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Abstract

Given any fixed nonnegative integer values h and k, the L(h, k)-labelling problem
consists in an assignment of nonnegative integers to the nodes of a graph such that adjacent
nodes receive values which differ by at least h, and nodes connected by a 2 length path
receive values which differ by at least k. The span of an L(h, k)-labelling is the difference
between the largest and the smallest assigned frequency. The goal of the problem is to
find out an L(h, k)-labelling with minimum span.

The L(h, k)-labelling problem has been intensively studied following many approaches
and restricted to many special cases, concerning both the values of h and k and the
considered classes of graphs.

This paper reviews the results from previous by published literature, looking at the
problem with a graph algorithmic approach. It is an update of a previous survey written
by the same author.

Keywords: L(h, k)-labelling; frequency assignment; radiocoloring; λ-coloring; distance-2-
coloring; D2-vertex coloring

1 Introduction

One of the key topics in graph theory is graph coloring. Fascinating generalizations of the
notion of graph coloring are motivated by problems of channel assignment in wireless com-
munications, traffic phasing, fleet maintenance, task assignment, and other applications. (See
[1] for a survey.)

While in the classical vertex coloring problem [2] a condition is imposed only on colors
of adjacent nodes, many generalizations require colors to respect stronger conditions, e.g.
restrictions are imposed on colors both of adjacent nodes and of nodes at distance 2 in the
graph.

This paper will focus on a specific graph coloring generalization that arose from a channel
assignment problem in radio networks [3]: the L(h, k)-labelling problem, defined as follows:

Definition 1.1 Given a graph G = (V,E) and two nonnegative integers h and k, an L(h, k)-
labelling is an assignment of nonnegative integers to the nodes of G such that adjacent nodes
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are labelled using colors at least h apart, and nodes having a common neighbour are labelled
using colors at least k apart. The aim of the L(h, k)-labelling problem is to minimize the span
σh,k(G), i.e. the difference between the largest and the smallest used colors. The minimum
span over all possible labelling functions is denoted by λh,k(G) and is called λh,k-number of
G.

Observe that this definition imposes a condition on labels of nodes connected by a 2 length
path instead of using the concept of distance 2, that is very common in the literature. The
reason is that this definition works both when h ≥ k and when h < k. The present formulation
allows the nodes of a triangle to be labelled with three colors at least max{h, k} apart from
each other, although they are at mutual distance 1; when h ≥ k the two definitions coincide.

Furthermore, as the smallest used color is usually 0, an L(h, k)-labelling with span σh,k(G)
can use σh,k(G) + 1 different colors; this feature is slightly counter-intuitive, but is kept for
historical reasons.

The notion of L(h, k)-labelling was introduced by Griggs and Yeh in the special case h = 2
and k = 1 [4, 5] in connection with the problem of assigning frequencies in a multihop radio
network (for a survey on the class of frequency assignment problems, see e.g. [6, 7, 8, 9]),
although it has been previously mentioned by Roberts [10] in his summary on T -colorings
and investigated in the special case h = 1 and k = 1 as a combinatorial problem and hence
without any reference to channel assignment (see for instance [11]).

After its definition, the L(h, k)-labelling problem has been used to model several prob-
lems, for certain values of h and k. Some examples are the following: Bertossi and Bonuccelli
[12] introduced a kind of integer ”control code” assignment in packet radio networks to avoid
hidden collisions, equivalent to the L(0, 1)-labelling problem; channel assignment in opti-
cal cluster based networks [13] can be seen either as the L(0, 1)- or as the L(1, 1)-labelling
problem, depending on the fact that the clusters can contain one ore more nodes; more in
general, channel assignment problems, with a channel defined as a frequency, a time slot, a
control code, etc., can be modeled by an L(h, k)-labelling problem, for convenient values of
h and k. Besides the practical aspects, also purely theoretical questions are very interesting.
These are only some reasons why there is considerable literature devoted to the study of the
L(h, k)-labelling problem, following many different approaches, including graph theory and
combinatorics [1, 14], simulated annealing [15, 16], genetic algorithms [17, 18], tabu search
[19], and neural networks [20, 21]. In all these contexts, the problem has been called with
different names; among others, we recall: L(h, k)-labelling problem, L(p, q)-coloring problem,
distance-2-coloring and D2-vertex coloring problem (when h = k = 1), radiocoloring problem
and λ-coloring problem (when h = 2 and k = 1).

Many variants of the problem have been introduced in the literature, as well: instead of
minimizing the span, seek the L(h, k)-labelling that minimizes the order, i.e. the number of
effectively used colors [3]; given a span σ, decide whether it is possible to L(h, k)-label the
input graph using all colors between 0 and σ (no-hole L(h, k)-labelling) [22]; consider the
color set as a cyclic interval, i.e. the distance between two labels i, j ∈ {0, 1, . . . , σ} defined as
min{|i− j|, σ+ 1− |i− j|} [23]; use a more general model in which the labels and separations
are real numbers [24]; generalize the problem to the case when the metric is described by
a graph H (H(h, k)-labelling) [25]; consider the precoloring extension, where some nodes
of the graph are given as already (pre)colored, and the question is if this precoloring can
be extended to a proper coloring of the entire graph using a given number of colors [26];
consider a one-to-one L(h, k)-labelling (L′(h, k)-labelling) [27]; L(h, k)-label a digraph, where
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the distance from a node x to a node y is the length of a shortest dipath from x to y [28]; study
another parameter, called edge-span, defined as the minimum, over all feasible labellings, of
the max{|f(u)−f(v)| : (u, v) ∈ E(G)} [29]; impose the labelling to be balanced, i.e. all colors
must be used more or less the same number of times (equitable coloring) [30].

Some of these generalizations are considered in [31].

The extent of the literature and the huge number of papers concerning the L(h, k)-labelling
problem have been the main motivation of the surveys [6, 32, 31], each one approaching the
problem from a different point of view (operative research, graph algorithms and extremal
combinatorial, respectively), but they are all published at least five years ago. Since a sub-
stantial progress has been achieved in the last years, the author thinks that an updated survey
and annotated bibliography would be useful. The present paper is an update of [32].

In this work, the case k = 0, for any fixed h, is not considered as this problem becomes the
classical vertex coloring problem. Instead, a particular accent is posed on the special cases
h = 1, 2 and k = 1: the first one is equivalent to the problem of optimally coloring the square
of the input graph and the second one has been considered in the seminal works by Roberts,
Griggs and Yeh. Both these problems have been intensively studied in the literature.

The decision version of the L(h, k)-labelling problem has been proved to be NP-complete,
even under restrictive hypotheses. Section 2 lists these results. In Section 3 some general
lower and upper bounds on the value of λh,k are summarized.

For some special classes of graphs a labelling can be computed efficiently, while for other
classes of graphs only approximate algorithms are known. Both these kinds of results are
described in Section 4.

In the rest of this paper we will consider simple and loopless graphs with n nodes, max-
imum degree ∆, chromatic number χ(G), clique number ω(G) and girth (i.e. the length of
the shortest cycle in G) g(G). For all graph theoretic concepts, definitions and graph classes
inclusions not given in this review we refer either to [33] or to the related reference.

2 NP-Completeness Results

In this section some general complexity results are listed, divided by different values of h and
k. More specific results concerning classes of graphs are given in Section 4.

L(0, 1)-labelling. In [12] the NP-completeness result for the decision version of the
L(0, 1)-labelling problem is derived when the graph is planar by means of a reduction from
3-VERTEX COLORING of straight-line planar graphs.

L(1, 1)-labelling. Also the decision version of the L(1, 1)-labelling problem, (that is
equivalent to the L(2, 1)-labelling problem where the order must be minimized instead of
the span [34]) is proved to be NP-complete with a reduction from 3-SAT [35]. The problem
remains NP-complete for unit disk graphs [36], for planar graphs [37] and even for planar
graphs of bounded degree [38]. It is also NP-complete to decide whether 4 colors suffice to
L(1, 1)-label a cubic graph. On the contrary, it is polynomial to decide if 3 colors are enough
[39].

Studying a completely different problem (Hessian matrices of certain non linear functions),
McCormick [35] gives a greedy algorithm that guarantees a O(

√
n)-approximation for coloring

the square of a graph. The algorithm is based on the greedy technique: consider the nodes in

3



any order, then the color assigned to node vi is the smallest color that has not been used by
any node which is at distance at most 2 from vi; the performance ratio is obtained by simple
considerations on the degree of G and of its square.

Approaching an equivalent scheduling problem, Ramanathan and Lloyd [40] present an
approximation algorithm with a performance guarantee of O(θ), where θ is the thickness of
the graph. Intuitively, the thickness of a graph measures ”its nearness to planarity”. More
formally, the thickness of a graph G = (V,E) is the minimum number of subsets into which
the edge set E must be partitioned so that each subset in the partition forms a planar graph
on V .

L(2, 1)-labelling. To decide whether a given graph G admits an L(2, 1)-labelling of
span at most n is NP-complete [4]. This result is obtained by a double reduction: from
HAMILTONIAN PATH to the decision problem asking for the existence of an injection f :
V → [0, n− 1] such that |f(x)− f(y)| ≥ 2 whenever (x, y) ∈ E, and from this problem to the
decisonal version of the L(2, 1)-labelling problem. The problem remains NP-complete if we
ask whether there exists a labelling of span at most σ, where σ is a fixed constant ≥ 4, while
it is polynomial if σ ≤ 3 (this case occurs only when G is a disjoint union of paths of length
at most 3). A fortiori, the problem is not fixed parameter tractable [41].

The problems of finding the λ2,1-number of graphs with diameter 2 [4, 5], planar graphs
[42, 43], bipartite, split and chordal graphs [42] are all NP-hard.

Finally, Fiala and Kratochv́ıl [44] prove that for every integer p ≥ 3 it is NP-complete to
decide whether a p-regular graph admits an L(2, 1)-labelling of span (at most) p+ 2.

We conclude this paragraph citing some results where the authors present exact exponen-
tial time algorithms for the L(2, 1)-labelling problem of fixed span σ. In [45], the authors
design algorithms that are faster than the naive O((σ + 1)n) algorithm that would try all
possible labellings. In the first NP-complete case (σ = 4), the running time of their algorithm
is O(1.3006n), which beats not only O(σn) but also O((σ−1)n). For what concerns the larger
values of σ, an exact algorithm for the so called Channel Assignment Problem [46] implies
an a O(4n) algorithm for the L(2, 1)-labelling problem. This has been improved in [47] to an
O(3.8739n) algorithm. Some modifications of the algorithm and a refinement of the running
time analysis has allowed to improve the time complexity to O(3.2361n) [48]. A lower-bound
of Ω(3.0731n) on the worst-case running time is also provided. After this result, the base
of the exponential running time function seemed hardly decreaseable to a value lower than
3. Nevertheless, in [49] the authors provide a breakthrough in this question by providing
an algorithm running in O(2.6488n) time, based on a reduction of the number of operations
performed in the recursive step of the dynamic programming algorithm.

All algorithms mentioned above are based on dynamic programming approach and use
exponential memory. The first exact algorithm for the L(2, 1)-labelling problem with time
complexity O(cn) for some constant c and polynomially bounded space complexity is described
in [50] and is based on a divide and conquer approach.

L(h, k)-labelling. Nobody would expect the L(h, k)-labelling problem for h > k ≥ 1 to
be easier than the L(2, 1)-labelling problem, however, the actual NP-hardness proofs seem
tedious and not easily achievable in full generality. In [41] the authors conjecture that for
every h ≥ k ≥ 1, there is a σ (depending on h and k) such that deciding whether λh,k(G) ≤ σ
is NP-complete. In support of their conjecture, the authors prove that there is at least one
NP-complete fixed parameter instance, namely that it is NP-complete to decide whether
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λh,k(G) ≤ h + kdhk e for all fixed h > k ≥ 1. Under less general conditions they prove that
there are infinitely many instances: the problem whether λh,k(G) ≤ h + pk is NP-complete
for any fixed p ≥ h

k and h > 2k. It follows that for k = 1 (and more generally h divisible by
k), there are only finitely many polynomial instances (unless P=NP), namely if h > 2 then
the decision version of the L(h, 1)-labelling problem is NP-complete for every fixed σ ≥ 2h.
In this case it is possible a little more: for every h > 2, the problem of deciding whether
λh,1(G) ≤ σ is NP-complete if σ ≥ h+ 5 while it is polynomially solvable if σ ≤ h+ 2.

Open Problem: For p ≥ 5 this result leaves the cases σ = h + 3 and σ = h + 4 as the last
open cases for the fixed parameter complexity of the L(h, 1)-labelling problem.

More recently, it has been proved [51] that the decisional version of the L(h, k)-labelling
problem is NP-complete even when restricted to bipartite planar graphs of small maximum
degree and for relatively small values of σ.

3 Lower and Upper Bounds

We list here some general bounds on the λh,k-number, divided by different values of h and k.
Bounds for particular classes of graphs will be given in the corresponding subsections.

L(0, 1)-labelling. An upper bound on λ0,1(G) is ∆2 −∆ for any harph G of maximum
degree ∆ [52].

L(1, 1)-labelling. Define f(∆, g) as the maximum possible value of λ1,1(G) = χ(G2)− 1
over graphs with maximum degree ∆ and girth g. Since the maximum degree of G2 is at most
∆2, it follows that f(∆, g) ≤ ∆2 for every g. This bound is tight as equality holds for ∆ = 2
and g ≤ 5, as shown by the 5-cycle, for ∆ = 3 and g ≤ 5, as shown by the Petersen graph,
and for ∆ = 7 and g ≤ 5, as shown by the Hoffman-Singleton graph. (The Hoffman-Singleton
graph – see Figure 1 – is the graph on 50 nodes and 175 edges that is the only regular graph
of node degree 7, diameter 2, and girth 5; it is the unique (7, 5)-cage graph and Moore graph,
and contains many copies of the Petersen graph). Moreover, by Brooks theorem (stating that
if G is connected then χ(G) ≤ ∆(G), unless G is complete or G is an odd cycle; cf. e.g. [2]) it
follows that the equality can hold only for g ≤ 5 and only if there exists a ∆-regular graph of
diameter 2 on ∆2 + 1 nodes. If such graph exists then ∆ ∈ {2, 3, 7, 57}. It is also possible to
see that f(2, g) = 4 for all g ≥ 6. Alon and Mohar [53] prove that f(∆, g) is (1 + o(1))∆2 if
g = 3, 4, 5 and is Θ(∆2/ log ∆) if g ≥ 7. In [54] a new approach is followed in order to provide
a new upper bound on λ1,1. Namely, utilizing the probabilistic method, the authors prove

that f(∆, g) ≤
(
1− 2

3e6

)
∆2 if the graph is regular of girth g ≥ 7 and ∆ sufficiently large.

L(2, 1)-labelling. As in the case of λ1,1, even for the bounds on λ2,1, ∆ is the most
common used parameter.

