are defined as follows:
V (G2H) = V (G×H) is equal to the cartesian
product of V (G) and V (H); E(G2H) =
{((x1, x2), (y1, y2)) : (x1, y1) ∈ E(G) and
x2 = y2, or (x2, y2) ∈ E(H) and x1 = y1};
E(G × H) = {((x1, x2), (y1, y2)) : (x1, y1) ∈
E(G) and (x2, y2) ∈ E(H)}. G2H and
G × H are mutually nonisomorphic with the
sole exception of when G and H are odd cycles
of the same size. The strong product G⊗H of
G and H has the same node set as the other
two products and the edge set is the union
of E(G2H) and E(G × H). In Figure 7 the
product of P3 and P4 is depicted, according to
each one of the three just defined products.

Product graphs have been considered in the
attempt of gaining global information from the
factors. Many interesting wireless networks
have simple factors, such as paths and cycles.
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! x ⊗ 

a.                                b.                                 c. 

FIGURE 7. Product of P3 and P4, where the product is: a. the cartesian product; b. the direct product
and c. the strong product.

Observe that any d-dimensional grid is
the cartesian product of d paths, any d-
dimensional torus is the cartesian product
of d cycles and any octagonal grid is the
strong product of two paths; so there
is some intersection between the results
summarized in this section and in the
previous one. Nevertheless, they have been
described separately in order to highlight the
independence of the approaches and of the
methods for achieving the results. The same
reasoning holds for the cartesian product of
complete graphs, i.e. the Hamming graph and
for the cartesian product of n K2 graphs, i.e.
the n-dimensional hypercube: we will detail
the results on these graphs in Subsection 4.8.

L(2, 1)-labelling. Exact values for the λ2,1-
numbers for the cartesian product of two paths
for all values of m and n are given in [182].
Namely, the authors prove that λ2,1(Pm2Pn)
is equal to 5 if n = 2 and m ≥ 4 and it is equal
to 6 if n,m ≥ 4 or if n ≥ 3 and m ≥ 5.
In the same paper the L(2, 1)-labelling of

the cartesian product of several paths P =
∏n

i=1 Ppi
is also considered. For certain values

of pi exact values of λ2,1(P ) are obtained.
From this result, they derive an upper bound
for the span of the hypercube Qn.
In [108] the λ2,1-numbers for the product

of paths and cycles are studied: bounds for
λ2,1(Cm2Pn) and λ2,1(Cm2Cn) are given,
and they are exact results for some special
values of m and n. The authors of [118]
and [130] independently achieve the same
issue of completing the previous results, and
determine λ2,1(Cm2Pn) for all values ofm and
n: λ2,1(Cm2Pn) is either 5 or 6 or 7, according
to the values of m and n.
Kuo and Yan [130] determine λ2,1(Cm2Cn)

with m = 3 or m multiple of 4 or 5.
Finally, in [160] the previous partial results on
λ2,1(Cm2Cn) are completed; for all values of
m and n, λ2,1(Cm2Cn) is either 6 or 7 or 8,
according to the values of m and n.
Exact results for the L(2, 1)-labelling of the

product of complete graphs Km2Kn and of
Kp2 . . .2Kp repeated q times, when p is prime
are given in [82].
Concerning the direct and strong products,

Jha obtains the λ2,1-number of some infinite
families of products of several cycles [106, 107].
Exact values for C3 ⊗ Cn, C4 ⊗ Cn and
improved bounds for Cn ⊗ Cm are presented
in [122].
In [110], the λ2,1-number is computed for

Cm × Cn for some special values of m and n.
Papers [117] and [166] handle the L(2, 1)-

labelling of graphs that are the direct/strong
product and the cartesian product of general
non trivial graphs. The authors prove that for
all the three classes of graphs the conjecture by
Griggs and Yeh is true. In [164] the previous
upper bounds for direct and strong product
of graphs are improved. The main tool for
this purpose is a more refined analysis of
neighborhoods in product graphs. Finally, in
[165], the authors correct a mistake in a proof
of [166], and study another product similar to
the cartesian product called composition.

L(h, k)-labelling. In [109] exact values for
the λh,1-number of Cc1 × . . . × Ccn and of
Cc12 . . .2Ccn are provided, if there are certain
conditions on h and on the length of the cycles
c1, . . . , cn.
In [77, 82] the L(h, k)-labelling problem of

products of complete graphs is considered (h ≥
k) and the following exact results are given,
where 2 ≤ n < m:
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λh,k(Kn2Km) = (m−1)h+(n−1)k if h
k > n;

λh,k(Kn2Km) = (mn− 1)k if h
k ≤ n;

λh,k(Kn2Kn) = (n− 1)h+ (2n− 1)k if
h
k > n− 1;

λh,k(Kn2Kn) = (n2 − 1)h if h
k ≤ n− 1.

In [60] the λh,k-number of the cartesian
product

∏n
i=1 Kti is exactly determined for

n ≥ 3 and relatively prime t1, . . . , tn, where
2 ≤ t1 < t2 < . . . < tn.
In [103] all previous results are extended

more generally, indeed the authors consider
graph Kn12Kn22 . . .2Knq

for any value of
n1, n2, . . . , nq, and compute exact values of its
λh,k-number, for all values of h and k such
that h

k ≤ n− q+1 and h
k ≥ qn− 2q+2, where

2 ≤ q ≤ p, being p the minimum prime factor
of n.
We conclude this section underlining that

many technical papers have appeared, con-
cerning the product of graphs. For example, in
[45] the L(h, 1)-labelling of the Cartesian prod-
uct of a cycle and a path is handled, while the
authors of [93] determine the λh,k-number of
graphs that are the direct product of complete
graphs, with certain conditions on h and k.

Open Problem: It remains an open problem
to complete the previous results, but also
this result would be especially technical.

We conclude this subsection by dealing with
the r-th power of a graph G, written Gr,
defined as a graph on the same node set as
G, such that two nodes are adjacent if and
only if their distance in G is at most r. We
have already spoken about the correspondence
of the vertex coloring of G2 and the L(1, 1)-
labelling ofG. Here we remind that two papers
deal with the L(h, 1)-labelling of powers of
paths: in [41] λh,1(P

r
n) is determined, while

in [120] it is proven that some of the previous
results are incorrect and new bounds are
presented. These bounds are function of h,
r and n.

4.4. Trees

Let T be any tree with maximum degree ∆.

L(0, 1)- and L(1, 1)-labelling. Bertossi e
Bonuccelli [16] investigate the L(0, 1)-labelling
problem on complete binary trees, proving
that 3 colors suffice. An optimum labelling
can be found as follows. Assign first labels
0, 1 and 2, respectively, to the root, its left

child and its right child. Then, consider
the nodes by increasing levels: if a node
has been assigned label c, then assign the
remaining two colors to its grandchildren,
but giving different to brother grandchildren.
The above procedure can be generalized to
find an optimum L(1, 1)-labelling for complete
(∆ − 1)-ary trees, requiring span ∆. It is
straightforward to see that when ∆ = 3 and
∆ = 2 this result gives the λ0,1-number for
complete binary trees and paths, respectively.
It is shown in [78] that for any T , λ1,1(T ) is

equal to ∆.

L(2, 1)-labelling. Given any tree T , Griggs
and Yeh [89] show that λ2,1(T ) is either ∆+1
or ∆ + 2, and conjecture that recognising
the two classes is NP-hard. Chang and Kuo
[42] disprove this conjecture by providing a
polynomial time algorithm based on dynamic
programming. The algorithm consists in
calculating a certain function s for all nodes
of the tree. It starts from the leaves and
works toward the root. For any node v,
whose children are v1, v2, . . . , vk, the algorithm
uses s(v1), . . . , s(vk) to calculate s(v), and
to do that, it needs to construct a bipartite
graph and to find a maximum matching. The
algorithm runs in O(∆4.5n) time, where ∆ is
the maximum degree of tree T and n is the
number of nodes, hence the time complexity
is O(n5.5) in the worst case. In this time
complexity, its ∆2.5 factor comes from the
complexity of solving the bipartite matching
problem, and its ∆2n factor from the number
of iterations for solving bipartite matchings.
The Chang and Kuo’s algorithm can be

also used to optimally solve the problem for
a slightly wider class of graphs, i.e. p-almost
trees, for fixed values of p [68]. (A p-almost

tree is a connected graph with n + p − 1
edges.) More precisely, the authors prove that
λ2,1(G) ≤ σ can be tested in O(σ2p+9/2n)
time, for each p-almost tree G and each
given σ. In [94] an O(min{n1.75,∆1.5n}) time
algorithm has been proposed. It is based on
the similar dynamic programming framework
to Chang and Kuo’s algorithm, but achieves
its efficiency by reducing heavy computation
of bipartite matching and by using amortized
analysis.
Obviously, Chang and Kuo’s algorithm runs

in linear time if ∆ = O(1). It has also been
proven [95] that the L(2, 1)-labelling problem
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on trees can be also solved in linear time if
∆ = Ω(

√
n). It follows that the worst running

time of the algorithm in [94] is O(n1.75).
Hasunama, Ishii, Ono and Uno have presented
a linear time algorithm for L(2, 1)-labelling of
trees [94], which finally settles the problem of
improving the complexity to linear time and
closes the question.
A tree T is of type 1 if λ2,1(T ) = ∆ + 1

and of type 2 if λ2,1(T ) = ∆ + 2. It seems
that characterizing all type 1 (2) trees is very
difficult. In [175] a sufficient condition for a
tree T to be of type 1 is given. Namely, the
author proves that if a tree T contains no two
nodes of maximum degree at distance either 1,
2 or 4, then λ2,1(T ) = ∆ + 1.

