
Does Cubicity Help to Solve Problems?

T. Calamoneri

Department of Computer Science

University of Rome “La Sapienza”

Via Salaria 113, 00198 Rome, Italy

e-mail: {calamo}@di.uniroma1.it

Preface

The aim of this thesis is to give a survey of the main results obtained dur-
ing my Ph.D. course on Computer Science at the University of Rome “La
Sapienza”.

The original parts of Chapter 3 have been carried out with Prof. Rossella
Petreschi (Sections 3.2 and 3.3) and Andrea Sterbini (Section ??) and they
have been published in the Proceedings of Cocoon ‘95 [28], of ICTCS ‘95 [29]
and of GD ‘96 [33], respectively. In addition, an extended version of the work
concerning drawing in parallel has been submitted to IEEE Transactions on
Parallel and Distributed Systems; a journal version of the work dealing with
3D drawing has been accepted for publication on Information Processing
Letters. Some results described in this chapter have not been published yet
because they are very recent (Theorem 4 and Subsection 3.2.4).

Concerning Section 4.2 of Chapter 4, the results have been obtained in
collaboration with Aythan Avior, Prof. Shimon Even, Prof. Ami Litman and
Prof. Arnold L. Rosenberg. They have been published in the Proceedings
of SPAA ‘96 [8] and submitted to Theory of Computing Systems (Math.
Systems Theory). I studied this topic while visiting the Technion –Israel
Institute of Technology– in Haifa. The work presented in Section 4.3 has
been done with Prof. Rossella Petreschi; it has been presented at ISCIS-
XI [31], and some of these results have been accepted for pubblication on
Information Processing Letters [32].

Finally, the results in Chapter 5 (joint work with Paola Alimonti) ap-
peared in the Proceedings ofWG ‘96 [5] and has been submitted to Theoret-
ical Computer Science.

1

2

Acknowledgments

It is a pleasure to thank the people who supported me during the prepara-
tion of this thesis. Especially, I want to thank my supervisor and coauthor
Prof. Rossella Petreschi for having introduced me to the fascinating world
of research and having guided me with her precious experience throughout
the last three years.

I would also like to thank all the other people I worked with during these
years, my coauthors: Andrea, Aythan, Paola, and particularly Ami, Arny
and Shimon, for the very interesting discussions we had and the suggestions
they gave me; all Ph.D. students at the Computer Science Department, for
making this place not only a stimulating environment for researching but
also a pleasant place to work.

Moreover, my acknowledgment goes to the several people who com-
mented on previous versions of this thesis: members of the internal thesis
committee Prof. Giuseppe Italiano and Prof. Janos Körner, external review-
ers Prof. Raymond Greenlaw and Prof. Yannis Manoussakis, and all the
anonymous referees of my conference and journal submissions.

Finally, I would like to thank my husband Alessandro, for having lovely
shared joys and delusions with me in realizing this work; my parents, for
having given me the possibility to study, I dedicate this thesis to. But above
all, I like to thank God, for giving me happiness, health, intelligence, and
whatever I have.

Chapter 1

Introduction

Although algorithmic graph theory has been around since Euler’s work [47],
if not before, its development has been dramatic and revolutionary in the last
thirty years. In fact, it is possible to model a lot of practical situations by
means of graphs: typically, every system consisting of discrete states or sites
and connections between. For this reason, graphs and their properties have
been widely used for solving more and more problems of the most disparate
subjects.

For instance, the psychologist Lewin proposed that the ‘life space’ of a
person can be modeled by a planar graph, in which the faces represent the
different environments [93].

In probability, a Markov chain is a graph in which events are vertices, a
positive probability of direct succession of two events is an edge connecting
the corresponding vertices [73].

Military problems like mining operations or destruction of targets may
be traced back to the maximum weight closure problem [2].

Different processes such as manufacturing, currency exchanges, and trans-
lation of human resources into job requirements have as natural models net-
works, i.e. directed weighted graphs [48].

This interpretation is also applied to financial networks, in which ver-
tices represent various equities such as stock, current deposits, certificates of
deposit and so on, and (directed) edges represent various investment alter-
natives converting one type of equity into another one.

The previous applications are only a few examples of the search for the
solution of practical problems by means of graph theory since the theory
has been around so long and widely applied in vastly different fields. The

3

4 CHAPTER 1. INTRODUCTION

existence of numerous types of graphs and many basic notions that capture
aspects of the structure of graphs is justified also as a consequence of the wide
range of uses. Actually, very often a practical problem –when transformed
into a graph problem– does not generate a general structure of graph, but a
graph belonging to an opportunly restricted class. On the one hand, this is
the reason why so many classes of graphs have been created and defined. On
the other hand, the interest for the peculiar properties of each class is justified
for an analogous but opposite reason. If the graph captures the peculiarities
characterizing the starting structure, just these particular properties may be
useful to compute the solution of the problem more efficiently than in the
general case.

For example, consider a certain graph problem solvable my means of
an algorithm, when a general graph is given in input. If the input graph
is not general, but it is known to have some characterizing properties, it
may happen that a more efficient algorithm –strongly utilizing the input’s
properties– exists to solve the same problem. Obviously, this possibility
would be very useful for the original practical problem, and this is why a
great deal of research has been done in order to solve problems restricted to
particular classes of graphs.

1.1 Motivation

In this thesis we focus on a particular class of graphs: bounded degree graphs.
In particular, graphs having degree exactly 3 (cubic graphs) and bounded
degree 3 (at most cubic graphs) are our main focus.

What we have just said about the practical interest for restricted classes
of graphs is even more so for cubic graphs, because they are a natural model
for a large number of real systems. For the sake of brevity, among them,
only three practical applications, in which the graph model is cubic, are
presented here. Our examples have been chosen in view of the fact that they
cover different fields and are different from those examples treated in the
next chapters of this thesis. For a survey, see [30].

Interaction of charged particles
Let P1 and P2 be two quantistic charged particles of high energy and

let P (x1, y1, t1;x2, y2, t2) be the probability of having the particles in x1, y1

at time t1 and in x2, y2 at time t2, respectively. This probability can be ex-
panded into an infinite series of events. The simplest event has the following
structure: let x(t) and y(t) be the points of the trajectories reached by P1

1.1. MOTIVATION 5

and P2 at time t. The particles start from their initial state, in x(t) and y(t)
they have an electromagnetic interaction, then they reach their final state.
This event is represented by connecting x1 and x2 to x, y1 and y2 to y, and x
to y, as shown in Fig. 1.1. Graph theoretical and physical considerations al-
low us to show that all possible events contributing to P (x1, y1, t1;x2, y2, t2)
can be modeled by general cubic graphs called Feynmann diagrams [24].

x(t)

y(t)

x
2
(t
2
)

y
2
(t
2
)

x
1
(t
1
) y

1
(t
1
)

Figure 1.1: Interaction between two particles.

Mosaic problem

The Mosaic problem is related to biology, chemistry and graphics in
general. It consists of covering the plane with copies of the same shaped
polygon. The only regular polygons that can be used in a mosaic covering
of the plane are hexagons, squares and triangles [106]. It is easy to see that
hexagons induce a graph that is cubic except along the border of the external
face (see Fig. 1.2). Therefore, an efficient drawing of cubic graphs can be
equivalent to a perfect tiling of the plane (for a deep insight, see [64]).

Flowgraph model

One of the main goals of software engineering is to assess the quality
of the developed software and somehow to measure it. A software metric,
assigning a number to each piece of program text, will generally attempt
to address one or more quality attributes in its assessment. These might
include software reliability, testability, maintainability, and, in general, a
kind of complexity of the software in some specific and restricted sense. The
field of software metrication can be divided into those program measure-
ment techniques that are largely textual and those that are more structural.

6 CHAPTER 1. INTRODUCTION

Q
QQ

�
��

�
�� Z

ZZ

�
��

�
��

Q
QQu
u �
��

u
Z

ZZ
Z

ZZ
u

�
��u

u

u

�
��

�
��

u
Z

ZZ

uQ
QQ

u
�

��

�
��

u
uQ

QQ

u �
��

u
Z

ZZ
u
uQ

QQ

Q
QQu
u

Z
ZZ
u

u
�

��

�
��

u

u

Figure 1.2: Hexagonal mosaic covering.

In concentrating on the latter, those metrics based on the hierarchical de-
composition structure of the underlying flowgraphs can be emphasized. A
flowgraph F is a directed graph consisting of ‘process nodes,’ ‘decision nodes’
and begin and end nodes, satisfying the flowgraph property: every node lies
on a path from begin to end. In [115] the further property that the under-
lying graph must be connected is introduced; removing the process nodes,
and ignoring the edge orientation, each such flowgraph is associated with a
unique underlying cubic graph (see Fig. 1.3).

This cubic flowgraph model, recently introduced, is shown to be useful in
exploring a whole range of software metrics that are said to be ‘hierarchical’.
In particular, the cubic flowgraph model leads to the discovery of certain
inequalities among existing metrics, serves to provide a new characterization
of the important class of prime flowgraphs (i.e. flowgraphs having no proper
subflowgraphs), and points the way to an effective method for counting and
enumerating the primes.

1.2 Thesis Overview and Statement of Results

The purpose of this thesis is to study how much and in which cases the
strong properties of cubic (at most cubic) graphs can help to achieve better
results than in the general case, from an algorithmic point of view.

In the following, we would like to describe the state of the art of this

1.2. THESIS OVERVIEW AND STATEMENT OF RESULTS 7

a

b

c

Figure 1.3: a. a flowgraph; b. cubic flowgraph after disregarding process
nodes (2); c. underlying (undirected) cubic graph.

general problem and to show some new results. In particular, Chapter 2 is
devoted to a survey on cubic graphs: the main definitions and some prop-
erties are pointed out so that it is clear how extensive the research on this
fascinating class of graphs is. The majority portion of the cited works deal
with theoretical results on cubic graphs, but a lot of papers concerning algo-
rithms running on cubic graphs are cited in the introducticing sections of the
other chapters. Indeed, in each of the further chapters, a different problem
on cubic graphs is studied. Every chapter has a first section introducing
the problem while the successive sections are devoted to showing some new
results. Namely, Chapter 3 deals with some algorithms for drawing graphs
on a grid. The problem is studied through many points of view: first, in
Sections 3.2 and 3.3 the problem of drawing on 2-dimensional grid (at most)
cubic graphs is solved by means of two algorithms. The first one is sequen-
tial and determines a compact drawing with few bends in optimal time. The
second one runs on a PRAM and, though it is not computationally optimal,
nevertheless it is quite important because it is one of the first parallel al-

8 CHAPTER 1. INTRODUCTION

gorithms solving the drawing problem. Perhaps it can serve as a starting
point for the development of an optimal parallel algorithm. In Section ??
we have two extensions of the same problem: first of all, the grid is now
three-dimensional, and then the drawn graphs are not only cubic but are
also 2- and 3-colorable graphs. The same technique is applied to 4-colorable
graphs, as well.

In Chapter 4 some fixed degree interconnection networks are considered
and in Section 4.1 the importance of such networks in practice is pointed
out. Section 4.2 is dedicated to butterfly networks and we solve the optimal
layout problem: our first theorem states that at least N2 + o(N2) area
must be occupied by any layout of a butterfly network with N inputs and
N outputs, and another one says that a layout of the same network fits
in area N2 + o(N2). These matching lower and upper bounds allow us to
close (to within constant factor) the problem of finding the optimal layout of
butterfly networks. In Section 4.3 Trivalent Cayley interconnection networks
are introduced and it is shown how to solve some classical networks’ problems
on them. In particular, we again consider the layout problem and we prove
that lower and upper bounds are of the same order of magnitude. Then, the
optimal routing problem is studied; we solve it in optimal computational
time.

In Chapter 5 some NP Optimization (NPO) problems are considered.
In Section 5.1 a small survey about NPO problems on cubic graphs is given.
We have considered some NPO problems and divided them according to the
advantage they have from the point of view of cubicity: problems that are
NP-complete in general but that are polynomially solved for cubic graphs;
NP-complete optimization problems that are polynomial-time approximable
for general graphs but for which better approximation ratios have been
achieved for graphs of low degree; problems that for general graphs can-
not be approximated within any constant approximation ratioin polynomial
time but that have been shown to be in APX (i.e. approximable within
some constant factor in polynomial time) for bounded degree graphs.

In Section 5.2 the Minimum Independent Dominating Set Problem is
studied in the special case when the input graph is cubic and, more generally,
when it has bounded degree d. In both situations the best previously known
results are improved.

Finally, some conclusions and open problems are drawn in Chapter 6.
For the extent of the general subject, we have restricted our attention only
to the problems considered in the previous three chapters.

Chapter 2

Cubic Graphs

2.1 Introduction

Let us begin with the most basic definitions to this thesis.

Definition 1 A graph G = (V,E) is said to be regular of degree d or d-
regular, if every vertex of G has degree exactly equal to d. A graph G is
called cubic if it is regular of degree 3. When the degree of the vertices is
less or equal to 3, G is said to be an at most cubic graph.

Since the number of vertices having odd degree must be even in every
graph, a cubic graph G = (V,E) always has |V | = n even, while no restriction
for the parity of n is given if the graph is at most cubic. Also, it is easy to
see that |E| = m = 3

2n if G is cubic and trivially m ≤ 3
2n if G is at most

cubic.

The first time cubic graphs appeared in the literature was in an informal
manner in [138] and later more formally in [112] dealing with factorization
of graphs and related coloring problems.

As emphasized in [62], besides their historical importance and their wide
use as models of practical problems (cf. Chapter 1), there are at least two
other fundamental facts justifying the study of cubic graphs:

- There are some transformation algorithms allowing us to obtain from
a general graph G a cubic graph G ′ preserving certain structural prop-
erties of G (cf. Section 2.2). By means of these transformations, it is
possible to reduce problems on general graphs to problems on cubic

9

10 CHAPTER 2. CUBIC GRAPHS

graphs in such a manner that the properties of cubic graphs can be uti-
lized. An example is the coloration problem, for which the importance
of cubic graphs descends from the following theorem:

Theorem 1 [106] The face coloration of a graph in k ≥ 3 colors can
be reduced to the case of cubic graphs.

- Cubic graphs seem to be a ‘boundary’ class of graphs in the sense that
they are often the smallest class for which a problem is as difficult
as it is in the general case. Indeed, it is evident that regular graphs
of degree 0, 1 and 2 are quite simple and uninteresting for the most
part. However, cubic graphs already constitute a complex class of
graphs. On the other hand, there are cases in which restricting a
problem to cubic graphs allows one to find a better solution than in
the general case. Namely, given a graph problem having a cubic or at
most cubic graph as input, its solution may be found more efficiently
and more easily when the input graph is exactly cubic, while in other
cases the cubicity does not give any further help to the computation of
the solution (at least not so far). For example, consider the Chromatic
Index Problem (CIP) and the Minimum Maximal Matching Problem
(MMMP).

CIP: “Given a graph G= (V,E) and an integer K, can E be partitioned
into disjoint sets E1, ..., Eχ′ with χ′ ≤ K such that for 1 ≤ i ≤ χ′,
no two edges in Ei share a common endpoint in G?”

MMMP: “Given a graph G= (V,E) and an integer K, does there exist a
subset E′ ⊆ E with |E′| ≤ K s.t. E′ is a maximal matching of
G?”

The first problem is polynomially solvable for cubic graphs [80] while
it is an NPO problem for at most cubic graphs and more general
graphs [58]. Furthermore, it is polynomial-time approximable within
4/3 [155] and is not approximable in polynomial time within 4/3 − ǫ
for any ǫ > 0 unless P= NP [74].

The second problem is proved to be NP-complete by a transforma-
tion from the Vertex Cover Problem for cubic graphs and it remains
NP-complete for at most cubic planar graphs and for at most cubic
bipartite graphs [58].

2.2. CONSTRUCTION OF CUBIC GRAPHS 11

Therefore, while in the former case the cubicity helps to solve the
problem, in the latter one there is no known difference between cubic,
at most cubic and more general graphs.

In the following, a deep insight regarding cubic graphs can be found.
In particular, in Section 2.2 we present some ways to construct cubic and
at most cubic graphs. We show both a method to obtain a cubic graph
having n vertices starting from a cubic graph having either n + 2 or n − 2
vertices, and two transformations to obtain an at most cubic graph starting
from a general one. In Section 2.3 some properties and known results about
different problems are enumerated.

2.2 Construction of Cubic Graphs

2.2.1 H-reduction and H-expansion

For any even value of n, there exists a regular graph having all vertices of
degree d when 1 ≤ d ≤ n − 1. This is a consequence of the fact that any
complete graph having n vertices, for any even value of n, is the edge direct
sum of n − 1 graphs of degree 1 [106]. In particular, for any even n ≥ 4,
there exist some cubic graphs having n vertices. If n = 4 there is only one
such cubic graph: the tetrahedron K4 (see Fig. 2.1.a). If n = 6 there are
two of them: K3,3 and the prism (Fig. 2.1.b and .c). When n increases, the
number of all possible cubic graphs having n vertices also increases.

cba

vv
@

@@

�
�

�
�

��

@
@
@

v

v

v

v�����������

HHHHHHHHHHHv

v

�
�

�
�

��@
@

@
@

@@v�
�

�
�

��@
@

@
@

@@v

vv

�
�

�
�

��@
@

@
@

@@

v v

v v

Figure 2.1: Three cubic graphs having 4 (a.) and 6 (b. and c.) vertices.

There exists a successive construction of cubic graphs due to E.L. John-
son [81] and based on a special graph consisting of 6 vertices and 5 edges as

12 CHAPTER 2. CUBIC GRAPHS

shown in Fig. 2.2; this graph is called an H-graph. If we add the condition
that edges {v3, v5} and {v2, v4} must not be present, then the H-graph is
called restricted.

The following transformation makes it possible to generate any cubic
graph having n+2 vertices from a cubic graph having n vertices (H-expansion)
and vice-versa (H-reduction).

e5e4

e1

e3e2

v5
v6

v4

v3
v1v2

v

vv

v

v

v
Figure 2.2: An H-graph.

Lemma 1 [106] Any connected cubic graph G having n ≥ 8 vertices contains
a restricted H-graph.

To obtain a graph G′ with n vertices from G with n + 2 vertices by an
H-reduction consists in finding a restricted H-graph in G (cf. Lemma 1), in
eliminating vertices v1 and v6 and their edges from G and in replacing them
either by the pair of edges {v2, v4}, {v3, v5} or by {v2, v5}, {v3, v4}; in view
of the topology of the restricted H-graph, one of these pairs is not in G. The
resulting graph is called G ′.

To this H-reduction, there exists an inverse operation, the H-expansion.
Let G= (V,E) be a cubic graph on n vertices and let e1 = {v2, v4} and e2 =
{v3, v5} be two arbitrary edges in G where all endpoints are distinct. The
H-expansion of G with respect to e1 and e2 is obtained by eliminating e1 and
e2, and adding two vertices v1 and v6 with edges {v6, v1}, {v6, v2}, {v6, v5},
{v1, v3} and {v1, v4} or {v6, v1}, {v6, v2}, {v6, v3}, {v1, v4} and {v1, v5}.
Theorem 2 [106] For n ≥ 6, every connected cubic graph having n + 2
vertices is an H-expansion of a connected cubic graph having n vertices.

H-expansion allows us to generate all cubic graphs starting from the
tetrahedron.

In Fig. 2.3 we show the 8-vertex cubic graphs derived from a 6-vertex
one, when edges {v2, v3} and {v4, v5} are removed.

2.2. CONSTRUCTION OF CUBIC GRAPHS 13

v2 v

v
v

3

4

5

v2 v

v
v

3

4

5

v6

v1

v2 v

v
v

3

4

5

v6

v
1

Figure 2.3: An example of H-expansion.

2.2.2 Transforming a Cubic Graph into Another

Given any cubic graph G, it is possible to get a new cubic graph G′ by
replacing any vertex of G by a triangle and vice versa (Fig. 2.4.a). Similarly,
a pair of multiple edges can be inserted into any edge or contracted to an edge
(Fig. 2.4.b). If multiple edges are not allowed, instead of inserting a couple of
multiple edges, we can insert a diamond (Fig. 2.4.d). Finally, a quadrilateral
may be replaced by two edges or inserted along any two non-adjacent edges
(Fig. 2.4.c). Observe that, if G cannot be 3-edge colored, then replacing
any vertex by a triangle, the resulting cubic graph still cannot be 3-edge
colored. Similar reasonings holds if a pair of multiple edges are inserted
into an edge. Analogously, neither contracting a triangle to a vertex nor
contracting a pair of multiple edges affects 3-edge colorability. On the other
hand, inserting a quadrilateral along two edges can affect the colorability.
These considerations help to investigate the minimal 4-edge colorings of cubic
graphs (cf. Subsection 2.3.1) [158].

2.2.3 Transformation of a General Graph into a Cubic Graph

In Section 2.1 the importance of transforming a general graph into a cubic
(at most cubic) one was discussed. Now, we present two different transfor-
mations and sketch an application for each of them.

In both transformations, a general graph G= (V,E) having n vertices
v1, v2, . . . , vn of degree d1, d2, . . . , dn is considered.

14 CHAPTER 2. CUBIC GRAPHS

��
vv
@@

@@@@

dcba

?
6

?
6

?
66

?

vv

@
@

@@�
�@

@@

v

v vv
�� @@

�� SS

@
@

@@

v v
@@

v vvvBB C
C

Figure 2.4: Transforming a cubic graph into another one.

Transformation One

This transformation generates an at most cubic graph if in G there exists
some vertices vi of degree di ≤ 2, a cubic graph otherwise.

Enclose each vertex vi of degree di ≥ 4 by a circle Cvi , small enough
not to intersect any other circle Cvj , i 6= j. Select Cvi such that it intersects
each of the edges ek incident to vi exactly once; denote this intersection by
ak, k = 1, . . . , di (see Fig. 2.5). From G and all the circles Cvi , we construct
an at most cubic graph G′ by omitting all vertices vi and those parts of the
edges lying inside Cvi . We introduce as new vertices of G ′ the points ak and
as new edges the arcs between ak and ak+1, if k < di, and between adi

and
a1.

a5

a4

a3

a2

a1

v v v
vv

Cv

vv

"!
vSS

SS

����
!!!!