The obvious lower bound for λ2,1(G) is ∆ + 1, achieved for the star K1,∆, but Griggs
and Yeh [4] describe a graph requiring span ∆2 −∆. This graph is the incidence graph of a
projective plane π(n) of order n, i.e. the bipartite graph G = (U ∪ V,E) such that:
i. |U | = |V | = n2 + n+ 1,
ii. each u ∈ U corresponds to a point pu in π(n) and each v ∈ V corresponds to a line lv in
π(n), and
iii. E = {(u, v) : u ∈ U, v ∈ V such that pu ∈ lv in π(n)}.
By definition of π(n), G is (n+ 1)-regular.
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Figure 1: The Hoffman-Singleton graph, constructed from the 10 5-cycles illustrated, with
node i of Pj joined to node i+ jk(mod 5) of Qk.

By a simple greedy algorithm, that labels each node with the smallest color that does
not induce conflicts, the same authors prove that λ2,1(G) ≤ ∆2 + 2∆ and improve this upper
bound to λ2,1(G) ≤ ∆2 + 2∆ − 3 when G is 3-connected and λ2,1(G) ≤ ∆2 when G is of
diameter 2. They conjecture λ2,1(G) ≤ ∆2 for any graph G. This conjecture has been
motivation of some research since. In fact, we can claim that this is the most famous open
problem in this area for more than fifteen years. In his invited talk, during the conference
CIAC 2010, Reed has claimed that the Griggs and Yeh’s conjecture has raised an interest
that can be compared with the one given to the Four Colors’ conjecture.

Observe that the upper bound set by the conjecture would be tight: there are graphs
with degree ∆, diameter 2 and ∆2 + 1 nodes, namely the 5-cycle, the Petersen graph and the
Hoffman-Singleton graph, so the span of every L(2, 1)-labelling is at least ∆2. Nevertheless,
notice that the conjecture is not true for ∆ = 1. For example, ∆(K2) = 1 but λ2,1(K2) = 2.

Open Problem: The Moore graphs (i.e. graphs having the minimum number of nodes pos-
sible for a regular graph with given diameter and maximum degree) are at the moment
the only graphs known to require span ∆2, and it is an open problem to understand if
there are infinitely many graphs G satisfying λ2,1(G) > ∆2 − o(∆).

Using constructive labelling schemes, Jonas [55] improves the upper bound by showing
that λ2,1(G) ≤ ∆2 + 2∆− 4 if ∆ ≥ 2 and, successively, Chang and Kuo [27] further decrease
the bound to ∆2 + ∆. The algorithm by Chang and Kuo is funded on the concept of 2-stable
set of a graph G, that is a subset S of V (G) such that every two distinct nodes in S are of
distance greater than 2. At each step i of the algorithm, a subset of nodes Si is built, and all
nodes of Si are labelled with i. Si is a maximal 2-stable set of the set of unlabelled nodes at
distance ≥ 2 from any node in Si−1.

Then, it has been proven the analogue of Brook’s theorem for some channel assignment
problems, deriving as corollary of a more general result that λ2,1(G) ≤ ∆2 + ∆ − 1 for any
graph G [56], and successively Gonçalves [57] proved λ2,1(G) ≤ ∆2+∆−2 using the algorithm
of Chang and Kuo. In 2008, Havet, Reed and Sereni [58] have finally proven that the Griggs
and Yeh’s conjecture is true, for sufficiently large values of ∆ (about ∆ ≥ 1069). This is
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the first paper addressing the solution of the conjecture for general graphs, although it does
not completely close it. The same authors prove in [59] that for every graph G of maximum
degree ∆, λ2,1(G) ≤ ∆2 + c, for some constant c. Of course, the bound of ∆2 + c is better
than ∆2 + ∆ − 1 as ∆ increases enough, but c is unfortunately a rather huge number. The
interest of this result lies in having exactly determined the growth of the function to be added
to ∆2. Now, it is a very interesting issue to find a tight value for c (hopefully as close to 0 as
possible).

Open Problem: The Griggs and Yeh’s conjecture is still unproved for ∆ < 1069 and hence it
is not considered closed yet.

For what concerns the relationship between λ2,1 and the graph parameters, it is not
difficult to see that λ2,1 ≥ 2ω(G)− 2.

A relationship between λ2,1 and the chromatic number of G is stated in [4]: λ2,1(G) ≤
n+ χ(G)− 2 and for complete k-partite graphs the equality holds, i.e. λ2,1(G) = n+ k − 2.

In [60] the authors investigate the relationship between λ2,1(G) and another graph invari-
ant, i.e. the path covering number c of the complement graph GC (the path covering number
of a graph is the smallest number of node-disjoint paths needed to cover the nodes of the
graph) proving that λ2,1(G) = n+ c(GC)− 2 if and only if c(GC) ≥ 1.

It is quite simple to see that λ2,1 and λ1,1 are related: the number of colors necessary
for an L(2, 1)-labelling of a graph G is at least λ1,1 + 1, and conversely from an optimal
L(1, 1)-labelling of G we can easily obtain an L(2, 1)-labelling of G with colors between 0 and
2λ1,1− 1. Hence, an algorithm solving the L(1, 1)-labelling problem for a class of graphs also
provides a 2-approximation for the L(2, 1)-labelling problem.

In [61], Balakrishnan and Deo give upper and lower bounds on the sum and product of
the λ2,1-number of an n node graph and that of its complement:

2
√
n− 2 ≤ λ2,1(G) + λ2,1(GC) ≤ 3n− 3

0 ≤ λ2,1(G) · λ2,1(GC) ≤
(

3n− 3

2

)2

These bounds are similar to the well consolidated bounds given by Nordhaus and Gaddum
[62] on the chromatic number of a graph and that of its complement.

L(h, k)-labelling. Passing to the general L(h, k)-labelling problem, for any positive in-
tegers h ≥ k, λh,k ≥ h + (∆ + 1)k [63], as a generalization of the known results for h = 2,
it is easy to state that λh,1(G) ≤ ∆2 + (h − 1)∆ for any graph of maximum degree ∆. This
bound has been improved to λh,1(G) ≤ ∆2 + (h−1)∆−2 when ∆ ≥ 3 [57]. Furthermore, lim

h→∞
λh+1,1(G)
λh,1(G) = 1 [64]. Havet, Reed and Sereni [58] generalize their proof of the Griggs and

Yeh’s conjecture for sufficiently large values of ∆ to any h and k, proving that λh,1(G) ≤ ∆2

for any ∆ ≥ 1069 and λh,1 ≤ ∆2 + c(h) for every integer ∆ and for an opportune constant
c(h), depending on the parameter h.

It is easy to see that λh,k(G) ≥ h+(∆−1)k for h ≥ k. Moreover, if h > k and the equality
holds in the previous formula and h > k, then for any L(h, k)-labelling of G, each node of
degree ∆ must be labeled 0 (or h + (∆ − 1)k) and its neighbors must be labeled h + ik (or
ik) for i = 0, 1, . . .∆− 1.

The structures of graphs with ∆ ≥ 1 and λh,k(G) = h+ (∆− 1)k are studied in [63] and
they are called λh,k-minimal graphs.
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A basic result, implicitly taken into account in any work on the L(h, k)-labelling, states
that for all G, there exists an optimal L(h, k)-labelling of G such that each label is of the
form αh+ βk, α and β being non negative integers. Hence, in particular, λh,k(G) = αh+ βk
for some non negative integers α and β [65]. It is also worthy to notice that, for any positive
integer c, c · λh,k(G) = λch,ck(G) and that if h′ ≥ h and k′ ≥ k, then for any graph G,
λh′,k′(G) ≥ λh,k(G) [65]. Finally, let G have maximum degree ∆. Suppose there is a node
with ∆ neighbors, each of which has degree ∆. Then λh,k(G) ≥ h+ (2∆− 2)k if h ≥ ∆k and
λh,k(G) ≥ 2h + (∆ − 2)k if h ≤ ∆k. Of course, these lower bounds fit particularly well for
regular graphs.

In [66], by stating a strong relationship between the L(h, k)-labelling problem and the
problem of coloring the square of a graph, it is exploited the algorithm by McCormick for
approximating the L(1, 1)-labelling problem [35] to provide a (h

√
n+o(h

√
n))-approximation

algorithm for the L(h, k)-labelling problem. This result has been improved by Halldórson [67]
proving that the performance ratio of the First Fit algorithm (consisting in processing the
nodes in an arbitrary order, so that each node is assigned the smallest color compatible with
its neighborhood) is at most O(min(∆, hk +

√
n)). This is tight within a constant factor, for

all values of the parameters. The author shows that this is close to the best possible, as it is
NP-hard to approximate the L(h, k)-labelling problem within a factor of n1/2−ε for any ε > 0
and h in the range [n1/2−ε, n]. On the positive side, it is never harder to approximate than
the ordinary vertex coloring problem, hence an upper bound of O(n(log log n)2/ log3 n) holds
[68].

4 Known Results on Graph Classes

In view of the hardness results described in Section 2 and of the gap between upper and lower
bounds on the λh,k-number listed in Section 3, further bounds, exact results and approxi-
mation algorithms have been found by restricting the classes of graphs under consideration.
This is the topic of the present section.

The L(h, k)-labelling problem has been intensively studied on various graph classes in its
general version (any h and k) but above all in some of its specializations (e.g. h = 2, 1 and
k = 1); some of these classes have been considered because they well model real networks,
others for their theoretical interest.

In the following we analyze a number of graph classes, describe the known results concern-
ing each of them, and propose some interesting problems still open. This section is organized
listing first the graph classes for which exact results are known, and then the graph classes
for which only approximate bounds and labeling algorithms have been found. In view of this
organization, not all correlated classes are treated in consecutive subsections.

4.1 Paths, Cycles, Cliques and Wheels

Let Pn, Cn and Kn be a path, a cycle and a clique, respectively, of n nodes. The wheel Wn is
obtained by Cn by adding a new node adjacent to all nodes in Cn.

Paths (i.e. buses), cycles (i.e. rings), cliques (i.e. completely connected networks) and
wheels are the simplest and most common networks one can consider; the decision version of
the L(h, k)-labelling problem is polynomially solvable on each of them.

L(0, 1)-labelling. Optimal L(0, 1)-labellings are known for paths, needing 2 colors (i.e.
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λ0,1(Pn) = 1) [69], and for cycles, having λ0,1(Cn) equal to 1 if n is multiple of 4, and 2
otherwise [12]. In Figure 2 these labellings are shown.

0 0 1 1 0 0 1

0 0 1 1 0

0 0 1 1

0

1

1

0 0 1 1

0

0

1

2

12

a. b. c.

Figure 2: a. L(0, 1)-labelling of a path; b. L(0, 1)-labelling of a cycle whose number of nodes
is multiple of 4; c. L(0, 1)-labelling of a cycle whose number of nodes is not multiple of 4.

It is easy to check that λ0,1(Kn) = λ1,1(Kn) = n − 1 and that λ0,1(Wn) = λ1,1(Wn) = n

according to our definition of L(h, k)-labelling; on the contrary, λ0,1(Wn) = b (n−1)
2 c according

to the definition based on the concept of distance.
Polynomial results concerning the L(0, 1)-labelling are found for a class of cycle-related

graphs such as cacti [70]. (A cactus is a connected finite graph in which every edge is contained
in at most one cycle.)

L(1, 1)-labelling. λ1,1(P2) = 1 and λ1,1(Pn) = 2 for each n ≥ 3; λ1,1(Cn) is 2 if n is a
multiple of 3 and it is 3 otherwise [71] (see Figure 3).

0 1 2 0 1 2 0

0 1 2 0 1

0 2 1 0

2

1

2

0 1 2 0

2

1

1

3

02

a. b. c.

0 1
0 1 2 0

32 13

d.

Figure 3: a. L(1, 1)-labelling of a path; b. L(1, 1)-labelling of a cycle whose number of nodes
is multiple of 3; c. and d. L(1, 1)-labellings of cycles whose numbers of nodes are not multiple
of 3.

L(2, 1)-labelling. It is simple to prove that λ2,1(P1) = 0, λ2,1(P2) = 2, λ2,1(P3) =
λ2,1(P4) = 3, and λ2,1(Pn) = 4 for n ≥ 5, that λ2,1(Kn) = 2(n − 1), that λ2,1(W3) =
λ2,1(W4) = 6 and λ2,1(Wn) = n+1 for each n ≥ 5. Finally, λ2,1(Cn) = 4 for each n ≥ 3 [4, 5].

As an example, we recall here how to label a cycle. If n ≤ 4 the result is trivial to
verify. Thus, suppose that n ≥ 5, and Cn must contain a P5 as a subgraph, hence λ2,1(Cn) ≥
λ2,1(P5) = 4. Now, let us show an L(2, 1)-labelling l of Cn with span 4. Let v0, . . . , vn−1 be
nodes of Cn such that vi is adjacent to vi+1, 0 ≤ i ≤ n− 2 and v0 is adjacent to vn−1. Then,
consider the following labelling:

if n ≡ 0 mod 3 then

l(vi) =


0 if i ≡ 0 mod 3
2 if i ≡ 1 mod 3
4 if i ≡ 2 mod 3

9



if n ≡ 1 mod 3 then redefine l at vn−4, . . . , vn−1 as

l(vi) =


0 if i ≡ n− 4
3 if i ≡ n− 3
1 if i ≡ n− 2
4 if i ≡ n− 1

if n ≡ 2 mod 3 then redefine l at vn−2 and at vn−1 as

l(vi) =

{
1 if i = n− 2
3 if i = n− 1

A unicycle – respectively, bicycle – is a connected graph having only one – respectively, two –
cycles. Polynomial results concerning L(2, 1)-labelling are found for classes of cacti, unicycles
and bicycles in [55].

L(h, k)-labelling. Georges and Mauro [65] evaluate the span of cycles and paths for any
h and k (with h ≥ k) showing that

λh,k(Pn) =



0 if n = 1
h if n = 2
h+ k if n = 3 or 4
h+ 2k if n ≥ 5 and h ≥ 2k
2h if n ≥ 5 and h ≤ 2k

and

λh,k(Cn) =



2h if n odd, n ≥ 3 and
h ≥ 2k, or
if n ≡ 0 mod 3 and
h ≤ 2k

h+ 2k if n ≡ 0 mod 4 and
h ≥ 2k, or
if n 6 ≡0 mod 3, n 6= 5
and h ≤ 2k

2h if n ≡ 2 mod 4 and
h ≤ 3k

h+ 3k if n ≡ 2 mod 4 and
h ≥ 3k

2h if n ≥ 5 and h ≤ 2k
4k if n = 5

It is straightforward to see that an optimal L(h, k)-labelling of an n node clique requires
span (n− 1)h, for each h ≥ k and that λh,k(Wn) = n+ h− 1 for sufficiently large values of n
and h ≥ k.