L(h, k)-labelling. Chang and Kuo’s
algorithm can be generalized to trees and to
p-almost trees to polynomially determine the
exact λh,1-number [41, 67].
For any tree T of maximum degree ∆, ∆ +

h−1 ≤ λh,1(T ) ≤ min{∆+2h−2, 2∆+h−2}
[41]; the lower and the upper bounds are
both attainable. Lower bounds on the λh,1-
number can be given also as a function of other
parameters of the tree (the big-degree and the
neighbour-degree) [121].
While the generalization of this algorithm

is quite easy when k = 1, the case k >
1 has kept resisting all attempts up to
when Fiala, Golovach and Kratochvil [64]
solved the problem, as highlighted below.
Before this paper, well known researchers had
conjectured both the polynomiality and the
NP-hardness of the L(h, k)-labelling problem
on trees. Namely, from the one hand Welsh
[181] suggested that, by an algorithm similar
to Chang and Kuo’s, it should have been
possible to determine λh,k(T ) for a tree T
and for arbitrary h and k, hence conjecturing
that the general case is also polynomial for
trees. From the other hand, based on some
considerations concerning the crucial step of
Chang and Kuo’s algorithm, Fiala, Kratochv́ıl
and Proskurowski conjecture that determining
λh,k(T ) is NP-hard for trees, when k > 1
[71]. The feeling that k > 1 identified a more
difficult problem seemed to be justified from
the fact the problem becomes NP-complete if
some nodes of the input tree are precolored,
whereas for k = 1 the precolored version
remains anyway polynomially solvable [71].
Furthermore, the difference between k = 1

and k > 1 could be put into relationship
with the difference between systems of distinct
and distant representative [72]. Another
result going toward the same direction states
that the decisional version of the L(h, k)-
labelling problem is NP-complete for trees if
h is part of the input and k ≥ 2 is fixed
[65]. The resolutive step remains to study
the computational complexity of the problem
when both h and k are fixed.
The paper [64] definitively resolves this

question proving that for positive integers
h and k, the L(h, k)-labelling problem
restricted to trees is solvable in polynomial
time only if k divides h, otherwise it
is NP-complete. In particular, in the
first case the L(h, k)-labelling problem is
equivalent to the L(h/k, 1)-labelling problem,
and hence is solvable in polynomial time by
the modification of the Chang and Kuo’s
algorithm presented in [41]. In the case of
mutually prime h and k, the NP-hardness is
proved by a reduction from the problem of
deciding the existence of a system of distant
representatives in systems of symmetric sets.
The main idea is a construction of trees that
allow only specific labels on their roots; the
main difficulty is to keep the size of such trees
polynomial.

Georges and Mauro provide bounds on the
λh,k-number for general h and k for trees
of maximum degree ∆ ≤ h/k [78] and
then for trees with h ≥ k and ∆ ≥ 3
[80]. For these parameters they obtain tight
upper and lower bounds on λh,k for infinite
trees. In [34], the authors present results
that are complementary, investigating L(h, k)-
labellings of trees, for arbitrary positive
integers h < k, seeking such labellings with
small span. The relatively large values of
λh,k(T ) achieved are witnessed by trees of
large height. This fact is not accidental: for
trees of height 1, i.e., for stars, the span of
L(h, k)-labellings is in fact smaller.
Finally, an upper bound on λh,k is given

in terms of a new parameter for trees, the
maximum ordering-degree [113].

4.5. Bounded Width Graphs

4.5.1. Bounded Clique-Width Graphs

The clique-width of a graph G, denoted by
cwd(G), is the minimum number of labels
needed to construct graph G using four
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operators: ·, +, ρ and η. The operation ·i
creates a graph with a single node labelled i.
The binary operator + constructs the union
of two disjoint graphs. The operation ρi→j

renames all nodes labelled i with label j. The
unary operator ηi,j , with i 6= j, adds all the
edges between every node labelled i and every
node labeled j. The sequence of operations
produces an expression of the graph.
Many NP-hard problems become polyno-

mially solvable for graphs of bounded clique-
width, if an expression of the graph is part of
the input; the classical vertex coloring prob-
lem is one of them. Observe also that sev-
eral classes of graphs (partial t-trees – that
will be extensively treated in Subsection 4.5.2,
distance-hereditary graphs, P4-sparse graphs,
P4-tidy graphs, etc.) are known to have
bounded clique-width.

L(1, 1)-labelling. The problem is polyno-
mial when restricted to graphs with bounded
clique-width. Indeed, for any graph G of
clique-width t, the clique-width of G2 is at
most t · 2t+1. So, an approach consists in us-
ing the vertex coloring algorithm for graphs
of bounded clique-width proposed in [119] on
G2. Suchan and Todinca [170] propose an al-
ternative algorithm, that improves the com-

putational complexity from O(n24·2
t log 3+1

) to

O(n3·2t log 3

n4). Although the complexity re-
mains high, it is considerably lower than the
previous one.

L(2, 1)-labelling. The decisional version of
the problem is NP-complete even for graphs of
clique-width at most 3 [21].
As multiplying the labels of an L(1, 1)-

labelling by 2 we obtain an L(2, 1)-labelling,
the exact algorithm provided in [170] is
a 2-approximate algorithm for the L(2, 1)-
labelling problem.

Open Problem: To the best of the au-
thor’s knowledge, there are no results con-
cerning the L(2, 1)-labelling on graphs of
bounded clique-width greater than two,
so any bound on λ2,1 for these graphs is
welcome.

The graphs of clique-width 2 coincide with
the class of cographs, that can be defined
alternatively as follows.
Let G and H be two graphs with disjoint

node sets. The union of G and H , G ∪ H , is

the graph whose node set is V (G)∪V (H) and
edge set is E(G)∪E(H). The join of G and H ,
G +H , is the graph obtained from G ∪H by
adding all edges between nodes in V (G) and
nodes in V (H).
Cographs are defined recursively by the

following rules:

1. A node is a cograph;
2. if G and H are cographs, then so is their
join G+H ;

3. if G and H are cographs, then so is their
union G ∪H .

Chang and Kuo [42], as a consequence
of their more general result concerning the
L(2, 1)-labelling problem on union and join
of graphs and exploiting the linear time
algorithm to identify whether a graph is a
cograph [46], prove that there is a linear time
algorithm to compute λ2,1(G) for a cographG.

Open Problem: Of course, the polynomi-
ality of the L(2, 1)-labelling problem on
cographs does not implies anything for
the L(h, k)-labelling problem. In fact, it
is still unknown the computational com-
plexity of the L(h, k)-labelling problem on
cographs, and no algorithms are known.

L(h, k)-labelling. It is known [48]
that all problems expressible in MS1-logic
are fixed parameter tractable (FPT), when
parameterized by the clique-width of the input
graph. Hence deciding whether λh,k(G) ≤ σ
for a fixed value of σ is polynomial for graphs
of bounded clique-width.

In the following, we discuss the results
dealing with a subclass of bounded clique-
width graphs.

4.5.2. Bounded Treewidth Graphs

The class of t-trees is recursively defined as
follows:

1.Kt is a t-tree;
2. if H is a t-tree, then the graph obtained
from H by adding a new node joining to a
t-clique (i.e. Kt) of H is a t-tree;

3. all t-trees can be formed with rules 1 and
2.

Any tree is a 1-tree. t-trees are also a
subclass of chordal graphs.
Any subgraph of a t-tree is called partial

t-tree. The partial t-trees are a particular
case of graphs of bounded clique-width, more
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precisely, if G is a partial t-tree then cwd(G) ≤
2t+1 + 1 [49]. The minimum value of t for
which a graph G is a subgraph of a t-tree is
called the treewidth tw(G) of the graph. See
[19, 154] for surveys on treewidth. Many NP-
hard problems have been shown to be solvable
in polynomial time on graphs with bounded
treewidth.
This class is interesting in the wireless

networks context, since pairs of antennas have
no interference if their distance is far enough.
Furthermore, concentrations of antennas are
found in densely populated areas. These
areas are connected with one another with a
limited number of edges. Such networks can
be represented by a constraint graph with a
tree-like structure [1].
Fiala and Kratochv́ıl [70] observe that, given

a fixed span σ, the question ”Is λh,k(G) ≤ σ?”
can be expressed in MSOL (Monadic Second
Order Logic), so this decision problem can
be decided in polynomial time for graphs
of bounded treewidth. On the contrary, if
the span is part of the input, the L(2, 1)-
labelling problem is NP-complete for graphs
of treewidth at most two [63]. This result
adds a natural and well studied problem to
the short list of problems whose computational
complexity separates treewidth one from
treewidth two. Indeed, usually, the problems
solvable in polynomial time for trees are also
polynomially solvable for graphs of bounded
treewidth, though sometimes the extension to
bounded treewidth is not straightforward.

L(0, 1)-, L(1, 1)- and L(2, 1)-labelling.
Bodlaender et al. [20] compute upper bounds
for graphs of treewidth bounded by t proving
that λ0,1(G) ≤ t∆ − t, λ1,1(G) ≤ t∆
and λ2,1(G) ≤ t∆ + 2t. They give also
approximation algorithms for the L(0, 1)-
, L(1, 1)- and L(2, 1)-labellings running in
O(tn∆) time. Nevertheless, two of these
three problems can be optimally solved:
in [187] a polynomial time algorithm to
optimally L(1, 1)-label graphs with constant
treewidth t is presented, but it applies
dynamic programming and the required time

is very high: O(n) · O(∆28(t+1)+1

) + O(n3).
A similar argument would yield the same
result for the L(0, 1)-labelling problem. If
the graph with constant treewidth has also
constant maximum degree, than O(n) time
is sufficient to optimally solve the L(1, 1)-

labelling problem [129].
Parameterized complexity of these problems

was considered in [66]. It is proved that
L(0, 1)- and L(1, 1)-labellings are W [1]-hard
when parameterized by the treewidth of the
input graph. It shows that the known algorith-
mic results about graphs of bounded treewidth
are tight in some sense, i.e. we cannot expect
algorithms with running time f(tw)nc unless
FPT = W [1]. ******CERCARE DI CAPIRE
COS’E’ QUESTO F(TW)NC*******
L(h, k)-labelling. In [41], the authors give

an upper bound on the L(h, 1)-numbers of t-
trees, proving that λh,1(G) ≤ (2h−1+∆−t)t.