!!!!
����

S
S

SS

v "!

��

!!

S
S

Figure 2.5: Scheme of Transformation 1.

Sometimes, this transformation is useful to solve problems on general

2.2. CONSTRUCTION OF CUBIC GRAPHS 15

graphs by utilizing the properties of cubic graphs. An example is the case of
the Four Color Problem: the conjecture that each map (i.e. planar graph)
is 4-colorable is true if it is true for any planar cubic graph [106]. If cubic
graph G′ is 4-colorable, then G is also 4-colorable, and a coloration is obtained
simply by shrinking each circle Cvi back to a single vertex vi.

This transformation is also used to maintain a minimum spanning tree
on-line under the operation of updating the cost of some edge in the graph
in the classical work of Frederickson [54], later improved by the general tech-
nique described in [45]. In fact, this transformation is used very often when
dealing with dynamic graphs, to solve the problems of edge connectivity,
vertex connectivity and many others (as an example, see [55, 56, 120]). This
proves the importance of finding efficiently optimal solutions of problems
when restricted to cubic graphs.

Transformation Two

If graph G is planar, it makes sense to consider its faces and the previous
transformation increases the number of faces when passing from G to G′.
It is possible to generate an at most cubic graph G ′ from a general one G
without increasing the number of faces.

For each vertex vi of degree di ≥ 4, split it with respect to two non-
adjoining faces f and f ′ having a corner at vi. Each splitting increases the
number of vertices by one, leaves the number of edges unchanged, and joins
f and f ′ into a single face (see Fig 2.6).