Griggs and Jin [72] extended the results on paths, cycles and wheels to values of h and k
such that h ≤ k; as an example, we list these results in the case of paths:
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λh,k(Pn) =



0 if n = 1
h if n = 2
k if n = 3 and 0 ≤ h/k ≤ 1/2
2h if n = 3 and 1/2 ≤ h/k ≤ 1
h+ k if n = 4, 5, 6 or if n ≥ 7 and 0 ≤ h/k ≤ 1/2
3h if n ≥ 7 and 1/2 ≤ h/k ≤ 2/3
2k if n ≥ 7 and 2/3 ≤ h/k ≤ 1.

Finally, we point out that the λh,1-number of cacti is investigated in [73] while the λh,k-
number of r-paths (i.e. of graphs on nodes . . . , v−3, v−2, v−1, v0, v1, v2, v3, . . . such that vs is
adjacent to vt iff |s − t| ≤ r − 1, r ≥ 2) is investigated in [74] and in [75] (where an error of
[64] is fixed).

4.2 Regular Grids

Let G∆, ∆ = 3, 4, 6, 8, denote the hexagonal, squared, triangular and octagonal grid, respec-
tively. Portions of these grids are shown in Figure 4.

a. b. c. d.

Figure 4: A portion of: a. hexagonal grid G3; b. squared grid G4; c. triangular grid G6; d.
octagonal grid G8.

The hexagonal grid is a natural model for cellular networks, and its interference graphs is
the triangular grid, also called cellular graph, according to the notation introduced in [76].

The L(h, k)-labelling problem has been extensively studied on regular grids, and shown
to be polynomially solvable. More detailed results are given in the following. Note that some
grids are equivalent to some special products of paths, so other related results can be found
in Subsection 4.3.

L(0, 1)-, L(1, 1)- and L(2, 1)-labelling. An optimal L(0, 1)-labelling for squared grids
and an optimal L(1, 1)-labelling for hexagonal, squared and triangular grids are given in [69]
and in [71], respectively.

The λ2,1-number of regular grids has been proved to be λ2,1(G∆) = ∆ + 2 by means of
optimal labelling algorithms [77] . All of these algoithms are based on the replication of a
labelling pattern, depending on ∆. An example is given in Figure 5.

A natural generalization of squared grids is obtained by adding wrap-around edges on each
row and column: these graphs are known as tori. In spite of the similarity between squared
grids and tori, the presence of wrap-around edges prevents the labelling of the squared grid
from being extended to tori unless both the number of rows and the number of columns are
multiples of 5. If this is not the case, an L(1, 1)-labelling exists using at most 8 colors, which
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Figure 5: An example of L(2, 1)-labelling of regular grids by means of labelling patterns;
function f1 subtracts 1 to each label, f2 sums 2 and f3 sums 1; all the operations must be
considered mod (λ2,1(G∆) + 1).

is nearly-optimal since 6 is a lower bound [78]. Exact results concerning the λ2,1-number of
tori are reported in Subsection 4.3.

Open Problem: To find the optimal L(1, 1)-labelling of tori is an interesting issue.

L(h, k)-labelling. In 1995 Georges and Mauro [65] give some results concerning the
L(h, k)-labelling of squared grids as a special result of their investigation on the λh,k-number
of product of paths. Only in 2006 the problem has been systematically handled and the union
of the results presented in [79] and in [80] provides the exact value of function λh,k(G∆), where
∆ = 3, 4, 6, 8 for almost all values of h and k.

The exact results are obtained by means of two series of proofs: lower bounds proofs, based
on exhaustive considerations, deducing that λh,k(G∆) cannot be less than certain values, and
upper bounds proofs, based on labelling schemes. Of course, the results obtained for any h
and k include as special case the previous ones for h = 1, 2 and k = 1.

All the aforementioned results lead to assign a color to any node in constant time in a
distributed fashion, provided that the relative positions of the nodes in the grid are locally
known.

Later, Griggs and Jin [81] close all gaps for the squared and hexagonal grids, and all gaps
except when k/2 ≤ h ≤ 4k/5 for the triangular grids; they do not handle the octagonal grid.
This grid has been investigated in [82], where some previous results have been improved. A
summary of all the known results is plotted in Figure 6.

Open Problem: It remains to compute the exact value of λh,k(G∆) in those intervals where
lower and upper bounds do not coincide when ∆ = 6 and ∆ = 8.

Open Problem: Almost all the proofs for the lower bounds are based on exhaustive rea-
sonings, and so are very long and difficult to follow. Furthermore, the range of h/k
is divided into several intervals, and a different proof is given for each ∆ and for each
interval. It would be interesting to design a new proof technique in order to simplify
all these proofs and to propose a unifying approach useful to reduce the number of the
proofs and to increase their elegance.
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Figure 6: State of the art concerning the L(h, k)-labelling of regular grids. Grey areas repre-
sent the gaps to be still closed.

A generalization of the squared grid is the d-dimensional grid. A motivation for studying
higher dimensional grids is that when the networks of several service providers overlap geo-
graphically, they must use different channels for their clients. The overall network can then be
modelled in a suitably higher dimension. Optimal L(2, 1)-labellings for d-dimensional square
grids, for each d ≥ 1 are presented in [83]. These results are extended to any h, k for each
d ≥ 1 in [84]. The authors give lower and upper bounds on λh,k for d-dimensional grids, and
show that in some cases these bounds coincide. In particular, in the case k = 1, the results
are optimal.

Open Problem: It is still an open question to find optimal, or nearly-optimal, labellings for
higher dimensional triangular grids, even for special values of h and k. Nevertheless, it
is in the opinion of the author that such a result would be only technical, without any
particular practical relevance.

4.3 Products of Graphs

The cartesian product (or simply product) G2H and the direct product G × H of graphs G
and H are defined as follows: V (G2H) = V (G×H) is equal to the cartesian product of V (G)
and V (H); E(G2H) = {((x1, x2), (y1, y2)) : (x1, y1) ∈ E(G) and x2 = y2, or (x2, y2) ∈ E(H)
and x1 = y1}; E(G×H) = {((x1, x2), (y1, y2)) : (x1, y1) ∈ E(G) and (x2, y2) ∈ E(H)}. G2H
and G × H are mutually nonisomorphic with the sole exception of when G and H are odd
cycles of the same size. The strong product G⊗H of G and H has the same node set as the
other two products and the edge set is the union of E(G2H) and E(G×H). In Figure 7 the
product of P3 and P4 is depicted, according to each one of the three just defined products.

13



! x ⊗ 

a.                                b.                                 c. 

Figure 7: Product of P3 and P4, where the product is: a. the cartesian product; b. the direct
product and c. the strong product.

Product graphs have been considered in the attempt of gaining global information from
the factors. Many interesting wireless networks have simple factors, such as paths and cycles.

Observe that any d-dimensional grid is the cartesian product of d paths, any d-dimensional
torus is the cartesian product of d cycles and any octagonal grid is the strong product of two
paths; so there is some intersection between the results summarized in this section and in
the previous one. Nevertheless, they have been described separately in order to highlight
the independence of the approaches and of the methods for achieving the results. The same
reasoning holds for the cartesian product of complete graphs, i.e. the Hamming graph and
for the cartesian product of n K2 graphs, i.e. the n-dimensional hypercube: we will detail
the results on these graphs in Subsection 4.8.

L(2, 1)-labelling. Exact values for the λ2,1-numbers for the cartesian product of two
paths for all values of m and n are given in [85]. Namely, the authors prove that λ2,1(Pm2Pn)
is equal to 5 if n = 2 and m ≥ 4 and it is equal to 6 if n,m ≥ 4 or if n ≥ 3 and m ≥ 5.

In the same paper the L(2, 1)-labelling of the cartesian product of several paths P =∏n
i=1 Ppi is also considered. For certain values of pi exact values of λ2,1(P ) are obtained.

From this result, they derive an upper bound for the span of the hypercube Qn.
In [86] the λ2,1-numbers for the product of paths and cycles are studied: bounds for

λ2,1(Cm2Pn) and λ2,1(Cm2Cn) are given, and they are exact results for some special values
of m and n. The authors of [87] and [88] independently achieve the same issue of completing
the previous results, and determine λ2,1(Cm2Pn) for all values of m and n: λ2,1(Cm2Pn) is
either 5 or 6 or 7, according to the values of m and n.

Kuo and Yan [88] determine λ2,1(Cm2Cn) with m = 3 or m multiple of 4 or 5. Finally,
in [89] the previous partial results on λ2,1(Cm2Cn) are completed; for all values of m and n,
λ2,1(Cm2Cn) is either 6 or 7 or 8, according to the values of m and n.

Exact results for the L(2, 1)-labelling of the product of complete graphs Km2Kn and of
Kp2 . . .2Kp repeated q times, when p is prime are given in [90].

Concerning the direct and strong products, Jha obtains the λ2,1-number of some infinite
families of products of several cycles [91, 92]. Exact values for C3⊗Cn, C4⊗Cn and improved
bounds for Cn ⊗ Cm are presented in [93, 94].

In [95], the λ2,1-number is computed for Cm × Cn for some special values of m and n.
Papers [96] and [97] handle the L(2, 1)-labelling of graphs that are the direct/strong

product and the cartesian product of general non trivial graphs. The authors prove that
for all the three classes of graphs the conjecture by Griggs and Yeh is true, except in the
special case in which one of the two factor has degree 1 (end hence it is K2 = P2). In [98]
the previous upper bounds for direct and strong product of graphs are improved. The main
tool for this purpose is a more refined analysis of neighborhoods in product graphs. In [99],
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the authors correct a mistake in a proof of [97], and study another product similar to the
cartesian product called composition. Finally, the authors of [100] derive alternative upper
bounds on λ2,1 of graphs G ? K2 (where ? is one product among direct, Cartesian, strong)
improving in most cases the previously known values.

L(h, k)-labelling. In [101] exact values for the λh,1-number of Cc1 × . . . × Ccn and of
Cc12 . . .2Ccn are provided, if there are certain conditions on h and on the length of the
cycles c1, . . . , cn.

In [102, 90] the L(h, k)-labelling problem of products of complete graphs is considered
(h ≥ k) and the following exact results are given, where 2 ≤ n < m:
λh,k(Kn2Km) = (m− 1)h+ (n− 1)k if h

k > n;

λh,k(Kn2Km) = (mn− 1)k if h
k ≤ n;

λh,k(Kn2Kn) = (n− 1)h+ (2n− 1)k if
h
k > n− 1;

λh,k(Kn2Kn) = (n2 − 1)h if h
k ≤ n− 1.

In [103] the λh,k-number of the cartesian product
∏n
i=1Kti is exactly determined for n ≥ 3

and relatively prime t1, . . . , tn, where 2 ≤ t1 < t2 < . . . < tn.
In [104] all previous results are extended more generally, indeed the authors consider

graph Kn12Kn22 . . .2Knq for any value of n1, n2, . . . , nq, and compute exact values of its

λh,k-number, for all values of h and k such that h
k ≤ n − q + 1 and h

k ≥ qn − 2q + 2, where
2 ≤ q ≤ p, being p the minimum prime factor of n.

We underline that many technical papers have appeared, concerning the product of graphs.
For example, in [105] the L(h, 1)-labelling of the Cartesian product of a cycle and a path is
handled, while the authors of [106] determine the λh,k-number of graphs that are the direct
product of complete graphs, with certain conditions on h and k.

Open Problem: It remains an open problem to complete the previous results, but also this
result would be especially technical.

Moreover, the L(2, 1)-labelling of special kinds of graph product has been investigated.
Among them, we remind:

• the amalgamation of graphs (let G1, . . . , Gp be p ≥ 2 graphs each containing a fixed
indued subgraph isomorphic to a graph G0; the amalgamation of G1, . . . , Gp along G0 is
the simple graph obtained by identifying G1, . . . , Gp along G0 at the nodes in the fixed
subgraphs isomorphic to G0 in each G1, . . . , Gp, respectively), studied in [108, 109, 110];

• the modular product of two graphs (the modular product of two graphs G and H is the
graph with node set V (G)× V (H), in which a node (v, w) is adjacent to a node (v′, w′)
iff either (i) v = v′ and w is adjacent to w′, or (ii) w = w′ and v is adjacent to v′, or
(iii) v is adjacent to v′ and w is adjacent to w′, or (iv) v is not adjacent to v′ and w is
not adjacent to w′), studied in [111];

• the skew product of two graphs (the skew product of G and H is the graph with node
set V (G) × V (H), in which the node (x1, x2) is adjacent to the node (y1, y2) iff either
x1 = y1 and (x2, y2) ∈ E(H) or (x1, y1) ∈ E(G) and (x2, y2) ∈ E(H)), studied in
[112, 113, 114].
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We conclude this subsection by dealing with the r-th power of a graph G, written Gr,
defined as a graph on the same node set as G, such that two nodes are adjacent if and only
if their distance in G is at most r. We have already spoken about the correspondence of the
vertex coloring of G2 and the L(1, 1)-labelling of G. Here we remind that two papers deal
with the L(h, 1)-labelling of powers of paths: in [64] λh,1(P rn) is determined, while in [107]
it is proven that some of the previous results are incorrect and new bounds are presented.
These bounds are function of h, r and n.

4.4 Trees

Let T be any tree with maximum degree ∆.

L(0, 1)- and L(1, 1)-labelling. Bertossi e Bonuccelli [12] investigate the L(0, 1)-labelling
problem on complete binary trees, proving that 3 colors suffice. An optimum labelling can be
found as follows. Assign first labels 0, 1 and 2, respectively, to the root, its left child and its
right child. Then, consider the nodes by increasing levels: if a node has been assigned label
c, then assign the remaining two colors to its grandchildren, but giving different to brother
grandchildren. The above procedure can be generalized to find an optimum L(1, 1)-labelling
for complete (∆−1)-ary trees, requiring span ∆. It is straightforward to see that when ∆ = 3
and ∆ = 2 this result gives the λ0,1-number for complete binary trees and paths, respectively.

It is shown in [65] that for any T , λ1,1(T ) is equal to ∆.

L(2, 1)-labelling. Given any tree T , Griggs and Yeh [4] show that λ2,1(T ) is either
∆ + 1 or ∆ + 2, and conjecture that recognising the two classes is NP-hard. Chang and Kuo
[27] disprove this conjecture by providing a polynomial time algorithm based on dynamic
programming. The algorithm consists in calculating a certain function s for all nodes of the
tree. It starts from the leaves and works toward the root. For any node v, whose children are
v1, v2, . . . , vk, the algorithm uses s(v1), . . . , s(vk) to calculate s(v), and to do that, it needs to
construct a bipartite graph and to find a maximum matching. The algorithm runs in O(∆4.5n)
time, where ∆ is the maximum degree of tree T and n is the number of nodes, hence the
time complexity is O(n5.5) in the worst case. In this time complexity, its ∆2.5 factor comes
from the complexity of solving the bipartite matching problem, and its ∆2n factor from the
number of iterations for solving bipartite matchings.