Open Problem: Upper and lower bounds on
λh,k(G) for graphs of bounded treewidth
are completely unexplored. The relevance
of this class of graphs makes this open
problem an interesting issue.

4.6. Planar Graphs

A graph G is planar if and only if it can be
drawn on a plane so that there are no edge
crossings, i.e. edges intersect only at their
common extremes.
In many real cases the actual network

topologies are planar, since they consist of
communication stations located in a geograph-
ical area with non-intersecting communication
channels [1].
The decision version of the L(h, k)-labelling

problem is NP-complete for planar graphs
[151] and even for planar graphs of bounded
degree [150].

L(1, 1)-labelling. The first reference
concerning the L(1, 1)-labelling problem on
planar graphs seen as the problem of coloring
the square of graphs, is by Wegner [180], who
gives bounds on the clique number of the
square of planar graphs. In particular, he gives
an instance for which the clique number is at
least ⌊3/2∆⌋ + 1 (which is largest possible),
and conjectures this to be an upper bound
on χ(G2) (i.e. on λ1,1(G) + 1), for ∆ ≥ 8.
He conjectures also that λ1,1(G) ≤ ∆ + 4
for 4 ≤ ∆ ≤ 7. Moreover, Wegner proves
that λ1,1(G) ≤ 7 for every planar graph G of
maximum degree 3, and conjectures that this
upper bound could be reduced to 6.

Open Problem: All three Wegner’s conjec-
tures remain open, although Thomassen
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[172] thought to have established the lat-
ter conjecture.

Given a planar graph G, Jonas [112] in
his Ph.D. thesis proves that λ1,1(G) ≤ 8∆ −
21. This bound is later improved in [173] to
λ1,1(G) ≤ 3∆ + 4 and in [100] to λ1,1(G) ≤
2∆ + 24. The better asymptotic bound
λ1,1(G) ≤ ⌊ 9

5∆⌋+1 holds for very large values
of ∆ (∆ ≥ 749) [8]. Borodin et al. [23]
show that we only need ∆ ≥ 47 for the bound
⌈ 9
5∆⌉ to hold. Furthermore, they prove that

λ1,1(G) ≤ 58 if ∆ ≤ 20 and λ1,1(G) ≤ ∆+ 38
if 21 ≤ ∆ ≤ 46. But the better asymptotic
result is the following: λ1,1(G) ≤ ⌈ 5

3∆⌉+77 for
any planar graph G and λ1,1(G) ≤ ⌈ 5

3∆⌉+ 24
if ∆ ≥ 241 [143]. Some of the above results
were obtained by identifying so-called light

structures in planar graphs. The interested
reader can see the survey [104].
For planar graphs of large girth, better

upper bounds for λ1,1(G) are obtained by
the results on general h and k in [177],
listed below. In [167] the authors show that
λ1,1(G) ≤ 5∆ if G is planar. Comparing
this result with the best known one λ1,1(G) ≤
⌈5/3∆⌉+ 77, we get that 5∆ is better for any
∆ ≤ 24.
Wang and Lih [177] conjecture that for

any integer g ≥ 5, there exists an integer
M(g) such that if G is planar of girth g and
maximum degree ∆ ≥ M(g), then λ1,1 ≤ ∆.
This conjecture is known to be false for g =
5, 6 and true for g ≥ 7 [24, 25]. Nevertheless,
the conjecture is ”almost” true for g = 6, in
the sense that for ∆ large enough (∆ ≥ 8821),
λ1,1 ≤ ∆+ 1 if g ≤ 6 [56].

Open Problem: It is not known whether an
analogous statement can hold for planar
graphs of girth 5.

Open Problem: The problem of tightly
bounding λ1,1 for planar graphs with
relatively small ∆ is far to be solved, and
it would be a very interesting result.

An approximation algorithm for the L(1, 1)-
labelling problem with a performance guaran-
tee of at most 9 for all planar graphs is given
in [152]. For planar graphs of bounded degree,
in [129] there is a 2-approximation algorithm.
For planar graphs of large degree (∆ ≥ 749)
an 1.8-approximation algorithm is presented in
[8]. The results of [143], given for any h and k,

apply here resulting to an 1.66-approximation
algorithm.

L(2, 1)-labelling. It is NP-complete
to decide whether λ2,1(G) ≤ r for a
planar bipartite graph of degree r − 1 [20].
Nevertheless, it seems that the technique used
cannot help to show the NP-completeness of
the problem of deciding whether a given planar
graph G has λ2,1(G) ≤ r for any odd values
of r. The authors leave this as an open
problem. This problem has been investigated
in [74] and then definitively closed in [57],
where Eggemann, Havet and Noble provide a
proof of NP-completeness for planar graphs of
any degree.
Jonas [112] proves that λ2,1(G) ≤ 8∆ −

13 when G is planar. This bound has
been the best one until recently, when the
general bounds for λh,k found by Molloy and
Salavatipour and discussed in the following
have been derived.

Open Problem: The Griggs and Yeh’s
conjecture is still open for planar graphs
with ∆ = 3, while is known to be true for
the other values of ∆. Namely, for ∆ ≥ 7
it follows from [100], while Bella et al. [15]
prove it for 4 ≤ ∆ ≤ 6. Further details on
these results are given below.

L(h, k)-labelling. Van den Heuvel and
McGuinnes [100] show that λh,k is bounded
above by (4k−2)∆+10h+38k−23 for planar
graphs for any positive integers h and k, such
that h ≥ k. This bound implies λ2,1(G) ≤
2∆+35 and λ1,1(G) ≤ 2∆+24. Then, in [143],
the result is improved to k⌈ 5

3∆⌉+18h+77k−18
for any positive integers h and k. Observe that
this latter value is asymptotically better than
the previous ones and leads to the best known
bounds on λ2,1 and λ1,1, of ⌈ 5

3∆⌉ + 95 and
⌈ 5
3∆⌉+ 77, respectively.

Open Problem: Since for a planar graph G
it holds the trivial lower bound λh,k(G) ≥
∆k + h − k, it remains an open problem
to understand which is the tight constant
multiplying ∆ in the value of λh,k(G)
or, at least, of λ2,1(G). This is a very
discussed problem, as the large amount of
produced literature proves. Furthermore,
this question gives sense to all the results
cited above, holding only for very large
values of ∆.
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In the case h = 2 and k = 1, the bound
of Van den Heuvel and McGuinnes implies
that the conjecture of Griggs and Yeh (i.e.
λ2,1 ≤ ∆2) holds for planar graphs with
maximum degree ∆ ≥ 7. In [15] it is shown
that the conjecture holds for planar graphs
with maximum degree ∆ 6= 3. Namely, the
authors prove that every planar graph with
maximum degree 4, 5, 6, respectively, has
an L(2, 1)-labelling with span at most 16, 25,
32, respectively, and the proof in the case of
maximum degree 4 is computer-assisted.
The L(h, k)-labelling problem is also studied

on planar graphs with conditions on their
girth. More precisely, in [177] the following
bounds are proven:

− if g(G) ≥ 7, then λh,k(G) ≤ (2k − 1)∆ +
4h+ 4k − 4;

− if g(G) ≥ 6, then λh,k(G) ≤ (2k − 1)∆ +
6h+ 12k − 9;

− if g(G) ≥ 5, then λh,k(G) ≤ (2k − 1)∆ +
6h+ 24k − 15.

Observe that, since ∆+8 ≤ ∆2 when ∆ ≥ 4,
∆ + 15 ≤ ∆2 when ∆ ≥ 5, and ∆ + 21 ≤ ∆2

when ∆ ≥ 6 the conjecture by Griggs and Yeh
holds for planar graphs with g(G) ≥ 7 and
∆ ≥ 4 or g(G) = 6 and ∆ ≥ 5, or g(G) = 5
and ∆ ≥ 6.
Furthermore, if the degree is sufficiently

large (very large, indeed), a better bound
can be provided: every planar graph of girth
g ≥ 7 has an L(h, k)-labelling of span at
most 2h + ∆k − 2 if ∆ ≥ 190 + 2⌈h

k ⌉ [55].
Since the optimal span of an L(h, 1)-labelling
of an infinite ∆-regular tree is 2h+∆− 2, the
obtained bound is the best possible for any
h ≥ 1 and k = 1. In [176], the authors study
L(h, k)-labellings for planar graphs without 4-
cycles, as such graphs possess some interesting
properties. The authors prove the following
bound for planar graphs without 4-cycles:
λh,k ≤ min{(8k − 4)∆ + 8h − 6k − 1, (2k −
1)∆ + 10h + 84k − 47} for any h, k ≥ 1 that
is asymptotycally better than any previous
bound on this subclass of planar graphs. As an
immediate consequence, it follows that λ2,1 ≤
min{4∆ + 9,∆ + 57} and λ1,1 ≤ min{4∆ +
1,∆ + 47}. Hence, the Griggs and Yeh
conjecture on λ2,1 and the Wegner conjecture
on λ1,1 hold for planar graphs without 4-cycles
having ∆ ≥ 9 and ∆ ≥ 96, respectively.

Open Problem: For any graph G, it is well
known that λ1,1 ≥ ∆ and λ2,1 ≥ ∆ + 1.