+
��

llv
f4 f2

f3 f1

�
��

D
D
D

@
@ ����

�
��

T
T
Tv
v
v
v

vv
vv v
B
B
B
�
�
��

J
JJ

�
�

��++

�
�

��

J
JJ�

�
��

���
HHHH
B
B
B vv
v
v v

v
v
v
v

T
T
T
�

������@
@
D
D
D
�

��

f1
f3

f2f4

f4
f2

f3
f1

v
�
�
�
��

````̀
"

"
""

e
e

ee

hhhhh,
,

,J
JJ

�
��

D
D
D

@
@ ����

�
��

T
T
Tv
v
v
v

vv
vv

Figure 2.6: Scheme of Transformation 2.

This transformation is also related to the Four Color Problem. If the Four
Color conjecture is not true, then there exists a graph with a minimal number
of faces which cannot be four-colored. Such a graph is called irreducible. It



16 CHAPTER 2. CUBIC GRAPHS

can easily be proved that an irreducible graph G must have degree di ≥ 3 for
each vertex vi. This transformation can be used to prove that an irreducible
graph must be cubic, if it exists [106]. Indeed, if G is irreducible and not
cubic, than the transformation described can be applied. A face coloring of
the split graph G′ leads to a coloring of the original graph G. It follows that
the irreducible graph is cubic.

2.3 Classical Graph Theory Results

Now we describe several general results about cubic graphs. The aim of
this section is not to be an exhaustive list of results but only a selection
of problems that seem interesting or useful to underline the importance of
cubic graphs and the large amount of research that has been done in relation
to them.

We have divided the material into different subsections in order to group
the cited arguments according to some specific subjects.

2.3.1 Coloring Problems

The earliest equivalent formulation of the Four Color conjecture was pro-
posed by Tait in 1878 [137] and states that the edges of a cubic, planar,
bridgeless graph can be 3-colored. None of these hypotheses can be weak-
ened. The very simple graph depicted in Fig. 2.7.a shows that having a
bridgeless graph is necessary. The Petersen graph (see Fig. 2.7.b) is an ex-
ample to show the necessity of planarity. Subdividing one edge of K4 yields
a graph with maximum degree 3 that cannot be 3-edge-colored. This shows
that planarity is not renounceable. On the positive side it is straightforward
to see that any graph with maximum degree 3 can be either 3- or 4-edge-
colored. There is a whole class of cubic graphs that cannot be 3-edge-colored:
those with bridges and certain non-planar graphs.

Non-trivial cubic graphs that are 4- but not 3-edge colored captured the
fancy of Gardner and led him to introduce the term snark [57]. If we take
any snark and apply to it the transformation described in Subsection 2.2.2,
replacing any vertex by a triangle and inserting a pair of multiple edges
into any edges or vice-versa, then the resulting cubic graph still cannot be
3-edge-colored. Thus we may assume that snarks have girth 4 or more. A
quadrilateral in a snark may be replaced by two edges producing a smaller
snark, but inserting a quadrilateral along two edges of a snark can effect



2.3. CLASSICAL GRAPH THEORY RESULTS 17

ba

S
S





HH ���
�

�
�

Z
ZZ

C
C
CC

�
�
��

�
�
�
��

C
C
C
CC

uu
uu u

uu
uu
uQ

Q
QQ

�
�

��uu"!
# u
uuu uuu

u
"!
# 

Figure 2.7: Two snarks.

the colorability. For example, a quadrilateral inserted along any two non-
adjacent edges of the Petersen graph yields a 3-edge-colorable graph. The
status of the quadrilaterals is thus somewhat different from that of multiple
edges and triangles. Nonetheless, it has been usual to exclude quadrilaterals
and require that snarks have girth 5 or more. It is also typical to require
a snark to be cyclically 4-edge-connected; that is, deleting fewer than four
edges does not disconnect the graph into two components each containing a
cycle. In [158], the authors specify a collection of ‘prime’ snarks, and a list
of basic constructions with which every snark can be built up from prime
snarks.

The minimum number of colors needed to color the edges of G = (V,E)
so that incident edges receive different colors is called chromatic index and
denoted by χ′(G). It is a familiar result of Vizing [155] that d ≤ χ′(G) ≤ d+1,
where d is the maximum degree of G.

If χ′(G) = d, G is said to be class 1, otherwise G is class 2. In [4] the
maximal number of edges in a class 1 subgraph of a cubic graph G is studied.
In other words, the authors show that one can 3-color at least 13/15 of the
edges of an arbitrary cubic graph. For convenience let c(G) = max{|E(H)| :

H is a subgraph of G and H is class 1} and γ(G) = |c(G)|
|E| . The Four Color

conjecture is equivalent to: If G is cubic, planar, bridgeless graph, then
γ(G) = 1. In [4] it is proved that if G is cubic, then γ(G) ≥ 13/15 while, if
G is at most cubic, then γ(G) ≥ 26/31. Some other bounds are presented if
G is bridgeless and planar and if G is 4-regular.

For other coloring problems see [52].



18 CHAPTER 2. CUBIC GRAPHS

2.3.2 Matching Problems

In this subsection we survey some results about matching when the under-
lying graphs are cubic.

The deep link between the concepts of matching and alternating chain
(i.e. a chain whose edges alternatively belong to the current matching) is well
known. However, it is not widely known that the concept of alternating chain
was introduced in 1891 by Petersen to prove that, in some cubic graphs, any
linear factor can be modified in order to use a given edge of the graph [14]. In
1891 paper on the factorization of regular graphs [112], Petersen proved the
following famous result: If G is a cubic graph with at most 2 cut edges then
G has a perfect matching. Given an even subset T of vertices of a graph
G= (V,E), a T -join is a set A of edges such that T is exactly the set of
vertices of odd degree in the graph (V,A). In [61] Petersen’s classical result
is generalized by showing that any cubic graph G= (V,E) with at most 1
cut edge has a T -join of cardinality less than or equal to n/2 for every even
subset T of vertices.

Let the Reals be extended to include ∞ with ∞ > r for every Real
number r. Given an extended Real number r, a property P(r) of graphs is
super-hereditary if, whenever graph G has property P(r) and H is a subgraph
of G, then H has property P(s) with s ≥ r. In [72] it is proved that, given a
super-hereditary property P of graphs, if g is the smallest cardinality of the
set of vertices of a graph with property P and having one vertex of degree
2 and all others of degree 3, and if G is a cubic graph with n vertices and
property P, then G contains a matching with at least 1

2n(3g − 1)/(3g + 1)
edges. This result has the corollary that every cubic graph with n vertices
possesses a matching containing at least 7/16n edges.

An induced matching M in a graph G= (V,E) is a matching such that
no two edges of M are joined by an edge of G. The edge set of a cubic graph
can always be partitioned into at most 10 subsets, each of which induces
a matching in the graph [76]. This result is a special case of a general
conjecture made by Erdös and Nešeťril [46]: for each d ≥ 3, the edge set of a
graph of maximum degree d can always be partitioned into at most ⌊5d2/4⌋
subsets each of which induces a matching.

Although the maximum matching problem in graphs dates back to 30’s,
with König’s work, it was not earlier than 1965 when the first polynomial
algorithm for general graphs was found by Edmonds [44]. Subsequently,



2.3. CLASSICAL GRAPH THEORY RESULTS 19

numerous more and more efficient algorithms were obtained, and today the
fastest known algorithm is due to Micali and Vazirani [102, 154], who hold
this record since 1980.

Dahlhaus and Karpinski [39] introduced a new interesting approach to
explore the complexity behaviour of the perfect matching problem. In fact
they proved that the existence and the construction problems for a perfect
matching in general graphs are as difficult as (in fact, AC0-equivalent to)
the same problems in cubic graphs. In [9], the authors extend the results
of [39] to the case of planar graphs: they prove that the perfect matching
problem for planar graphs is NC-equivalent to the same problem in planar
cubic graphs. Moreover, they prove that the perfect matching problem for
bipartite graphs is as difficult as the maximum weight perfect matching in
cubic bipartite graphs.

The parallel complexity of the maximum matching problem is a famous
open question. It is well known that there is an NC reduction of the maxi-
mum matching problem to the perfect matching one [118], but even deciding
whether a graph has any perfect matching, is also an open problem and it
is unknown whether it belongs to NC or not. If we restrict our attention
to the maximal matching problem for cubic graphs, there is an algorithm
[62] generating a maximal matching of a cubic graph in parallel. It runs
in O(log2 n) time using M(n) processors on a CREW PRAM, where M(n)
denotes the number of processors required to multiply two n×n matrices in
O(log n) time on a CREW PRAM.

It is also possible to use a new technique not considering alternating paths
[129] that finds a perfect matching in a bipartite cubic graph in O(log2 n)
time using O(nα(n)/ log n) processors in the arbitrary CRCW PRAM model,
where α(n) is the inverse Ackermann function. This result improves the
processor bound of [92] that gave an NC algorithm to find a perfect matching
in bipartite d-regular graphs. Even though only a special case is solved, this
method appears to be a new attractive way to solve the parallel maximum
matching problem, since in general even the problem of finding a single
augmenting path is not known to be in NC. It is interesting to notice that
this new technique appears naturally applicable to cubic graphs.

2.3.3 Counting Problems

Now, let us turn our attention to some results about cubic graphs regarding
counting.



20 CHAPTER 2. CUBIC GRAPHS

Read [122] proved that the number M of labeled cubic graphs on n
vertices is asymptotically

M ∼ (3n)!

e2(3/2n)!3n25/2n
.

If we consider the quotient between the number of all cubic graphs and the
number of all Hamiltonian cubic graphs, it tends towards 1 as the number
of vertices n tends towards ∞. This means that almost all cubic graphs are
Hamiltonian [124].

A dominating set of a graph G= (V,E), is a subset S ⊆ V , such that
each v ∈ V − S is adjacent to some vertex in S. The dominating number of
G, D(G), is the cardinality of the smallest dominating set of G. Trivially, if
G is cubic, then D(G) ≥ n/4, as each element of S is adjacent to at most
3 vertices of V − S. A conjecture of Koch and Perles that D(G) ≤ 3n/8
is proved in [121]. Both of these bound are tight. In [103] the dominating
number of a random cubic graph is considered and it is shown that D(G)
almost surely satisfies .263n ≤ D(G) ≤ .312n.

In [161] the problem of counting the labeled cubic graphs with given
numbers of cycles of given fixed lengths is solved: the probability that a
graph chosen at random from the cubic graphs with n vertices contains

precisely t cycles of length l is asymptotic to (2l/2l)te−2
l/2l

t! as n → ∞ with
t fixed. Furthermore, the probability that a random cubic graph with n
vertices has girth at least j ≥ 4 is asymptotic to exp(−∑j−1

i=3 2i/2i) as n → ∞
with j fixed. Finally, the expected number of cycles of length j ≥ 3 in a
random cubic graph with n vertices is asymptotic to 2j

2j as n → ∞.

2.3.4 Cycles Problems

Here we address some issues involving cubic graphs and cycles.
The problem of finding bounds on the length of a longest cycle in cubic

graphs was first raised by Tait in [137], where he conjectured that all planar
3-connected cubic graphs are Hamiltonian. This conjecture was disproved
by Tutte [148], by exposing the counterexample shown in Fig. 2.8.

Later, different authors constructed infinite families of planar 3-connected
cubic graphs G with n vertices, such that the longest cycle in G is at most
nt, for various constants t < 1 [63, 65, 156, 157]. As a lower bound, in [10] it
is shown that every planar 3-connected cubic graph G has a cycle of length



2.3. CLASSICAL GRAPH THEORY RESULTS 21

Figure 2.8: Tutte Graph disproving the conjecture of Tait.

at least 3 log2 n − 10. For cubic graphs, which are not necessarily planar,
the previous result can be improved by showing that every 2-connected cu-
bic graph G has a cycle of length at least 4 log2 n − 4 log2 log2 n − 20 [26].
An example due to Lang and Walther [89] shows that this result is the
best possible for the class of 2-connected cubic graphs. In [79] it is shown
that, given a 3-connected cubic graph G= (V,E) with n vertices, for any
e1, e2 ∈ E, e1, e2 are contained in a cycle of G of length at least nt + 1 for
t = log2(1 +

√
5) − 1(≃ 0.69).

An even polyhedral decomposition of a cubic graph G is a set D of ele-
mentary cycles of even length such that every edge of G belongs to exactly
two cycles of D. Szekeres [136] remarked that if G= (V,E) is a cubic graph
of chromatic index 3, then G has an even polyhedral decomposition. In-
deed, given any particular 3-edge-coloring, it is easy to check that the set of
the 2-colored elementary cycles is an even polyhedral decomposition. This
property does not characterize cubic graphs of chromatic index 3, as shown
in [116]: there exists an infinite family of snarks (called flower-snarks) all
having an even polyhedral decomposition.

Let G be a connected graph which is not a tree; the odd girth (even girth)
of G denotes the length of a shortest odd (even) cycle in G. If there is no
odd (even) cycle in G then the odd (even) girth of G is taken as ∞. Define
the girth of G to be g = min { odd girth, even girth }. Let h = max { odd



22 CHAPTER 2. CUBIC GRAPHS

girth, even girth }. Then (g, h) is called the girth pair of G. A lot of papers
have been written about the girth of cubic graphs. Here, only some results
are reviewed.

Given a fixed integer g, it is interesting to determine the smallest cubic
graph having girth g (for a survey on minimal regular graphs having girth
g see [160]); in particular, if g = 5, the (unique) minimal cubic graph is the
Petersen graph (see Fig. 2.9).

�
�

�
�

Z
Z

ZZ

C
C
C
C
C

�
�
�
�
�

�
�

\
\\

���PPP

vv
vv v �

�
�

�
��

L
L
L
L
LL

Q
Q

Q
Q

Q�
�

�
�

�

vv

vv
v

Figure 2.9: Petersen Graph.

Given m − 1 arbitrary non-negative integers A2, A3, . . . , Am,m ≥ 2,
one can construct infinitely many mutually non isomorphic connected cu-
bic graphs without loops, bridges and cut vertices such that each graph
contains exactly Al circuits with length l for every l = 2, 3, . . . ,m; moreover,
any two circuits having lengths not exceeding m are disjoint [128].

The smallest graph with given girth pair were found by Harary and
Kovács [69]. Several infinite classes of such graphs are constructed in [70].

For other cycles problems, partcularly tied to connectivity, see [146].

2.3.5 Subgraphs Problems

The problem of finding the extremal bipartite subgraphs of cubic graphs was
resolved years ago. It is easy to see that the Petersen graph (Fig. 2.9) can
be reduced to a bipartite graph by removing three of its 15 edges, and that
removing only two edges is not enough. Similarly, the dodecahedron may
be reduced to a bipartite graph by removing six of its 30 edges, and it is
not enough to remove five edges. In both cases described, the starting cubic
graphs are triangle-free and the obtained bipartite subgraphs have 4/5 of
the original edges. In [75] it is proved that any cubic triangle-free graph has



2.3. CLASSICAL GRAPH THEORY RESULTS 23

bipartite subgraphs with at least 4/5 of the original edges, and this is best
possible in light of the two examples mentioned above. Furthermore, every
cubic graph not containing a tetrahedron has a bipartite subgraph with 7/9
of the original edges, and this inequality is the best possible [132]. In [96] this
latter result appears as a particular case of a more general formula dealing
with k-colorable subgraphs of vertices with maximum degree d.

More generally, if G is a cubic graph then G contains a bipartite subgraph
containing at least 7/9 of the edges of G. This is a special case of a more
general result found by Staton [132] for d-regular graphs and their (d − 1)-
colorable subgraphs.

Let B(G) be the edge set of a bipartite subgraph of a graph G having
the maximum possible number of edges. Let bk = inf {|B(G)|/|E(G)| such
that G is a cubic graph with girth at least k}. In [163] it is proved that
limk→∞ bk ≥ 6/7.

For a graph G let k(G) denote the number of connected components of
G. Then, the toughness τ(G) is the maximum of |S|/k(G − S) taken over all
sets S of vertices such that k(G − S) ≥ 2. A set S for which the maximum
is achieved is called a tough set.

The parameter toughness was introduced by Chvátal [35], who also

looked at the toughness of regular graphs and proved that κ(G)

d(G)
≤ τ(G) ≤

κ(G)
2 , where d(G) is the maximum degree and κ(G) is the vertex connectivity

of the graph. In [60] upper bounds on the toughness of a cubic graph are
derived in terms of the independence number and coloring parameters.

In [133] Stewart proves that, given any planar graph, deciding whether
it contains a cubic graph as a subgraph is NP-complete.

Given a general graph G having some costs on its edges, consider the
following on-line update problem: a minimum spanning tree is to be main-
tained for an underlying graph, which is modified repeatedly by having the
cost of an edge changed. In [54] a technique to deal with this update problem
is presented. The structures used are designed to handle graphs in which no
vertex has degree greater than three, therefore Frederickson uses the trans-
formation described in Subsection 2.2.3 on G. Then, the algorithm handles
an at most cubic graph. Finally the solution is transformed into a solution
for the general initial graph G.



24 CHAPTER 2. CUBIC GRAPHS

The results just described and many other on line algorithms have been
widely improved by means of the general sparsification technique [45], but
the contribution of this paper remains as a classical example of the transfor-
mation of a problem on general graphs to an analogous one on cubic graphs.

In this chapter we gave a look to cubic and at most cubic graphs, pre-
sented a description of several transformations from general graphs to cubic
graphs, and then surveyed a number of interesting results having to do with
cubic graphs. The results involved coloring, matching,counting, cycles, and
subgraphs problems. The wide variety of such results illustrate the funda-
mental importance and basic nature of cubic graphs.



Chapter 3

Orthogonal Drawing

3.1 Introduction

The orthogonal grid drawing (for a complete annotated bibliography on this
topic, see [41]) of a graph is a drawing such that edges are polygonal chains
consisting of horizontal and vertical segments and vertices have integer co-
ordinates. It follows that only graphs with maximum degree 4 can admit
such a drawing. For a single example, see Fig. 3.1.

Generally speaking, an orthogonal graph drawing algorithm requires as
input a combinatorial description of a graph and produces as output a fea-
sible drawing of it according to a given graphic standard.

Within a fixed standard, a graph has infinitely many different draw-
ings. However, in almost all data presentation applications, the usefulness
of a drawing of a graph depends on its readability, that is the capacity of
conveying the meaning of the diagram quickly and clearly. For example, a
graph that appears congested with many concentrated line-crossings would
not represent a visually appealing layout.

Since the investigation of orthogonal grid drawings came first, and is
partially still, motivated by problems in circuit layout, the choice of the
graphic standard should take it into account. For this reason, although
there are a variety of important considerations in choosing one layout, the
best understood, and perhaps the most desirable cost measure to minimize
is layout area. The area of a layout is most naturally defined as the area
of the “bounding-box” around the layout, and equals the product of its two
sides.

Minimizing the area of a circuit on a chip is due, in part, to the fact

25



26 CHAPTER 3. ORTHOGONAL DRAWING

ttt t t ttttt t t ttttt t
Figure 3.1: An example of orthogonal drawing.

that layouts which consume large amounts of chip area are more expensive
to fabricate, less reliable and harder to test than layouts which consume
smaller amounts of chip area.

Clearly, the area cannot be less than the number n of vertices of the
graph. On the other hand, the area required for an n-vertex graph is no
greater than O(n2) since we can draw vertices at equally spaced intervals
along a line, and use a distinct horizontal track for each edge (see Fig. 3.2)
[20].

O(n)

O(n)

6

?
-�

w w ww w w w

Figure 3.2: Every n vertex graph can be laid out in O(n2) area.

These bounds are independent of the structure of the graph and hold for
all n vertex graphs. In general, however, the minimum area needed to lay a
graph out depends on the graph.



3.1. INTRODUCTION 27

Another layout-related issue that has been studied is minimizing propa-
gation delay by decreasing wire lengths.

Since signals do not propagate instantaneously across wires, and the
longer the wire, the longer the propagation delay, it is very important to
draw graphs so that the longest edge is as short as possible. It is easy to see
that O(n) length for each edge is guaranteed if both sides of the drawing are
O(n) long.

This problem was studied in [111] for complete binary trees, and in [21]
for arbitrary trees. Bhatt and Cosmadakis [19] showed that computing such
a drawing for a tree is NP-complete.

Another classical problem is constructing an orthogonal drawing with
the minimum number of bends along the edges; Storer [135] conjectured the
problem was NP-hard. Nowadays, several algorithms solve this problem
with the help of some constraints (cf. for example, [139] if the input graph
has a fixed embedding and [42] if either a series-parallel graph or a bicon-
nected planar cubic graph is given in input).

On the other hand, the minimization of the number of bends has several
applications. It can be an approach to minimize other measures, such as area
and edge-length. Furthermore, with communication by light or microwave,
edge-length and area are relatively unimportant, while it costs a separate
device each time it is desired to bend a wire.

For all of these reasons, a good graph drawing algorithm should try to
balance the cost measures and get a ‘good’ drawing, i.e. with small area,
short edges and few bends.

Although the investigation of orthogonal grid drawings arose in relation
to circuit layout problems and VLSI applications, at present it has assumed
an interest of its own as a theoretical problem. For this reason, we chose
not to follow the formal model developed by Thompson [143, 144] that it
is based on, and is consistent with, VLSI design rules established by Mead
and Conway [100], but give an equivalent definition, turning more to graph
theory than to networks.

Definition 2 Let G = (V,E) be a graph, n = |V | and m = |E|. An or-
thogonal drawing of G is a drawing of G in the plane such that all edges are
drawn as sequences of horizontal and vertical segments. The edges are not
allowed to overlap for any distance (although a vertical segment may cross



28 CHAPTER 3. ORTHOGONAL DRAWING

a horizontal segment). In addition, the edges cannot cross vertices that are
not their extremes. This drawing is said to be a drawing in the (rectangular)
grid if all vertices are at integer coordinates.

If no crosses exist between any couple of edges, the drawing is called an
embedding. Obviously, an embedding of G exists only if G is planar.

Definition 3 A point where the drawing of an edge changes its direction is
called a bend of this edge. Let k be a non-negative integer. A k-bend drawing
of a graph G is an orthogonal drawing of G in which every edge contains at
most k bends.

A 0-bend drawing (embedding) is called straight-line drawing (embed-
ding).

We say that a drawing (embedding) is almost straight-line if no edge
contains any bend except one edge, having only one bend.

The four directions on the grid with respect to each vertex are distin-
guished by labels from the set { Left, Right, Up, Down }. We call free a
direction with respect to a vertex if no edge is present on it.

In the following sections we will deal with graph drawing in some of
its different aspects: first, in Sections 3.2 and 3.3 the problem of drawing
on 2-dimensional grid (at most) cubic graphs is solved by means of two
algorithms. The first one is sequential and determines a compact drawing
with few bends in optimal time. The second one runs on a PRAM and,
although it is computationally not optimal, nevertheless it is quite important
because it is one of the first parallel algorithms solving the drawing problem.
In Section ?? two extensions of the same problem are presented: first of all,
a three-dimensional approach is introduced, when the graphs to be drawn
are not only cubic but all 2- and 3-colorable graphs. The same technique is
also applied to 4-colorable graphs.

It is easy to see that every algorithm drawing a cubic graph also works
for an at most cubic graph; for this reason, in the next two sections, we will
refer to cubic and at most cubic graphs, sinonimously.



3.2. A SEQUENTIAL ALGORITHM 29

3.2 A Sequential Algorithm to Orthogonally Draw

Cubic Graphs

3.2.1 Introduction

Several results regarding orthogonal drawings of cubic graphs have appeared
in the literature just in the last years, both from a theoretical point of
view [42, 94] and from a more algorithmic one [23, 85, 95, 109]. Table 3.1
summarizes some of these results, together with those ones presented in this
and in the next section.

In this section we present an algorithm that constructs an orthogonal