The Chang and Kuo’s algorithm can be also used to optimally solve the problem for a
slightly wider class of graphs, i.e. p-almost trees, for fixed values of p [25]. (A p-almost
tree is a connected graph with n + p − 1 edges.) More precisely, the authors prove that
λ2,1(G) ≤ σ can be tested in O(σ2p+9/2n) time, for each p-almost tree G and each given σ. In
[115] an O(min{n1.75,∆1.5n}) time algorithm has been proposed. It is based on the similar
dynamic programming framework to Chang and Kuo’s algorithm, but achieves its efficiency
by reducing heavy computation of bipartite matching and by using amortized analysis.

Obviously, Chang and Kuo’s algorithm runs in linear time if ∆ = O(1). It has also been
proven [116] that the L(2, 1)-labelling problem on trees can be also solved in linear time if
∆ = Ω(

√
n). It follows that the worst running time of the algorithm in [115] is O(n1.75).

Hasunama, Ishii, Ono and Uno have presented a linear time algorithm for L(2, 1)-labelling of
trees [115], which finally settles the problem of improving the complexity to linear time and
closes the question.

A tree T is of type 1 if λ2,1(T ) = ∆ + 1 and of type 2 if λ2,1(T ) = ∆ + 2. It seems that
characterizing all type 1 (2) trees is very difficult. In [117] a sufficient condition for a tree T
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to be of type 1 is given. Namely, the author proves that if a tree T contains no two nodes of
maximum degree at distance either 1, 2 or 4, then λ2,1(T ) = ∆ + 1.

L(h, k)-labelling. Chang and Kuo’s algorithm can be generalized to trees and to p-almost
trees to polynomially determine the exact λh,1-number [64, 41].

For any tree T of maximum degree ∆, ∆+h−1 ≤ λh,1(T ) ≤min{∆+2h−2, 2∆+h−2} [64];
the lower and the upper bounds are both attainable. Lower bounds on the λh,1-number can
be given also as a function of other parameters of the tree (the big-degree and the neighbour-
degree) [73].

While the generalization of this algorithm is quite easy when k = 1, the case k > 1 has kept
resisting all attempts up to when Fiala, Golovach and Kratochvil [118] solved the problem,
as highlighted below. Before this paper, well known researchers had conjectured both the
polynomiality and the NP-hardness of the L(h, k)-labelling problem on trees. Namely, from
the one hand Welsh [119] suggested that, by an algorithm similar to Chang and Kuo’s, it
should have been possible to determine λh,k(T ) for a tree T and for arbitrary h and k,
hence conjecturing that the general case is also polynomial for trees. From the other hand,
based on some considerations concerning the crucial step of Chang and Kuo’s algorithm,
Fiala, Kratochv́ıl and Proskurowski conjecture that determining λh,k(T ) is NP-hard for trees,
when k > 1 [26]. The feeling that k > 1 identified a more difficult problem seemed to be
justified from the fact the problem becomes NP-complete if some nodes of the input tree are
precolored, whereas for k = 1 the precolored version remains anyway polynomially solvable
[26]. Furthermore, the difference between k = 1 and k > 1 could be put into relationship with
the difference between systems of distinct and distant representative [120]. Another result
going toward the same direction states that the decisional version of the L(h, k)-labelling
problem is NP-complete for trees if h is part of the input and k ≥ 2 is fixed [121]. The
resolutive step remains to study the computational complexity of the problem when both h
and k are fixed.

The paper [118] definitively resolves this question proving that for positive integers h and
k, the L(h, k)-labelling problem restricted to trees is solvable in polynomial time only if k
divides h, otherwise it is NP-complete. In particular, in the first case the L(h, k)-labelling
problem is equivalent to the L(h/k, 1)-labelling problem, and hence is solvable in polynomial
time by the modification of the Chang and Kuo’s algorithm presented in [64]. In the case
of mutually prime h and k, the NP-hardness is proved by a reduction from the problem of
deciding the existence of a system of distant representatives in systems of symmetric sets.
The main idea is a construction of trees that allow only specific labels on their roots; the
main difficulty is to keep the size of such trees polynomial.

Georges and Mauro provide bounds on the λh,k-number for general h and k for trees of
maximum degree ∆ ≤ h/k [65] and then for trees with h ≥ k and ∆ ≥ 3 [122]. For these
parameters they obtain tight upper and lower bounds on λh,k for infinite trees. In [123], the
authors present results that are complementary, investigating L(h, k)-labellings of trees, for
arbitrary positive integers h < k, seeking such labellings with small span. The relatively large
values of λh,k(T ) achieved are witnessed by trees of large height. This fact is not accidental:
for trees of height 1, i.e., for stars, the span of L(h, k)-labellings is in fact smaller.

Finally, an upper bound on λh,k is given in terms of a new parameter for trees, the
maximum ordering-degree [124].
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4.5 Bounded Width Graphs

4.5.1 Bounded Clique-Width Graphs

The clique-width of a graph G, denoted by cwd(G), is the minimum number of labels needed
to construct graph G using four operators: ·, +, ρ and η. The operation ·i creates a graph
with a single node labelled i. The binary operator + constructs the union of two disjoint
graphs. The operation ρi→j renames all nodes labelled i with label j. The unary operator
ηi,j , with i 6= j, adds all the edges between every node labelled i and every node labeled j.
The sequence of operations produces an expression of the graph.

Many NP-hard problems become polynomially solvable for graphs of bounded clique-
width, if an expression of the graph is part of the input; the classical vertex coloring problem
is one of them. Observe also that several classes of graphs (partial t-trees – that will be
extensively treated in Subsection 4.5.2, distance-hereditary graphs, P4-sparse graphs, P4-tidy
graphs, etc.) are known to have bounded clique-width.

L(1, 1)-labelling. The problem is polynomial when restricted to graphs with bounded
clique-width. Indeed, for any graph G of clique-width t, the clique-width of G2 is at most
t ·2t+1. So, an approach consists in using the vertex coloring algorithm for graphs of bounded
clique-width proposed in [125] on G2. Suchan and Todinca [126] propose an alternative

algorithm, that improves the computational complexity from O(n24·2
t log 3+1

) to O(n3·2t log 3
n4).

Although the complexity remains high, it is considerably lower than the previous one.

L(2, 1)-labelling. The decisional version of the problem is NP-complete even for graphs
of clique-width at most 3 [127].

As multiplying the labels of an L(1, 1)-labelling by 2 we obtain an L(2, 1)-labelling, the
exact algorithm provided in [126] is a 2-approximate algorithm for the L(2, 1)-labelling prob-
lem.

Open Problem: To the best of the author’s knowledge, there are no results concerning the
L(2, 1)-labelling on graphs of bounded clique-width greater than two, so any bound on
λ2,1 for these graphs is welcome.

The graphs of clique-width 2 coincide with the class of cographs, that can be defined
alternatively as follows.

Let G and H be two graphs with disjoint node sets. The union of G and H, G ∪ H, is
the graph whose node set is V (G) ∪ V (H) and edge set is E(G) ∪ E(H). The join of G and
H, G+H, is the graph obtained from G∪H by adding all edges between nodes in V (G) and
nodes in V (H).

Cographs are defined recursively by the following rules:

1. A node is a cograph;
2. if G and H are cographs, then so is their join G+H;
3. if G and H are cographs, then so is their union G ∪H.

Chang and Kuo [27], as a consequence of their more general result concerning the L(2, 1)-
labelling problem on union and join of graphs and exploiting the linear time algorithm to
identify whether a graph is a cograph [128], prove that there is a linear time algorithm to
compute λ2,1(G) for a cograph G.
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Open Problem: Of course, the polynomiality of the L(2, 1)-labelling problem on cographs
does not implies anything for the L(h, k)-labelling problem. In fact, it is still unknown
the computational complexity of the L(h, k)-labelling problem on cographs, and no
algorithms are known.

L(h, k)-labelling. It is known [129] that all problems expressible in MS1-logic are fixed
parameter tractable (FPT), when parameterized by the clique-width of the input graph.
Hence deciding whether λh,k(G) ≤ σ for a fixed value of σ is polynomial for graphs of bounded
clique-width.

In the following, we discuss the results dealing with a subclass of bounded clique-width
graphs.

4.5.2 Bounded Treewidth Graphs

The class of t-trees is recursively defined as follows:

1.Kt is a t-tree;
2. if H is a t-tree, then the graph obtained from H by adding a new node joining to a t-clique

(i.e. Kt) of H is a t-tree;
3. all t-trees can be formed with rules 1 and 2.

Any tree is a 1-tree. t-trees are also a subclass of chordal graphs.
Any subgraph of a t-tree is called partial t-tree. The partial t-trees are a particular case of

graphs of bounded clique-width, more precisely, if G is a partial t-tree then cwd(G) ≤ 2t+1 +1
[130]. The minimum value of t for which a graph G is a subgraph of a t-tree is called the
treewidth tw(G) of the graph. See [131, 132] for surveys on treewidth. Many NP-hard problems
have been shown to be solvable in polynomial time on graphs with bounded treewidth.

This class is interesting in the wireless networks context, since pairs of antennas have
no interference if their distance is far enough. Furthermore, concentrations of antennas are
found in densely populated areas. These areas are connected with one another with a limited
number of edges. Such networks can be represented by a constraint graph with a tree-like
structure [133].

Fiala and Kratochv́ıl [134] observe that, given a fixed span σ, the question ”Is λh,k(G) ≤
σ?” can be expressed in MSOL (Monadic Second Order Logic), so this decision problem can
be decided in polynomial time for graphs of bounded treewidth. On the contrary, if the span
is part of the input, the L(2, 1)-labelling problem is NP-complete for graphs of treewidth at
most two [135]. This result adds a natural and well studied problem to the short list of prob-
lems whose computational complexity separates treewidth one from treewidth two. Indeed,
usually, the problems solvable in polynomial time for trees are also polynomially solvable for
graphs of bounded treewidth, though sometimes the extension to bounded treewidth is not
straightforward.

L(0, 1)-, L(1, 1)- and L(2, 1)-labelling. Bodlaender et al. [42] compute upper bounds
for graphs of treewidth bounded by t proving that λ0,1(G) ≤ t∆ − t, λ1,1(G) ≤ t∆ and
λ2,1(G) ≤ t∆ + 2t. They give also approximation algorithms for the L(0, 1)-, L(1, 1)- and
L(2, 1)-labellings running in O(tn∆) time. Nevertheless, two of these three problems can be
optimally solved: in [136] a polynomial time algorithm to optimally L(1, 1)-label graphs with
constant treewidth t is presented, but it applies dynamic programming and the required time
is very high: O(n) · O(∆28(t+1)+1

) + O(n3). A similar argument would yield the same result
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for the L(0, 1)-labelling problem. If the graph with constant treewidth has also constant
maximum degree, than O(n) time is sufficient to optimally solve the L(1, 1)-labelling problem
[137].

Parameterized complexity of these problems was considered in [138]. It is proved that
L(0, 1)- and L(1, 1)-labellings are W [1]-hard when parameterized by the treewidth of the
input graph.

L(h, k)-labelling. In [64], the authors give an upper bound on the L(h, 1)-numbers of
t-trees, proving that λh,1(G) ≤ (2h− 1 + ∆− t)t.

Open Problem: Upper and lower bounds on λh,k(G) for graphs of bounded treewidth are
completely unexplored. The relevance of this class of graphs makes this open problem
an interesting issue.

4.6 Planar Graphs

A graph G is planar if and only if it can be drawn on a plane so that there are no edge
crossings, i.e. edges intersect only at their common extremes.

In many real cases the actual network topologies are planar, since they consist of commu-
nication stations located in a geographical area with non-intersecting communication channels
[133].

The decision version of the L(h, k)-labelling problem is NP-complete for planar graphs
[37] and even for planar graphs of bounded degree [38].

L(1, 1)-labelling. The first reference concerning the L(1, 1)-labelling problem on planar
graphs seen as the problem of coloring the square of graphs, is by Wegner [11], who gives
bounds on the clique number of the square of planar graphs. In particular, he gives an instance
for which the clique number is at least b3/2∆c+1 (which is largest possible), and conjectures
this to be an upper bound on χ(G2) (i.e. on λ1,1(G) + 1), for ∆ ≥ 8. He conjectures also that
λ1,1(G) ≤ ∆ + 4 for 4 ≤ ∆ ≤ 7. Moreover, Wegner proves that λ1,1(G) ≤ 7 for every planar
graph G of maximum degree 3, and conjectures that this upper bound could be reduced to 6.

Open Problem: All three Wegner’s conjectures remain open, although Thomassen [139]
thought to have established the latter conjecture.

Given a planar graph G, Jonas [55] proves that λ1,1(G) ≤ 8∆ − 21, ∆ > 3. This bound
is later improved in [140] to λ1,1(G) ≤ 3∆ + 4 and in [141] to λ1,1(G) ≤ 2∆ + 24. The
better asymptotic bound λ1,1(G) ≤ b9

5∆c + 1 holds for very large values of ∆ (∆ ≥ 749)
[142]. Borodin et al. [143] show that we only need ∆ ≥ 47 for the bound d9

5∆e to hold.
Furthermore, they prove that λ1,1(G) ≤ 58 if ∆ ≤ 20 and λ1,1(G) ≤ ∆ + 38 if 21 ≤ ∆ ≤ 46.
But the better asymptotic result is the following: λ1,1(G) ≤ d5

3∆e+ 77 for any planar graph
G and λ1,1(G) ≤ d5

3∆e + 24 if ∆ ≥ 241 [144]. Some of the above results were obtained
by identifying so-called light structures in planar graphs. The interested reader can see the
survey [145].

For planar graphs of large girth, better upper bounds for λ1,1(G) are obtained by the
results on general h and k in [146], listed below. In [147] the authors show that λ1,1(G) ≤ 5∆
if G is planar. Comparing this result with the best known one λ1,1(G) ≤ d5/3∆e+ 77, we get
that 5∆ is better for any ∆ ≤ 24.

Wang and Lih [146] conjecture that for any integer g ≥ 5, there exists an integer M(g)
such that if G is planar of girth g and maximum degree ∆ ≥ M(g), then λ1,1 ≤ ∆. This
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conjecture is known to be false for g = 5, 6 and true for g ≥ 7 [148, 149]. Nevertheless, the
conjecture is ”almost” true for g = 6, in the sense that for ∆ large enough (∆ ≥ 8821),
λ1,1 ≤ ∆ + 1 if g ≤ 6 [150].

Open Problem: It is not known whether an analogous statement can hold for planar graphs
of girth 5.

Open Problem: The problem of tightly bounding λ1,1 for planar graphs with relatively small
∆ is far to be solved, and it would be a very interesting result.

An approximation algorithm for the L(1, 1)-labelling problem with a performance guar-
antee of at most 9 for all planar graphs is given in [40]. For planar graphs of bounded degree,
in [137] there is a 2-approximation algorithm. For planar graphs of large degree (∆ ≥ 749)
an 1.8-approximation algorithm is presented in [142]. The results of [144], given for any h
and k, apply here resulting to an 1.66-approximation algorithm.