From the results in [176] it follows that
there exist two constants c1 and c2 such
that for all planar graphs G without 4-
cycles λh,1(G) lies in the interval [∆+h−
1,∆+ch], h = 1, 2. It is not known which
are the precise values of c1 and c2. We
remark that c1 and c2 are not bounded
when planar graphs G are allowed to have
4-cycles.

4.6.1. Outerplanar and l-Outerplanar

Graphs

A graph is outerplanar if it can be embedded
in the plane so that every node lies on the
boundary of the outer face.
A graph G is l-outerplanar if for l = 1,

G is outerplanar and for l > 1 G has a
planar embedding such that if all nodes on
the exterior face are deleted, the connected
components of the remaining graph are all
(l − 1)-outerplanar.
It can be determined in polynomial time

whether G is outerplanar and whether it is l-
outerplanar.

L(1, 1)-labelling. Any l-outerplanar graph
has a treewidth of at most 3l − 1 [18].
Moreover, outerplanar graphs are series-
parallel graphs, and series-parallel graphs are
exactly partial 2-trees. Thus, applying the
result of [187] for bounded treewidth graphs,
we get that any l-outerplanar and outerplanar
graph can be optimally L(1, 1)-labelled in
O(n3) time.
In [35] a linear time algorithm for optimally

L(1, 1)-labelling any outerplanar graphs of
degree ∆ ≥ 7 with at most ∆ + 1 colors
is presented. When ∆ ≥ 6 the required
number of colors is anyway 11. This
algorithm first executes a special traversal of
an embedding of the graph (ordered breadth

first search), then it labels the nodes in a
greedy fashion starting from the root of the
resulting spanning tree and following a level
by level order. The optimality proof exploits
some strong properties of the non-tree edges.
Later, Agnarsson and Halldórsson [7] derive
optimal upper bounds on λ1,1 for outerplanar
graphs of small degree (∆ < 7) proving that
λ1,1 ≤ ∆ + 2 if ∆ = 2 and λ1,1 ≤ ∆ + 1 if
∆ = 3, 4, 5 and λ1,1 ≤ ∆ if ∆ = 6.

L(2, 1)-labelling. As outerplanar graphs
are graphs of treewidth 2, from the result in
[20] for bounded treewidth graphs, we have
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an immediate upper bound, i.e. λ2,1(G) ≤
2∆ + 4. Jonas [112] proves the slightly better
bound λ2,1(G) ≤ 2∆+2. Providing a coloring
algorithm, in [20], the authors improve this
bound to λ2,1(G) ≤ ∆+8 for any outerplanar
graph G, but they conjecture that the tightest
bound could be ∆ + 2. Calamoneri and
Petreschi [35] prove this conjecture when the
input outerplanar graph has maximum degree
∆ ≥ 8, and they provide a linear time
algorithm that guarantees an L(2, 1)-labelling
of G with a number of colors far at most one
from optimum. The algorithm is analogous to
that one presented for the L(1, 1)-labelling.

Open Problem: The authors of [35] conjec-
ture that this algorithm is optimal; if this
is true, the L(2, 1)-labelling problem on
outerplanar graphs would be polynomi-
ally solvable. The question is still open,
and particularly interesting because out-
erplanar graphs are perfect and such a re-
sult would help to understand the rela-
tionship between the hardness of the ver-
tex coloring and of the L(2, 1)-labelling
problem.

For outerplanar graphs with smaller values
of ∆, in [35] it is guaranteed λ2,1(G) ≤ 10,
improving anyway the bound of ∆+8, but the
authors conjecture that the bound ∆+2 holds
for any outerplanar graph of degree ∆ ≥ 4.
Differently, in the special case ∆ = 3, it is
shown that there exists an infinite class of
outerplanar graphs needing ∆ + 4 colors and
an algorithm using at most ∆ + 6 colors for
any degree 3 outerplanar graph is presented.
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FIGURE 8. A counterexample outerplanar
graph with ∆ = 4 and λ2,1 = ∆+ 3.

Wang and Luo [178] prove some bounds on
small degree outerplanar graphs: λ2,1(G) ≤
∆+ 4 if ∆ = 3 and λ2,1(G) ≤ ∆+ 5 if ∆ = 4,
so improving the previous bounds in these two
cases. Furthermore, these author provide a
graph with ∆ = 4 disproving the previous
conjecture as it needs 8 colors (see Figure 8).
Some of the previous bounds for small values

of ∆ are improved in [28]. In particular,
the authors prove that λ2,1(G) ≤ 6 =
∆ + 3 for each degree 3 outerplanar graph.
Furthermore, by experimental techniques,
they improve the lower bounds for 4 ≤ ∆ ≤ 6
showing some graphs requiring ∆ + 3 colors.

Open Problem: It remains an open problem
to close the gap between upper and lower
bounds for 4 ≤ ∆ ≤ 7.

The upper bounds on λ2,1(G) can be
slightly improved if the outerplanar graph G
is triangulated [20, 35].

Open Problem: No results are known about
the general L(h, k)-labelling problem on
outerplanar graphs.

4.6.2. K4-Minor Free Graphs

A graph G has a graph H as a minor if H
can be obtained from a subgraph of G by
contracting edges, and G is called H-minor

free if G does not have H as a minor. A
graph is called series-parallel graph if G can
be obtained from K2 by applying a sequence
of operations, where each operation is either
to duplicate an edge (i.e. replace an edge with
two parallel edges) or to subdivide an edge (i.e.
replace an edge with a path of length 2). A
graph G is K4-minor free if and only if each
block of G is a series-parallel graph. It is well
known [44] that a graph G is outerplanar if
and only if G is K4-minor free and K2,3-minor
free. Thus, the class of K4-minor free graphs
is a class of planar graphs that contains both
outerplanar and series-parallel graphs.

L(1, 1)-labelling. If G is a K4-minor free
graph, then λ1,1(G) ≤ ∆+2 if 2 ≤ ∆ ≤ 3 and
λ1,1(G) ≤ ⌊ 3

2∆⌋ otherwise [135]. The result
is best possible, as witnessed by the following
graphs:

− for ∆ = 2, cycle C5, having λ1,1 = 4;
− for ∆ = 3 let G be the graph consisting of

three internally disjoint paths joining two
nodes x and y, where two of the paths are
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of length 2 and the third one is of length 3;
this graph has λ1,1 = 5 (see Fig. 9.a);

− for ∆ = 2d ≥ 4 let G2d be the graph
consisting of d internally disjoint paths
joining x and y, d internally disjoint paths
joining x and z, and d internally disjoint
paths joining y and z; all these paths are
of length 2, except one path joining x and
y of length 1, and one path joining x and z
of length 1. The degree of such a graph is
2d and its λ1,1 is 3d (see Fig. 9.b where d
is 3);

− for ∆ = 2d+ 1 ≥ 5, let G2d+1 be obtained
from G2d by adding a new path of length
2 joining y and z; this graph has λ1,1 =
3d+ 1.

x y

x

y

z

FIGURE 9. K4-minor free graphs having λ1,1 =
⌊ 3

2
∆⌋ = n.

L(2, 1)-labelling. It is NP-complete to
decide whether λh,k(G) ≤ σ, where σ is
part of the input, if G is series-parallel [63],
as a consequence of the results on bounded
treewidth graphs, as series-parallel graphs
are exactly partial 2-trees. Of course, the
same result holds for K4-minor free graphs, a
superclass of series-parallel graphs.

L(h, k)-labelling. Wand and Wang [179]
show that every K4-minor free graph G with
maximum degree ∆ has an L(h, k)-labelling,
h + k ≥ 3, with span at most 2(2h − 1) +
(2k− 1)⌊ 3

2∆⌋, generalizing the previous result
on the L(1, 1)-labelling. It is natural to wonder
whether the bound on λh,k is optimal, as the
one on λ1,1. This is not the case, as proved in
[126], where it is shown that for every h ≥ 1
there exist ∆0 such that every K4-minor free
graph with maximum degree ∆ ≥ ∆0 has
an L(h, 1)-labelling with span at most ⌊ 3

2∆⌋
and this bound cannot be further decreased.
This result translates to L(h, k)-labelling, with
k > 1 providing an upper bound for λh,k of
k⌊ 3

2∆⌋.

4.7. Graphs with an Intersection

Model

For a given set M of objects (for which
intersection makes sense), the corresponding
intersection graph G is the undirected graph
whose nodes are objects and an edge connects
two nodes if the corresponding objects
intersect. M is called the model of G with
respect to intersection.
Depending on the nature of the object,

many interesting classes can be defined.

4.7.1. Disk Graphs and (r, s)-Civilized
Graphs

A disk graph is the intersection graph of a
set of disks in the plane, where each disk
is uniquely determined by its center and its
diameter. The class of disk graphs is very wide
and interesting, and it includes classes as, for
instance, planar graphs. When all disks are of
the same diameter the graph is called unit disk

graph.
The disk graph and unit disk graph

recognition problem is NP-hard [27, 102].
Hence, labelling algorithms that require the
corresponding disk graph representation are
substantially weaker than those which work
only with graphs.

For each fixed pair of real values r > 0 and
s > 0, a graph G belongs to the class of the
(r, s)-civilized graphs if there exists a positive
integer d ≥ 2 such that the intersection
model is a set of spheres of Rd, the centers
of intersecting spheres are at distance ≤ r
and the distance between any two centers is
≥ s [171]. In the following, planar (r, s)-
civilized graphs (i.e. with d = 2) will
be treated; however, all the results can be
extended directly to civilized graphs of higher
dimension.
Note that the class of (r, s)-civilized graphs

includes disk graphs whenever there is a
(fixed) minimum separation between the
centers of any pairs of circles.
The previously described classes of graphs

are considered as reasonable models for several
classes of packet radio networks. To see this,
consider packet radio networks in which the
range of any transmitter can be considered
as a circular region with the transmitter at
the center of the circle; let r be the radius
of the region corresponding to a transmitter’s
maximum range. Further, it is natural to
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assume a minimum separation s between any
pair of transmitters, otherwise the equipment
carrying the transmitters cannot be placed.
Clearly, the graphs that model such networks
belong to the class of (r, s)-civilized graphs.
In many other realistic situations, the ratio of
maximum to the minimum transmitter range
is not fixed; in such cases disk graphs are more
realistic [129].