drawing of a graph G with degree at most three in which each edge has
at most 1-bend, the total number of bends is ≤ n/2 + 1, and the area is
≤ (n/2)2.

The algorithm is divided into three phases: during the first one the
input graph is divided into its biconnected components; during the second
one an algorithm drawing biconnected graphs (BiconnCub) is run on each
component; finally, all components, that lie on different pieces of grid, are
collected together onto a unique grid (ConnCub) and the final drawing is
given in output.



30 CHAPTER 3. ORTHOGONAL DRAWING

So, we match the best known results in the literature; furthermore, we
do not require any limitations either for planarity or biconnectivity. To the
best of my knowledge the only paper dealing with such general graphs is
[23], having upper bounds larger than these. In the next subsections the
algorithm is first described in detail and then practically compared with
the other ones cited by schematically presenting the performances of the
algorithms (area, number of bends and computational time). Before doing
that, we will present some definitions and address some considerations about
the number of bends of an orthogonal drawing. Namely, we will discuss the
lower bound problem.

Let us begin with a well known definition from graph theory.

Definition 4 [51] Given a biconnected graph G= (V,E), an st-numbering
is a numbering of the vertices v1, v2, . . . , vn ∈ V such that {v1, vn} ∈ E and
every vertex vi(1 < i < n) has edges to two vertices vk and vl for some k
and l,with 1 ≤ k < i < l ≤ n.

Theorem 3 [51] It is possible to compute an st-numbering of a graph G if
and only if G is biconnected.

From now on, each vertex v will be identified by means of its st-number.

Let b(C) be the lower bound on the number of bends for the orthogonal
drawing of a certain class of graphs C. First, observe that an upper limitation
U for the lower bound of a certain class of graphs C can be obtained by
exhibiting a graph belonging to C needing at least U bends. If the graph
belongs to a subclass C′ of C, then U is an upper limitation for b(C ′) and
even more so for b(C). In the following we will show an infinite family of
planar 2-connected cubic graphs that need at least n/2 bends to be laid out
in the grid.

The following theorem states this result:

Theorem 4 b(Cubic Graphs) = n/2.

Proof Let G be the planar 2-connected cubic graph depicted in Fig. 3.3,
let k be the number of diamonds of G and n = 4k be the number of vertices
of G.

It is easy to see [22] that a diamond cannot be drawn on a grid with
less than two bends. It follows that G needs at least 2k = n/2 bends in any



3.2. A SEQUENTIAL ALGORITHM 31

Input Output Time Gridsize Total

number

of bends

Max

numb.

of

bends

per

edge

LMP

[95]
biconn. at
most cubic
graph

orth. pla-
nar draw-
ing if G is
pla-
nar, noth-
ing if G is
not planar

O(n)
amortized

O(n2) n/2 + 1 1

BK

[23]
conn. at
most cubic
graph
and a lay-
out of the
graph if it
is planar

orth.
drawing
(pla-
nar if G is
planar)

O(n) (n/2+2)×(n−
2) if G is bi-
conn. (n −
1) × (n − 1)
otherwise

n + 2 if
G biconn.
2n − 1
otherwise

2

PT

[109]
biconn. at
most cubic
graph

orth.
drawing

O(n) (n/2 +1)×n/2 n/2 + 3 1
except
one
edge
bend-
ing
twice

K

[85]
planar at
most cubic
graph

orth. pla-
nar
drawing

O(n) ⌈n/2⌉ × ⌈n/2⌉ ⌊n/2⌋ + 1 1

CP1

[28]
conn. at
most cubic
graph

orth.
drawing
(not neces-
sarily
planar)

O(n) n/2 × n/2 n/2 + 1 1

CP2

[29]
conn. at
most cubic
graph

orth.
drawing
(not neces-
sarily
planar)

par. work
O(n)

(n+1)×(n+1) 3n/2 1

par. work
O(n)

(3n/4 + 1/2) ×
(3n/4 + 1/2)

n + 3 2

Table 3.1: Known results.



32 CHAPTER 3. ORTHOGONAL DRAWING

Figure 3.3: Planar 2-connected graph G used in the proof of Theorem 4.

drawing and therefore b(C) ≥ n/2. Also, no cubic graph can have more than
n/2 triangles; and therefore, n/2 is a tight lower bound for the whole class
of cubic graphs.

In view of Theorem 4, the bound of n/2 + 1 bends achieved by our
algorithm is nearly optimal.

3.2.2 Drawing Biconnected Graphs

The first algorithm we describe is called BiconnCub. It obtains a single bend
drawing for biconnected graphs of maximum degree three. We begin with
a high level presentation of the algorithm and then proceed to an indepth
examination where a deeper understanding of the algorithm can be achieved.

Without loss of generality, we assume that the input graph is cubic since
a biconnected graph cannot have any vertex of degree one and a vertex of
degree two is a dot on a single edge.

The basic idea of BiconnCub consists in adding to the drawing, one at a
time, all vertices of the graph, ordered according to an st-numbering.

Let Gk = (Vk, Ek) be the subgraph induced by the first k vertices in the
st-numbering (Vk = {1, 2, . . . , k}) and Dk be a drawing for Gk. During the
k-th step, vertex k and edges {i, k}, with i < k, are added to Dk−1. So, if
1 < k < n, at each step k, in view of st-numbering’s properties, it is possible
to draw at least one and at most two edges, together with vertex k. The
drawing is produced in such a way that at least one of the two possible edges
is connected in a directed way (i.e. it does not introduce any bend).



3.2. A SEQUENTIAL ALGORITHM 33

Only vertex n has three adjacent vertices in Dn−1 and it is drawn as a
comb graph, shown in Fig. 3.4.

���
������
v�

��

Figure 3.4: A comb graph.

Observation 1 Given an st-numbered biconnected cubic graph G, the num-
ber of vertices v having two adjacent vertices i and j such that i, j < v, is
exactly n/2 − 1.

Before describing the algorithm in detail, it is necessary to introduce two
operations that will be useful in the following.

In Fig. 3.5 a rotation is shown. The advantage of this operation is the
change of the free directions with respect to the rotated vertex, despite the
fact there is an increase in the number of bends.

k

j

i

jk

i

k

k

-

k
k
k
k

Figure 3.5: Rotation of vertex k.

In Fig. 3.6 a bend’s movement is represented. In this case the change of
the labels does not require any increase of the number of bends.



34 CHAPTER 3. ORTHOGONAL DRAWING

k

j

i

k

j

il
l
l
l

l l

-

Figure 3.6: Movement of vertex k on a bend.

ba

k j

ik

j

i k
k kk

kk

Figure 3.7: The insertion of k does not introduce any bend.

The input of BiconnCub is an st-numbered cubic graph. Let (xk, yk) be
the coordinates of vertex k on the grid and (0, 1), (0, 2) the coordinates in
D2 of 1 and 2 respectively. After D2 is constructed, vertices from 3 to n− 1
are added one at a time. Two cases have to be distinguished according to
the fact that k’s adjacent vertices in Dk−1 are 1 (call it i) or 2 (i and j).

In the first case, edge {i, k} is added to Dk−1 as a straight-line. One of
k’s coordinate coincides with the corresponding one of i’s while the other
one needs to be incremented such that vertex k is positioned either on the
first new row or on the first new column of the current gridsize.

A bit more difficult is the case in which {i, k} and {j, k} are to be added
to Dk−1. In order to limit the number of bends, BiconnCub tries to put in a
straight-line for both the edges, so that neither new rows, nor new columns
are added. This is possible only in the situation of Fig. 3.7.

In all the other situations, BiconnCub introduces only one new bend:
two cases have to be distinguished according to the existence of a common
free direction for i and j.

In Fig. 3.8 and in Fig. 3.9 we show the two different cases in which either



3.2. A SEQUENTIAL ALGORITHM 35

a new row or a new column is added to the drawing: in the case of Fig. 3.8
the graph is extended from the border of the grid while in the case of Fig. 3.9
the expansion is from the inner part of the drawing.

dc

l
l

li

j

kl
l

l i

j

k

l

l li

j

k

a b

l l

l

i

j

k

Figure 3.8: The two vertices adjacent to k have a common free direction.

k

j

i

k j

i

l
l

l
l l
l

Figure 3.9: The two vertices adjacent to k have different free directions.

The analysis of all cases of BiconnCub is done either on the current draw-
ing or on the drawing modified by some bend’s movements. The operation
of rotating a vertex is done only if no one of the previous cases is verified.

The last step of the algorithm puts on the grid vertex n according to the
comb graph configuration, after a possible operation of movement of a bend
and/or a rotation.

Theorem 5 Given a biconnected at most cubic graph G, BiconnCub runs
in linear time and space to draw G on an n/2×n/2 grid with at most n/2+1
bends. Furthermore, every edge bends at most once.

Proof BiconnCub works correctly: it is easy to see that BiconnCub ana-
lyzes all the possible combinations of vertices’ free directions, either directly



36 CHAPTER 3. ORTHOGONAL DRAWING

or after a rotation and/or a bend’s movement.
Moreover, it is always possible to draw an edge without overlapping a

vertex: every new vertex put on the grid lies either on a new row or on
a new column, in such a way that lines passing through its free directions
do not cross any vertex. The only case in which neither a new row nor a
new column is introduced is the case of Fig. 3.7, but in that case the free
directions are not hindered by further vertices because they were the free
directions of vertices i and j.

The limitation of the total number of bends is a consequence of the
following four facts:
a. at most n/2 − 1 vertices have two adjacent vertices (cf. Obs. 1), then at

most n/2 − 1 bends are introduced during steps 3 to n − 1;
b. exactly two bends are introduced by a comb graph;
c. no new bends are introduced by the bend’s movement operation;
d. the new bend introduced by the rotation of a vertex k has already been

computed in a. Indeed k has two adjacent vertices in Dk−1 and its first
assignment in Dk is the same type as in Fig. 3.7.

To prove that the gridsize is bounded by n/2 × n/2, consider that vertices
1 and 2 do not introduce any area but they add one row. An insertion of
a new row or a new column, but not both, is required by each vertex from
step 3 to n − 1. If exactly h rows are introduced, then at most n − 3 − h
columns are introduced. Vertex n introduces at most a row and a column.
So, A ≤ (h + 2) × (n − 2 − h) and this is bounded by n/2 × n/2.

To complete the proof, we simply observe that the algorithm runs in
linear time and uses linear space.

Now we give a more detailed description of the algorithm we have just
sketched. Observe that when a condition is required (i.e. that some direc-
tions must be free) we mean that the condition can be verified either directly
or after a bend’s movement. For this reason, we will not explicitly mention
this operation further.

Note that parameter h is a non-negative integer such that vertex k is
positioned either on the first available new row or on the first available new
column outside the rectangle containing the current drawing. Additionally,
we will identify each grid-point as its two coordinates. Finally, the coor-
dinates on the grid of vertex v will be denoted by (xv, yv) and we write
“edge {i, k} : (xi, yk) − (xi, yi) − (xk, yk)” or something analogous to mean
that edge {i, k} connects grid-points at coordinates (xi, yk) and (xi, yi) and
(xi, yi) and (xk, yk) by two straight-lines.



3.2. A SEQUENTIAL ALGORITHM 37

Algorithm BiconnCub
Input: G = (V, E) biconnected and cubic.

Output: D =Orthogonal drawing of G.
1. begin

2. (x1, y1)← (0, 1);
3. (x2, y2)← (0, 2);
4. edge {1, 2}:(0, 1)− (0, 2);
5. for each step k from 3 to n do

6. case of number of adjacent vertices to k in Dk−1

7. one adjacent vertex i:

8. if a position above i is free

9. then (xk, yk)← (xi, yi + h)
10. else

11. if a position to the left of i is free

12. then (xk, yk)← (xi − h, yi)
13. else (xk, yk)← (xi + h, yi);
14. edge {i, k}: (xi, yi)− (xk, yk);
15. two adjacent vertices i and j (assume j < i < k):

three subcases:

16. •xj = xi (assume yi > yj)

17. if both i and j have a free position on the right

18. then (xk, yk)← (xi + h, yi)
19. else (xk, yk)← (xi − h, yi)
20. edge {j, k}: (xk, yk)− (xk, yj)− (xj , yj);
21. edge {i, k}: (xi, yi)− (xk, yk);
22. •yj = yi (assume xi < xj)

23. if both i and j have a free position above

24. then (xk, yk)← (xj , yj + h)
25. else (xk, yk)← (xj , yj − h);
26. edge {i, k}: (xk, yk)− (xi, yk)− (xi, yi);
27. edge {j, k}: (xj , yj)− (xk, yk);
28. •xj 6= xi and yj 6= yi (assume xi < xj and yi < yj

- the other possibilities are symmetric)

29. done ← FALSE;

30. if a position to the right of i and below j are free

31. then begin

32. (xk, yk)← (xj , yi);
33. edge {j, k}: (xj , yj)− (xk, yk);
34. edge {i, k}: (xi, yi)− (xk, yk);
35. done ← TRUE;

36. end

37. if (a position to the left of j and above i are free) and (not done)

38. then begin

39. (xk, yk)← (xi, yj);
40. edge {j, k}: (xj , yj)− (xk, yk);
41. edge {i, k}: (xi, yi)− (xk, yk);



38 CHAPTER 3. ORTHOGONAL DRAWING

42. done ← TRUE;

43. end

44. if (both i and j have a free position above) and (not done)

45. then begin

46. (xk, yk)← (xj , yj + h);
47. edge {j, k}: (xj , yj)− (xk, yk);
48. edge {i, k}: (xi, yi)− (xi, yk)− (xk, yk);
49. done ← TRUE;

50. end

51. if (both i and j have a free position below) and (not done)

52. then begin

53. (xk, yk)← (xj , yi − h)
54. edge {j, k}: (xj , yj)− (xk, yk);
55. edge {i, k}: (xi, yi)− (xi, yk)− (xk, yk);
56. done ← TRUE;

57. end

58. if (both i and j have a free position on the left) and (not done)

59. then begin

60. (xk, yk)← (xi − h, yj);
61. edge {i, j}: (xj , yj)− (xk, yj)− (xj , yj);
62. edge {i, k}: (xi, yi)− (xk, yk);
63. done ← TRUE;

64. end

65. if (both i and j have a free position on the right) and (not done)

66. then begin

67. (xk, yk)← (xj + h, yj);
68. edge {i, j}: (xj , yj)− (xk, yj)− (xj , yj);
69. edge {i, k}: (xi, yi)− (xk, yk);
70. done ← TRUE;

71. end

72. if (a position to the right of i and to the left of j are free) and (not done)

73. then begin

74. insert a new column c between xi and xj;

75. (xk, yk)← (c, yj);
76. edge {i, k}: (xi, yi)− (xk, yi)− (xk, yk);
77. edge {j, k}: (xj , yj)− (xk, yk);
78. done ← TRUE;

79. end

80. if (a position below j and above i are free) and (not done)

81. then begin

82. insert a new row r between yj and yi;

83. (xk, yk)← (xj , r);
84. edge {i, k}: (xi, yi)− (xi, yk)− (xk, yk);
85. edge {j, k}: (xj , yj)− (xk, yk);
86. done ← TRUE;

87. end

88. if not done



3.2. A SEQUENTIAL ALGORITHM 39

89. then make a rotation and run again from line 15

with the same value of k. After this second

execution one case must necessarily be verified.

90. three adjacent vertices to k, i.e. k = n:

91. find a common free direction of the three adjacent vertices

(either directly or after an operation) and put n in the

drawing by using a comb graph.

92. end.

3.2.3 Drawing Connected Graphs

In this subsection we focus on the drawing of general at most cubic graphs.
The approach to the problem passes through biconnected components; hence
BiconnCub, described in Subsection 3.2.2, will play a fundamental role.

Let B1 = (V1, E1), . . . ,BK = (VK , EK) be the biconnected components
of G = (V,E) and let a1, . . . , ar be the articulation points (n = |V | =
|V1| + · · · + |VK | + r).

The main idea of the algorithm –that from now on we will call ConnCub–
consists of drawing each Bi separately on a grid and then in connecting the
orthogonal drawings by means of the points ai. Edges incident to vertices
ai are drawn taking into account both the limitation of the total number of
bends and the total area of the drawing of G.

We will prove that, in this way, the upper bounds of the area and of
the total number of bends remain the same as in the biconnected case. No
restriction is imposed by supposing that only one articulation point a exists.
Actually, if there are more than one, then by deleting a from G some simply
connected components will be obtained, and it is possible to inductively
repeat the same arguments. So, suppose that after a is deleted from G, only
biconnected components remain.

Furthermore, observe that all vertices adjacent to a –v1, v2 and v3– have
at most two incident edges on the drawing of their biconnected component,
therefore they have at least two free directions and the algorithm maintains
empty the row (or the column) from all their free directions to the boundary.
So, it is not restrictive to think (just useful for the simplicity of explanation)
that v1, v2 and v3 lay on the boundary of their biconnected components’
drawings.

It is necessary to distinguish two different cases, depending on either
a disconnects the graph into two or three biconnected components (see
Fig. 3.10.a and .b).



40 CHAPTER 3. ORTHOGONAL DRAWING

Q
QQ

#
"
 
!

�
�
�
�
'
&
$
%

���
B1

B2 B3

a

�
�
�
�

���'
&
$
%

a

B1

B2

%
%%

a b

Figure 3.10: The two different types of articulation points.

There are two biconnected components B1 and B2. Suppose v1, v2 ∈ B1

and v3 ∈ B2. There are different cases according to the mutual position
of v1 and v2.

In Fig. 3.11.a and .b the way of connecting a to v1, v2 and v3 is shown
both when v1 and v2 have a free common direction in the drawing
of B1 and when they have it on two different but consecutive sides
of the drawing of B1. In both of these cases at most two bends are
introduced.

In Fig. 3.12 the case in which the free directions of v1 and v2 are on
two different and opposite sides of the drawing of B1 is shown. It is
possible to see that this case is reduced to one of the previous ones.
Namely, v1 and v2 have at least two free directions, therefore another
available row (or column) going towards the boundary must exists.

oncerning the gridsize guaranteed by ConnCub, in the case depicted in
Fig. 3.11.a the worst case happens when v1 lies on the lower-left corner
of the drawing of B1 and v3 is on the higher-right corner of B2 (see
Fig. 3.13.a). In the case of Fig. 3.11.b the worst case occurs when v3

is exactly in the middle of the side where it lies (see Fig. 3.13.b).

Therefore, the values of the area in the two cases are A ≤ (|V1|/2 + |V2|
2 + 2) × ( |V1|

2 + |V
2

and A ≤ ( |V1|
2 + |V2|

4 + 1) × ( |V1|
2 + |V2|

2 + 2) respectively; these are both



3.2. A SEQUENTIAL ALGORITHM 41

a b

a
gg
g

g
B1

B2

v1

v2

v3v3

v2

v1

a

B2

B1

gg
gg

Figure 3.11: Two ways of connecting two components.

less than n/2 × n/2.

There are three biconnected components B1,B2 and B3. It is always
possible to put in the grid the drawings of the components in such a
way that the two smallest components are put beside each other, while
the largest one is put on the opposite side (see Fig. 3.14.a). In order
to compute the gridsize, observe that the situation in which v1 lays on
the lower-left corner of the drawing of B1 and v3 on the higher-right
corner of B3 is the worst case; it does not matter where v2 lies (see
Fig. 3.14b). It is not restrictive to suppose that |V2| ≥ |V1|; therefore

the width of the grid is not greater than |V3|
2 +2+ |V2|

2 and its height is

not greater than max( |V3|
2 , |V1|

2 + |V2|
2 + 1, |V3|

2 + |V1|
2 − 1). In all cases,

the area is less than n/2 × n/2.

Utilizing the previous observations, it is possible to state the following
theorem.

Theorem 6 Given a connected at most cubic graph G, ConnCub runs in
linear time and space to draw a 1-bend drawing of G on an n/2 × n/2 grid
with at most n/2 + 1 bends.

Proof It is easy to see that the procedure for inserting an articulation
point in the drawing runs in constant time, so ConnCub runs in linear time.



42 CHAPTER 3. ORTHOGONAL DRAWING

v2

a v3

v2

v1

v3

v1

B2

B1

B2

B1 g
g

ggg

g
g g

a

ba

Figure 3.12: Third way of connecting two components.

In order to prove that the maximum number of bends is n/2 + 1, observe
that the drawing of the articulation point a and its outgoing edges introduce
at most two bends in the drawing of G. Each biconnected component Bi has
at most |Vi|/2 bends because its t-node (in its st-numbering) is adjacent to
a by construction, and in Bi it has at most two adjacent vertices. Then, the
increase of number of bends introduced by inserting a is balanced by the
decreasing in each biconnected component.

Bounds for the gridsize immediately follows from the previous details.

3.2.4 Experimental Results

In this subsection, we present an extensive experimental study comparing
three graph-drawing algorithms dealing with cubic graphs: one of them –
CP in the next figures– is the algorithm ConnCub just described [28], the
other two algorithms –BK and PT– are explained in [23] and [109] and have
already been cited in Table 3.1. The further algorithms mentioned in Table
3.1 (LMP and K) have not been considered in this comparative work since
they deal only with planar graphs.

The three algorithms considered are very similar: all of them run a pre-
processing phase computing an st-numbering and draw the vertices one at a
time according to the st-numbering. PT is the simplest one since it consid-
ers less cases than the other algorithms, while BK is the only one producing
a 2-bend drawing instead of a 1-bend drawing. Furthermore, if an embed-
ding is given in input, Algorithm BK is the only one able to draw a planar
graph without crossings. CP and BK deal with simply connected graphs



3.2. A SEQUENTIAL ALGORITHM 43

|V1|
2

|V2|
2

6

?6

?
|V2|
2

|V1|
2

-� -�2
�-

|V1|
2

-�
|V2|
2

-�

|V2|
2

|V1|
2

2

?

6
?
6

?

6

g g

g
g
B1

B2

v1

v2

v3
a

gg
gg

B1

B2

v1

v2

v3

a

a b

Figure 3.13: Worst situations for the cases of Fig. 3.11.

by working on separated biconnected components and then by re-splicing
them in a further step. In contrast, Algorithm PT only runs on biconnected
graphs. In order to allow all three algorithms to take homogeneous inputs,
we have added a second phase to PT to handle separated biconnected com-
ponents and to splice them. Namely, we utilize ConnCub (cf. Subsection
3.2.3) replacing BiconnCub with the algorithm described in [109].

In this way BK, CP and PT take as input general at most cubic graphs
(with no restrictions on the connectivity, planarity, etc.) and construct or-
thogonal grid drawings.

The test data are 18,000 randomly generated graphs; half of them are
simply connected graphs. The number of vertices of such graphs are mul-
tiples of 10 and are in the range between 10 and 300. The experiments
provide a detailed quantitative evaluation of the performance of the three
algorithms, both from an ‘aesthetic’ point of view (gridsize, number of bends
and number of crossings) and from a computational one (running time). The
observed practical behavior of the algorithms is consistent with their the-
oretical properties, but demonstrates that sometimes the algorithms work
better than the theoretical results state, as we will discuss in the following
comments.

In the reminder of this section we present and comment on two series of



44 CHAPTER 3. ORTHOGONAL DRAWING

B1

v1

v2
B3

a

i
i i i

B2

v3B1

v1

v2

B3

a

i
i i i

B2

v3

a b

Figure 3.14: Way of connecting three components and the worst case for the
gridsize.

diagrams: the first one is related to simply connected at most cubic graphs
having n vertices, m edges and k biconnected components; we apply the
constrains that 1 ≤ k ≤ n/over20 and 2.75

2 n ≤ m ≤ 3
2n. The latter one

deals with biconnected at most cubic graphs with a number of edges close
to or equal to 3

2n.

The following quality measures of a drawing of a graph have been con-
sidered:

Area: area of the smallest rectangle with horizontal and vertical sides cov-
ering the drawing;

Bends: total number of bends;

Crosses: total number of crossings;

Time: computational time of the algorithms, measured in milliseconds.

We would now like to make a few observations about the experiments.
The figures referenced to appear on the following pages.
Area: (Figs. 3.15 and 3.16) Observe that Algorithms BK and PT both com-
pute an average area very close to the theoretical bound of n2/2 and n2/4,
respectively. This happens both in the connected and in the biconnected
case. In contrast, since Algorithm CP tries to draw vertices without adding
new bends and therefore without adding new rows and columns, it reaches



3.2. A SEQUENTIAL ALGORITHM 45

 10   20   30    40   50    60   70   80   90  100  110  120  130 140 150 160 170  180 190 200  210  220  230 240 250  260 270 280 290  3000

5000

10000

15000

20000

25000

30000

35000

40000

Area Number of vertices
AAAAAAAAAAAAAA

AA
AAA
AAA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA

AA
AA
AA

AA
AA
AA

AAA
AAA
AAA
AAA

AA
AA
AA
AA

AA
AA
AA
AA

AA
AA
AA
AA
AA

AAA
AAA
AAA
AAA
AAA

AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

A
A
A
A
A
A
A
A
A
A
A

AA
AA

BK PT CP

Figure 3.15: Average area versus number of vertices for simply connected
graphs.

 10   20   30    40   50    60   70   80   90  100  110  120  130 140 150 160 170  180 190 200  210  220  230 240 250  260 270 280 290  3000

5000

10000

15000

20000

25000

30000

35000

40000

Area
Number of vertices

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AAA
AAA
AAA

AA
AA
AA

AA
AA
AA

AA
AA
AA

AAA
AAA
AAA

AA
AA
AA

AA
AA
AA

AA
AA
AA
AA

AAA
AAA
AAA
AAA

AA
AA
AA
AA

AA
AA
AA
AA
AA

AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA

A
A
A
A
A
A
A
A
A

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

A
A
A
A
A
A
A
A
A
A
A
A

AA
AA

BK PT CP

Figure 3.16: Average area versus number of vertices for biconnected graphs.



46 CHAPTER 3. ORTHOGONAL DRAWING

 10    20    30    40    50    60    70    80     90   100   110  120  130  140  150  160  170  180  190  200   210  220   230  240  250  260  270  280  290  300A
A
AA
AA
AA

AA
AA
AA

AA
AA
AA

AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA

AA
AA
AA
AA
AA

A
A
A
A
A

AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

0

40

80

120

160

200

240

number 
of bends number of vertices