L(2, 1)-labelling. It is NP-complete to decide whether λ2,1(G) ≤ r for a planar bipartite
graph of degree r − 1 [42]. Nevertheless, it seems that the technique used cannot help to
show the NP-completeness of the problem of deciding whether a given planar graph G has
λ2,1(G) ≤ r for any odd values of r. The authors leave this as an open problem. This problem
has been investigated in [34] and then definitively closed in [43], where Eggemann, Havet and
Noble provide a proof of NP-completeness for planar graphs of any degree.

Jonas [55] proves that λ2,1(G) ≤ 8∆−13 when G is planar. This bound has been the best
one until recently, when the general bounds for λh,k found by Molloy and Salavatipour and
discussed in the following have been derived.

Open Problem: The Griggs and Yeh’s conjecture is still open for planar graphs with ∆ = 3,
while is known to be true for the other values of ∆. Namely, for ∆ ≥ 7 it follows from
[141], while Bella et al. [151] prove it for 4 ≤ ∆ ≤ 6. Further details on these results
are given below.

L(h, k)-labelling. Van den Heuvel and McGuinnes [141] show that λh,k is bounded above
by (4k − 2)∆ + 10h+ 38k − 23 for planar graphs for any positive integers h and k, such that
h ≥ k. This bound implies λ2,1(G) ≤ 2∆ + 35 and λ1,1(G) ≤ 2∆ + 24. Then, in [144], the
result is improved to kd5

3∆e+ 18h+ 77k− 18 for any positive integers h and k. Observe that
this latter value is asymptotically better than the previous ones and leads to the best known
bounds on λ2,1 and λ1,1, of d5

3∆e+ 95 and d5
3∆e+ 77, respectively.

Open Problem: Since for a planar graph G it holds the trivial lower bound λh,k(G) ≥
∆k + h − k, it remains an open problem to understand which is the tight constant
multiplying ∆ in the value of λh,k(G) or, at least, of λ2,1(G). This is a very discussed
problem, as the large amount of produced literature proves. Furthermore, this question
gives sense to all the results cited above, holding only for very large values of ∆.

In the case h = 2 and k = 1, the bound of Van den Heuvel and McGuinnes implies that
the conjecture of Griggs and Yeh (i.e. λ2,1 ≤ ∆2) holds for planar graphs with maximum
degree ∆ ≥ 7. In [151] it is shown that the conjecture holds for planar graphs with maximum
degree ∆ 6= 3. Namely, the authors prove that every planar graph with maximum degree 4,
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5, 6, respectively, has an L(2, 1)-labelling with span at most 16, 25, 32, respectively, and the
proof in the case of maximum degree 4 is computer-assisted.

The L(h, k)-labelling problem is also studied on planar graphs with conditions on their
girth. More precisely, in [146] the following bounds are proven:

− if g(G) ≥ 7, then λh,k(G) ≤ (2k − 1)∆ + 4h+ 4k − 4;
− if g(G) ≥ 6, then λh,k(G) ≤ (2k − 1)∆ + 6h+ 12k − 9;
− if g(G) ≥ 5, then λh,k(G) ≤ (2k − 1)∆ + 6h+ 24k − 15.

Observe that, since ∆ + 8 ≤ ∆2 when ∆ ≥ 4, ∆ + 15 ≤ ∆2 when ∆ ≥ 5, and ∆ + 21 ≤ ∆2

when ∆ ≥ 6 the conjecture by Griggs and Yeh holds for planar graphs with g(G) ≥ 7 and
∆ ≥ 4 or g(G) = 6 and ∆ ≥ 5, or g(G) = 5 and ∆ ≥ 6.

Furthermore, if the degree is sufficiently large (very large, indeed), a better bound can
be provided: every planar graph of girth g ≥ 7 has an L(h, k)-labelling of span at most
2h + ∆k − 2 if ∆ ≥ 190 + 2dhk e [152]. Since the optimal span of an L(h, 1)-labelling of an
infinite ∆-regular tree is 2h+∆−2, the obtained bound is the best possible for any h ≥ 1 and
k = 1. In [153], the authors study L(h, k)-labellings for planar graphs without 4-cycles, as
such graphs possess some interesting properties. The authors prove the following bound for
planar graphs without 4-cycles: λh,k ≤ min{(8k−4)∆+8h−6k−1, (2k−1)∆+10h+84k−47}
for any h, k ≥ 1 that is asymptotycally better than any previous bound on this subclass of
planar graphs. As an immediate consequence, it follows that λ2,1 ≤ min{4∆ + 9,∆ + 57}
and λ1,1 ≤ min{4∆ + 1,∆ + 47}. Hence, the Griggs and Yeh conjecture on λ2,1 and the
Wegner conjecture on λ1,1 hold for planar graphs without 4-cycles having ∆ ≥ 9 and ∆ ≥ 96,
respectively.

Open Problem: For any graph G, it is well known that λ1,1 ≥ ∆ and λ2,1 ≥ ∆+1. From the
results in [153] it follows that there exist two constants c1 and c2 such that for all planar
graphs G without 4-cycles λh,1(G) lies in the interval [∆ + h− 1,∆ + ch], h = 1, 2. It is
not known which are the precise values of c1 and c2. We remark that c1 and c2 are not
bounded when planar graphs G are allowed to have 4-cycles.

We introduce a graph invariant that is an indicator of the sparseness of a graph: the
maximum average degree, denoted Mad(G) is the maximum among the average degrees of its

subgraphs, i.e. Mad(G) = max{2|E(H)|
|V (H)| }; H ⊆ G. There is a well known relation between the

Mad and the girth of a planar graph, indeed for every planar graph G with girth at least g,
Mad(G) < 2g

g−2 . From this, it follows that planar graphs with girth 5, 6 and 7 have Mad ¡
10/3, 3 and 14/5, respectively. In [154], the L(h, k)-labelling of graphs with Mad ¡ 10/3, 3
and 14/5 is considered, proving some bounds improving the previous results in [146].

4.6.1 Outerplanar and l-Outerplanar Graphs

A graph is outerplanar if it can be embedded in the plane so that every node lies on the
boundary of the outer face.

A graph G is l-outerplanar if for l = 1, G is outerplanar and for l > 1 G has a planar
embedding such that if all nodes on the exterior face are deleted, the connected components
of the remaining graph are all (l − 1)-outerplanar.

It can be determined in polynomial time whether G is outerplanar and whether it is
l-outerplanar.
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L(1, 1)-labelling. Any l-outerplanar graph has a treewidth of at most 3l−1 [155]. More-
over, outerplanar graphs are series-parallel graphs, and series-parallel graphs are exactly par-
tial 2-trees. Thus, applying the result of [136] for bounded treewidth graphs, we get that any
l-outerplanar and outerplanar graph can be optimally L(1, 1)-labelled in O(n3) time.

In [77] a linear time algorithm for optimally L(1, 1)-labelling any outerplanar graphs of
degree ∆ ≥ 7 with at most ∆ + 1 colors is presented. When ∆ ≥ 6 the required number of
colors is anyway 11. This algorithm first executes a special traversal of an embedding of the
graph (ordered breadth first search), then it labels the nodes in a greedy fashion starting from
the root of the resulting spanning tree and following a level by level order. The optimality
proof exploits some strong properties of the non-tree edges. Later, Agnarsson and Halldórsson
[156, 157] derive optimal upper bounds on λ1,1 for outerplanar graphs of small degree (∆ < 7)
proving that λ1,1 ≤ ∆ + 2 if ∆ = 2 and λ1,1 ≤ ∆ + 1 if ∆ = 3, 4, 5 and λ1,1 ≤ ∆ if ∆ = 6.

L(2, 1)-labelling. As outerplanar graphs are graphs of treewidth 2, from the result in [42]
for bounded treewidth graphs, we have an immediate upper bound, i.e. λ2,1(G) ≤ 2∆ + 4.
Jonas [55] proves the slightly better bound λ2,1(G) ≤ 2∆+2. Providing a coloring algorithm,
in [42], the authors improve this bound to λ2,1(G) ≤ ∆ + 8 for any outerplanar graph G,
but they conjecture that the tightest bound could be ∆ + 2. Calamoneri and Petreschi [77]
prove this conjecture when the input outerplanar graph has maximum degree ∆ ≥ 8, and
they provide a linear time algorithm that guarantees an L(2, 1)-labelling of G with a number
of colors far at most one from optimum. The algorithm is analogous to that one presented
for the L(1, 1)-labelling.

Open Problem: The authors of [77] conjecture that this algorithm is optimal; if this is true,
the L(2, 1)-labelling problem on outerplanar graphs would be polynomially solvable.
The question is still open, and particularly interesting because outerplanar graphs are
perfect and such a result would help to understand the relationship between the hardness
of the vertex coloring and of the L(2, 1)-labelling problem.

For outerplanar graphs with smaller values of ∆, in [77] it is guaranteed λ2,1(G) ≤ 10,
improving anyway the bound of ∆+8, but the authors conjecture that the bound ∆+2 holds
for any outerplanar graph of degree ∆ ≥ 4. Differently, in the special case ∆ = 3, it is shown
that there exists an infinite class of outerplanar graphs needing ∆+4 colors and an algorithm
using at most ∆ + 6 colors for any degree 3 outerplanar graph is presented.

Wang and Luo [158] prove some bounds on small degree outerplanar graphs: λ2,1(G) ≤
∆ + 4 if ∆ = 3 and λ2,1(G) ≤ ∆ + 5 if ∆ = 4, so improving the previous bounds in these
two cases. Furthermore, these author provide a graph with ∆ = 4 disproving the previous
conjecture as it needs 8 colors (see Figure 8).

Some of the previous bounds for small values of ∆ are empirically improved in [159] for
some sample outerplanar graphs. In particular, the authors prove that λ2,1(G) ≤ 6 = ∆ + 3
for each degree 3 outerplanar graph. Furthermore, by experimental techniques, they improve
the lower bounds for 4 ≤ ∆ ≤ 6 showing some graphs requiring ∆ + 3 colors.

Li and Zhou [160] close the problem for degree three outerplanar graphs, proving that
λ2,1 ≤ ∆ + 3 for these graphs.

Open Problem: It remains an open problem to close the gap between upper and lower bounds
for 4 ≤ ∆ ≤ 7.
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Figure 8: A counterexample outerplanar graph with ∆ = 4 and λ2,1 = ∆ + 3.

The upper bounds on λ2,1(G) can be slightly improved if the outerplanar graph G is
triangulated [42, 77].

L(h, k)-labelling. To the best of the author’s knowledge, the sole paper handling the
general L(h, k)-labeling problem on outerplanar graphs is [161], proving that λh,k(G) ≤ (2k−
1)∆ + 2(2h− 1) if G is outerplanar of degree ∆.

Open Problem: Observe that, when h = 1, 2 and k = 2 the previous bound does not match
the tighter results achieved when directly studying these special cases. Hence, it is an
open problem to understand how the bound (2k−1)∆+2(2h−1) is far from the optimal
value.

4.6.2 K4-Minor Free Graphs

A graph G has a graph H as a minor if H can be obtained from a subgraph of G by contracting
edges, and G is called H-minor free if G does not have H as a minor. A graph is called series-
parallel graph if G can be obtained from K2 by applying a sequence of operations, where each
operation is either to duplicate an edge (i.e. replace an edge with two parallel edges) or to
subdivide an edge (i.e. replace an edge with a path of length 2). A graph G is K4-minor
free if and only if each block of G is a series-parallel graph. It is well known [162] that a
graph G is outerplanar if and only if G is K4-minor free and K2,3-minor free. Thus, the
class of K4-minor free graphs is a class of planar graphs that contains both outerplanar and
series-parallel graphs.

L(1, 1)-labelling. If G is a K4-minor free graph, then λ1,1(G) ≤ ∆ + 2 if 2 ≤ ∆ ≤ 3 and
λ1,1(G) ≤ b3

2∆c otherwise [163]. The result is best possible, as witnessed by the following
graphs:

− for ∆ = 2, cycle C5, having λ1,1 = 4;
− for ∆ = 3 let G be the graph consisting of three internally disjoint paths joining two nodes
x and y, where two of the paths are of length 2 and the third one is of length 3; this graph
has λ1,1 = 5 (see Fig. 9.a);

− for ∆ = 2d ≥ 4 let G2d be the graph consisting of d internally disjoint paths joining x and
y, d internally disjoint paths joining x and z, and d internally disjoint paths joining y and
z; all these paths are of length 2, except one path joining x and y of length 1, and one
path joining x and z of length 1. The degree of such a graph is 2d and its λ1,1 is 3d (see
Fig. 9.b where d is 3);
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− for ∆ = 2d + 1 ≥ 5, let G2d+1 be obtained from G2d by adding a new path of length 2
joining y and z; this graph has λ1,1 = 3d+ 1.

x y

x

y

z

Figure 9: K4-minor free graphs having λ1,1 = b3
2∆c = n.

L(2, 1)-labelling. It is NP-complete to decide whether λh,k(G) ≤ σ, where σ is part of
the input, if G is series-parallel [135], as a consequence of the results on bounded treewidth
graphs, as series-parallel graphs are exactly partial 2-trees. Of course, the same result holds
for K4-minor free graphs, a superclass of series-parallel graphs.

L(h, k)-labelling. Wand and Wang [164] show that every K4-minor free graph G with
maximum degree ∆ has an L(h, k)-labelling, h+ k ≥ 3, with span at most 2(2h− 1) + (2k −
1)b3

2∆c, generalizing the previous result on the L(1, 1)-labelling. It is natural to wonder
whether the bound on λh,k is optimal, as the one on λ1,1. This is not the case, as proved in
[165], where it is shown that for every h ≥ 1 there exist ∆0 such that every K4-minor free
graph with maximum degree ∆ ≥ ∆0 has an L(h, 1)-labelling with span at most b3

2∆c and
this bound cannot be further decreased. This result translates to L(h, k)-labelling, with k > 1
providing an upper bound for λh,k of kb3

2∆c.

4.7 Graphs with an Intersection Model

For a given set M of objects (for which intersection makes sense), the corresponding intersec-
tion graph G is the undirected graph whose nodes are objects and an edge connects two nodes
if the corresponding objects intersect. M is called the model of G with respect to intersection.

Depending on the nature of the object, many interesting classes can be defined.

4.7.1 Disk Graphs and (r, s)-Civilized Graphs

A disk graph is the intersection graph of a set of disks in the plane, where each disk is
uniquely determined by its center and its diameter. The class of disk graphs is very wide and
interesting, and it includes classes as, for instance, planar graphs. When all disks are of the
same diameter the graph is called unit disk graph.

The disk graph and unit disk graph recognition problem is NP-hard [166, 167]. Hence,
labelling algorithms that require the corresponding disk graph representation are substantially
weaker than those which work only with graphs.