L(1, 1)-labelling. The decision version of
the problem is NP-complete for unit disk
graphs. Krumke, Marathe and Ravi [129] give
a 2-approximation algorithm for the L(1, 1)-
labelling problem for (r, s)-civilized graphs.
The performance guarantee of the algorithm
is independent of the values of r and s. An
approximation algorithm with a performance
guarantee of 14 for disk graphs is given in
[162]. It has been later shown [137] that
the performance guarantee of 14 can also be
achieved using the greedy paradigm. The
performance ratio has been improved to 13
(to 12 if the radii are quasi-uniform) [174], by
means of FIRST-FIT algorithms. In [162, 174]
two approximation algorithms for unit disk
graphs with a performance guarantee of 7 are
presented. Finally, in [174] the authors prove
that for unit disk graphs whose nodes lie in

a horizontal strip of heigth
√
3
2 the L(1, 1)-

labelling problem can be solved in polynomial
time. The reason is that such graphs are co-

comparability graphs, that are perfect graphs
with the property that their square graphs
are still co-comparability graphs, and hence
optimally L(1, 1)-labellable in polynomial time
(see Subsection 4.9.8).

Open Problem: Is it possible to improve the
performance ratios of 13 and 7 for disk
and unit disk graphs, respectively?

L(2, 1)-labelling. Fiala, Fishkin and Fomin
[62] explore the L(2, 1)-labelling problem on
disk and unit disk graphs. For the first
class of graphs they provide an approximation
algorithm having performance ratio bounded
by 12. For the second class, they present a
robust labelling algorithm, i.e. an algorithm
that does not require the disk representation
and either outputs a feasible labelling, or
answers the input is not a unit disk graph. Its
performance ratio is constant and bounded by
32/3. In both cases, λ2,1(G) is bounded by

a linear function of the size of the maximum
clique in G.
In [168] the first known upper bound for unit

disk graphs in terms of ∆ is shown: λ2,1(G) ≤
4
5∆

2 + 2∆.

Open Problem: This latter upper bound is
far from being tight, indeed consider as
an example the triangular grid G6: it is
a unit disk graph of maximum degree 6,
its span is 8, but the value of this upper
bound is 40.

L(h, k)-labelling. In [62] it is also
studied also the more general L(h, k)-labelling
problem on disk graphs (in fact the even more
general L(p1, p2, . . . pr)-labelling problem) and
it is presented an approximation algorithm
whose performance depends on the diameter

ratio σ, i.e. the ratio between the biggest and
the smallest diameters of the set of disks.

4.7.2. Chordal Graphs

A graph is chordal (or triangulated) if and
only if it is the intersection graph of subtrees
of a tree. An equivalent definition is the
following: a graph is chordal if every cycle of
length greater than three has a chord. Chordal
graphs have been extensively studied as a
subclass of perfect graphs [105].
An n-sun is a chordal graph with a

Hamiltonian cycle x1, y1, x2, y2, . . . xn,
yn, x1 in which each xi is of degree exactly
2. A sun-free-chordal (respectively odd-sun-

free-chordal) graph is a chordal graph which
contains no n-sun with n ≥ 3 (respectively
odd n ≥ 3) as an induced subgraph. Sun-free-
chordal graphs are also called strongly chordal

graphs and are particularly interesting as they
include directed path graphs, interval graphs,
unit interval graphs and trees. Also strongly
chordal graphs can be defined as intersection
graphs of subtrees with certain properties of a
tree. A graph G is called a block graph if each
block of G is a complete graph. The class of
block graphs includes trees and is a subclass
of strongly chordal graphs.

L(1, 1)-labelling. In [6] it is proven
that the L(1, 1)-labelling problem on chordal
graphs is hard to approximate within a factor
of n

1
2−ǫ, for any ǫ > 0, unless NP-problems

have randomized polynomial time algorithms.
The authors match this result with a simple
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O(
√
n)-approximation algorithm for L(1, 1)-

labelling chordal graphs.

L(2, 1)-labelling. To decide whether
λ2,1(G) ≤ n is NP-complete if G is a chordal
graph [20]; this can be proven by means
of a reduction from HAMILTONIAN PATH
and exploiting the notion of complement of a
graph.
The L(2, 1)-labelling for chordal graphs has

been first investigated by Sakai [158] in order
to approach the general conjecture λ2,1(G) ≤
∆2. The author proves that chordal graphs
satisfy the conjecture and more precisely that
λ2,1(G) ≤ 1

4 (∆ + 3)2.
Chang and Kuo [42] study upper bounds

on λ2,1(G) for odd-sun-free-chordal graphs
and strongly chordal graphs and prove that
λ2,1(G) ≤ 2∆ if G is odd-sun-free-chordal and
λ2,1(G) ≤ ∆ + 2χ(G) − 2 if G is strongly
chordal. Although a strongly chordal graph
is odd-sun-free-chordal, the upper bounds are
incomparable. The result on strongly chordal
graphs is a generalization of the result that
λ2,1(T ) ≤ ∆+2 for any non trivial tree T . The
authors conjecture that λ2,1(G) ≤ ∆ + χ(G)
for any strongly chordal graph G. All the
previous results for chordal graphs have been
improved by the result in [124], stating that
the λ1,1- and λ2,1-numbers are both O(∆3/2)
for this class of graphs, and that there exists a
chordal graph G such that λ2,1(G) = Ω(∆3/2).
Some subclasses of chordal graphs have

been investigated and, restricted to them, the
general bounds on λ2,1 of chordal graphs have
been improved. In particular, in [148] it has
been proved that for chordal bipartite graphs
λ2,1 ≤ 4∆ − 1, hence the Griggs and Yeh’s
conjecture is true for chordal bipartite graphs
with ∆ 6= 3. Furthermore, a graph is a block

graph if it is connected and every maximal 2-
connected component is a clique. As block
graphs are strongly chordal, all the results
for this latter class holds for the former one,
i.e. λ2,1 ≤ 2∆ and λ2,1 ≤ ∆ + 2χ − 2 =
∆+2ω−2, as χ = ω for a block graph. In [147]
these results are improved to λ2,1 ≤ ∆ + ω.
Nevertheless, if ∆ ≤ 4, ω = 3 and G does not
contain a certain subgraph with 7 nodes and
9 edges, then λ2,1 ≤ 6 [22].

L(h, k)-labelling. As a generalization of
the result known for h = 2, if G is a
chordal graph with maximum degree ∆, then
λh,1(G) ≤ 1

4 (2h+∆− 1)2; if G is an odd-sun-

free chordal graph, then λh,1(G) ≤ h∆ and if
G is strongly chordal then λh,1(G) ≤ ∆+(2h−
2)(χ(G) − 1) [41]. Also for this problem it is
proven that λh,k(G) = O(∆3/2(2k − 1)) [124].

4.7.3. Interval Graphs

An interval graph is an intersection graph
whose model is a set of intervals of the real
line.
The class of unit interval graphs is a subclass

of interval graphs for which all the intervals
are of the same length, or equivalently, for
which no interval is properly contained within
another.
Interval graphs are used to model wireless

networks serving narrow surfaces, like high-
ways or valleys confined by natural barriers
(e.g. mountains or lakes).

L(1, 1)-labelling. Interval and unit-
interval graphs are perfect; furthermore,
interval graphs are closed under powers and
the square of a unit-interval graph is still a
unit-interval graph [153]. It follows that the
L(1, 1)-labelling problem on interval and unit-
interval graphs is polynomially solvable. A
linear time algorithm for finding an optimal
L(1, 1)-labelling of interval graphs is presented
in [17].

L(2, 1)-labelling. Sakai [158] proves that
2χ(G)− 2 ≤ λ2,1(G) ≤ 2χ(G) for unit interval
graphs. In terms of ∆, as χ(G) ≤ ∆ + 1, the
upper bound becomes λ2,1(G) ≤ 2(∆ + 1),
and this value is very close to be tight, as
the clique Kn, that is an interval graph, has
λ2,1(Kn) = 2(n− 1) = 2∆.

L(h, k)-labelling. In [17] the authors
present a 3-approximate algorithm for L(h, 1)-
labelling interval graphs. In the special case of
unit interval graphs, the same approximation
ratio holds for the L(h, k)-labelling problem.
An L(h, k)-labelling algorithm for interval

graphs with span at most max(h, 2k)∆ is
provided in [33]; this span can be slightly
improved under some constraints that the
graph has to respect. In the same paper, it
is proved that the classical greedy algorithm
guarantees a span never larger than min((2h+
2k− 2)(ω − 1),∆(2k− 1) + (ω − 1)(2h− 2k)),
where ω is the dimension of the larger clique
in the graph.

Open Problem: It is still not known
whether the decisional version of the
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L(h, k)-labelling problem is NP-complete
on interval graphs or not. Concerning this
problem, the feeling of the author is that
it is NP-complete, even for unit-interval
graphs.

Open Problem: From the results for
interval graphs, the authors of [33] deduce
a result on circular arc graphs, i.e.
intersection graphs whose model is a set
of intervals in a circle. The approach they
follow is: i. to consider a clique in the
graph whose remotion gives an interval
graph, ii. to label the interval graph, iii.
to insert again the clique labeling it with
further labels. In this way, it is possible
to guarantee λh,k ≤ min((3h+2k− 2)ω−
(2h + 2k − 2),∆(2k − 1) + ω(3h − 2k) −
(2h − 2k). The interest of this result is
that it is the first one dealing with circular
arc graphs, but it should be possible to
improve it. An interesting open problem
is to provide tight upper and lower bound
on λh,k for circular arc graphs.