A
A

BK PT CP

Figure 3.17: Average total number of bends versus number of vertices for
simply connected graphs.

 10    20    30    40    50    60    70    80     90   100   110  120  130  140  150  160  170  180  190  200   210  220   230  240  250  260  270  280  290  300AA
AA
AA
AA
AA

AA
AA
AA

AA
AA
AA

AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA

AA
AA
AA
AA

AA
AA
AA
AA
AA

A
A
A
A
A

AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

0

40

80

120

160

200

240

number 
of bends number of vertices

AA
AA

BK PT CP

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

280

320

Figure 3.18: Average total number of bends versus number of vertices for
biconnected graphs.



3.2. A SEQUENTIAL ALGORITHM 47

 10    20    30    40    50    60    70    80     90   100   110  120  130  140  150  160  170  180  190   200   210  220   230  240  250  260  270   280  290  300AA
AA
AA
AA
AA
AA
AA
AA
AAA
AAA
AA
AA
AA
AA
AA

AA
AA
AA

AA
AA
AA

AA
AA
AA

AAA
AAA
AAA

AAA
AAA
AAA

AA
AA
AA

AA
AA
AA
AA

AA
AA
AA
AA

AA
AA
AA
AA

AA
AA
AA
AA

AAA
AAA
AAA
AAA

AA
AA
AA
AA
AA

AA
AA
AA
AA
AA

AAA
AAA
AAA
AAA

AA
AA
AA
AA
AA

AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA

AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA

AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA

0

200

400

600

800

1000

number of vertices

AA
AA

BK PT CP

number of
crossings

Figure 3.19: Average number of crossings versus number of vertices for sim-
ply connected graphs.

 10    20    30    40    50    60    70    80     90   100   110  120  130  140  150  160  170  180  190   200   210  220   230  240  250  260  270   280  290  300AA
AA
AA
AA
A
A
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAA
AAA
AAA

AA
AA
AA

AA
AA
AA

AA
AA
AA

AA
AA
AA

AA
AA
AA
AA

AAA
AAA
AAA
AAA

AA
AA
AA
AA
AA

AA
AA
AA
AA
AA

AAA
AAA
AAA
AAA

AA
AA
AA
AA

AA
AA
AA
AA
AA

AA
AA
AA
AA
AA

AA
AA
AA
AA
AA

AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA

AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA

0

1000

2000

3000

4000

5000

number of vertices

AA
AA
AA

BK PT CP

number of
crossings

AAA
AAA

AA
AA
AA

AAA
AAA
AAA

Figure 3.20: Average number of crossings versus number of vertices for bi-
connected graphs.



48 CHAPTER 3. ORTHOGONAL DRAWING

 10    20    30    40    50    60    70    80     90   100   110  120  130  140  150  160  170  180  190  200   210  220   230  240  250  260  270  280  290  300
0

4

8

12

16

20

24

computational
time

number of vertices

BK PT CP

Figure 3.21: Average computational time (in ms) versus number of vertices
for simply connected graphs.

 10    20    30    40    50    60    70    80     90   100   110  120  130  140  150  160  170  180  190  200   210  220   230  240  250  260  270  280  290  300
0

4

8

12

16

20

24

computational
time

number of vertices

BK PT CP

Figure 3.22: Average computational time (in ms) versus number of vertices
for biconnected graphs.



3.3. A PARALLEL ALGORITHM 49

a slightly better area bound (about n2/4.88 instead of n2/4) both in the
connected and in the biconnected case.

Bends: (Figs. 3.17 and 3.18) For what concerns the total number of bends,
it is clear from the plots that all three algorithms generate less bends in the
simply connected case than in the biconnected one. This happens because
the number of edges in connected graphs of our test data is, on average, less
than the number of edges in biconnected graphs.

BK generates a total number of bends that is close to n for biconnected
graphs and close to n/1.25 for connected graphs. Algorithm BT approaches
n/2 and n/2.5 in the biconnected and connected case, respectively. Algo-
rithm CP works better from this point of view, since it generates about
n/2.44 and n/3 bends if the input graph is biconnected and connected, re-
spectively.

Crosses: (Figs. 3.19 and 3.20) The total number of crossings does not
appear to be an increasing function of the number of vertices. This is due
to the fact that the number of crossings is highly random and its average
value becomes stable only after a very large number of tests. Observe that
the number of crossings is consistently smaller when the graphs are simply
connected rather than when they are biconnected, because edges connect-
ing the biconnected components are always drawn without crossings. The
average values in the biconnected case are n2/33, n2/25.8 and n2/17.6 for
Algorithms BK, CP and PT, respectively. The good result of BK can be
explained in view of the fact that it has the worst result for the gridsize; and
therefore, it has more possibilities to lay out edges without crossings.

Time: (Figs. 3.21 and 3.22) All three algorithms are very fast: PT runs in
n/13 ms; BK and CP require n/12.6 and n/11.2 ms to draw a cubic graph
with n vertices, respectively. PT is the fastest algorithm because it is the
simplest one and does not check as many cases and configurations as the
other two algorithms do.

3.3 A Parallel Algorithm to Orthogonally Draw

Cubic Graphs

3.3.1 Introduction

In the literature, there are very few parallel algorithms that orthogonally
draw graphs.



50 CHAPTER 3. ORTHOGONAL DRAWING

In [78] an algorithm constructing a planar drawing with vertices placed at
real coordinates is given but no known bound on the area is produced. The
running time for their algorithm is O(log2 n) and the number of processors
required is M(n), that is the number of processors needed to multiply two
n × n matrices in O(log n) time on a CREW PRAM.

In 1991 this result was substantially improved: in [141] an algorithm
dealing with biconnected planar graphs is presented, but an embedding must
be given in input.

In [140] this result is generalized to simple graphs and the algorithm
presented runs on a CREW PRAM in O(log n) time with n/ log n processors
and constructs layouts with O(n) maximum edge length and O(n2) area.
Also, the number of bends is at most 2n+4 if the graph is biconnected, and
is at most 2.4n + 2 if it is simple.

In this section we present a parallel algorithm that constructs an orthog-
onal drawing of an n vertex cubic graph G with O(n) bends, O(n) maximum
edge length and O(n2) area in O(log n) time on a CRCW PRAM with n
processors. Two slight variants of the algorithm are described: the first one
generates a drawing where each edge has at most two bends, the total num-
ber of bends is less than or equal to n + 3, and the area is less than or equal
to (3

4n + 1
2 )2; the second one optimizes the number of bends for each edge

(at most one) even if the values of the other functions are slightly worst.
Although this algorithm is not optimum, it is the first parallel algorithm

dealing with non-planar, non-biconnected graphs. Moreover, no drawing of
the graph is required as input nor is an st-numbering (or canonical number-
ing) computed.

3.3.2 Description of the Algorithm

Given as input an at most cubic graph G, the output of the algorithm –that
from now on we will call ParCub– consists of the set of coordinates in the
grid of vertices, bends and –for every vertex– the directions of its incident
edges.

To clarify the exposition, we first sketch the algorithm and then we
present it in a more detailed way.

The algorithm is divided into the following three steps:

1. find a general spanning tree T of the input graph G and generate an
embedding of T in the grid to obtain an almost straight-line drawing;



3.3. A PARALLEL ALGORITHM 51

2. add the remaining non-tree edges to the drawing;

3. compact the drawing by eliminating the rows and the columns that
contain no vertices nor parts of edges from the grid.

e
�

�
�
uuuuu
u

e
�

�
�uu uu
u

e
�

�
�uuuu u
uu
e
euu

Figure 3.23: General “skeleton” of spanning tree T on the grid.

We start from a spanning tree T as a “skeleton” of the whole drawing.
After the drawing of T all the adjacent vertices of some vertices (the white
ones shown in Fig. 3.23) have already been drawn, while some adjacent
vertices of the other vertices (the black ones) have to be still drawn. For
this reason, in Step 1 we use a particular way of drawing the spanning tree,
so that every row i of the grid contains only one vertex vi with less than
three adjacent vertices and vi is the rightmost vertex lying on row i (see
Fig. 3.23). Furthermore, enough space is left to put all the remaining edges
between two consecutive columns. Obviously, not every row and not every
column are occupied by the edges; this is the reason why the final compaction
is necessary.

Let us call r the root of T . In the general case, r has three children and
we can draw them as illustrated in Fig. 3.24.

In order to avoid having segments of different edges overlap, we allow
only one ‘black’ vertex (Fig. 3.23) per row of the drawing. For this reason
edges {r, c3} and {r, c1} (Fig. 3.24) must be long enough to allow to the
entire subtrees rooted at c1 and c2, respectively, to be drawn. A similar



52 CHAPTER 3. ORTHOGONAL DRAWING

w(N(c1))� -� -w(N(c3))

?

6

?

6

+N(c2))
h(N(c1)+ h(N(c2))

c1

c2rA ���

���
���

���

c3

Figure 3.24: Embedding of root r and of its three children.

reason holds for the columns. Functions w and h, whose specific meaning
will be explained later, guarantee that this conditions will be satisfied.

If r has only two children, then only c1 and c2 are drawn and in this case
the drawing of G is exactly straight-line.

As well as both r and c1, c2 and c3 are drawn, all the other vertices are
put on the grid. For each vertex, we can repeat the previous reasonings, and
a sufficient distance from the neighbor vertices both in height and in width
must be left free.

After T is embedded, the second step follows. The main idea of the
algorithm consists in inserting as many edges of type b. (Fig. 3.25) as possi-
ble. This choice is based on the fact that such edges introduce no new rows
nor new columns and therefore they do not increase the gridsize. Moreover,
these edges are 1-bend and this is useful for the limitation both of the total
number of bends and of the number of bends on each edge. In order to
increase the number of such edges, the algorithm allows to move a vertex on
a bend as shown in Fig. 3.27. Observe that the movement of a vertex on a
bend does not increase the total number of bends in the drawing.

During this phase, some of the free columns become occupied by the
edges; the left ones will be eliminated during the last step.

Now, we will explain the algorithm in detail, step by step.
The input of the algorithm is a general cubic graph G with n vertices.

The first step is divided into the following two parts:

1. Finding a spanning tree T



3.3. A PARALLEL ALGORITHM 53

����
����

����
����

����
����

����
�����

- -

- -

v2

v1

v2

v1

v2

v1 v1

v2

6

(x2 + v2, y1)

6

a b

Figure 3.25: Different possibilities to embed an edge.

The parallel algorithm computing a general spanning tree of an at most
cubic graph is an explicit modification of the Shiloach and Vishkin
connected components algorithm [130]. The starting-point of the al-
gorithm is a forest with n one-vertex trees, one for each vertex of G. A
processor is assigned to each vertex v and one of the adjacent vertices
of v numbered less than v is chosen, say w. Edge {v,w} is added to
the forest. Now, each step of the algorithm is divided into two parts:
in the first one all of the star trees, if they exist, are grafted into other
higher trees; the second one halves the height of all the trees in the
forest. In view of the fact that the first part consists in changing a
constant number of pointers and the second one is just one application
of the pointer jumping technique, each step works in constant time
with O(n) processors. Then O(log n) steps on a CRCW PRAM are
sufficient to generate a spanning tree. Notice that this is the only step
where a CRCW PRAM is required. Because of it, the whole algorithm
runs on a CRCW PRAM. Since the procedure that embeds T on the
grid (Step 2) needs the root to have at least two children, if the root
of the general spanning tree has only one child, further O(log n) time
must be spent to perform an Euler Tour procedure rooting the tree to
a vertex with degree at least two.

2. Embedding T on the grid



54 CHAPTER 3. ORTHOGONAL DRAWING

By using the Euler Tour technique, it is possible to assign to every
vertex v the labels N(v) and p(v), where N(v) represents the number
of vertices in the subtree rooted at v, included v, and p(v) is the
post-order numbering. From now on, v and p(v) will be identified. A
post-order numbering is convenient since increasing values from the
leaves to the root are needed.

In order to guarantee that each row of T ’s embedding has no more
than one ‘black’ vertex, the two linear functions height h(x) = 2x and
width w(x) = (n + 1)⌈x

2 ⌉ are introduced.

The argument of these functions depends on the size of the subtrees
of the current vertex. In Fig. 3.24 the arguments of these functions
are specified for the root and its children and their correlated positions
on the grid are pointed out. Notice that the origin of the axes is in
the higher leftmost corner. The position of a general vertex v in the
grid respect to its children will be the same as r with respect to c1 (c1

and c2) if v has one child (two children). If c2 does not exist, then the
distance between v and c1 is two.

In order to calculate its own position, every vertex needs to know
its parentr’s coordinates. This can be done with a classical pointer
jumping technique and it requires O(log n) time with n processors.

l l l l l l
a. b. c.

Figure 3.26: Vertices in different situations after Step 1 of ParCub.

After this step, vertices have either three or two or one incident edges
and they belong to one of the classes represented in Fig. 3.26.

Because of the cubicity of the graph, only vertices of type b. and c.
work on for the following part of the algorithm.

Before describing the second step of ParCub, the following observations
about the embedding of T can be done.



3.3. A PARALLEL ALGORITHM 55

The Right position for vertices of type b. and Right and Down positions
for vertices of type c. are always free. Therefore, these positions will be used
to attach the remaining edges.

Let e = {v1, v2} be an edge still to be drawn, and v1 less than v2. In view
of the post-order numbering, v1 lies below v2 (Post-Order property). We say
that e is sent by v1 and is received by v2, and v1 and v2 are called sender
and receiver, respectively.

In the following we consider vertices with respect to their configuration
at the end of this first step.

The second step is divided into the following eight parts:

1. Directions’ assignment

A processor is assigned to each vertex v and the directions for the
connections of its incident non-tree edges are decided:

if v is a vertex of type b. (in all this part refer to Fig. 3.26) then we
assign the Right direction to the only edge remaining to be drawn;

if v is a vertex of type c., then we must consider different cases in view
of the possible types of edges:

• if v is a sender for both the edges and only one of its receivers is of
type b., then the Right direction is assigned to the corresponding
edge, the Down direction to the other edge. This rule is applied
only if the two receivers do not lie on the same column. In this
case, the Right direction is assigned to the receiver having the
smaller numbering (for instance, see vertex 3 of the example at
the end of this subsection. These choices will give the possibility
to move v on a bend during a successive step.

• if v is a sender for both the edges and both its receivers are of the
same type (either .b or .c), then the Right direction is assigned to
the edge corresponding to the receiver having the smaller num-
bering. The reason for this choice is to exploit parallelism.

• if v is a sender for an edge and a receiver for the other one, then
the Right position is assigned to the sent edge and the Down
position is assigned to the received edge. This choice is due to
the fact that the situation of Fig. 3.25.b has to be privileged.

• if v is a receiver for both the edges, then the Right direction is
assigned to the edge corresponding to the sender with the smaller



56 CHAPTER 3. ORTHOGONAL DRAWING

numbering. This choice is made in order to maintain the Post-
Order property, even after bend’s movements.

From now on we will consider a processor assigned to each edge e = {v1, v2}.

2. Directly 1-bend edges

All the edges of type b. of Fig. 3.25 are drawn on the grid.

3. Movement on the bend

Every vertex that is a sender for two edges will be moved on the bend
on its right, if it exists (Fig. 3.27.a). Successively, every vertex that is
a receiver for two edges will be moved on the bend on its bottom, if it
exists (Fig. 3.27.b). Finally, each vertex sender (receiver) of only one
edge will be moved on a bend if its direction is not Right (Down). These
movements rotate the directions of non-tree edges in a counterclockwise
mode, increasing the number of Right directions to connect to Down
directions. The sequentiality of the previous movements is necessary
to avoid two vertices moving towards the same bend.

4. Drawing of the Right edges

Let v1 be the sender of e; if the direction of e on v1 is the Right one,
then e is embedded on the grid (see Fig. 3.25).

5. Elimination of the Down directions

Every vertex sending an edge torward the Down direction (i.e. its sent
edge along the Right direction is already drawn) is moved on the bend
lying at its Right and the Down direction is transformed into the Right
direction (see Fig. 3.27.a).

6. Elimination of 2-bend edges

For each edge drawn with two bends on the grid, its receiver is moved
on the right according to the cases presented in Fig. 3.28. In this way
a bend is moved on a straight-line edge.

7. Drawing completion

In order to complete the drawing, Steps 4., 5. and 6. have to be run
again. So, all remaining edges are drawn on the grid.



3.3. A PARALLEL ALGORITHM 57

ba
6

�

6

�

-

-

e2

e2

e2

e2

e1

e1e1

e1

v

v

v

v

m
m
mm

m
m

m

m

m

m

m

m

-

-

e2

e2

e2

e2

e1

e1e1

e1

vv

vv

-

-

?

?

m
m
mm

m
m

m

m
m

m

m
m

Figure 3.27: Movement on a bend of a vertex.

8. Movement of the root

In order to make the drawing at most 1-bend, it remains to check if
the edge {r, c3} has one or two bends. In the latter case, the root has
to be moved under the corner A (Fig. 3.24) in position (0, 1) of the
grid. In such a case its children c1, c2 and c3 will be connected to the
Right, Up and Down directions, respectively.

Using n processors the whole step can be computed in constant time.

Before continuing with the explanation of the algorithm, it is convenient
to explain the role of the columns of the grid placed between two consecutive
columns used to embed T . They are necessary to embed non-tree edges and
we will show that vertical segments of edges are arranged such that they lie
between the column where their rightmost extreme lies and the consecutive
column used to embed T .

Let e = {v1, v2} be an edge, and let (xi, yi) be the coordinates of a vertex
vi after the first step. Let xmax = max{x1, x2}. The vertical segment of e is
placed on the new column xmax + v2. This arrangement is made in order to
avoid having two segments of different edges lying on the same piece of the
grid.



58 CHAPTER 3. ORTHOGONAL DRAWING

b

6e
v2

v

v1

n
n
n

e�

v2

v

v1

n
n
n

-

(xmax + v, y2 + 1)

c

6e
v2

v

v1

n
n
n

e�

v2

v

v1

n
n
n

-

(xmax + v, y2 + 1)

a

ev2

v

v1e

v2

vv1

6n n
�

n
nn n

-

(xmax + v, y2 + 1)

Figure 3.28: Possible translations of a receiver vertex.

Now, suppose that a movement on a bend is necessary. In such a case we
have to embed two edges e1 = {v1, v2} and e2 = {v1, v3}. It is not restrictive
to suppose v2 less than v3, therefore the Right direction of v1 is assigned to
e1 and the Down direction of v1 is assigned to e2. After e1 is embedded, v1

is moved on its bend and therefore their coordinates become (xmax + v2, y1).
The vertical segment of e2 is drawn to the right of the vertical segment of e1

(in view of the fact that v2 less than v3) on the column max{x1, x2, x3}+v3.
This column lies between two consecutive columns used to embed T : the
column containing v1 and the following one.

At the beginning of the third step, every part of the drawing is char-
acterized by its own coordinates. Two sorted lists are created –one for the
rows and one for the columns– to store the coordinates of the occupied rows
and columns. The sorting phase takes O(log n) time using n processors on a
CREW PRAM (see [37]). Some coordinates appear more than once because
on the same row or column different drawing elements can be present. The
aim of this step is to eliminate the gap possibly existing between two consec-
utive elements in the lists. In every list, there are O(n) elements, so a vector
of O(n) cells is enough to store one of each group of identical values by com-
paring adjacent elements in the lists and putting 1 or 0 according to the fact



3.3. A PARALLEL ALGORITHM 59

that they are different or equal. The prefix sum technique can be applied to
count all non zero elements in the vectors. Finally, the corresponding values
in the lists can be modified by using the numbering obtained, so that consec-
utive elements in the lists have either the same value (if they had the same
value before this computation) or consecutive values (if they had different
values).

This step can be executed in O(log n) time using n processors.

From the previous considerations about the time complexity the following
theorem can be easily derived.

Theorem 7 Given an at most cubic graph G with n vertices, ParCub deter-
mines a 1-bend drawing of G on a grid in O(log n) time using n processors
on a CRCW PRAM model.

3.3.3 Complexity Measures

Before proving theorems describing upper bounds for area and for the num-
ber of bends, functions height and width must be justified.

Every ‘black’ vertex (Fig. 3.23) has to lie on a different row and the
right-side vertices are closer to the root than the left-side ones. Then, for
each vertex, we have to compute how much space can be used in the worst
case by all vertices that lie under it. It is easy to see that j rows are enough
to fit j vertices to the right of the current vertex. Moreover, another j rows
are necessary to allow the translations shown in Fig. 3.28.a. Therefore the
function h(j) is justified.

The columns’ problem is not as easy as the rows’ one: indeed a lot of
vertices can lie on the same column. For this reason, when newly inserted
edges use some new columns it can not be allowed that two different edges
use the same column in order to avoid overlapping. Therefore, a different
column must be assigned to every possible new edge between every couple
of columns containing vertices. The definition of function w(j) then follows.

Theorem 8 Given an at most cubic graph G with n vertices, ParCub com-
putes a layout of G with at most 3

2n bends, O(n) maximum edge length, and
(n + 1) × (n + 1) maximum area of the grid. The number of bends on every
edge is at most one.

Proof The orthogonal drawing is 1-bend by construction and the length
of every edge is O(n).



60 CHAPTER 3. ORTHOGONAL DRAWING

Now, a bound for the total number of bends will be calculated:
the first step of the algorithm embeds n − 1 straight-line edges with only
one possible exception. All other n

2 + 1 edges contain one bend generated
either by a connection of type b. in Fig. 3.25 or by a translation. For
every such edge, in the first case the total number of bends in the drawing
is incremented by one while in the second case the increment is equal to
three: the bend of the edge plus two new bends inserted in two old straight-
line edges (see Fig. 3.28). The worst case happens when all non-tree edges
introduce three bends, then each edge has one bend and the total number
of bends is bounded by the number of edges in a cubic graph, i.e. 3

2n.
Regarding the gridsize, observe that every vertex introduces either a

new row or a new column in the drawing of T but not both; therefore the
embedding of T can be drawn on a grid with h rows and n − h columns (if
we do not consider all the free rows and columns, disappearing after the last
step of the algorithm). Furthermore, after the second step of the algorithm,
an edge of type b. of Fig. 3.25 does not introduce new rows nor new columns.
All the other edges introduce both a column and a row.

For this reason, in the worst case, n
2 +1 new columns and n

2 +1 new rows
are introduced. Therefore, Total Area ≤ (h + n

2 + 1) × (n − h + n
2 + 1) and

its maximum value is reached when h = n
2 ; in this case we have:

Total Area ≤ (n + 1) × (n + 1).

Observe that the maintenance of 1-bend drawing requires the use of the
Steps “Elimination of 2-bend edges” and “Movement of the Root.” The
first one wastes both area and number of bends. For this reason, if these
steps are eliminated from the algorithm, better upper bounds for area and
total number of bends can be achieved, despite the increase of the maximum
number of bends per edge.

Theorem 9 Given an at most cubic graph G with n vertices, ParCub with-
out the Step “Elimination of 2-bend edges” computes a layout of G with at
most n + 3 bends, O(n) maximum edge length, and (3

4n + 1
2) × (3

4n + 1
2 )

maximum area of the grid. The number of bends on every edge is at most
two.

Proof Only the differences with the previous proof will be stressed.
All non-tree edges can contain either one or two bends and the worst case

happens when two bends are introduced by every edge since 2(n
2 + 1) bends

are introduced. It follows that the maximum number of bends is n + 3.



3.3. A PARALLEL ALGORITHM 61

Concerning the gridsize, notice that, after the second step of the al-