For each fixed pair of real values r > 0 and s > 0, a graph G belongs to the class of the
(r, s)-civilized graphs if there exists a positive integer d ≥ 2 such that the intersection model is
a set of spheres of Rd, the centers of intersecting spheres are at distance ≤ r and the distance
between any two centers is ≥ s [168]. In the following, planar (r, s)-civilized graphs (i.e. with
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d = 2) will be treated; however, all the results can be extended directly to civilized graphs of
higher dimension.

Note that the class of (r, s)-civilized graphs includes disk graphs whenever there is a (fixed)
minimum separation between the centers of any pairs of circles.

The previously described classes of graphs are considered as reasonable models for several
classes of packet radio networks. To see this, consider packet radio networks in which the range
of any transmitter can be considered as a circular region with the transmitter at the center of
the circle; let r be the radius of the region corresponding to a transmitter’s maximum range.
Further, it is natural to assume a minimum separation s between any pair of transmitters,
otherwise the equipment carrying the transmitters cannot be placed. Clearly, the graphs that
model such networks belong to the class of (r, s)-civilized graphs. In many other realistic
situations, the ratio of maximum to the minimum transmitter range is not fixed; in such
cases disk graphs are more realistic [137].

L(1, 1)-labelling. The decision version of the problem is NP-complete for unit disk
graphs. Krumke, Marathe and Ravi [137] give a 2-approximation algorithm for the L(1, 1)-
labelling problem for (r, s)-civilized graphs. The performance guarantee of the algorithm is
independent of the values of r and s. An approximation algorithm with a performance guar-
antee of 14 for disk graphs is given in [169]. It has been later shown [170] that the performance
guarantee of 14 can also be achieved using the greedy paradigm. The performance ratio has
been improved to 13 (to 12 if the radii are quasi-uniform) [171], by means of FIRST-FIT
algorithms. In [169, 171] two approximation algorithms for unit disk graphs with a perfor-
mance guarantee of 7 are presented. Finally, in [171] the authors prove that for unit disk

graphs whose nodes lie in a horizontal strip of heigth
√

3
2 the L(1, 1)-labelling problem can

be solved in polynomial time. The reason is that such graphs are co-comparability graphs,
that are perfect graphs with the property that their square graphs are still co-comparability
graphs, and hence optimally L(1, 1)-labellable in polynomial time (see Subsection 4.9.8).

Open Problem: Is it possible to improve the performance ratios of 13 and 7 for disk and unit
disk graphs, respectively?

L(2, 1)-labelling. Fiala, Fishkin and Fomin [172] explore the L(2, 1)-labelling problem
on disk and unit disk graphs. For the first class of graphs they provide an approximation
algorithm having performance ratio bounded by 12. For the second class, they present a
robust labelling algorithm, i.e. an algorithm that does not require the disk representation
and either outputs a feasible labelling, or answers the input is not a unit disk graph. Its
performance ratio is constant and bounded by 32/3. In both cases, λ2,1(G) is bounded by a
linear function of the size of the maximum clique in G.

In [173] the first known upper bound for unit disk graphs in terms of ∆ is shown: λ2,1(G) ≤
4
5∆2 + 2∆.

Open Problem: This latter upper bound is far from being tight, indeed consider as an
example the triangular grid G6: it is a unit disk graph of maximum degree 6, its span
is 8, but the value of this upper bound is 40.

L(h, k)-labelling. In [172] it is also studied also the more general L(h, k)-labelling prob-
lem on disk graphs (in fact the even more general L(p1, p2, . . . pr)-labelling problem) and it is
presented an approximation algorithm whose performance depends on the diameter ratio σ,
i.e. the ratio between the biggest and the smallest diameters of the set of disks.
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4.7.2 Chordal Graphs

A graph is chordal (or triangulated) if and only if it is the intersection graph of subtrees of
a tree. An equivalent definition is the following: a graph is chordal if every cycle of length
greater than three has a chord. Chordal graphs have been extensively studied as a subclass
of perfect graphs [2].

An n-sun is a chordal graph with a Hamiltonian cycle x1, y1, x2, y2, . . . xn, yn, x1 in which
each xi is of degree exactly 2. A sun-free-chordal (respectively odd-sun-free-chordal) graph is
a chordal graph which contains no n-sun with n ≥ 3 (respectively odd n ≥ 3) as an induced
subgraph. Sun-free-chordal graphs are also called strongly chordal graphs and are particularly
interesting as they include directed path graphs, interval graphs, unit interval graphs and
trees. Also strongly chordal graphs can be defined as intersection graphs of subtrees with
certain properties of a tree. A graph is weakly chordal if it has no induced cycle of length at
least five. A graph G is called a block graph if each block of G is a complete graph. The class
of block graphs includes trees and is a subclass of strongly chordal graphs.

L(1, 1)-labelling. In [174] it is proven that the L(1, 1)-labelling problem on chordal

graphs is hard to approximate within a factor of n
1
2
−ε, for any ε > 0, unless NP-problems

have randomized polynomial time algorithms. The authors match this result with a simple
O(
√
n)-approximation algorithm for L(1, 1)-labelling chordal graphs.

L(2, 1)-labelling. To decide whether λ2,1(G) ≤ n is NP-complete if G is a chordal graph
[42]; this can be proven by means of a reduction from HAMILTONIAN PATH and exploiting
the notion of complement of a graph.

The L(2, 1)-labelling for chordal graphs has been first investigated by Sakai [175] in order
to approach the general conjecture λ2,1(G) ≤ ∆2. The author proves that chordal graphs
satisfy the conjecture and more precisely that λ2,1(G) ≤ 1

4(∆ + 3)2. More recently, this
bound has been improved by 1 in [75].

Chang and Kuo [27] study upper bounds on λ2,1(G) for odd-sun-free-chordal graphs
and strongly chordal graphs and prove that λ2,1(G) ≤ 2∆ if G is odd-sun-free-chordal and
λ2,1(G) ≤ ∆ + 2χ(G)− 2 if G is strongly chordal. Although a strongly chordal graph is odd-
sun-free-chordal, the upper bounds are incomparable. The result on strongly chordal graphs
is a generalization of the result that λ2,1(T ) ≤ ∆ + 2 for any non trivial tree T . The authors
conjecture that λ2,1(G) ≤ ∆ + χ(G) for any strongly chordal graph G. All the previous re-
sults for chordal graphs have been improved by the result in [176], stating that the λ1,1- and
λ2,1-numbers are both O(∆3/2) for this class of graphs, and that there exists a chordal graph
G such that λ2,1(G) = Ω(∆3/2).

Some classes related to chordal graphs have been investigated. In particular, for chordal
bipartite graphs it has been proved that λ2,1 ≤ ∆2−∆+2 [177], later improved to λ2,1 ≤ 4∆−1
[178], hence the Griggs and Yeh’s conjecture is true for chordal bipartite graphs with ∆ 6= 3.
Dually chordal graphs are a superclass of strongly chordal graphs and strongly orderable
graphs are a superclass of both strongly chordal and chordal bipartite graphs. In [179], it is
shown that λ2,1 ≤ 2∆ for dually chordal graphs and that λ2,1 ≤ 4∆−1 for strongly orderable
graphs. Furthermore, as block graphs are strongly chordal, all the results for this latter class
holds for the former one, i.e. λ2,1 ≤ 2∆ and λ2,1 ≤ ∆ + 2χ − 2 = ∆ + 2ω − 2, as χ = ω for
a block graph. In [180] these results are improved to λ2,1 ≤ ∆ + ω. Nevertheless, if ∆ ≤ 4,
ω = 3 and G does not contain a certain subgraph with 7 nodes and 9 edges, then λ2,1 ≤ 6
[181]. In [177] weakly chordal graphs are proved to respect the Griggs and Yeh’s conjecture.
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L(h, k)-labelling. As a generalization of the result known for h = 2, if G is a chordal
graph with maximum degree ∆, then λh,1(G) ≤ 1

4(2h+∆−1)2; if G is an odd-sun-free chordal
graph, then λh,1(G) ≤ h∆ and if G is strongly chordal then λh,1(G) ≤ ∆ + (2h−2)(χ(G)−1)
[64]. Also for this problem it is proven that λh,k(G) = O(∆3/2(2k − 1)) [176].

4.7.3 Interval Graphs

An interval graph is an intersection graph whose model is a set of intervals of the real line.
The class of unit interval graphs is a subclass of interval graphs for which all the intervals

are of the same length, or equivalently, for which no interval is properly contained within
another.

Interval graphs are used to model wireless networks serving narrow surfaces, like highways
or valleys confined by natural barriers (e.g. mountains or lakes).

L(0, 1)-labelling. The computation of λ0,1(G) is NP-hard for general graphs and also for
some special classes of graphs, but it can be computed in polynomial time for interval graphs
[182].

L(1, 1)-labelling. Interval and unit-interval graphs are perfect; furthermore, interval
graphs are closed under powers and the square of a unit-interval graph is still a unit-interval
graph [183]. It follows that the L(1, 1)-labelling problem on interval and unit-interval graphs
is polynomially solvable. A linear time algorithm for finding an optimal L(1, 1)-labelling of
interval graphs is presented in [184].

L(2, 1)-labelling. Sakai [175] proves that 2χ(G)− 2 ≤ λ2,1(G) ≤ 2χ(G) for unit interval
graphs. In [185] the authors discuss some necessary and sufficient conditions for unit interval
graphs G to have λ2,1(G) = 2χ(G)− 2 and obtain some sufficient conditions for unit interval
graphs to have λ2,1(G) = 2χ(G).

In terms of ∆, as χ(G) ≤ ∆ + 1, the upper bound becomes λ2,1(G) ≤ 2(∆ + 1), and this
value is very close to be tight, as the clique Kn, that is an interval graph, has λ2,1(Kn) =
2(n− 1) = 2∆.

Finally, in terms of ∆ and ω, where ω is the dimension of the larger clique in the graph,
λ2,1(G) ≤ ∆ + ω [186].

L(h, k)-labelling. In [184] the authors present a 3-approximate algorithm for L(h, 1)-
labelling interval graphs. In the special case of unit interval graphs, the same approximation
ratio holds for the L(h, k)-labelling problem.

An L(h, k)-labelling algorithm for interval graphs with span at most max(h, 2k)∆ is pro-
vided in [187]; this span can be slightly improved under some constraints that the graph has
to respect. In the same paper, it is proved that the classical greedy algorithm guarantees a
span never larger than min((2h + 2k − 2)(ω − 1),∆(2k − 1) + (ω − 1)(2h − 2k)), where ω is
the dimension of the larger clique in the graph.

Open Problem: It is still not known whether the decisional version of the L(h, k)-labelling
problem is NP-complete on interval graphs or not. Concerning this problem, the feeling
of the author is that it is NP-complete, even for unit-interval graphs.

Open Problem: From the results for interval graphs, the authors of [187] deduce a result
on circular arc graphs, i.e. intersection graphs whose model is a set of intervals in
a circle. The approach they follow is: i. to consider a clique in the graph whose
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remotion gives an interval graph, ii. to label the interval graph, iii. to insert again the
clique labeling it with further labels. In this way, it is possible to guarantee λh,k ≤
min((3h+ 2k − 2)ω − (2h+ 2k − 2),∆(2k − 1) + ω(3h− 2k)− (2h− 2k). The interest
of this result is that it is the first one dealing with circular arc graphs, but it should be
possible to improve it. An interesting open problem is to provide tight upper and lower
bound on λh,k for circular arc graphs. It is worth to be mentioned that Paul, Pal and
Pal [186] improve the upper bound to ∆ + 3ω in the special case of h = 2 and k = 1.

4.7.4 Permutation Graphs

An intersection model of straight lines between two parallel lines describes permutation graphs
as follows: let L1,L2 be two parallel lines in the plane and label n points by 1,2, . . . , n (not
necessarily in this order) on L1 as well as on L2. The straight lines Li connect i on L1 with
i on L2. L= {L1, . . . , Ln} is the intersection model of the corresponding permutation graph.

The name permutation graph comes from the fact that the points on L1,L2 can be seen
as a permutation π = {π1, . . . πn} and (i, j) ∈ E(G) if and only if i and j form an inversion
in π.

L(0, 1)−, L(1, 1)- and L(2, 1)-labelling. In [42] it is described an approximation algo-
rithm for L(h, 1)-labelling (h = 0, 1, 2) a permutation graph in O(n∆) time; it guarantees
the following bounds: λ0,1(G) ≤ 2∆ − 2, λ1,1(G) ≤ 3∆ − 2 and λ2,1(G) ≤ 5∆ − 2. In [188]
the result concerning the L(2, 1)-labelling is improved to λ2,1(G) ≤ max{4∆− 2, 5∆− 8} by
doing a detailed analysis of Chang and Kuo’s heuristic for L(2, 1)-labelling of general graphs
applied to the particualr case of permutation graphs.

L(h, k)-labelling. For those permutation graphs that are also bipartite, there exists a
polynomial L(h, k)-labelling approximation algorithm [189] that guarantees to use at most
2h − 1 + k(bc(G) − 2) colors, where bc(G) is the biclique number of G. (In a bipartite
graph, a subset of nodes is a biclique if it induces a complete bipartite graph. The biclique
number of a bipartite graph is the number of nodes in a maximum biclique.) Since λh,k(G) ≥
h+ k(bc(G)− 2) for any bipartite graph, this algorithm guarantees a number of colors that
is at most h− 1 far from optimal.

4.7.5 Split Graphs

A graph G is a split graph if and only if G is the intersection graph of a set of distinct substars
of a star. Alternatively, a split graph is a graph G of which node set can be split into two sets
K and S, such that K induces a clique and S an independent set in G. All split graphs are
chordal.

L(0, 1)-and L(1, 1)-labelling. Bodlaender et al. [42] prove that it is NP-complete to
decide both whether λ0,1(G) ≤ 3 and whether λ1,1(G) ≤ r when r is given in input and G is a
split graph. This also implies NP-completeness of the problems to decide the λ0,1- and λ1,1-
numbers for chordal graphs. In [174] it is proven that the L(1, 1)-labelling problem on split
graphs is hard to approximate within a factor of n1/2−ε, for any ε > 0, unless NP-problems
have randomized polynomial time algorithms.

L(2, 1)-labelling. As split graphs are chordal, the results stated for chordal graphs hold
for these graphs. Moreover, split graphs are the first known class of graph for which λ2,1 is
neither linear nor quadratic in ∆. Namely, in [42] it is presented an algorithm L(2, 1)-labelling
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G with at most ∆1.5 + 2∆ + 3 colors, and it is shown that there exist split graphs for which
this bound is tight. Similar bounds are obtained also for λ0,1 and λ1,1. The value of λ2,1 has

been improved to 2
√

39
∆

1.5
+ Θ(∆) in [177].