4.7.4. Permutation Graphs

An intersection model of straight lines between
two parallel lines describes permutation graphs

as follows: let L1,L2 be two parallel lines in
the plane and label n points by 1,2, . . . , n
(not necessarily in this order) on L1 as well
as on L2. The straight lines Li connect i
on L1 with i on L2. L= {L1, . . . , Ln} is
the intersection model of the corresponding
permutation graph.
The name permutation graph comes from

the fact that the points on L1,L2 can be
seen as a permutation π = {π1, . . . πn} and
(i, j) ∈ E(G) if and only if i and j form an
inversion in π.

L(0, 1)−, L(1, 1)- and L(2, 1)-labelling.
In [20] it is described an approximation
algorithm for L(h, 1)-labelling (h = 0, 1, 2)
a permutation graph in O(n∆) time; it
guarantees the following bounds: λ0,1(G) ≤
2∆−2, λ1,1(G) ≤ 3∆−2 and λ2,1(G) ≤ 5∆−2.

L(h, k)-labelling. For those permutation
graphs that are also bipartite, there exists
a polynomial L(h, k)-labelling approximation
algorithm [11] that guarantees to use at most
2h−1+k(bc(G)−2) colors, where bc(G) is the
biclique number of G. (In a bipartite graph,
a subset of nodes is a biclique if it induces a
complete bipartite graph. The biclique number

of a bipartite graph is the number of nodes
in a maximum biclique.) Since λh,k(G) ≥
h+ k(bc(G)− 2) for any bipartite graph, this
algorithm guarantees a number of colors that
is at most h− 1 far from optimal.

4.7.5. Split Graphs

A graphG is a split graph if and only if G is the
intersection graph of a set of distinct substars
of a star. Alternatively, a split graph is a graph
G of which node set can be split into two sets
K and S, such that K induces a clique and S
an independent set in G. All split graphs are
chordal.

L(0, 1)-and L(1, 1)-labelling. Bodlaender
et al. [20] prove that it is NP-complete
to decide both whether λ0,1(G) ≤ 3 and
whether λ1,1(G) ≤ r when r is given in
input and G is a split graph. This also
implies NP-completeness of the problems to
decide the λ0,1- and λ1,1-numbers for chordal
graphs. In [6] it is proven that the L(1, 1)-
labelling problem on split graphs is hard to
approximate within a factor of n1/2−ǫ, for any
ǫ > 0, unless NP-problems have randomized
polynomial time algorithms.

L(2, 1)-labelling. As split graphs are
chordal, the results stated for chordal graphs
hold for interval graphs. Moreover, split
graphs are the first known class of graph for
which λ2,1 is neither linear nor quadratic in
∆. Namely, in [20] it is presented an algorithm
L(2, 1)-labelling G with at most ∆1.5+2∆+3
colors, and it is shown that there exist split
graphs for which this bound is tight. Similar
bounds are obtained also for λ0,1 and λ1,1.

Open Problem: Split graphs and chordal
graphs (see Subsection 4.7.2) represent
the only known class for which λ2,1 is
neither linear nor quadratic in ∆. It
remains an open problem to understand
if there exist other classes of graphs
whose λ2,1-number has this property. A
characterization of the class of graphs
having λ2,1 = Θ(∆1.5) would be a
probably hard but very interesting target.

4.8. Hypercubes and Related Net-

works

The n-dimensional hypercube Qn is an n-
regular graph with 2n nodes, each having a
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binary label of n bits (from 0 to 2n − 1). Two
nodes in Qn are adjacent if and only if their
binary labels differ in exactly one position.
The n-dimensional hypercube Qn can also
be defined as the cartesian product of n K2

graphs. The more general cartesian product
Kn12Kn22 . . .2Knd

of complete graphs is
called a Hamming graph, where ni ≥ 2 for each
i = 1, . . . , d.
The N -input Butterfly network BN (with N

power of 2) has N(log2 N + 1) nodes. The
nodes correspond to pairs (i, j), where i (0 ≤
i < N) is a binary number and denotes the
row of the node, and j (0 ≤ j ≤ log2 N + 1)
denotes its column. Two nodes (i, j) and
(i′, j′) are connected by an edge if and only
if j′ = j + 1 and either i and i′ are identical
(straight edge) or i and i′ differ in precisely the
j′-th bit (cross edge). A 3-input butterfly is
depicted in Figure 10.a. TheN -input butterfly
network is strictly related to the hypercube, as
its quotient graph, obtained by shrinking each
row in a unique node, is exactly the (log2 N)-
dimensional hypercube.
The n-dimensional Cube-Connected-Cycles

network, CCCn, is constructed from the n-di-
mensional hypercube by replacing each node
of the hypercube with a cycle of n nodes. The
i-th dimension edge incident to a node of the
hypercube is connected to the i-th node of the
corresponding cycle of the CCC. In Figure 10.b
the classical representation of a 3-dimensional
CCC network is depicted.

L(0, 1)-labelling. λ0,1(Qn) ≤ 2⌈log n⌉ and
there exists a labelling scheme using such a
number of colors. This labelling is optimal
when n = 2k for some k, and it is a 2-
approximation otherwise [173].

L(1, 1)-labelling. In [173] an L(1, 1)-
labelling scheme of the hypercube Qn is
described in the context of optical cluster
based networks. A different approach is used
in [52] with respect to the problem of data
distribution in parallel memory systems: it
is presented an algorithm that uses 2⌊logn⌋+1

colors, and requires O(n) time and space,
improving the previously known results. In
both papers, the upper bound on λ1,1(Qn) is
a 2-approximation, that is conjectured to be
the best possible.

L(2, 1)-labelling. For the n-dimensional
hypercube Qn, λ2,1(Qn) ≥ n + 3 and

λ2,1(Qn) ≥ n + 4 for n = 8 and n = 16,
respectively [111]. Furthermore, λ2,1(Qn) ≤
2n + 1 for n ≥ 5 [89]. The same authors also
determine λ2,1(Qn) for n ≤ 5 and conjecture
that the lower bound n+ 3 is the actual value
of λ2,1(Qn) for n ≥ 3. Using a coding theory
method, the upper bound is improved by 1 in
[182], where it is proven that it ranges from
⌊n+1+ log2 n⌋ to 2n, depending on the value
of n. Furthermore, lim inf λ2,1(Qn)/n = 1.
In [75] an L(2, 1)-labelling algorithm of Qn

is described: exploiting a coding theoretic
approach, each color is assigned with a f(n)-
bit binary number, where f(n) =min {r such
that n+ r + 1 ≤ 2r}. Therefore, the labelling
uses 2f(n) colors.
Georges, Mauro and Stein [82] determine

the λ2,1-number of Hamming graph H(d, n) =
Kn2Kn2 . . .2Kn (d factors) where n = pr, p
prime and either d ≤ p and r ≥ 2, or d < p
and r = 1. They prove that, under these
conditions, λ2,1(H(d, pr)) = p2r − 1.
In [32] a constructive algorithm to L(2, 1)-

label multistage interconnection networks in
general is presented, then butterflies and
CCCs are particularly considered. The
authors observe that λ2,1(BN ) ≥ 6 and
λ2,1(CCCn) ≥ 5 in view of their degree,
and they L(2, 1)-label these networks almost
optimally. More precisely, if N is either 22

or 23, they provide a labelling for BN using 7
colors, that is optimal; for all greater values
of N their method requires 8 colors. For
what concerns CCCn, the authors provide a
labelling ensuring λ2,1(CCCn) ≤ 6, that is
1 far from optimal, and they experimentally
verify that there exist some values of n (e.g.
n = 5) requiring a 6 colors labelling.

Open Problem: The approach presented
in [32], consisting in shrinking some
cycles of the networks and in reducing
to label these simpler graphs instead
of the complete networks, seems to be
promising: it is very general both because
it can be applied to many multistage
networks, and because it works for every
value of h and k. Nevertheless, it
needs to be refined: first of all, the
authors themselves realize that sometimes
the reduced graph needs more colors
than the whole network, because the
reduced graph typically has degree higher
than the original network. Secondly,
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a. b.

FIGURE 10. a. The classical representation of an 8-input Butterfly network; b. The bidimensional
layout of a 3-dimensional CCC network.)

the main bottleneck of this method is
that the reduced graph must be labelled
using exhaustive methods; nevertheless,
it should be relatively easy to design
algorithms to efficiently label the reduced
graphs, that are constituted by two
parallel cycles joined by a very regular set
of edges.

L(h, k)-labelling. Zhou [186] proves that
λh,k(Qn) ≤ 2s· max{k, ⌈h/2⌉}+2s−t· min{h−
k, ⌊h/2⌋}−h, where h ≥ k ≥ 1, s = 1+⌊log2 n⌋
and t =min{2s−n−1, s}. In particular, if 2k ≥
h, then λh,k(Qn) ≤ 2sk+2s−t(h−k)−h leading
to λ2,1(Qn) ≤ 2s + 2s−t − 2. The proof of
this theorem gives rise to a systematic way of
generating L(h, k)-labellings of Qn which use
2s labels and have span equal to the right-side
of the previous formula. For Hamming graphs,
the same authors show an upper bound on λh,k

for special values of ni, i = 1, . . . , d, and this
bound is optimal when h ≤ 2k.

4.9. Other Graphs

In this section there are collected some classes
of graphs for which very few results appear
in the literature, and they are not enough to
justify a devoted section. It is amazing that
the L(h, k)-labelling problem appears more
tricky just for some very studied classes of
graphs, included in this collection, that are
very relevant from the theoretical point of view
and that have many interesting properties.