gorithm, an edge having one bend does not introduce new rows nor new
columns; an edge having two bends introduces exactly one column.

For this reason, in the worst case, n
2 + 1 new columns are introduced.

Therefore, Total Area ≤ h× (n−h+ n
2 +1) having its maximum value when

h = 3
4n + 1

2 ; in this case we have:

Total Area ≤ (
3

4
n +

1

2
) × (

3

4
n +

1

2
).

The following example shows how the algorithm works on a typical input.
Consider cubic graph G = (V,E) in Fig. 3.29.a and one of its spanning

trees T (Fig. 3.29.b). In Fig. 3.30, T is embedded in the grid according
to all the parameters mentioned in the algorithm. Fig. 3.31 shows all the
directions assigned to non-tree edges and the directly 1-bend edges. Finally,
Fig. 3.32 and 3.33 show the output both in the complete case and without
the elimination of 2-bend edges.



62 CHAPTER 3. ORTHOGONAL DRAWING

16

14

15

17

18
13

19

4

5
3

6

7

8

9
2

10

11

12
1

20

@@

�
�

�
�

�
�

�� ��

ll
��

�
�

�

m7

DDaa

ee##

llm9

m
m
m

m
m

11

12

13

18 14

17

m19 m8m10
m15
mm67

m16
���� m
mm

3

4

5

m

m2
m

m 1

20m

m
mm
mm
m m
m
m

1

2

16

20

4

5

19

9

6

3
##

aa

((m

m m
m
mm
m

m

m8
15

17

14

13

18

11

12

10

QQ
A
A
A

��

��











@
@

�
�
�
��

�� �
�

�
��

�� @@��

@@��

PPPPPP

ba

Figure 3.29: A cubic graph G and a spanning tree T for G with a post-order
numbering.



3.3. A PARALLEL ALGORITHM 63

18
16
14
12

10 13

14

15
16

17
18

19

4
5

3

6
7
8
910

1

11

20

2

12

u u
u u

210

uu
uu
uuu
u

u
uu
uuuuu

168147...6342210

36
34
32
30
28
26
24
22
20

8

6
4
2
0

Figure 3.30: The embedding of T on a grid.



64 CHAPTER 3. ORTHOGONAL DRAWING

13

13

15

18

2

43

16

5

9

14
11

12

2

1

1

s-
?

12

s

20

-
s-

18

0

2

4

6

8

10

12

14

16

0 21 42 63 147 168s s s 210

1

5
6

7

�s

8

s17�
s

4

-
?

s

2

�s
14

�

9
s s

13

11

10 � ss
166 ss

19

6s s

15

18

20

22

24

26

28

36 s
3

-
?

�

Figure 3.31: The partial drawing of G after the execution of the first three
phases of the second step of the algorithm. If an arrow goes either from
a vertex i to a number j into a square or vice-versa, it means that the
corresponding direction is assigned to the edge {i, j}.



3.3. A PARALLEL ALGORITHM 65

3

1

20

15

14

13

12

11

10

9

8

7

4

3

2

121110987654321

5

6

1

s s
s

0

0

s s sss s
ss
s
s ss
s

ss s

s

19

15

16

11

18

7

10

2

13

8

9

5

6

17

12

4

14

Figure 3.32: The 1-bend drawing of G found by ParCub.



66 CHAPTER 3. ORTHOGONAL DRAWING

14

13

17

6
5

8

9

2

10

20

1

12

7

18

11

16

15

19

3s

s
s
s ss

ss
sss

ss
ssss0

sss

1 2 3 4 5 6 7 8 9 10 11 12

10

11

12

13

4

0

1

6

5

2

3

4

7

8

9

Figure 3.33: The 2-bend drawing of G found by ParCub.



Chapter 4

Interconnection Networks

4.1 Introduction

Experience with the design and use of parallel computers indicates that a
parallel computer (among other things) is largely dependent on the proper-
ties of the interconnection network that connects processors to memory or
processors among themselves. Namely, the interconnection network not only
affects the hardware architecture but also the nature of the system software
(such as the network operating system).

Among all existing interconnection networks, the well known binary n-
cube or hypercube [127] has been recognized as one of the most efficient; it
has been used to design various commercial multiprocessor machines and it
has been extensively studied. One of the reasons why the hypercube is so
useful is that all of the algorithms for arrays, trees and meshes of trees can be
“automatically” implemented on a hypercube. One drawback of hypercubes
is that the degree of nodes increases (logarithmically) with the size of the
network, so much that they are no longer suitable for applications involving
a large number of nodes. Indeed, the complexity of the communications
portion of a node can become fairly large as the number of nodes increases.
Furthermore, the orthogonal layout of a network has sense only if the de-
gree is not greater than four. All of these reasons lead us to consider low
and fixed node degree networks as an important and essential component
in designing any parallel and distributed system. In order to keep the good
properties and, at the same time, to avoid the difficulties associated with
high node degrees in hypercubes, several variations of the hypercube having
similar computational properties but bounded degree (usually three or four)

67



68 CHAPTER 4. INTERCONNECTION NETWORKS

have been devised. The most popular derivative networks are the butterfly
[18], shuffle-exchange [87, 90, 110], de Bruijn [114], Beneš [13] and cube-
connected cycles (CCC) [34, 117] networks. The latter one is modeled by a
cubic graph derived from a hypercube. Informally, we can say that to ob-
tain the CCC model, Transformation One (cf. Subsection 2.2.3) is applied
to the hypercube. Besides these classical bounded degree networks, some
others have been introduced very recently, like Trivalent Cayley networks
[151]. They belong to the class of interconnection networks based on Cayley
graphs, i.e. graphs whose adjacency structure is governed by a group. Usu-
ally, Cayley interconnection networks have an architecture with substantive
advantages, in terms of algorithmic efficiency and fault tolerance. Support
for their case comes in part by noting that many interconnection networks of
algorithmic and commercial importance are Cayley graphs, including the hy-
percube, butterfly (with wraparound), cube-connected cycles, multiple rings
[150] and star [3, 40] networks. For a survey on Cayley graphs and their
properties, see [6, 7, 88].

There are several considerations to take into account in order to measure
the ‘goodness’ of a network and eventually select one network instead over
another one in the development of parallel computers. Some such parameters
are degree, diameter, distribution of the disjoint paths between a pair of
vertices in the graph and layout.

It is desirable that each pair of processors is connected but in this way
the number of connections coming out from the same processor would in-
crease arbitrarily when the network increases, while it is limited by physical
characteristics. Therefore, the degree relates to the port capacity of the
processors and, hence, to the hardware cost of the network.

Since not all processors are directly connected among them, in general
it takes more than constant time to transfer data from one processor to
another. The maximum communication delay between a pair of processors
in a network is measured by the diameter of the graph. Thus, diameter is a
measure of the running cost of the network.

Knowledge of the distribution of disjoint paths is crucial to the design
of a routing table, which is a critical part of the network operating system.
Further, since the number of parallel paths between a pair of nodes is limited
by the degree of the underlying graph, the knowledge of this distribution is
helpful in the evaluation of the fault tolerance of the network.



4.1. INTRODUCTION 69

Layouts of graphs on rectilinear grids are of wide interest for their ap-
plications in the study of the VLSI layout problem for integrated circuits
[144], as well as in the study of algorithms for drawing graphs. Further,
each such layout is a restricted form of embedding of a graph in the grid
[125], hence contributes to the study of the mapping problem for parallel ar-
chitectures [17, 25], particularly the problem of mapping parallel programs
onto mesh-structured parallel architectures [131].

Some networks are of primary interest in the next sections, so we collect
their definitions and some related results here.

Since the processors of a network may be put in correspondence with the
vertices of a graph and the communication links between processors may
be seen as the edges connecting the vertices, networks can be conveniently
modeled by using tools from graph theory [68]. Henceforth, we will use the
terms ‘network’ and ‘graph’ interchangeably; the same holds for the terms
‘communication link’ and ‘edge,’ though usually the term ‘node’ will be
preferred to ‘vertex.’

Butterfly networks. For each integer n, the n-level butterfly network Bn

has node-set {0, 1, . . . , n}×{0, 1}n where {0, 1}n denotes the set of length-n
binary strings.

For each 0 ≤ ℓ ≤ n, the set {ℓ}×{0, 1}n is the ℓth level of Bn. The nodes
at level 0 of Bn are called inputs, and those at level n are called outputs
(the terms “input” and “output” derive from the fact that the (n + 1)-level
butterfly network is the data-dependency graph of the 2n-input Fast Fourier
Transform algorithm [1]). The string x ∈ {0, 1}n is the position-within-level
string (PWL string, for short) of node 〈ℓ, x〉. Each node

〈ℓ, β0β1 · · · βℓ−1βℓβℓ+1 · · · βn−1〉

on level ℓ (0 ≤ ℓ < n; each βi ∈ {0, 1}) of Bn is connected by a level-ℓ
straight-edge with node

〈ℓ + 1, β0β1 · · · βℓ−1βℓβℓ+1 · · · βn−1〉

on level ℓ + 1, and by a level-ℓ cross-edge with node

〈ℓ + 1, β0β1 · · · βℓ−1βℓβℓ+1 · · · βn−1〉

on level ℓ + 1. When Bn is drawn level by level, in such a way that, at each
level, the PWL strings are the reversals of the binary representations of the



70 CHAPTER 4. INTERCONNECTION NETWORKS

Figure 4.1: Two different views of B3.

integers 0, 1, . . . , 2n − 1, in that order of the levels of Bn, we get the familiar
drawing of Bn shown in Fig. 4.1.a when n = 3.

The following lemma will be useful in Section 4.2.

Lemma 2 [50] For any non-negative integers j and k the subgraph of Bn

induced by the nodes of levels j, j + 1, . . . , j + k is the disjoint sum of 2n−k

copies of Bk.

Note that we use the term “sum” here, rather than “union” to emphasize
that the constituent graphs share neither nodes nor edges.

Trivalent Cayley Interconnection Networks. For each integer n, the n-
dimensional Trivalent Cayley interconnection network (TCIN) Cn = (V,E)
has a node set corresponding to a circular permutation in lexicographic order
of n symbols, a1, a2, . . . , an, complemented or uncomplemented. Each edge
is of the type (v, δ(v)), where δ ∈ {f, f−1, g}, defined in the following way:

− f(a∗ka
∗
k+1 · · · a∗na∗1 · · · a∗k−1) = a∗k+1 · · · a∗k−1a

∗
k (f -edge)

− f−1(a∗k · · · a∗na∗1 · · · a∗k−2a
∗
k−1) = a∗k−1a

∗
k · · · a∗k−2 (f−1-edge)

− g(a∗k · · · a∗na∗1 · · · a∗k−1) = a∗k · · · a∗k−1 (g-edge)

where a∗k · · · a∗na∗1 · · · a∗k−1 denotes the label of an arbitrary node and a∗i de-
notes either ai or ai. Notice that δ is closed under inverse since g = g−1 and
that the resulting graph is cubic.

The cardinality of V is n2n since for n distinct symbols there are exactly
n different cyclic permutations and each symbol can be present either in
complemented or uncomplemented form. The cardinality of E is 3n2n−1 for
the cubicity of Cn. Fig. 4.2 shows a TCIN of dimension three.

In the following we associate to each label starting with a1 a binary
string: the bn−k-th bit is equal to 1 or to 0 according to the fact that symbol
ak, k = 2, . . . , n is uncomplemented or complemented, respectively.

We call f-cycle a cycle consisting of only f -edges (equivalently f−1-edges).

Fact 1 [151] All the n2n nodes are partitioned into 2n−1 disjoint f-cycles of
length 2n. Nodes v and v are in the same f-cycle.



4.1. INTRODUCTION 71

abc
bca

cab

abc
bca

cab

abc
bca

cab
abc

bca

cab

abc
bca

cab

abc

bca

cab
abc

bca

cab

abc

bca

cab

-

- -

- - -

- -

-

-
- -

- - -
- -

-

-
- -

- - -

- -

-

-

- -

-

- -

-

- -

Figure 4.2: TCIN of dimension three.

Each f-cycle has a unique node starting with a1 and the associated binary
string, bn−2 . . . b0, identifies the f-cycle.

On each f-cycle the node starting with a1 is numbered one, all the other
nodes are consecutively numbered from 2 to 2n, clockwise.

This means that the k-th and the (n + k)-th nodes start with ak and ak

respectively, or vice-versa.

Grids. For integers m and n, the m×n grid (or, mesh) Mm,n has node-set

{1, 2, . . . ,m} × {1, 2, . . . , n}.

The edges of Mm,n connect nodes 〈i, j〉 and 〈i′, j′〉 just when |i−i′|+|j−j′| =
1. The path induced by the set of nodes {i}×{1, 2, . . . , n} (respectively, the
set {1, 2, . . . ,m} × {j}) is the i-th row (respectively, the j-th column) of
Mm,n. We call the product mn the area of grid Mm,n.

Four auxiliary graphs will be used in our study. Two augmented ver-
sions of the butterfly network will be useful in constructing the layout of
Bn in Subsection 4.2.2. The complete bipartite graph and the Cube Con-
nected Cycles network will be useful to prove the lower bound of area in
Subsection 4.2.3 and in Subsection 4.3.2, respectively.

Augmented Butterfly Networks. We denote by B′
n the network obtained

by appending two new nodes, called output terminals to each output of



72 CHAPTER 4. INTERCONNECTION NETWORKS

Bn (see Fig. 4.3.a). We denote by B′′
n the network obtained by appending

two new nodes, called input terminals to each input of B′
n (see Fig. 4.3.b).

We refer to the input terminals collectively and to the output terminals
collectively as a terminal group.

Figure 4.3: a. B′
2 and b. B′′

2.

The following result, a proof of which can be found in [50], indicates that
the designations “input” and “output” in our definitions of Bn and B′′

n are
artificial and are only useful as an aid in visualizing the networks.

Lemma 3 There is an automorphism of Bn that maps each level 0 ≤ ℓ ≤ n
of the networks onto level n − ℓ. There is a similar automorphism of B′′

n,
that maps the input terminals onto the output terminals and vice-versa.

Complete Bipartite Graphs. The N × N complete bipartite graph Kn,n

has n input nodes V (i) and n output nodes V (o); its edges connect every
input u ∈ V (i) with every output v ∈ V (o).

Cube Connected Cycles Networks. The r-dimensional Cube Connected
Cycles network CCCr is constructed from the r-dimensional hypercube by
replacing each node of the hypercube with a cycle of r nodes in CCCr. The
i-th dimension edge incident to a node of the hypercube is then connected to
the i-th node of the corresponding cycle in CCCr. CCCr has r2r nodes each
with degree three. By modifying the labeling scheme of the hypercube, we
can represent each node by a pair 〈w, i〉 where i (1 ≤ i ≤ r) is the position
of the node within its cycle and w (an r-ary bit binary string) is the label
of the node in the hypercube that corresponds to the cycle. Therefore, two
nodes 〈w, i〉 and 〈w′, i′〉 are connected by an edge in CCCr if and only if
either:

w = w′ and i − i′ = ±1 mod r or

i = i′ and w differs from w′ in precisely the i-th bit.

Now, we recall some definitions and give some preliminary results.



4.1. INTRODUCTION 73

Definition 5 An embedding of graph G into graph H (which has at least
as many nodes as G) comprises a one-to-one association α of the nodes of
G with nodes of H, plus a routing ρ which associates each edge (u, v) of G
with a path in H that connects nodes α(u) and α(v).

Definition 6 The congestion of embedding 〈α, ρ〉 is the maximum, over all
edges e in H, of the number of edges in G whose ρ-routing paths contain edge
e.

The notion of a grid-layout of a graph G can be formulated as a special
kind of embedding of G into a grid; there are alternative, equivalent formu-
lations of the notion which make it a special kind of drawing of G in the
plane. We follow the formulation given in [144].

Definition 7 A layout of an N -node graph G in a grid Mm,n, where N ≤
mn, is an embedding 〈α, ρ〉 of G into Mm,n whose routing paths collectively
satisfy the following conditions:

• Distinct routing paths are edge-disjoint, so the embedding that embodies
a layout has unit congestion. It follows that at most two routing paths
can “cross” at a node of Mm,n, i.e., touch the node without terminating
there.

• Routing paths sharing an intermediate node of Mm,n must cross at
that node; that is, one path enters the node from the left and leaves
toward the right, while the other path enters the node from the bot-
tom and leaves toward the top. Thus, we do not allow “knock-knee”
routing [101].

• A routing path may touch no image node α(u), except at its endpoints.

Definition 8 The minimum bisection width of a graph G, MBW(G), is
the smallest number of edges whose removal partitions G into two disjoint
subgraphs, each containing half of the nodes.

Lemma 4 [144] For any graph G, the area of the smallest grid in which G
can be laid out is greater or equal to (MBW (G) − 1)2.

Following the same reasoning detailed in Subsection 4.2.3, it is possible
to prove the next lemma.



74 CHAPTER 4. INTERCONNECTION NETWORKS

Lemma 5 [90] Let ǫ be an embedding of a graph G into a graph H that has
congestion C, then the following inequality holds:

MBW (H) ≥ 1

C
MBW (G).

As a consequence of Lemmas 4 and 5, the lower bound of the area of a
network H is computed through an embedding ǫ into H of a graph G whose
MBW is known. Moreover, we need to know the congestion C of ǫ. In this
way, we have that:

lower bound on the layout area of H ≥ (MBW (H) − 1)2

≥ (
1

C
MBW (G) − 1)2.

This formula provides a general method for computing a lower bound on
the area of a layout of a graph H when an embedding of congestion C for
an auxiliary graph G into H is known, and MBW (G) is given.

In the rest of this chapter we deal with two classes of networks both
Cayley and fixed node degree graphs. In particular, in Section 4.2 an optimal
layout of the butterfly network is exhibited and it is proved that no better
layouts may exist. In Section 4.3 Trivalent Cayley interconnection networks
are studied. Related to them, both the optimal routing and the layout
problems are investigated.

4.2 A Tight Layout of the Butterfly Network

4.2.1 Introduction

The fields of graph embedding and VLSI layout have developed powerful
techniques which produce embeddings and layouts which are quite efficient
–often within constant factors of optimal [18, 20]. However, even a modest
constant factor may render an asymptotically optimal layout or embedding
unacceptably inefficient in practice. This observation motivates the work
explained in this section. Namely, we find a grid-layout of the butterfly net-
work [18] whose deviation from optimality is of lower order than a constant
factor. This goal is achieved by presenting, in Subsection 4.2.2, a layout of
the N -input, N -output butterfly network whose area is (1 + o(1))N2, and



4.2. A TIGHT LAYOUT OF THE BUTTERFLY NETWORK 75

by proving, in Subsection 4.2.3, that no layout of this network can have area
smaller than (1 − o(1))N2. Thus, upper and lower bounds coincide up to a
low-order additive term.

Both the upper and lower bound components of this result improve prior
bounds for butterfly network layouts. The previously best known lower
bound for the layout area of the N -input, N -output butterfly network was
1
4N2 [144, 145]. The 1981 upper bound of 2N2 for the same problem [159]
was improved only in 1992, to 11

6 N2 [43].

4.2.2 The Upper Bound on Layout Area

The layout of Bn proceeds by finding layouts of subgraphs of Bn and “splic-
ing” them together. This intuitive operation is now formally defined.

Suppose we are given a graph G, a graph H, a sequence σ = 〈u1, u2, . . . , uk〉
of distinct nodes of G, and an equal-size sequence σ′ = 〈v1, v2, . . . , vk〉 of dis-
tinct nodes of H. Say that G has nodes U ∪ {u1, u2, . . . , uk} and that H
has nodes V ∪ {v1, v2, . . . , vk}, where the sets U , V , {u1, u2, . . . , uk} and
{v1, v2, . . . , vk} are pairwise disjoint. The operation of splicing graphs G and
H along sequences σ and σ′ produces the graph F whose nodes comprise the
set

U ∪ V ∪ {〈u1, v1〉, 〈u2, v2〉, . . . , 〈uk, vk〉}
and whose edges connect node w1 and w2 just when:

• {w1, w2} ⊆ U (respectively, {w1, w2} ⊆ V ), and w1 and w2 are adjacent
in G (respectively, in H);

• w1 = 〈ui, vi〉, w2 ∈ U , and ui and w2 are adjacent in G;

• w1 = 〈ui, vi〉, w2 ∈ V , and vi and w2 are adjacent in H;

• w1 = 〈ui, vi〉, w2 = 〈uj , vj〉, and either ui and uj are adjacent in G, or
vi and vj are adjacent in H (or both).

Examples of Splicing. (a) One can splice one copy of Mm,n along its right
side to another copy of Mm,n along its left side, to produce an instance of
Mm,2n−1. (b) One can produce B3 by appropriately splicing the disjoint sum
of two copies of B2 with the disjoint sum of four copies of B1; the former
sum produces the first two levels of B3, the latter sum produces the last
level of B3, and the two sums combine to produce the third level of B3; cf.
Fig. 4.1.a.



76 CHAPTER 4. INTERCONNECTION NETWORKS

Our final example, depicted in Fig. 4.1.b, is so relevant to our layout that
we encapsulate it as a lemma (whose proof is left to the reader).

Lemma 6 Let the sequence σ = 〈u1, u2, . . . , u2n+1〉 list all the output termi-
nals of B′

n, in an arbitrary order. Splicing B′
n with a copy of itself along σ

produces Bn+1.

We finally have all the machinery we need to study grid layouts of but-
terfly networks. To simplify our exposition, henceforth let n be an arbitrary
positive integer, and let N = 2n.

Theorem 10 For all positive integers n, there is a grid-layout Ln of Bn

such that its area is not greater than (1 + o(1))N2.

Theorem 10 will be proved via a sequence of reductions.

The First Reduction

It is possible to construct the desired layout of Bn+2 from four copies of
a suitable layout of B′′

n.

Lemma 7 One can construct a grid-layout Ln+2 of Bn+2 with the area in-
dicated in Theorem 10, from four copies of a grid-layout L′′

n of B′′
n, that has

the following properties.

• L′′
n places B′′

n in a (2N + o(N)) × (2N + o(N)) grid M;

• L′′
n places one terminal group of B′′

n on a vertical side of M and the
other terminal group on a horizontal side of M.

Proof Assume, with no loss of generality, that the given layout L′′
n

places the terminal groups on the bottom and right sides (see Fig. 4.4.a).

Flip L′′
n around its right side to produce layout L̃′′

n of B′′
n. Splice layouts L′′

n

and L̃′′
n along the pivot line, as depicted in Fig. 4.4.b. By Lemma 6, the

resulting layout, call it L′
n+1, is a layout of B′

n+1.

Next, flip layout L′
n+1 around its bottom to produce layout L̃′

n+1 of

B′
n+1. Splice layouts L′

n+1 and L̃′
n+1 along the pivot line to produce the

layout Ln+2; see Fig. 4.4.c. By Lemma 6, Ln+2 is a layout of Bn+2. (Note
the implicit use of Lemma 3 here.) Clearly, layout Ln+2 resides in a (4N +
o(N)) × (4N + o(N)) grid, hence is the layout specified in the theorem.



4.2. A TIGHT LAYOUT OF THE BUTTERFLY NETWORK 77

Figure 4.4: a. L′′
n: a layout of B′′

n; b. L′
n+1: a layout of B′

n+1; c. Ln+2: a
layout of Bn+2.

Thus, the layout problem has been reduced to one of producing a layout
L′′

n, as used in Lemma 7.

The Second Reduction
The layout L′′

n of Lemma 7 is now constructed.

Lemma 8 Suppose it is possible to lay any B′′
m out in a (2m+1 + o(2m)) ×

o(4m) grid, in such a way that each terminal group of B′′
m resides on one of

the length-(2m+1+o(2m)) (vertical) sides of the grid. Then one can construct
the grid-layout L′′

n of B′′
n described in Lemma 7.

Proof Let the levels of B′′
n be numbered −1, 0, . . . , n, n+1, where levels

(−1) and (n + 1) are the terminal groups. We create our layout of B′′
n in

stages.

First, pick any k ∈ {0, 1, . . . , n − 1}, and construct the graph B(k)
n from

B′′
n by placing a new node—called a token—on every edge connecting levels k

and k + 1 of B′′
n (or, equivalently, by replacing every such edge by a length-2

path). Note that B(k)
n has n+4 levels, numbered −1, 0, 1, . . . , n, n+1, n+2,

with the tokens residing in level k + 1. Clearly, any layout of B(k)
n is also a

layout of B′′
n.

Next, decompose B(k)
n along the token-level into

• Gk,1: the induced subgraph of B(k)
n on levels −1, . . . , k + 1

• Gk,2: the induced subgraph of B(k)
n on levels k + 1, . . . , n + 2.

Easily, one can obtain B(k)
n by splicing Gk,1 and Gk,2 along the replicated

level. Importantly, by Lemma 2, Gk,1 is the disjoint sum of 2n−k copies of
B′′

k, while Gk,2 is the disjoint sum of 2k+1 copies of B′′
n−k−1.

For definiteness, let us now assume that n is odd, and let us consider the

graphs B(k)
n , Gk,1, and Gk,2 when k = (n − 1)/2. When n is even, we must

adjust the details of our layout and its analysis, but only in ways that affect
low-order terms; details are omitted because the analysis is similar. In the



78 CHAPTER 4. INTERCONNECTION NETWORKS

case at hand, both Gk,1 and Gk,2 are disjoint sums of 2(n+1)/2 disjoint copies
of B′′

(n−1)/2.

Figure 4.5: Resplicing L(1) and L(2).

Now it is possible to construct the desired layout of B′′
n from the claimed

layout of B′′
(n−1)/2. To this end, let L be a layout of B′′

(n−1)/2 in a (2(n+1)/2 +

o(2n/2))×o(2n) grid, in which the terminal groups reside on opposing vertical
sides (of size 2(n+1)/2 + o(2n/2)).

First construct a layout L(1) of G(n−1)/2,1, by abutting 2(n+1)/2 copies of
L, with its token level on the left side, along their (long) horizontal sides.
Note that these grids are not spliced: abutting two copies of the m× n grid
along vertical sides creates a copy of the m× 2n grid. Layout L(1) resides in
a (2N + o(N)) × o(N) grid.

Next, rotate layout L(1) by 90 degrees to produce L(2), a layout of
G(n−1)/2,2 with the token level on the top side.

As the next to last step, place layouts L(1) and L(2) in the smallest
grid M which will hold them in the following non-overlapping configuration.
Position layout L(1) flush with the top and right sides of M, and position
layout L(2) flush with the left and bottom sides of M (see Fig. 4.5). One
verifies easily that a (2N + o(N)) × (2N + o(N)) grid is large enough to
accommodate these placements of layouts L(1) and L(2).

Finally, splice G(n−1)/2,1 and G(n−1)/2,2 along the token level, in order to