Open Problem: Split graphs and chordal graphs (see Subsection 4.7.2) represent the only
known class for which λ2,1 is neither linear nor quadratic in ∆. It remains an open
problem to understand if there exist other classes of graphs whose λ2,1-number has this
property. A characterization of the class of graphs having λ2,1 = Θ(∆1.5) would be a
probably hard but very interesting target.

4.8 Hypercubes and Related Networks

The n-dimensional hypercube Qn is an n-regular graph with 2n nodes, each having a binary
label of n bits (from 0 to 2n−1). Two nodes in Qn are adjacent if and only if their binary labels
differ in exactly one position. The n-dimensional hypercube Qn can also be defined as the
cartesian product of n K2 graphs. The more general cartesian product Kn12Kn22 . . .2Knd

of complete graphs is called a Hamming graph, where ni ≥ 2 for each i = 1, . . . , d.
The N -input Butterfly network BN (with N power of 2) has N(log2N + 1) nodes. The

nodes correspond to pairs (i, j), where i (0 ≤ i < N) is a binary number and denotes the row
of the node, and j (0 ≤ j ≤ log2N + 1) denotes its column. Two nodes (i, j) and (i′, j′) are
connected by an edge if and only if j′ = j+1 and either i and i′ are identical (straight edge) or
i and i′ differ in precisely the j′-th bit (cross edge). A 3-input butterfly is depicted in Figure
10.a. The N -input butterfly network is strictly related to the hypercube, as its quotient
graph, obtained by shrinking each row in a unique node, is exactly the (log2N)-dimensional
hypercube.

The n-dimensional Cube-Connected-Cycles network, CCCn, is constructed from the n-di-
mensional hypercube by replacing each node of the hypercube with a cycle of n nodes. The
i-th dimension edge incident to a node of the hypercube is connected to the i-th node of the
corresponding cycle of the CCC. In Figure 10.b the classical representation of a 3-dimensional
CCC network is depicted.

1st Row - 000

2nd Row - 001

3rd Row - 010

4th Row - 011

5th Row - 100

6th Row - 101

7th Row - 110

8th Row - 111

1st Row - 000

2nd Row - 001

3rd Row - 010

4th Row - 011

5th Row - 100

6th Row - 101

7th Row - 110

8th Row - 111

a. b.

Figure 10: a. The classical representation of an 8-input Butterfly network; b. The bidimen-
sional layout of a 3-dimensional CCC network.)
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L(0, 1)-labelling. λ0,1(Qn) ≤ 2dlogne and there exists a labelling scheme using such a
number of colors. This labelling is optimal when n = 2k for some k, and it is a 2-approximation
otherwise [140].

L(1, 1)-labelling. In [140] an L(1, 1)-labelling scheme of the hypercube Qn is described in
the context of optical cluster based networks. A different approach is used in [78] with respect
to the problem of data distribution in parallel memory systems: it is presented an algorithm
that uses 2blognc+1 colors, and requires O(n) time and space, improving the previously known
results. In both papers, the upper bound on λ1,1(Qn) is a 2-approximation, that is conjectured
to be the best possible. Finally, in [190], the λ1,1-number is proved to be exactly n when
n = 2k − 1.

L(2, 1)-labelling. For the n-dimensional hypercube Qn, λ2,1(Qn) ≥ n+3 and λ2,1(Qn) ≥
n + 4 for n = 8 and n = 16, respectively [191]. Furthermore, λ2,1(Qn) ≤ 2n + 1 for n ≥ 5
[4]. The same authors also determine λ2,1(Qn) for n ≤ 5 and conjecture that the lower bound
n + 3 is the actual value of λ2,1(Qn) for n ≥ 3. Using a coding theory method, the upper
bound is improved by 1 in [85], where it is proven that it ranges from bn+ 1 + log2 nc to 2n,
depending on the value of n. Furthermore, lim inf λ2,1(Qn)/n = 1.

In [192] an L(2, 1)-labelling algorithm of Qn is described: exploiting a coding theoretic
approach, each color is assigned with a f(n)-bit binary number, where f(n) =min {r such
that n+ r + 1 ≤ 2r}. Therefore, the labelling uses 2f(n) colors.

Georges, Mauro and Stein [90] determine the λ2,1-number of Hamming graph H(d, n) =
Kn2Kn2 . . .2Kn (d factors) where n = pr, p prime and either d ≤ p and r ≥ 2, or d < p
and r = 1. They prove that, under these conditions, λ2,1(H(d, pr)) = p2r− 1. Chang, Lu and
Zhou [193] extend this result proving that λ2,1(G) = λ1,1(G) = n1n2 − 1 if G = Kn12Kn2

and n1 sufficiently large.
In [194] a constructive algorithm to L(2, 1)-label multistage interconnection networks in

general is presented, then butterflies and CCCs are particularly considered. The authors
observe that λ2,1(BN ) ≥ 6 and λ2,1(CCCn) ≥ 5 in view of their degree, and they L(2, 1)-label
these networks almost optimally. More precisely, ifN is either 22 or 23, they provide a labelling
for BN using 7 colors, that is optimal; for all greater values of N their method requires 8
colors. For what concerns CCCn, the authors provide a labelling ensuring λ2,1(CCCn) ≤ 6,
that is 1 far from optimal, and they experimentally verify that there exist some values of n
(e.g. n = 5) requiring a 6 colors labelling.

Open Problem: The approach presented in [194], consisting in shrinking some cycles of
the networks and in reducing to label these simpler graphs instead of the complete
networks, seems to be promising: it is very general both because it can be applied to
many multistage networks, and because it works for every value of h and k. Nevertheless,
it needs to be refined: first of all, the authors themselves realize that sometimes the
reduced graph needs more colors than the whole network, because the reduced graph
typically has degree higher than the original network. Secondly, the main bottleneck
of this method is that the reduced graph must be labelled using exhaustive methods;
nevertheless, it should be relatively easy to design algorithms to efficiently label the
reduced graphs, that are constituted by two parallel cycles joined by a very regular set
of edges.

L(h, k)-labelling. Zhou [195] proves that λh,k(Qn) ≤ 2s· max{k, dh/2e}+ 2s−t· min{h−
k, bh/2c} − h, where h ≥ k ≥ 1, s = 1 + blog2 nc and t =min{2s − n− 1, s}. In particular, if
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2k ≥ h, then λh,k(Qn) ≤ 2sk+ 2s−t(h− k)−h leading to λ2,1(Qn) ≤ 2s + 2s−t− 2. The proof
of this theorem gives rise to a systematic way of generating L(h, k)-labellings of Qn which
use 2s labels and have span equal to the right-side of the previous formula. For Hamming
graphs, the same authors show an upper bound on λh,k for special values of ni, i = 1, . . . , d,
and this bound is optimal when h ≤ 2k.

The paper [196] is a survey on the L(h, k)-labelling problem with focus on hypercubes
and Hamming graphs.

4.9 Other Graphs

In this section there are collected some classes of graphs for which very few results appear in
the literature, and they are not enough to justify a devoted section. It is amazing that the
L(h, k)-labelling problem appears more tricky just for some very studied classes of graphs,
included in this collection, that are very relevant from the theoretical point of view and that
have many interesting properties.

4.9.1 Diameter 2 Graphs

A diameter 2 graph is a graph where all nodes have either distance 1 or 2 each other.

L(1, 1)- and L(2, 1)-labelling. Intuitively, diameter 2 graphs seem to be a particularly
feasible class to efficiently solve the L(h, k)-labelling problem. On the contrary, while it is
easy to see that the λ1,1-number for these graphs is n − 1, Griggs and Yeh [4] prove that
the L(2, 1)-labelling problem is NP-hard. They prove also that λ2,1 ≤ ∆2 and state that this
upper bound is sharp only when ∆ = 2, 3, 7 and, possibly 57 because a diameter 2 graph with
n = ∆2 + 1 can exist only if ∆ is one of these numbers (see more details on these graphs
below). Since the diameter is 2, all labels in V must be distinct. Hence, λ(G) ≥ n− 1 = ∆2

and therefore the equality holds.

L(h, k)-labelling. In [73] bounds for the λh,1-number are presented, for all h ≥ 2. In
particular, it is proven that λh,1(G) ≤ ∆2 + (h − 2)∆ − 1 if G is a diameter 2 graph with
maximum degree ∆ ≥ 3 and n ≤ ∆2 − 1. Since a diameter 2 graph can have at most ∆2 + 1
nodes, and, with the exception of C4, there are no diameter 2 graphs with maximum degree
∆ and ∆2 nodes [200], it just remains to investigate the graphs with n = ∆2 + 1. There are
merely four such graphs; they are regular and have ∆ = 2, 3, 7 and 57, respectively:
− ∆ = 57: it is neither known whether such a graph exists; this hypothetical graph is called

Aschbacher graph. Junker [201] strongly conjectures that there is no such a graph, and we
will not consider it for obvious reasons;

− ∆ = 2: the cycle of length 5: λh,1(C5) = 2h [65];
− ∆ = 3: the Petersen graph P : λ2,1(P ) = 9 [4]; for h ≥ 3 λh,1(P ) = 3 + 2h (see Figure 11)

[73];
− ∆ = 7: the Hoffman-Singleton graph HS: max {49, 3h} ≤ λh,1(HS) ≤ 19 + 3h [73] for
h ≥ 10; when h = 10 it holds λh,1(HS) = 49 that of course is optimal (as n = 50 and HS
is a diameter 2 graph).

Open Problem: Since for h ≥ h′ every L(h, 1)-labelling is also a proper L(h′, 1)-labelling,
it holds λh,1(HS) = 49 for ∆ ≤ 10. An interesting open problem is to improve the
upper bound for h > 10. Another question is whether 10 is the highest value for h
such that λh,1 = 49.
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Figure 11: An L(h, 1)-labelling of Petersen graph.

4.9.2 Regular Graphs

An r-regular graph is a graph in which all nodes have degree exactly r. Although they
constitute an interesting class of graphs, they have not been very studied from the L(h, k)-
labelling point of view. Indeed, to the best of the author’s knowledge, only few papers deal
with regular graphs.

Among all r-regular graphs, particularly important are snarks, i.e. 3-regular graphs with
chromatic index 4. (By Vizing’s theorem, the edge chromatic number of every 3-regular
graph is either three or four.) They are investigated since Tait [197] prove that the Four
Color theorem is equivalent to the statement that every planar bridgeless 3-regular graph is
3-colorable. The smallest snark is the Petersen graph; the next smallest snark has 18 nodes.

L(2, 1)-labelling. For every r ≥ 3, it is NP-complete to decide whether an r-regular
graph admits an L(2, 1)-labelling of span (at most) λ2,1 = r + 2 [44]. The result is best
possible, since no r-regular graph (for r ≥ 2) allows an L(2, 1)-labelling of span r + 1.

In the special case of 3-regular Hamiltonian graphs (consisting of a spanning cycle and a
perfect matching), the Griggs and Yeh conjecture (λ2,1 ≤ ∆2) has been proved [198]. The
proof is rather intricate, and requires the study of structural properties of the involved graphs.

Ma, Zhu and He [199] prove that the λ2,1-number of some families of snarks is 6.

L(h, k)-labelling. The λh,1-number of an r-regular graph is at least 2h+ r − 2 [65].
In [202], Georges and Mauro prove that the λh,k-number of any r-regular graph G is no

less than the λh,k-number of the infinite r-regular tree (see Section 4.4). Then, they define a
graph G to be (h, k, r)-optimal if and only if the equality holds, they consider the structure of
(h, k, r)-optimal graphs for h/k > r and show that (h, k, r)-optimal graph are bipartite with a
certain edge-coloring property. Finally, the same authors determine the exact λ1,1- and λ2,1-
numbers of prisms. More precisely, for n ≥ 3, the n-prism Pr(n) is the graph consisting of two
disjoint n-cycles v0, v1, . . . , vn−1 and w0, w1, . . . , wn−1 and edges {vi, wi} for 0 ≤ i ≤ n− 1.

Observe that Pr(n) is isomorphic to Cn2P2. In [122] it is proven that λ2,1(Pr(n)) is equal
to 5 if n ≡ 0mod 3 and to 6 otherwise, improving the result in [86], and that

λ1,1(Pr(n)) =


3 if n ≡ 0 mod 4
5 if n = 3, 6
4 otherwise.
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Open Problem: Regular graphs seem to be particularly relevant for the L(h, k)-labelling
questions (notice that most of the graphs shown as extremal cases are regular graphs),
so they are worth being studied more deeply.

4.9.3 Bipartite Graphs

Bipartite graphs are graphs with χ(G) ≤ 2. Nevertheless, their λh,k-number can be very large,
as shown in the following.

Before detailing the known results for bipartite graphs, we recall some definitions. A
bipartite graph G = (U ∪ V,E), with |U | = n1 and |V | = n2, is called a chain graph if there
exists an ordering u1, . . . , un1 of U and an ordering v1, . . . , vn2 of V such that N(u1) ⊆ . . . ⊆
N(un1) and N(v1) ⊆ . . . ⊆ N(vn2), where N(x) is the set of all adjacent nodes of x. A subset
of nodes of a bipartite graph is a biclique if it induces a complete bipartite subgraph; the
maximum order of a biclique of G is denoted by bc(G).

L(0, 1)-labelling. Bipartite graphs may require λ0,1 = Ω(∆2), indeed there exist bipartite

graphs with λ0,1 ≥ ∆2

4 [42]. Of course the same bound holds for each λh,1, h ≥ 1. Later this
lower bound has been improved by a constant factor of 1

4 in [53].

L(1, 1)-labelling. The decision version of the L(1, 1)-labelling problem is NP-complete
even for 3-regular bipartite graphs using 4 colors [203]. In [174] it is proven that the L(1, 1)-
labelling problem on bipartite graphs is hard to approximate within a factor of n1/2−ε, for
any ε > 0, unless NP-problems have randomized polynomial time algorithms.

L(2, 1)-labelling. Since the general upper bound λ2,1(G) ≤ ∆2 + ∆ − 2 [57] holds also
for bipartite graphs of any degree ∆ and the lower bound on λ0,1 holds a fortiori for λ2,1, it
follows that λ2,1(G) = Θ(∆2) for this class of graphs.

In [42], the authors prove that the decisional version of the L(2, 1)-labelling problem is
NP-complete for planar bipartite graphs.

For the subclass of chain graphs, the L(2, 1)-labelling problem can be optimally solved in
linear time and λ2,1(G) = bc(G) [178]. Furthermore, λ2,1(G) ≤ 4∆− 1 for a chordal bipartite
graph G [178]. In the same paper, the L(2, 1)-labelling problem of several subclasses of
bipartite graphs is studied, such as bipartite distance hereditary graphs and perfect elimination
bipartite graphs.