4.9.1. Diameter 2 Graphs

A diameter 2 graph is a graph where all nodes
have either distance 1 or 2 each other.

L(1, 1)- and L(2, 1)-labelling. Intuitively,
diameter 2 graphs seem to be a particularly
feasible class to efficiently solve the L(h, k)-
labelling problem. On the contrary, while it
is easy to see that the λ1,1-number for these
graphs is n − 1, Griggs and Yeh [89] prove
that the L(2, 1)-labelling problem is NP-hard.
They prove also that λ2,1 ≤ ∆2 and state
that this upper bound is sharp only when
∆ = 2, 3, 7 and, possibly 57 because a diameter
2 graph with n = ∆2 + 1 can exist only if
∆ is one of these numbers (see more details
on these graphs below). Since the diameter
is 2, all labels in V must be distinct. Hence,
λ(G) ≥ n− 1 = ∆2 and therefore the equality
holds.

L(h, k)-labelling. In [121] bounds for the
λh,1-number are presented, for all h ≥ 2. In
particular, it is proven that λh,1(G) ≤ ∆2 +
(h − 2)∆ − 1 if G is a diameter 2 graph with
maximum degree ∆ ≥ 3 and n ≤ ∆2 − 1.
Since a diameter 2 graph can have at most
∆2 + 1 nodes, and, with the exception of C4,
there are no diameter 2 graphs with maximum
degree ∆ and ∆2 nodes [59], it just remains to
investigate the graphs with n = ∆2+1. There
are merely four such graphs; they are regular
and have ∆ = 2, 3, 7 and 57, respectively:
− ∆ = 57: it is neither known whether

such a graph exists; this hypothetical graph
is called Aschbacher graph. Junker [114]
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FIGURE 11. An L(h, 1)-labelling of Petersen
graph.

strongly conjectures that there is no such
a graph, and we will not consider it for
obvious reasons;

− ∆ = 2: the cycle of length 5: λh,1(C5) = 2h
[78];

− ∆ = 3: the Petersen graph P : λ2,1(P ) = 9
[89]; for h ≥ 3 λh,1(P ) = 3+2h (see Figure
11) [121];

− ∆ = 7: the Hoffman-Singleton graph HS:
max {49, 3h} ≤ λh,1(HS) ≤ 19 + 3h
[121] for h ≥ 10; when h = 10 it holds
λh,1(HS) = 49 that of course is optimal
(as n = 50 and HS is a diameter 2 graph).

Open Problem: Since for h ≥ h′

every L(h, 1)-labelling is also a proper
L(h′, 1)-labelling, it holds λh,1(HS) =
49 for ∆ ≤ 10. An interesting
open problem is to improve the upper
bound for h > 10. Another question
is whether 10 is the highest value for
h such that λh,1 = 49.

4.9.2. Regular Graphs

An r-regular graph is a graph in which all
nodes have degree exactly r. Although they
constitute an interesting class of graphs, they
have not been very studied from the L(h, k)-
labelling point of view. Indeed, to the best of
the author’s knowledge, only three papers deal
with regular graphs.

L(2, 1)-labelling. For every r ≥ 3, it is NP-
complete to decide whether an r-regular graph
admits an L(2, 1)-labelling of span (at most)
λ2,1 = r + 2 [69]. The result is best possible,
since no r-regular graph (for r ≥ 2) allows an
L(2, 1)-labelling of span r + 1.

L(h, k)-labelling. The λh,1-number of an
r-regular graph is at least 2h+ r − 2 [78].
In [81], Georges and Mauro prove that the

λh,k-number of any r-regular graph G is no
less than the λh,k-number of the infinite r-
regular tree (see Section 4.4). Then, they
define a graph G to be (h, k, r)-optimal if
and only if the equality holds, they consider
the structure of (h, k, r)-optimal graphs for
h/k > r and show that (h, k, r)-optimal graph
are bipartite with a certain edge-coloring
property. Finally, the same authors determine
the exact λ1,1- and λ2,1-numbers of prisms.
More precisely, for n ≥ 3, the n-prism Pr(n)
is the graph consisting of two disjoint n-
cycles v0, v1, . . . , vn−1 and w0, w1, . . . , wn−1

and edges {vi, wi} for 0 ≤ i ≤ n− 1.
Observe that Pr(n) is isomorphic to Cn2P2.

In [80] it is proven that λ2,1(Pr(n)) is equal to
5 if n ≡ 0mod 3 and to 6 otherwise, improving
the result in [108], and that

λ1,1(Pr(n)) =







3 if n ≡ 0 mod 4
5 if n = 3, 6
4 otherwise.

Open Problem: Regular graphs seem to
be particularly relevant for the L(h, k)-
labelling questions (notice that most of
the graphs shown as extremal cases are
regular graphs), so they are worth being
studied more deeply.

4.9.3. Bipartite Graphs

Bipartite graphs are graphs with χ(G) ≤ 2.
Nevertheless, their λh,k-number can be very
large, as shown in the following.
Before detailing the known results for

bipartite graphs, we recall some definitions. A
bipartite graph G = (U ∪V,E), with |U | = n1

and |V | = n2, is called a chain graph if there
exists an ordering u1, . . . , un1 of U and an
ordering v1, . . . , vn2 of V such that N(u1) ⊆
. . . ⊆ N(un1) and N(v1) ⊆ . . . ⊆ N(vn2),
where N(x) is the set of all adjacent nodes
of x. A subset of nodes of a bipartite graph
is a biclique if it induces a complete bipartite
subgraph; the maximum order of a biclique of
G is denoted by bc(G).

L(0, 1)-labelling. Bipartite graphs may
require λ0,1 = Ω(∆2), indeed there exist

bipartite graphs with λ0,1 ≥ ∆2

4 [20]. Of
course the same bound holds for each λh,1,
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h ≥ 1. Later this lower bound has been
improved by a constant factor of 1

4 in [9].

L(1, 1)-labelling. The decision version of
the L(1, 1)-labelling problem is NP-complete
even for 3-regular bipartite graphs using 4
colors [47]. In [6] it is proven that the
L(1, 1)-labelling problem on bipartite graphs
is hard to approximate within a factor of
n1/2−ǫ, for any ǫ > 0, unless NP-problems
have randomized polynomial time algorithms.

L(2, 1)-labelling. Since the general upper
bound λ2,1(G) ≤ ∆2 + ∆ − 2 [84] holds also
for bipartite graphs of any degree ∆ and the
lower bound on λ0,1 holds a fortiori for λ2,1, it
follows that λ2,1(G) = Θ(∆2) for this class of
graphs.
In [20], the authors prove that the decisional

version of the L(2, 1)-labelling problem is NP-
complete for planar bipartite graphs.
For the subclass of chain graphs, the

L(2, 1)-labelling problem can be optimally
solved in linear time and λ2,1(G) = bc(G)
[148]. Furthermore, λ2,1(G) ≤ 4∆ − 1 for a
chordal bipartite graph G [148]. In the same
paper, the L(2, 1)-labelling problem of several
subclasses of bipartite graphs is studied, such
as bipartite distance hereditary graphs and
perfect elimination bipartite graphs.

L(h, k)-labelling. In [92] the L(h, k)-
labelling problem is considered even on
bipartite graphs, and it is proven that the
simplest approximation algorithm, i.e. the
one based on First Fit strategy, guarantees
a performance ratio of O(min(2∆,

√
n)), and

this is tight within a constant factor in view of
the n1/2−ǫ-hardness result. On the contrary,
exact results can be achieved if the bipartite
graphs are complete. Indeed, in the special
case of k = 1, given a complete bipartite graph
G = (U ∪ V,E), where |U | = n1 and |V | = n2,
n1 ≥ n2 [88]:

λh,1(G) =































max(n1 − 1, n2 − 1 + h)
if 0 ≤ h ≤ 1

2
(2n2 − 1)h+max(n1 − n2 − 1 + h, 0)

if 1
2 ≤ h ≤ 1

h+ n1 + n2 − 2
if h ≥ 1

If the complete bipartite graph is the star,

the value of the minimum span is [34]:

λh,k(G) =







(∆− 1)k if h ≤ k
2

(∆− 2)k + 2h if k
2 ≤ h ≤ k

(∆− 1)k + h if h ≥ k

and, of course, these latter values match with
the previous ones in the special case n1 = ∆,
n2 = 1 and k = 1.

4.9.4. Cayley Graphs

Cayley graphs of the group Γ relative to the
finite group generating set S is the labeled
directed graph G = (V,E) for which V = Γ
and E = {(u, us) : u ∈ V, s ∈ S}, where the
edge (u, us) is labeled s. In other words, there
is an edge labeled s between two nodes of G if
one is obtained from the other through right
multiplication by s. Note that if |S| = n, then
the undirected graph underlying the Cayley
graph G is 2n-regular if for all s, s′ ∈ S,
ss′ 6= 1, hence the upper bounds on regular
graphs hold for Cayley graphs, too.
Some authors study the L(h, k)-labelling

problem on this class of graphs, when varying
the group Γ. The reader may refer to [186] for
abelian groups, and to [12] for more general
groups. These results contain as a special case
the L(2, 1)-labelling of the square grid.