recreate B((n−1)/2)
n . Since all of the nodes to be “merged” have unit degree,

we can accomplish the splicing by routing a specific bijection from nodes
on the left side of L(1) to nodes on the top side of L(2). Our positioning of
layouts L(1) and L(2) within M has left a large unpopulated area (as one
can see in Fig. 4.5) in which any such bijection can be routed in a cross-bar
fashion.

This completes the layout of B((n−1)/2)
n , hence of B′′

n.

The Third Reduction

The final task is to construct the layouts of B′′
n demanded in Lemma 8.

These layouts will be constructed implicitly, by appealing to a result of
Pinter [113] on channel routing.



4.2. A TIGHT LAYOUT OF THE BUTTERFLY NETWORK 79

An (h, l, k) cross-channel routing problem involves an h × l grid (the
channel) and a set of k two-point nets: each net is a pair of gridpoints that
reside on opposite vertical sides of the grid. The problem is to construct k
edge-disjoint paths that connect every net and which can simultaneously be
laid out in the grid. Such a layout may not be possible if the grid is too
small; Pinter guarantees that a grid, which is not too big, is enough.

Lemma 9 [113] Any (h, l, k) cross-channel routing problem satisfying h > k
and l > 3

2k + 1 can be routed within the given grid.

Lemma 9 enables the desired layouts of B′′
n in the following way.

Lemma 10 One can lay B′′
n out in an (2n+1 + 1) × O(n2n) grid, in such a

way that each terminal group of B′′
n resides on one of the vertical sides.

Proof We place each of the n + 1 internal levels of nodes of B′′
n in a

(2n+1 +1)× (2n +2) grid, in the staggered fashion depicted in Fig. 4.6. That
is, the nodes of a level are placed on grid-points of the form 〈2i, i+1〉, where
i = 1, . . . , 2n. (We shall see momentarily that Lemma 9 allows us to specify
the exact mapping of butterfly nodes to these grid-points in any arbitrary
way.)

Figure 4.6: A layout of B′′
2 .

Now, route four edges out of each node to four “terminals,” two on each
vertical side of the grid, as depicted in Fig. 4.6. Align the layouts of the n+1
internal levels of B′′

n horizontally, keeping a space of 3
2 2n+1+2 between them,

so that we can apply Lemma 9. Easily, this produces the claimed layout of
B′′

n in a (2n+1 + 1) × O(n2n) grid.

Figure 4.7: The overall layout of Bn.

Now all the machinery necessary to create the layout of Theorem 10 has
been provided. The overall layout of Bn implicit in our proof is depicted in



80 CHAPTER 4. INTERCONNECTION NETWORKS

Fig. 4.7; the inputs and outputs of the network are on the middle vertical
and horizontal lines, respectively; the shadowed areas contain no butterfly
nodes, being dedicated to routing butterfly edges.

4.2.3 The Lower Bound on Layout Area

This section is devoted to proving the lower bound on the layout area of Bn.

Theorem 11 For all positive integers n, any grid-layout of Bn has area at
least (1 − o(1))N2.

We modify the basic lower-bound strategy invented in [144] and hinted
at in Section 4.1 via the non-standard notion of special-bisection of a graph.

Let G be a graph having a designated set of 2c > 0 special nodes. The
minimum special-bisection width of G, denoted MSBW (G), is the smallest
number of edges whose removal partitions G into two disjoint subgraphs,
each containing half of G’s special nodes.

Lemma 11 For any graph G, it is not possible to lay G out in an area less
than (MSBW (G) − 1)2.

Proof We consider an arbitrary layout of G in Mm,n, where, without
loss of generality, m ≤ n. As in [144], we find there is a line L that has a
single unit-length jog, which can be positioned on a drawing of Mm,n in the
following way.

• L is aligned with the columns of Mm,n in such a way that the portion
of L above the jog lies to the left of some column c of Mm,n; the jog of
L lies below some row of Mm,n; the portion of L below the jog either
lies outside of Mm,n, or it lies to the right of column c.

• Removing the grid-edges crossed by L yields a special-bisection of G.

By definition, at least MSBW (G) edges of G must cross line L. By con-
struction, at most m + 1 edges of Mm,n cross line L. It follows that
m ≥ MSBW (G) − 1, hence the lemma follows.

The next goal is to show that, when the input and output nodes of Bn

are designated as special, then MSBW (Bn) ≥ 2n. To this end, employ the
N ×N complete bipartite graph KN,N as an auxiliary graph. First, we note
that, if we designate all nodes of KN,N as special, we obtain the following
lower bound on MSBW (KN,N ).



4.2. A TIGHT LAYOUT OF THE BUTTERFLY NETWORK 81

Lemma 12 MSBW (KN,N ) = 1
2N2 when all nodes of KN,N are special.

Proof Consider an arbitrary linearization of the nodes of KN,N . Cut
the linearization in half. Say that this cut places K input nodes on one
side of the cut, hence N − K on the other. Clearly, the output nodes of
KN,N are cut in exactly complementary proportions. Since KN,N has an
edge between every input and every output, the K inputs and K outputs
that are separated by the cut give rise to K2 edges crossing the cut, while
the N − K inputs and N − K outputs that are separated by the cut give
rise to (N − K)2 cut edges. We thus have K2 + (N − K)2 edges of KN,N

crossing the cut. This quantity is minimized when K = 1
2N , in which case

1
2N2 edges cross the cut.

We employ a technique for bounding unknown MSBW ’s from known
ones, which derives from a technique originated in [90] and refined in [126]
making use of congestion arguments.

Focus on a graph H which has k special nodes, whose MSBW we wish to
bound from below. Suppose to have an auxiliary graph G which has k special
nodes, whose MSBW we know. Suppose further to have an embedding ǫ of
G into H, which maps the special nodes of G onto the special nodes of H, such
that the congestion of ǫ does not exceed C. The claim is that MSBW (H) ≥
(1/C)MSBW (G). This inequality holds because the embedding ǫ allows
us to view the act of partitioning H into two disjoint subgraphs having
equinumerous sets of special nodes as simultaneously partitioning G into
two disjoint subgraphs having the same partition of special nodes. With
this view in mind, one can consider the act of removing any particular edge
e of H as effectively removing all edges of G that are routed over e by the
embedding ǫ. If we know that ǫ never routes more than C edges of G over
any edge of H, which is what our upper bound on the congestion of ǫ means,
then we know that cutting an edge of H simultaneously cuts no more than
C edges of G. Since we also know that at least MSBW (G) edges of G must
be cut in order to effect the desired partition of G, we can infer that at least
MSBW (H) ≥ (1/C)MSBW (G) edges of H must be cut in order to effect
the desired partition of H. This argument yields the following lemma.

Lemma 13 (The Congestion Lemma) Let G and H be graphs having equal
numbers of special nodes. If there is an embedding of G into H which maps
special nodes to special nodes and which has congestion less than or equal to
C, then

MSBW (H) ≥ (1/C)MSBW (G).



82 CHAPTER 4. INTERCONNECTION NETWORKS

The lower bound can be obtained via the congestion technique, by letting
N = 2n and analyzing the “natural” embedding of KN,N (which plays the
role of the guest graph G) into Bn (which plays the role of the host graph
H).

Lemma 14 One can embed KN,N into Bn with congestion 2n−1 = 1
2N , in

such a way that the inputs and outputs of KN,N map, respectively, to the
inputs and outputs of Bn.

Proof Note that Bn has the ‘banyan’ property: each input node u is
connected to each output node v by exactly one path of length n. Consider
any embedding ǫ of KN,N into Bn which assigns inputs of KN,N to inputs
of Bn and outputs of KN,N to outputs of Bn, and which routes the edges
of KN,N via the unique length-n path which connects the two end-points in
Bn.

Now the congestion of embedding ǫ will be analyzed. Call a path of
Bn simple if it does not visit any level twice. Let e be a level-k edge of
Bn. Since Bn has the banyan property, one endpoint of e reaches precisely
2n−k−1 distinct output nodes via simple paths, while the other endpoint of
e reaches precisely 2k distinct input nodes via simple paths. Hence, edge
e lies on precisely 2n−1 input-to-output simple paths; i.e., its congestion is
precisely 2n−1.

If we now designate all nodes of KN,N as special and the input and output
nodes of Bn as special, we infer from Lemmas 12, 13 and 14 a lower bound
on the MSBW of Bn.

Lemma 15 MSBW (Bn) ≥ 2n.

Finally, Lemma 15 combines with Lemma 11 to yield the desired lower
bound, Theorem 11, on the area of grid-layouts of Bn.

4.3 On Trivalent Cayley Interconnection Networks

4.3.1 Introduction

Trivalent Cayley interconnection networks (TCIN) [151] were introduced in
1995 as ‘good’ networks since having interesting properties like fixed de-
gree, regularity, logarithmic diameter and maximal fault tolerance. Simply
because of some of these properties, it make sense to study TCINs and to



4.3. ON TRIVALENT CAYLEY NETWORKS 83

use their cubicity to solve some typical networks’ problems. In this sec-
tion we look into Trivalent Cayley interconnection networks and show a new
three-dimensional representation of their structure. This model consists in
layering certain cycles of the network and allows us to bring to the surface
some properties that are useful both in obtaining an optimal drawing on the
grid and in computing a minimum routing.

For the first problem we prove that the lower bound on area is Ω(2n−1 ×
2n−1) and we show a method to suitably draw the network in a grid having
size of the same order. For the second problem, we present a simple algorithm
–more intuitive than the algorithm presented in [152]– working in linear time
with respect to the length of the route found.

The formal definition of n-dimensional TCIN was given in Section 4.1.
We have also already underlined the existence of 2n−1 disjoint f -cycles
(Fact 1, Section 4.1) Here some observations and preliminary results are
listed.

Definition 9 We define distance d(u, v) on a f -cycle between two nodes u
and v the minimum between the number of edges on the path P (u, v) and on
the path P (v, u).

Following function g, each f -cycle is connected to exactly n different f -cycles.
Now, the connections between different f -cycles are analyzed. For the

symmetry of the structure, it is possible to consider only nodes from 1 to n
on each f -cycle, since each node n + k has the same behavior than node k.

Fact 2 Given an f -cycle bn−2 . . . b0, each node k = a∗k . . . a∗na∗1 . . . a∗k−1 on
it is connected by function g to the node v = a∗k . . . a∗na∗1 . . . a∗k−1. If k 6= 2,

node v is the k-th node on the cycle bn−2 . . . bn−k+1 . . . b0. In other words,
we may say that node k skips 2n−k+1 − 1 cycles to find its adjacent node v.
Namely, node 1 skips no cycles and nodes 3, 4, 5, . . . skip 1, 3, 7, . . . cycles,
respectively. The only node that has a behavior different from the other ones
is node 2 (n + 2) in view of the fact that function g complements a1. Then,
node 2 of a fixed cycle bn−2 . . . b0 is connected to the (n + 2)-th node (2-nd
node) of the cycle bn−2 . . . b0.

Fact 1 (Section 4.1) and Fact 2 above lead us to see the network as the
stratification of 2n−1 f -cycles jointed by vertical and slanting connections
(see Fig. 4.8).



84 CHAPTER 4. INTERCONNECTION NETWORKS

abc

abc

abc

abc

abc

abc

abc

abc

bca

bca

bca

bca

bca

bca

cab

cab

cab

cab
cab

cab

cab

cab

bca

bca

-

--
- - -

- -

-

-
- -

- - -- -

-

- - -
- -

-- -

-

-
- - - - -

- --

11

10

01

00

Figure 4.8: Stratification of f -cycles of the TCIN of dimension 3.

Then, given any two cycles Ci and Cj either they are not joined or they
are joined by exactly two symmetric g-edges. These g-edges will be called
gate edges, shortly gates. In the following, we will analyze the properties of
the stratification structure through its projection on a plane in the direction
of its axis. It is to notice that the projection of a gate is a point except
the gate (2, n + 2) projected in a segment called bridge. Working on the
projection transforms the shortest routing problem on a TCIN into a shortest
path problem on a cycle.

4.3.2 Optimal Layout of a TCIN

In this section we will present a method to lay a TCIN out in O(2n−1×2n−1)
area, and then we will prove that this is an optimum value for the area.

The stratification structure of Fig. 4.8 let us understand that the layout
depends strongly on the mutual position of f -cycles and on the drawing of g-
edges. Indeed, the drawing of f - and f−1-edges consists of the representation
on the grid of the cycles to which they belong.

We first use the standard representation of cycles in networks: the map-
ping to rectangles of height one [91].

All vertices lay on the same side of each rectangle; therefore we can
represent a rectangle as flattened on a segment (see Fig. 4.9). Moreover,



4.3. ON TRIVALENT CAYLEY NETWORKS 85

because of the symmetry of TCINs, we may consider only half of the nodes.

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

Figure 4.9: Rectilinear scheme of the stratification model.

From the previous considerations about f -cycles and from Fact 2, it
follows that, for a fixed k 6= 2, the length of a g-edge connecting two k-th
nodes is 2n−k+1, while if k = 2, the length of g-edges incident to a second
node is not fixed. The fact that 2 is not connected to one of its homonyms
(not considering the cycles which they belong to) implies that all these g-
edges are not rectilinearly drawn in the scheme of Fig. 4.9.

In order to obtain an orthogonal drawing and to optimize the area, it is
profitable to change the order of the nodes on the cycles from 2n−2 + 1 to
2n−1 (see Fig. 4.10 that is obtained from Fig. 4.9). This choice implies that
all the blocks of g-edges with the same end-points k and length no greater
than 2n−2 are divided into two symmetrical sub-blocks of width 2n−k+1,
where 4 ≤ k ≤ n+1. As consequence, the area for representing g-edges with
end-point k will be duplicated.

Notice that blocks related to g-edges with end-points numbered 4 can
be fit into the block related to node 3. The general layout for a TCIN is as
shown in Fig. 4.11 and its area is 6 · 2n−1 × 2n−1, obtained by multiplying:

• height=2 · 2n−1:
each of 2n−1 cycles is drawn by using two rows.



86 CHAPTER 4. INTERCONNECTION NETWORKS

1

1

1

1

1

1

1

1

4

4

4

4

4

4

4

4

6

6

6

6

6

6

6

6

4

4

4

4

4

4

4

4

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

2

2

2

2

2

2

2

2

7

7

7

7

7

7

7

7

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

6

6

6

6

6

6

6

6

2

2

2

7

7

7

...

Figure 4.10: Layout of C5 with the stratification model.

• width=3 · 2n−1:

1. g-edges with end-point numbered 2 and 3 are both drawn in 2n−1

columns;

2. also g-edges with end-point numbered 4 need 2n−1 columns; since
they share 2n−1 − 2 columns with g-edges connecting nodes num-
bered 3, two columns is their contribution to the computation of
the total width;

3. each of the remaining blocks of g-edges with end-point k needs
2 · 2n−k+1 columns, 4 < k ≤ n + 1.

Since we are considering half of all the nodes on each f -cycle, the sum
of all these contributions gives half of the total width.

The layout scheme in Fig. 4.11 shows that some space is wasted. In order
to reduce the area, we transform the drawing of cycles from a stratification
model to a concentric one, as shown in Fig. 4.12. The area of this new scheme
is the best one achieved here and is 9/2 · 2n−1 × 2n−1. Height is the same
as in the flattened model. Width differs from high just for the width of the
most interior cycle, that is equal to one plus the value computed in Step 3



4.3. ON TRIVALENT CAYLEY NETWORKS 87

1 2 3 4 5...n n+1 n+2 n+3 n+4 n+5...2n

n+2 n+1 n...5 4 3 2 12n...n+5 n+4 n+3

Figure 4.11: General scheme of a TCIN on flattened rectangles.

of the flattened model. The addition of one corresponds to the contribution
of one of the two columns of Step 2.

As consequence of all previous arguments, we have:

Theorem 12 An n-dimensional TCIN can be orthogonally drawn in area
O(2n−1 × 2n−1).

This result is optimal to within a constant factor since it is of the same
order of the lower bound, as the following theorem states:

Theorem 13 Ω(2n−1 × 2n−1) area is necessary to orthogonally draw an n-
dimensional TCIN.

Proof We use the strategy already shown in Section 4.1.
We choose as guest network G of the embedding ǫ the (n−1)-dimensional

CCC network, whose MBW is Θ(2n−1) [91].
Contracting each f -cycle of a n-dimensional TCIN in a new node, we

obtain a reduced graph RTCIN that contains a (n−1)-dimensional hypercube
network [151]. It is also well known that a reduced (n − 1)-dimensional
CCC, RCCC, is a (n − 1)-dimensional hypercube network [117]. Then, to
compute the embedding ǫ, we first define the natural correspondence φ from
vertices of RCCC to vertices of RTCIN, and from edges of RCCC to edges
of the hypercube contained into RTCIN (i.e. all the edges of RTCIN except
edges derived from the edges with endpoint 2 in TCIN). Each vertex rv =



88 CHAPTER 4. INTERCONNECTION NETWORKS

1 2

3n+2

n+1 n...
5 4

3

4

5...
n

n+1n+2

n+3

n+4

n+5...2n

2

2n...n+5
n+4n+3

1

Figure 4.12: General scheme of a TCIN on concentric rectangles.

{v1, v2, . . . , vn−1} in RCCC and its correspondent φ(rv) = {1, 2, . . . , 2n} in
RTCIN are now expanded to define α:

• α(v1) = 1;

• α(vi) = i + 1, for i = 2, . . . n − 1.

For each edge e in CCC we define the following correspondence ρ:

1. if e = (vi, vi+1), i.e. e connects two vertices in the same “reduced”
node, then:

ρ((vi, vi+1)) =





path(1, 2, 3) if i = 1;
(i + 1, i + 2) for i = 2, . . . , n − 2;
path(n, n + 1, . . . , 2n, 1) if i = n − 1.

2. if e = (vi, v
′
i), i.e. e coincides with an edge in RCCC, then:

ρ(e) = f(e).



4.3. ON TRIVALENT CAYLEY NETWORKS 89

It is easy to see that the congestion C of such an embedding is one
because vertices in CCC are numbered by using the same method shown in
Fact 2 for the TCIN, and it guarantees both that the definition of ρ considers
each edge just once and that item 2 is well defined.

Let us consider the reduced networks RCCC and RTCIN obtained from
the CCC and the TCIN, respectively (cf. the proof of Theorem 13). It is
possible to see that RCCC coincides with a (n − 1)-dimensional hypercube
while RTCIN is a graph given by a (n − 1)-dimensional hypercube having
each edge duplicated and all its diagonals.

This consideration leads to deduce that these two models of networks
are similar and that our three-dimensional representation may be considered
also for CCC networks. However, the TCIN is to prefer respect to the CCC
network, when a routing problem is considered. In particular, as shown in
the following subsection, the one-to-one routing has better solution on the
TCIN because the presence of the diagonals in RTCIN halves the diameter
and the duplication of the hypercube edges allows to send messages in both
the directions, at the same time.

4.3.3 A Shortest Routing Algorithm

In the following we will present a shortest routing algorithm for connecting
a source node s with a destination node d. Since Gn is node symmetric, it
is always possible to suitably rename the symbols representing the permuta-
tions in order to map the destination node to the identity node i [151]. Then
our algorithm finds a shortest route to go from a node s = a∗s . . . a∗na∗1 . . . a∗s−1

belonging to a cycle C = bn−2 . . . b0 to the node i = a1 . . . an in the cycle
I = 11 . . . 1 (n ones).

Let us call z the number of zeros in the string bn−2 . . . b0. Before de-
scribing the two focal points which the algorithm is based on, we need to
recall, from Fact 2 that only function g moves a cycle C to a cycle C ′. In
particular, if a g-edge starts from node 2 (node n+2) of a cycle C, it reaches
a node n+2 (node 2) on cycle C. All the other g-edges connect cycles whose
identification numbers differ in just one bit.

Our routing algorithm is based onto the following two considerations:

1. A path from s to i has to pass along a fixed number of g-edges: either
z or n − z. If all 0-bits of the string bn−2 . . . b0 are complemented into
1, then z g-edges are crossed and I = 11 . . . 1 is reached. Otherwise, it
is possible first to go to I = 00 . . . 0, by switching all n − z − 1 1-bits



90 CHAPTER 4. INTERCONNECTION NETWORKS

into 0, and then to run across the slanting g-edge (2, n + 2) to arrive
to cycle I = 11 . . . 1. In other words, every path from s to i either will
“climbs up” from C to I or first will “falls down” to cycle I = 00 . . . 0
and then, through the g-edge (2, n + 2), will reaches I. To go along
different g-edges, some f - (f−1-) edges must be crossed in order to
find the endpoints of the gates. If the path directly goes from C to
I through z gates, these endpoints are exactly all the nodes starting
either with ak+1 or with ak+1 for each bn−k = 0 in the string identifying
C. Actually, for each bn−k = 0 the (k + 1)-th and (n + k + 1)-th nodes
are endpoints of a suitable couple of gates. Then we have to choose
z gates among 2z, one for each couple. In order not to overburden
the exposition, we do not specify which gate in the couple we choose,
because it will appear clear from the context. If the path first goes
from C to I, the gates are exactly the 2n − 2z remaining nodes.

2. Without loss of generality, we choose the plane containing cycle I as
projection plane (see Fig. 4.13.a). Then, the problem of finding a route
from s to i is reduced to finding a path on cycle I from the projection
of s to i, crossing the projections of the gates. The route requested will
be found combining this path with the g-edges of the previous item.
Actually, if z gates are used, then the minimum path P1 on I from the
projection of s to i, through the projection of z gates, must be found.
In the other case, since gate (2, n+2), projected on cycle I, introduces
a bridge from node 2 to node n + 2, the minimum path P2 on I has to
pass through n − z projections of gates and one of them is the bridge
(see Fig. 4.13.b).

The shortest routing problem on a TCIN is equivalent to finding on I
the two paths P1 and P2 described in item 2. and to choose the minimum
between the routes obtained by adding z g-edges to P1 and n − z g-edges to
P2, according to item 1.

Before presenting the shortest routing algorithm, we need to introduce
two new sizes: a and a′. Let gi and gi+1 be two consecutive gates and
ga2, gbs, gas and gbi the gates immediately after node 2, before node s, after
node s and before node i, respectively. Then we define:

on arc [s, i ] : a = d(v1, v2) = max{d(s, gas), d(gbi, i), d(gi, gi+1) for gi, gi+1 ∈
(s, i)}
on arc [2, s] : a′ = d(v′1, v

′
2) = max{d(2, ga2), d(gbs, s), d(gi, gi+1) for gi, gi+1 ∈

(2, s)}.



4.3. ON TRIVALENT CAYLEY NETWORKS 91

i

a'

a'

i

a

a

a b

proj(s)
proj(s)

Figure 4.13: Paths P1 and P2 on cycle I.

In the following algorithm we make the hypothesis that s is on the right
side of the bridge edge. When s is on the other side, similar considerations
generate the shortest route.

Observe that, while Steps 2-4 work on the structure projected on I, Step
5 comes back to the entire network in order to detail the route whose P ,
found in Step 4, is the projection.

Algorithm SHORTES ROUTE;

Input: a TCIN G = (V, E); the destination node s;

Output: a shortest route from i to s;

begin

1. For a given node s, find cycle bn−2 . . . b0 which it belongs to;

2. generate the set SG of 2z projections of gates:

the (k + 1)-th and the (n + k + 1)-th nodes in I are in SG

iff bn−k = 0;
compute d(s, i) and a = d(v1, v2);

find on I P1 = s
f→ v1

f−1

→ v2

f→ i;

|P1| = 2n− d(s, i)− 2a;

3. generate set SG;

add the bridge on I;

compute a′ = d(v′

1, v
′

2);

find on I P2 = s
f−1

→ v′

1

f→ v′

2

f−1

→ n + 2
g→ 2

f−1

→ i;

|P2| = n + d(s, i)− 2a′ + 1;



92 CHAPTER 4. INTERCONNECTION NETWORKS

4. if |P1|+ z ≤ |P2|+ n− z − 1
then P = P1

else P = P2;

5. shortest route:

starting from s on C, following P

repeat

go on the current cycle, along successive

f-(f−1-)edges, whose projections are on P, until

an endpoint v of a gate is reached;

if it is the last time that the proj. of v is reached by P

then go along the gate to a new cycle;

until i on cycle I is reached;

end.

The following example shows how the algorithm works on a typical input.

Let us consider a 4-dimensional TCIN. We want to compute a shortest
route from node s = a3a4a1a2 to the identity node i = a1a2a3a4. Node s
belongs to cycle C = 101 since the node starting with a1 in C is a1a2a3a4.
SG contains node numbered 4 and its symmetrical node numbered 8 because
b2 = 0 and z = 1. Now, let us project all gates on cycle I (see Fig. 4.14.a).
d(s, i) = 2 and a = max{d(s, 4), d(4, i), d(4, 4)} = 1, with v1 = s and v2 = 4.

Path P1 = s
f−1

→ 2
f−1

→ i
f−1

→ 8
f→ i and |P1| = 8 − 2 − 2 = 4.

It is easy to see that if one would choose a = d(4, i), then the path

s
f→ 4

f−1

→ s
f−1

→ 2
f−1

→ i were found, that has the same length of the previous
P1.

SG contains nodes numbered 1, 2, 3, 5, 6 and 7, and the bridge {2, 6} is
considered on I (see Fig. 4.14.b). a′ = max{d(2, s), d(2, s)} = 1; then v′1 = s

and v′2 = 2. Path P2 = s
f→ 4

f→ 5
f→ 6

g→ 2
f−1

→ i and |P2| = 4+2−2+1 = 5.

We choose P = P1 because |P1|+z < |P2|+n−z−1. Then, the shortest
route is given:

s = a3a4a1a2
f−1

→ a2a3a4a1
f−1

→ a1a2a3a4
f−1

→ a4a1a2a3
g→ a4a1a2a3

f→
a1a2a3a4 = i.

Now consider s = a1a2a3a4, belonging to cycle C = 001, z = 2. In
Fig. 4.15 cycle I is represented together with SG (Fig. 4.15.a) and SG
(Fig. 4.15.b).

P1 = s
f→ 6

f→ 7
f→ 8

f→ i and |P1| = 8 − 4 = 4.

P2 = s
f→ 6

g→ 2
f−1

→ i and |P2| = 4 + 4 − 6 + 1 = 3.