L(h, k)-labelling. In [67] the L(h, k)-labelling problem is considered even on bipartite
graphs, and it is proven that the simplest approximation algorithm, i.e. the one based on
First Fit strategy, guarantees a performance ratio of O(min(2∆,

√
n)), and this is tight within

a constant factor in view of the n1/2−ε-hardness result. On the contrary, exact results can be
achieved if the bipartite graphs are complete. Indeed, in the special case of k = 1, given a
complete bipartite graph G = (U ∪ V,E), where |U | = n1 and |V | = n2, n1 ≥ n2 [204]:

λh,1(G) =



max(n1 − 1, n2 − 1 + h)
if 0 ≤ h ≤ 1

2
(2n2 − 1)h+ max(n1 − n2 − 1 + h, 0)

if 1
2 ≤ h ≤ 1

h+ n1 + n2 − 2
if h ≥ 1
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If the complete bipartite graph is the star, the value of the minimum span is [123]:

λh,k(G) =


(∆− 1)k if h ≤ k

2

(∆− 2)k + 2h if k
2 ≤ h ≤ k

(∆− 1)k + h if h ≥ k

and, of course, these latter values match with the previous ones in the special case n1 = ∆,
n2 = 1 and k = 1.

4.9.4 Cayley Graphs

Cayley graphs of the group Γ relative to the finite group generating set S is the labeled
directed graph G = (V,E) for which V = Γ and E = {(u, us) : u ∈ V, s ∈ S}, where the edge
(u, us) is labeled s. In other words, there is an edge labeled s between two nodes of G if one
is obtained from the other through right multiplication by s. Note that if |S| = n, then the
undirected graph underlying the Cayley graph G is 2n-regular if for all s, s′ ∈ S, ss′ 6= 1,
hence the upper bounds on regular graphs hold for Cayley graphs, too.

Some authors study the L(h, k)-labelling problem on this class of graphs, when varying
the group Γ. The reader may refer to [205, 195] for the L(2, 1)-labelling of Cayley graphs on
abelian groups, and to [206] for Cayley graphs on more general groups; the L(2, 1)-labelling of
cubic Cayley graphs on dihedral group is investigated in [207]. Some of these results contain
as a special case the L(2, 1)-labelling of the square grid and of the hypercube network.

4.9.5 Unigraphs

Unigraphs are graphs uniquely determined by their own degree sequence up to isomorphism
and are a superclass including matrogenic, matroidal, split matrogenic and threshold graphs.
In this section we will deal with all these classes of graphs. The interested reader can find
further information related to these classes of graphs in [208].

An antimatching of dimension h of X onto Y is a set A of edges such that M(A) =
X×Y −A is a perfect matching of dimension h of X onto Y . A graph G = ({v1, v2, . . . vk}, ∅)
is a null graph if its edge set is empty, irrespective of the dimension of the node set.

A split graph G with clique K and stable set S is matrogenic (Fig. 12.a) if and only if the
edges of G can be colored red and black so that [209]:

a. The red subgraph is the union of vertex-disjoint pieces, Ci, i = 1, ..., z. Each piece is
either a null graph Nj , belonging either to K or to S; or matching Mr of dimension hr of
Kr ⊆ VK onto Sr ⊆ VS , r = 1, . . . µ; or antimatching At of dimension ht of Kt ⊆ VK onto
St ⊆ VS , t = 1, . . . α (Fig. 12.b).

b. The linear ordering C1, ...Cz is such that each node in VK belonging to Ci is not linked to
any node in VS belonging to Cj , j = 1, ..., i − 1, but is linked by a black edge to every
node in VS belonging to Cj , j = i+ 1, ..., z. Furthermore, any two nodes in VK are linked
by a black edge (Fig. 12.c).

A graph is matrogenic [210] if and only if its node set V can be partitioned into three
disjoint sets VK , VS , and VC such that:

a. VK ∪ VS induces a split matrogenic graph in which K is the clique and S the stable set;
b. VC induces a crown, i.e. either a perfect matching or a h-hyperoctahedron (that is the

complement of a perfect matching of dimension h – or a chordless C5;
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a b c

C1

C2

C3

C4

Figure 12: a. A split matrogenic graph; b. its red graph; c. its black graph.

c. every node in VC is adjacent to every node in VK and to no node in VS .

Observe that split matrogenic graphs are matrogenic graphs in which VC = ∅.
A result in [210] is that a graph G = (V,E) is matrogenic if and only if it does not contain

the configuration in Fig. 13.a. A graph G = (V,E) is matroidal if and only if it contains
neither the configuration in Fig. 13.a nor a chordless C5 [211].

a b

Figure 13: The forbidden configuration of: a. a matrogenic graph and b. a threshold graph:
— shows a present edge, - - - shows an absent edge.

The vicinal preorder � on V (G) is defined as follows: x � y iff N(x) − y ⊆ N(y) − x,
where N(x) is the set of x’s adjacent nodes. A graph G is a threshold graph if and only if
G is a split graph and the vicinal preorder on V (G) is total, i.e. for any pair x, y ∈ V (G),
either x � y or y � x. G is threshold if and only if it does not contains the configuration in
Fig. 13.b.

L(2, 1)-labelling. A linear time algorithm for L(2, 1)-labelling matrogenic graphs is pro-
vided in [212]. Upper bounds for the specific subclasses defined above are proved. In par-
ticular, in the special case of threshold graphs an optimal L(2, 1)-labelling is provided with
λ2,1 ≤ 2∆ + 1 (the exact values depends on the graph). The optimal algorithm for threshold
graphs matches the polynomiality result of Chang and Kuo on cographs [27], as threshold
graphs are a subclass of cographs.

For the more general class of unigraphs, in [213] a 3/2-approximate algorithm for L(2, 1)-
labeling this class of graphs is proposed. This algorithm runs in O(n) time, improving the
time of the algorithm based on the greedy technique, requiring O(m) time, that may be near
to Θ(n2) for unigraphs.

Open Problem: It is still not known if the L(2, 1)-labelling problem is NP-hard for unigraphs
and matrogenic graphs or not. Furthermore, the cited results are the only ones present in
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the literature concerning these graphs, so it is probably possible to refine the algorithm
in order to improve the upper bound on λ2,1.

4.9.6 q-Inductive Graphs

Let q be a positive integer. A class of graphs G is q-inductive if for every G ∈ G, the nodes
of G can be assigned distinct integers in such a way that each node is adjacent to at most q
higher numbered nodes.

Several well known classes of graphs belong the q-inductive class for appropriate values of
q. For example, trees are 1-inductive, outerplanar graphs are 2-inductive, planar graphs are
5-inductive, chordal graphs with maximum clique size ω are (ω − 1)-inductive and graphs of
treewidth t are t-inductive.

L(1, 1)-labelling. In [137] it is presented an approximation algorithm for L(1, 1)-labelling
q-inductive graphs having performance ratio at most 2q−1. The running time of this algorithm
is O(nq∆).

L(h, k)-labelling. Halldórson [67] applies his greedy algorithm for bipartite graphs to
q-inductive graphs, achieving a performance ratio of at most 2q − 1, hence generalizing the
result for L(1, 1)-labelling to all values of h and k.

Open Problem: Observe that for outerplanar and planar graphs the bound of 2q−1 is rather
far from optimum (see Section 4.6), so probably the cited algorithm can be improved
in order to guarantee a better performance ratio for all values of q.

4.9.7 Generalized Petersen Graphs

For n ≥ 3, a 3-regular graph G with n = 2N nodes is a generalized Petersen graph of order
N if and only if G consists of two disjoint N -cycles, called inner and outer cycles, such that
each node on the outer cycle is adjacent to a node on the inner cycle (see Figure 14). In
applications involving networks, one seeks to find a balance between network connectivity,
efficiency, and reliability. The double-cycle structure of the generalized Petersen graphs is
appealing for such applications since it is superior to a tree or cycle structure as it ensures
network connectivity in case of any two independent node/connection failures while keeping
the number of connections at a minimum level.

L(2, 1)-labelling. The λ2,1-number of every generalized Petersen graph is bounded from
above by 8, with the exception of the Petersen graph itself, having λ2,1-number equal to 9.
This bound can be improved to 7 for all generalized Petersen graphs of order N ≤ 6 [214].
The authors conjecture that the Petersen graph is the only connected 3-regular graph with
λ2,1-number 9 and that there are neither generalized Petersen graphs nor 3-regular graphs
with λ2,1-number 8, i.e. 7 is an upper bound also for generalized Petersen graphs of order
greater than 6. In [215, 216] the authors prove that this conjecture is true for orders 7 and 8,
and give exact λ2,1-numbers for all generalized Petersen graphs of orders 5, 7 and 8, thereby
closing all cases with orders up to 8. Finally, in [217] the exact λ2,1-numbers for all generalized
Petersen graphs of orders 9, 10, 11 and 12 are given, thereby closing all open cases up to order
N = 12 and lowering the upper bound on λ2,1 down to 6 for all but three graphs of these
orders.
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Figure 14: Some generalized Petersen graphs for all values of n from 3 to 7.

Open Problem: It is not known whether there is a generalized Petersen graph of order greater
than 11 with λ2,1 ≥ 7. In [217] seven generalized Petersen graphs of order at most 11
having λ2,1 ≥ 7 are shown. If there is no such a graph for any order greater than 11,
then λ2,1 for generalized Petersen graphs of order greater than 6 would be at most 6,
lower than the upper bound of 7 conjectured by Georges and Mauro [214].

Open Problem: Both to solve the mentioned conjecture and to increase the order N for
which it is known λ2,1would be interesting issues, although such results would have a
graph theoretic flavor, more than algorithmic.

In [216, 217] some subclasses of generalized Petersen graphs, particularly symmetric, are
considered. The authors provide the exact λ2,1-numbers of such graphs, for any order.

4.9.8 Comparability and Co-Comparability Graphs

A graph is a comparability graph if and only if there exists an order of its nodes v0 < v1 <
. . . < vn−1 such that for each i < j < l, if (vi, vj) is an edge and (vj , vl) is an edge, then
(vi, vl) is an edge.

Comparability graphs are a very interesting and wide class: they are perfect graphs and
include bipartite, chordal, permutation, threshold graphs and cographs.

The class of co-comparability graphs contains all graphs that are the complement of a
comparability graph. From the definition of comparability graph, if G is a co-comparability
graph, then there exists an ordering of the nodes set such that, if vi < vj < vl and (vi, vl) ∈ E
then either (vi, vj) ∈ E or (vj , vl) ∈ E.

Co-comparability graphs are also perfect graphs and include interval and permutation
graphs.

L(1, 1)-labelling. As the square of a comparability graphG isG itself and co-comparability
graphs are closed under powers [218], in view of the fact that both comparability and co-
comparability graphs are perfect, it easily follows that the L(1, 1)-labeling problem is poly-
nomially solvable on these classes of graphs.
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L(h, k)-labelling. A co-comparability graph can be L(h, k)-labeled with span at most
max(h, 2k)2∆ + k [187]. This result is obtained exploiting the linear order of the nodes of co-
comparability graphs and some considerations on the degree of nodes based on the property
of their edges.

Open Problem: Comparability and co-comparability graphs are very interesting graphs con-
taining many classes, so they deserve to be better investigated; above all, it would
be interesting to understand whether the L(2, 1)-labelling problem is still polynomially
solvable or not. Observe that interval graphs lie in the intersection between compara-
bility and co-comparability graphs, so a complexity result for this class would imply
results on its superclasses.

4.9.9 Kneser Graphs

Kneser graphs are an important graph class which has been extensively studied in the context
of coloring problems. In particular, they have been introduced by Lovász in 1978 to prove
Kneser’s conjecture [219].

Given two positive integers n and k, the Kneser graph K(n, k) is the graph whose nodes
represent the k-subsets of {1, 2, . . . , n} and where two nodes are connected if and only if they
correspond to disjoint subsets. Observe that K(5, 2) is the Petersen graph, K(n, 1) is the
complete graph Kn, K(n, k) has no edges when k < 2n and K(n, k) is a matching when
n = 2k. For this reason, it only makes sense to consider the case when k > 1 and n > 2k.

L(2, 1)-labelling. Kang [220] proves that for K(2k+1, k) it holds λ2,1 ≤ 4k+2 providing
an L(2, 1)-labelling obtained from a classification of structures between and within the color
classes of a special node coloring. This coloring is nearly optimal for the Petersen graph.

Shao, Solis-Oba and Lin [221] study the L(2, 1)-labelling of Kneser graphs providing an
upper bound of

(n
k

)
− 1, that is tight for n ≥ 3k − 1.

Open Problem: From a combinatorial point of view, the L(h, k)-labelling on this class of
graphs deserves to be further investigated.

4.9.10 Total Graphs

The total graph T (G) of a graph G is the graph whose nodes correspond to the nodes and
edges of G, and whose two nodes are joint if and only if the corresponding nodes are adjacent,
edges are adjacent or nodes and edges are incident in G. Observe that T (G) is isomorphic to
the graph found by replacing each edge by a path of length 2.

L(2, 1)-labelling. In [222] it is shown that λ2,1(T (G)) ≤ max{3
4∆2 + 1

2∆, 1
2∆2 + 2∆}. In

[223] this bound is improved to 1
2∆2 + ∆, which shows that the conjecture of Griggs and Yeh

is true for total graphs.

4.9.11 Sierpiński Graphs

The nodes of a Sierpiński graph S(n, k), n, k ≥ 1, are labelled with strings in {0, . . . , k− 1}n;
two different nodes u = (u1, . . . , un) and v = (v1, . . . vn) are adjacent if and only if there exists
an index h such that:
(i) ut = vt for t = 1, . . . , h− 1;
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(ii) uh 6= vh and
(iii) ut = vh and vt = uh for t = h+ 1, . . . , n.

The graphs S(2, 3) and S(3, 3) are shown in Figure 15.
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21 

00 01 10 11 

Figure 15: S(2, 3) and S(3, 3).

L(2, 1)-labelling. Gravier, Klavz̆ar and Mollard [224] prove that for any n ≥ 2 and any
k ≥ 3, λ2,1(S(n, k)) = 2k.
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[56] Král’, D. and Škrekovski, R. (2003) A Theorem about the Channel Assignment. SIAM
Journal on Discrete Mathematics, 16(3), 426–437.
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Šafárik Univ., Slovakia.

[146] Wang, W.-F. and Lih, K.-W. (2003) Labeling planar graphs with conditions on girth
and distance two. SIAM Journal on Discrete Mathematics, 17(2), 264–275.

49



[147] Shao, Z. and Yeh, R.K. (2007) The L(2, 1)-labeling on planar graphs. Applied Mathe-
matics Letters,20, 222–226.

[148] Borodin, O.V., Glebow, A.N., Ivanova, A.O., Neustroeva, T.K. and Taskinov, V.A.
(2004) Sufficient conditions for planar graphs to be 2-distance (∆ + 1)-colorable. Sib.
Elektron. Mat. Izv, 1, 129-141 (in russian).

[149] Borodin, O.V., Ivanova, A.O., Neustroeva, T.K. (2004) 2-distance coloring of sparse
planar graphs. Sib. Elektron. Mat. Izv, 1, 76-90 (in russian).
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