4.9.5. Unigraphs

Unigraphs are graphs uniquely determined by
their own degree sequence up to isomorphism
and are a superclass including matrogenic,
matroidal, split matrogenic and threshold

graphs. In this section we will deal with all
these classes of graphs. The interested reader
can find further information related to these
classes of graphs in [138].
An antimatching of dimension h of X onto

Y is a set A of edges such that M(A) = X ×
Y −A is a perfect matching of dimension h of
X onto Y . A graphG = ({v1, v2, . . . vk}, ∅) is a
null graph if its edge set is empty, irrespective
of the dimension of the node set.
A split graph G with clique K and stable

set S is matrogenic (Fig. 12.a) if and only if
the edges of G can be colored red and black so
that [140]:
a. The red subgraph is the union of vertex-
disjoint pieces, Ci, i = 1, ..., z. Each piece
is either a null graph Nj, belonging either
to K or to S; or matching Mr of dimension
hr of Kr ⊆ VK onto Sr ⊆ VS , r = 1, . . . µ;
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or antimatching At of dimension ht ofKt ⊆
VK onto St ⊆ VS , t = 1, . . . α (Fig. 12.b).

b. The linear ordering C1, ...Cz is such that
each node in VK belonging to Ci is not
linked to any node in VS belonging to Cj

, j = 1, ..., i − 1, but is linked by a black
edge to every node in VS belonging to Cj ,
j = i+1, ..., z. Furthermore, any two nodes
in VK are linked by a black edge (Fig. 12.c).

A graph is matrogenic [73] if and only if
its node set V can be partitioned into three
disjoint sets VK , VS , and VC such that:

a. VK ∪ VS induces a split matrogenic graph
in which K is the clique and S the stable
set;

b. VC induces a crown, i.e. either a perfect

matching or a h-hyperoctahedron (that is
the complement of a perfect matching of
dimension h – or a chordless C5;

c. every node in VC is adjacent to every node
in VK and to no node in VS .

Observe that split matrogenic graphs are
matrogenic graphs in which VC = ∅.
A result in [73] is that a graph G = (V,E) is

matrogenic if and only if it does not contain the
configuration in Fig. 13.a. A graphG = (V,E)
is matroidal if and only if it contains neither
the configuration in Fig. 13.a nor a chordless
C5 [149].

a b

FIGURE 13. The forbidden configuration of: a.
a matrogenic graph and b. a threshold graph: —
shows a present edge, - - - shows an absent edge.

The vicinal preorder � on V (G) is defined
as follows: x � y iff N(x) − y ⊆ N(y) − x,
where N(x) is the set of x’s adjacent nodes.
A graph G is a threshold graph if and only if
G is a split graph and the vicinal preorder on
V (G) is total, i.e. for any pair x, y ∈ V (G),
either x � y or y � x. G is threshold if and
only if it does not contains the configuration
in Fig. 13.b.

L(2, 1)-labelling. A linear time algorithm
for L(2, 1)-labelling matrogenic graphs is
provided in [37]. Upper bounds for the
specific subclasses defined above are proved.

In particular, in the special case of threshold
graphs an optimal L(2, 1)-labelling is provided
with λ2,1 ≤ 2∆ + 1 (the exact values depends
on the graph). The optimal algorithm for
threshold graphs matches the polynomiality
result of Chang and Kuo on cographs [42], as
threshold graphs are a subclass of cographs.
For the more general class of unigraphs, in

[36] a 3/2-approximate algorithm for L(2, 1)-
labeling this class of graphs is proposed. This
algorithm runs in O(n) time, improving the
time of the algorithm based on the greedy
technique, requiring O(m) time, that may be
near to Θ(n2) for unigraphs.

Open Problem: It is still not known if
the L(2, 1)-labelling problem is NP-hard
for unigraphs and matrogenic graphs or
not. Furthermore, the cited results are
the only ones present in the literature
concerning these graphs, so it is probably
possible to refine the algorithm in order
to improve the upper bound on λ2,1.

4.9.6. q-Inductive Graphs

Let q be a positive integer. A class of graphs
G is q-inductive if for every G ∈ G, the nodes
of G can be assigned distinct integers in such
a way that each node is adjacent to at most q
higher numbered nodes.
Several well known classes of graphs belong

the q-inductive class for appropriate values
of q. For example, trees are 1-inductive,
outerplanar graphs are 2-inductive, planar
graphs are 5-inductive, chordal graphs with
maximum clique size ω are (ω − 1)-inductive
and graphs of treewidth t are t-inductive.

L(1, 1)-labelling. In [129] it is presented an
approximation algorithm for L(1, 1)-labelling
q-inductive graphs having performance ratio
at most 2q − 1. The running time of this
algorithm is O(nq∆).

L(h, k)-labelling. Halldórson [92] applies
his greedy algorithm for bipartite graphs to
q-inductive graphs, achieving a performance
ratio of at most 2q− 1, hence generalizing the
result for L(1, 1)-labelling to all values of h and
k.

Open Problem: Observe that for outerpla-
nar and planar graphs the bound of 2q−1
is rather far from optimum (see Section
4.6), so probably the cited algorithm can
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a b c

C1

C2

C3

C4

FIGURE 12. a. A split matrogenic graph; b. its red graph; c. its black graph.

be improved in order to guarantee a bet-
ter performance ratio for all values of q.

4.9.7. Generalized Petersen Graphs

For n ≥ 3, a 3-regular graph G with n = 2N
nodes is a generalized Petersen graph of order

N if and only if G consists of two disjoint N -
cycles, called inner and outer cycles, such that
each node on the outer cycle is adjacent to a
node on the inner cycle (see Figure 14). In
applications involving networks, one seeks to
find a balance between network connectivity,
efficiency, and reliability. The double-cycle
structure of the generalized Petersen graphs
is appealing for such applications since it
is superior to a tree or cycle structure as
it ensures network connectivity in case of
any two independent node/connection failures
while keeping the number of connections at a
minimum level.

L(2, 1)-labelling. The λ2,1-number of
every generalized Petersen graph is bounded
from above by 8, with the exception of
the Petersen graph itself, having λ2,1-number
equal to 9. This bound can be improved to
7 for all generalized Petersen graphs of order
N ≤ 6 [79]. The authors conjecture that
the Petersen graph is the only connected 3-
regular graph with λ2,1-number 9 and that
there are neither generalized Petersen graphs
nor 3-regular graphs with λ2,1-number 8, i.e. 7
is an upper bound also for generalized Petersen
graphs of order greater than 6. In [3, 4] the
authors prove that this conjecture is true for
orders 7 and 8, and give exact λ2,1-numbers
for all generalized Petersen graphs of orders 5,
7 and 8, thereby closing all cases with orders
up to 8. Finally, in [5] the exact λ2,1-numbers

for all generalized Petersen graphs of orders
9, 10, 11 and 12 are given, thereby closing all
open cases up to order N = 12 and lowering
the upper bound on λ2,1 down to 6 for all but
three graphs of these orders.

Open Problem: It is not known whether
there is a generalized Petersen graph of
order greater than 11 with λ2,1 ≥ 7. In [5]
seven generalized Petersen graphs of order
at most 11 having λ2,1 ≥ 7 are shown.
If there is no such a graph for any order
greater than 11, then λ2,1 for generalized
Petersen graphs of order greater than 6
would be at most 6, lower than the upper
bound of 7 conjectured by Georges and
Mauro [79].

Open Problem: Both to solve the men-
tioned conjecture and to increase the or-
der N for which it is known λ2,1would be
interesting issues, although such results
would have a graph theoretic flavor, more
than algorithmic.

In [4, 5] some subclasses of generalized
Petersen graphs, particularly symmetric, are
considered. The authors provide the exact
λ2,1-numbers of such graphs, for any order.

4.9.8. Comparability and Co-Comparability

Graphs

A graph is a comparability graph if and only if
there exists an order of its nodes v0 < v1 <
. . . < vn−1 such that for each i < j < l, if
(vi, vj) is an edge and (vj , vl) is an edge, then
(vi, vl) is an edge.
Comparability graphs are a very interesting

and wide class: they are perfect graphs
and include bipartite, chordal, permutation,
threshold graphs and cographs.
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FIGURE 14. Some generalized Petersen graphs for all values of n from 3 to 7.

The class of co-comparability graphs con-
tains all graphs that are the complement of
a comparability graph. From the definition of
comparability graph, if G is a co-comparability
graph, then there exists an ordering of the
nodes set such that, if vi < vj < vl and
(vi, vl) ∈ E then either (vi, vj) ∈ E or
(vj , vl) ∈ E.
Co-comparability graphs are also perfect

graphs and include interval and permutation
graphs.

L(1, 1)-labelling. As the square of a
comparability graph G is G itself and
co-comparability graphs are closed under
powers [51], in view of the fact that both
comparability and co-comparability graphs are
perfect, it easily follows that the L(1, 1)-
labeling problem is polynomially solvable on
these classes of graphs.

L(h, k)-labelling. A co-comparability
graph can be L(h, k)-labeled with span at most
max(h, 2k)2∆+ k [33]. This result is obtained
exploiting the linear order of the nodes of co-
comparability graphs and some considerations
on the degree of nodes based on the property
of their edges.

Open Problem: Comparability and co-
comparability graphs are very interesting
graphs containing many classes, so they
deserve to be better investigated; above
all, it would be interesting to understand
whether the L(2, 1)-labelling problem
is still polynomially solvable or not.
Observe that interval graphs lie in the
intersection between comparability and

co-comparability graphs, so a complexity
result for this class would imply results on
its superclasses.

4.9.9. Sierpiński Graphs

The nodes of a Sierpiński graph S(n, k), n, k ≥
1, are labelled with strings in {0, . . . , k − 1}n;
two different nodes u = (u1, . . . , un) and v =
(v1, . . . vn) are adjacent if and only if there
exists an index h such that:
(i) ut = vt for t = 1, . . . , h− 1;
(ii) uh 6= vh and
(iii) ut = vh and vt = uh for t = h+ 1, . . . , n.
The graphs S(2, 3) and S(3, 3) are shown in

Figure 15.

00 
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22 21 12 

00 01 10 11 

03 
02 13 

12 

30 
31 20 

21 

00 01 10 11 

FIGURE 15. S(2, 3) and S(3, 3).

L(2, 1)-labelling. Gravier, Klavz̆ar and
Mollard [85] prove that for any n ≥ 2 and any
k ≥ 3, λ2,1(S(n, k)) = 2k.
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