Since |P1|+ z > |P2|+ n− z − 1, P2 is chosen, and the shortest route is:



4.3. ON TRIVALENT CAYLEY NETWORKS 93

s = a1a2a3a4
f→ a2a3a4a1

g→ a2a3a4a1
f−1

→ a1a2a3a4
g→ a1a2a3a4 = i.

i

v2

v2

v1

1
2

3

45
6

7

8

i

i

v2

v2

v1

1

2

3

4
5

6

7

8

i

'

'

'

ba

a

a'
1proj(s)=v

1'proj(s)=v

Figure 4.14: Cycle I related to the first part of the Example.

i
1

2

3

4
5

6

7

8 v2

v1
1

2

3

4
5

6

7

8 '

1
'

v2
'

i= '

a=0
a'

proj(s)=i proj(s)=v

a b

Figure 4.15: Cycle I related to the second part of the Example.

Theorem 14 The algorithm SHORTEST ROUTE correctly computes in
O(n) time the shortest route from an arbitrary node s to the identity node i
in an n-dimensional TCIN.

Proof For what concerns the correctness, the path computed in Step 5
is a route because:

− it is a path going through consecutive edges defined by f, f−1, g;



94 CHAPTER 4. INTERCONNECTION NETWORKS

− it goes from s to i because g-edges lead from cycle C of s to the identity
cycle I, and f - (f−1-)edges allow the path to move along the cycles to
find gates.
This route is minimum because:

− it is possible to prove in an exhaustive way that P1 and P2 (Fig. 4.13)
cover all the possible paths from the projection of s to i crossing all
projections of the gates.

− the projection of all gates on I allow to transfer all the paths between
consecutive gates on the same cycle and then to have the possibility to
minimize the global walk;

− it is not possible to reduce the number of g-edges because each of them
switches just one bit on the binary string of the current cycle. Moreover
the algorithm computes both the paths switching 0’s in 1’s and the path
switching 1’s in 0’s.
For what concerns the complexity, it is always possible to compute in

O(n) time the number of the cycle to which s belongs, that is the binary
string associated either to a∗1 . . . a∗s−1a

∗
s . . . a∗n or to its complement.

All the operations in Steps 2 and 3 are executed in O(n) time, except
the computation of d(s, i), the addition of the bridge and the computation
of |P1| and |P2|, that run in constant time; so is Step 4.

Step 5 runs in time proportional to the length of the found route, that is
not greater than 2n. Indeed, it is easy to see that 3n/2 is an upper bound for
the length of P in view of the computation of the paths P1 and P2 and of the
constants a and a′. Furthermore, no more than n/2 g-edges are necessary to
jump through the cycles because if the number of 0-bits is greater than the
number of 1-bits, the bridge edge is introduced at the beginning to reach C.



Chapter 5

Approximation

5.1 Introduction

It is widely known that NP-complete problems are such a vast variety of
commonly encountered problems for so many fields that their intractability
must somehow be overcome computing at least an approximate solution in
polynomial time. Just these practical reasons have raised the interest and
increased the importance of approximation theory.

Among combinatorial optimization problems that are computationally
hard to solve, NP-complete optimization problems on graphs have a great
relevance both from theoretical and practical point of view.

Therefore, in the literature, a large amount of papers describing algo-
rithms approximating problems and theoretical results have been written.
In [38] a large number of these results are collected together.

As we have already observed in Chapters 1 and 2, despite the appar-
ent simplicity of cubic and at most cubic graphs, many graph problems
are no easier to solve when restricted to them. The problem of finding
a largest bipartite subgraph contained in a given graph is only an exam-
ple: it is NP-complete in general and it remains NP-complete even if the
considered graph is triangle-free and has maximum degree 3 [162]. More
generally, most graph problems, whose decision version is NP-complete, re-
main NP-complete even for this class of graphs, but they become solvable
in polynomial time for graphs of degree two [58, 62]. Therefore, it would be
desirable to understand if cubic graphs are a boundary class of graphs, i.e. if
they really are –as they seem to be with regard to numerous problems– the
‘smallest’ class of graphs for which problems are as difficult as in the general

95



96 CHAPTER 5. APPROXIMATION

case. More generally, it is still not clear if and how much boundedness of
the graph’s degree is helpful in approximation.

In the following we deal with some problems that exploit the cubic prop-
erty. Namely, we will show examples of some problems that are NP-complete
in general but that are polynomially solvable for cubic graphs; some problems
that are approximable for general graphs but for which better approxima-
tion ratios have been achieved for graphs of low degree; some problems that
for general graphs cannot be approximated within any constant approxi-
mation ratio but that have been shown to be in APX (i.e. approximable
within some constant) for bounded degree graphs. Our attempt is not to
draw up an exhaustive list, but only to show how cubicity –and more in gen-
eral, boundedness of the degree– may help in the approximation of NPO
problems.

Problems that are NP-complete in general but that are polynomi-
ally solved for cubic graphs.

A triangle packing for a graph is a collection of disjoint subsets of the
set of vertices, each containing exactly three vertices and inducing a triangle
in the graph. The Maximum Triangle Packing Problem consists of finding a
triangle packing of maximum cardinality. This problem is APX -complete in
general [83] and it remains APX -complete also if the degree of the graph is
bounded by a constant d. But if the input graph is cubic, then the problem
is polynomially solvable since only two cases arise: either the triangles are
disjoint or two of them share one edge (diamond). Therefore, it is easy to
compute the optimal solution for at most cubic graphs.

The Maximum Clique Problem in a graph consists in finding a clique of
maximum cardinality. In general, this problem is not approximable within
any constant factor [12], but for cubic graphs the problem is trivially solvable
since the maximum clique one can find in a cubic graph (different from K4)
is a triangle.

Problems that are approximable for general graphs but for which
better approximation ratios have been achieved for cubic graphs.

Given a graph G, the Minimum Vertex Cover Problem consists in finding
a minimum cardinality set of vertices V ′ such that, for any edge at least one
of its extremes is in V ′. It is obvious that any maximal matching defines a
vertex cover, which is at most twice as large as the optimal one. In [105]

it is proved that this problem is approximable within 2 − log log |V |
2 log |V | . Some

improvements can be made for graphs with degree bounds: 2− 5
d+3 + ǫ is the

approximation ratio achieved by the algorithm in [15] for odd d, improving



5.2. MIDS IN BOUNDED DEGREE GRAPHS 97

the result of [104] achieving 5/4 for at most cubic graphs and slightly worst
ratios for the other bounded degree graphs.

Problems that cannot be approximated within any constant ap-
proximation ratio for general graphs but that have been shown to
be in APX for bounded degree graphs.

An independent set in a graph is a set of vertices in which no two of them
are adjacent, and in the Maximum Independent Set Problem such a vertex
set of maximum cardinality is sought. The general maximum independent
set problem is notorious for its intractability. The problem for bounded
degree graphs is still NP-complete even when instance graphs are restricted
to be cubic and planar [59], but is approximable within a constant factor
[16] that is arbitrarily close to 6/5 for at most cubic graphs and to 7/6 for
cubic graphs [15].

A dominating set is a set of vertices such that, if a vertex of the graph is
not in this set, then one of its adjacent vertices is. The Minimum Dominating
Set Problem is not in APX [11, 98] and is approximable within 1 + log n
[82]. Variation in which the degree of the graph is bounded by a constant d
is APX -complete [108] and is approximable within

∑d+1
i=1

1
i − 0.433.

In the next section, a problem relating to the latter group is taken into
consideration and the previously known results are improved for cubic, at
most cubic and, in general, bounded degree graphs.

5.2 Approximation of Independent Dominating Set

in Bounded Degree Graphs

5.2.1 Introduction

An independent dominating set in a graph is a collection of vertices such
that it is adjacent to all other vertices, and vertices in the collection are mu-
tually non-adjacent. In the Minimum Independent Dominating Set Problem
a set of minimum cardinality is required. The problem of finding an indepen-
dent dominating set of minimum cardinality is NP-hard, even if we restrict
ourselves to graphs of degree bounded by a constant d ≥ 3. Furthermore,
the problem for general graphs cannot be approximated within any constant
approximation ratio [67], while it has been shown to be APX -complete and
approximable within d + 1 [84] for bounded degree graphs.



98 CHAPTER 5. APPROXIMATION

In this section we give approximate heuristics for MIDS in cubic and at
most cubic graphs, based on greedy and local search techniques.

Our algorithms achieve approximation ratios:

- 1.923 for cubic graphs;

- 2 for at most cubic and 4-regular graphs;

- (d2−2d+2)(d+1)
d2+1 for d-regular graphs, d ≥ 5;

- (d2−d+1)(d+1)
d2+1

for graphs of bounded degree d ≥ 4;

improving the previously known ratios of d + 1 [84], as shown in Table 5.1.

d = 3 d = 4 d = 5 d = 6 d = 7 d = 8 d = 9
previous
results 4 5 6 7 8 9 10

bounded degree
graphs 2 3.824 4.846 5.865 6.880 7.892 8.902
regular
graphs 1.923 2 3.923 4.919 5.920 6.923 7.927

Table 5.1: Table of results summarising previous and our results.

Throughout this section we consider only finite, simple, loopless and
possibly disconnected graphs. However, we do not allow isolated vertices.
Of course, since isolated vertices belong to any independent dominating set,
the previous assumption is not restrictive.

Before describing the two algorithms in detail, we give some formal def-
initions and preliminary results that will be useful in the next subsections.

Definition 10 Given a graph G = (V,E) the Minimum Independent Dom-
inating Set Problem (MIDS) is the problem of finding the smallest possible
set S∗ ⊆ V of vertices such that for all u ∈ V −S∗ there is a v ∈ S∗ for which
{u, v} ∈ E, and such that no two vertices in S∗ are joined by an edge in E.
Variation in which the degree of G is bounded by a constant d is denoted by
MIDS-d.

Given a graph G = (V,E), we denote by S∗ a MIDS and by S the solution
determined by our algorithms.



5.2. MIDS IN BOUNDED DEGREE GRAPHS 99

Lemma 16 If G is a graph of bounded degree d, then |S∗| ≥ n
d+1 .

Proof The claim follows from the fact that S∗ is a dominating set, and
each vertex v ∈ S∗ can dominate at most d vertices.

Fact 3 Given a connected graph G = (V,E) of bounded degree 2, |S∗| ≤
|V |/2. Suppose now that k vertices are forbidden to be in the MIDS. The
optimal value of such a constrained solution (if it exists) remains no greater
than |V |/2, but the k vertices are the even vertices of an odd length chain
(see Fig. 5.1). From now on we will denote by peaks such even vertices.

Figure 5.1: An example of optimal constrained solution of cardinality greater
than |V |/2

Let G = (V,E) be a graph with bounded degree d. We denote by adj(v) =
{u ∈ V |{u, v} ∈ E} and by adj2(v) =

⋃
u∈adj(v) adj(u) − {v} − adj(v).

The proposed algorithms use an auxiliary graph G′ = (V ′, E′), which at
the beginning is equal to G. Let V ′

k be the set of vertices of degree k ≤ d in
G′.

The rest of this chapter is devoted to the description of the algorithms,
that are both composed of two phases. In the former one, the algorithms
greedily select vertices of degree three and remove them and all their adjacent
vertices until the graph becomes of degree two. In the latter one, a sort of
local search phase is performed to complete the solution. When the graph
is cubic a preprocessing phase is also executed in order to improve the value
of the solution.

Then, we consider graphs of bounded degree d and d-regular graphs, for
d ≥ 4. In particular, the greedy phase proposed for at most cubic graphs is
extended to any d and iteratively repeated until the degree of the remaining
graph is greater than three. Finally, the algorithm for at most cubic graphs
is executed.

5.2.2 MIDS in at Most Cubic Graphs

In the following we first give an approximate algorithm for MIDS-3 that
we call CubMids from now on. We then prove that the proposed heuristic



100 CHAPTER 5. APPROXIMATION

approximates MIDS for at most cubic graphs within two. Finally, we show
that a slight variation of CubMids allows to achieve a guaranteed perfor-
mance ratio of 1.923 for cubic graphs.

To make the exposition clearer, we first sketch the basic strategy and
then analyze the algorithms’ performance.

The overall strategy we use to solve MIDS-3 is the following:

- while-loop (lines 4-11)

In this phase vertices of degree three in G′ are sequentially considered.
Given a vertex v ∈ V ′

3 , it is put in the independent dominating set S.
Then v and its adjacent vertices are removed from G′. Indeed, every
vertex u ∈ adj(v) is dominated by v, and adjacent vertices cannot be-
long to an independent set.
At the end of this phase, G′ = (V ′, E′) has bounded degree two. After
the execution of the while-loop, an optimal MIDS could be found in
G ′. Since all isolated vertices of any graph must be put in the MIDS,
it would be desirable to reduce their number as much as possible, even
if, at the same time, a small disadvantage is introduced.

- swap-step (lines 12-31)

The aim of this step is to benefit by a sort of local search to slow the
number of isolated vertices of G ′ down, providing that the drawback is
not too large. We define the “neighborhood structure” of any vertex
v ∈ S as the set of independent dominating sets of the subgraph of G
induced by adj(v).

Algorithm CubMids
Input: G = (V, E).
Output: S.

1. begin

2. G′ = (V ′, E′)← G = (V, E);
3. S ← ∅:
4. while (V ′

3 6= ∅) do

5. choose v ∈ V ′

3;

6. S ← S ∪ {v};
7. V ′ ← V ′ − {v} − adj(v);
8. Iv ← ∅;
9. Tv ← ∅;



5.2. MIDS IN BOUNDED DEGREE GRAPHS 101

10. for each k do update V ′

k;

11. endwhile

12. C ← {C such that C is a connected component of G′ };
13. for each v ∈ S do

14. for each neighbor Nv of v do

15. for each C ∈ C such that ∃w ∈ C ∩ adj2(v) do

16. case of C

17. T-component of v w.r.t. Nv: T v ← T v ∪ C;

18. isolated vertex w: Iv ← Iv ∪ {w};
19. C ← C −C;

20. endfor

21. Nv ← Nv such that p(Nv) is max;

22. Tv ← T v;

23. endfor

24. if (p(Nv) > 0) then

25. S ← S ∪Nv − {v};
26. V ′ ← V ′ − adj(Nv);
27. for each k do

28. update V ′

k;

29. update C;
30. endif

31. endfor

32. S ← S ∪ optimal MIDS for G′;
33. end.

Then, for each neighbor of v, we compute a profit function p. We say
Nv a neighbor corresponding to the maximum p(Nv). Moreover we
indicate by adj(Nv) =

⋃
u∈Nv

adj(u) − {v} the set of vertices adjacent
in G to vertices in Nv but v (see Fig. 5.2).
Each vertex v put in S in the while-loop is now processed. If p(Nv) ≤ 0,
v is left in S, otherwise the pair (v,Nv) is swapped, that is v is removed
from S, all vertices in Nv are put in S, and all vertices in adj(Nv) are
removed from the current graph G ′.

In particular, among the vertices removed from the graph there will be
some isolated vertices and there could be some non-isolated vertices.
Function p(Nv) takes into account both the benefit of the deletion
of isolated vertices (stored in Iv) and of the disadvantage possibly
introduced by removing non-isolated vertices (T -components stored in
Tv).

- final-step (line 32)

Finally, an optimal MIDS for the remaining graph G′ is found and
added to S.



102 CHAPTER 5. APPROXIMATION

Figure 5.2: An example of Nv, Iv and adj(Nv).

Now we show that the proposed heuristic finds a feasible solution of
MIDS-3, and then prove that it approximates the problem within two. Fi-
nally, we focus on cubic graphs and show that a better guaranteed approxi-
mation ratio is achieved with a slight variation in the while-loop.

Theorem 15 Given an at most cubic graph G, Algorithm CubMids finds
an independent dominating set.

Proof In order to show that S is a dominating set, observe that, during
the execution of the while-loop, each vertex v put in S dominates vertices
that are removed with it, i.e. it dominates all vertices in {v}∪adj(v). Then,
in the swap-step, every time a pair (v,Nv) is swapped, the set Nv dominates
all vertices in {v} ∪ adj(v), and all vertices in adj(Nv) are removed from G′.
Finally, an optimal MIDS is determined in the remaining graph.

To prove that S is an independent set, first consider that the while-loop
finds an independent set: when a vertex v is put in S, its adjacent vertices
are deleted from G′. Then, in the swap-step, every time a pair (v,Nv) is
swapped, all vertices in adj(Nv) are removed from G ′. Then, at each iteration
of the swap step vertices in the current G′ cannot be adjacent to any vertex
in S (line 26 of CubMids). Finally, an optimal MIDS is determined in the
remaining graph.

Before proving the performance ratio of the CubMids, we discuss the
definition of the profit function leading the swap-step.

Let (v,Nv) be a pair where v is a vertex in S after the while-loop and
Nv an independent dominating set in the subgraph induced in G by adj(v)
such that the corresponding p(Nv) is maximum. In order to figure out how
the profit function is defined, we will show in which way p evaluates whether
(v,Nv) must be swapped or not. Notice that, as far as Nv is defined, if the
pair (v,Nv) is not swapped, then no other pair (v,N ′

v) is.
Let w ∈ adj(Nv) ∩ V ′ be a vertex in a connected component of G′, then

one of the following facts holds:

a. w ∈ V ′
0 ∩ adj(Nv)

Let v be the general vertex put in S in the while-loop. In the com-



5.2. MIDS IN BOUNDED DEGREE GRAPHS 103

putation of the profit function p(Nv), only isolated vertices in adj(Nv)
must be considered, say Iv. It is easy to see that, as far as CubMids is
concerned, the sets Iv are mutually disjoint and that for each v there
is up to one vertex in V ′

0 ∩ adj2(v) which does not belong to Iv.
Suppose (v,Nv) is not swapped, then w would be put in S in the final-
step. Otherwise, if (v,Nv) is swapped, w is deleted from G′. It follows
that it is suitable to swap (v,Nv) if the number of isolated vertices in
adj(Nv) overcomes the increase of |S| due to the swap (i.e. |Nv| − 1)
and the possible negative contribution produced by the change of G ′

(see item c).

b. w ∈ V ′
1 ∩ adj(Nv)

Consider the connected component C containing w in G ′. Since G ′ has
bounded degree two and w has degree one, then C must be a chain,
and w is one of its extremes. Hence the cardinality of the optimal
independent dominating set in the chain cannot increase by swapping
(v,Nv), that corresponds to the deletion of w. Then, no contribution
is given by such a vertex in the computation of p.

c. w ∈ V ′
2 ∩ adj(Nv)

Consider the connected component C containing w in G ′. As G′ has
bounded degree two, and w has degree two, then C must be either a
cycle or a chain and w is an internal vertex.
Notice that, since we are interested in computing an independent dom-
inating set of cardinality no greater than n/2, from Fact 3, we can
restrict to consider only the case in which w is a peak of an odd chain.
Indeed, only the deletion of all peaks in an odd chain leads the value of
the solution to overcome the bound of half of the vertices. Therefore,
we define T-component of v with respect to Nv either a chain of length
3 such that its peak is w, or a chain of length five such that both its
peaks belong to adj(Nv), or a chain of length seven such that its three
peaks belong to adj(Nv). Because of the cubicity of the graph, no odd
chains of length greater than seven must be considered. From now
on, and when no confusion arises, we will simply call Tv the set of all
T -components of v with respect to Nv.
It remains to analyze the case in which the peaks of an odd chain be-
long to different adj(Nvj ), where vj is a vertex put in S during the
while-loop. Such an odd chain becomes a T-component in Tvj if and
only if the pairs (vi, Nvi) swap, i 6= j (see Fig. 5.3). This is the rea-



104 CHAPTER 5. APPROXIMATION

son why the assignment of T-components to vertices put in S in the
while-loop must be done when they are processed in the swap-step.

Figure 5.3: “Shared” T -components.

As far as CubMids is concerned, after the execution of the swap-step,
graph G is implicitly partitioned into the following disjoint subgraphs:

• for each vertex v put in S during the while-loop, subgraph Gv induced
in G by v ∪ Nv ∪ Iv ∪ Tv.

• the possibly not connected subgraph GR induced in G by the remaining
vertices.

The previous remarks make us able to define the profit function p, that
leads the execution of the swap-step, p(Nv) = |Iv| − |Nv| + 1 − |Tv|.

We will prove that |S| ≤ n/2 by showing that, for each subgraph, up to
half of their vertices belong to S found by the algorithm.

Lemma 17 Let v be a vertex put in S in the while-loop and nv be the number
of vertices in Gv. Then, at most nv/2 vertices belong to S.

Proof Notice that if (v,Nv) is not swapped, then v, all vertices in Iv

and all peaks of T -components in Tv are put in S. Otherwise, if (v,Nv) is
swapped, then all vertices in Nv and all non-peaks of T -components in Tv

are put in S.

Since the previous sets are disjoint, at least one of them has cardinality
no greater than nv/2.

Function p(Nv) = |Iv| − |Nv| + 1 − |Tv | leads the choice.

Lemma 18 Let nR be the number of vertices in GR. Then, at most nR/2
vertices belong to S.

Proof After the swap-step, vertices in GR are partitioned into the fol-
lowing way:



5.2. MIDS IN BOUNDED DEGREE GRAPHS 105

• nd vertices adjacent to Nv for some swapped pair (v,Nv), and thus
already dominated;

• ni vertices made isolated by the swap-step;

• nR − ni − nd vertices of bounded degree 2.

In view of Remark 3, up to nR−ni−nd
2 + ni = nR+ni−nd

2 vertices must be
put in S.

The only case in which one dominated vertex leaves more than one iso-
lated vertex is due to T -components. Since T -components have already been
considered in subgraphs Gv, then ni ≤ nd holds. The result follows.

Theorem 16 Algorithm CubMids approximates MIDS-3 within a factor of
two.

Proof In view of Lemmas 16, 17 and 18, we obtain

|S|
|S∗| ≤

n/2

n/4
= 2

Consider a cubic graph G = (V,E) and call iw the cardinality of S after
the execution of the while-loop. Every time a vertex is put in S in the while-
loop, exactly four vertices and at most six edges incident to the remaining
vertices are deleted from the graph (see Fig. 5.4). Then G ′ contains no more
than 2iw isolated vertices, |V ′

0 | ≤ 2iw.

Figure 5.4: Extremal cases in the while-loop.

As a consequence of such a bound for |V ′
0 |, the swap-step is not crucial

anymore to achieve guaranteed approximation ratio 2. Indeed, if we run
the final-step right after the while-loop the cardinality of the solution is
|S| ≤ iw + |V ′

0 | + (n − 4iw − |V ′
0 |)/2 ≤ n/2.

Finally, we will show that for cubic graphs the performance ratio achieved
by CubMids can be improved by running a preprocessing phase. Informally
speaking, it would be desirable to put into S several vertices adjacent to
three vertices not dominated yet. The preprocessing phase exploits cubicity



106 CHAPTER 5. APPROXIMATION

of the graph choosing vertices that can be put in the solution without leav-
ing isolated vertices. Then CubMids is run on the remaining possibly not
connected at most cubic graph.

Let G = (V,E) be a cubic graph. In the preprocessing phase vertices of
degree 3 are selected and put in the solution S, similarly to the while-loop
of CubMids, but a further condition must hold in order to guarantee that no
isolated vertices are left in the remaining graph G′.

Namely, vertices put in S must have distance at least five. Because of
the cubicity of the graph no isolated vertices are produced but in the case
drawn in Fig. 5.5, and then no isolated vertices are left in the remaining
graph by assuming that in this case the produced isolated vertex is also put
in S.

Figure 5.5: Extremal cases in the preprocessing phase run before CubMids
for cubic graphs.

Theorem 17 Algorithm CubMids with the preprocessing phase approximates
MIDS for cubic graphs within 25/13.

Proof As far as the preprocessing phase is concerned, vertices are put
in S in the following way:

- either one vertex is put in S and up to 45 vertices are forbidden;
(Fig. 5.5.a);

- or two vertices are put in S and up to 24 are forbidden (Fig. 5.5.b).

Let n1 be the number of vertices following 1. and n2 be the number of
pair of vertices following 2. Since 46n1 + 26n2 ≤ n after the execution of
CubMids we have:

|S| ≤ n1 + n2 +
n − 4n1 − 5n2

2
≤ 25

52
.

Therefore, in view of Lemma 16

|S|
|S∗| ≤ 1.923.



5.2. MIDS IN BOUNDED DEGREE GRAPHS 107

5.2.3 MIDS in Bounded Degree Graphs

In this section we generalize the above results to any bounded degree graphs
(d ≥ 4), and give an heuristic –we will call BounDegMIDS– that approxi-
mates MIDS-d within

- Kd(d + 1) for bounded degree graphs, d ≥ 4

- 2 for 4-regular graphs

- (Kd − d−2
d2+1)(d + 1) for d-regular graphs, d ≥ 5

where Kd = (d2−d+1)
d2+1 .

BounDegMIDS works as follows. Let G = (V,E) be a graph with bounded
degree d. First, vertices of degree d are processed. Then, the degree of the
remaining graph G′ is at most d − 1. If d − 1 > 3 then the same algorithm
is executed on G′; if d ≤ 3 then CubMIDS is executed on G ′.

Algorithm BounDegMIDS
Input: G = (V, E), d.

Output: S.

1. begin

2. G′ = (V ′, E′)← G = (V, E);
3. S ← ∅;
4. while (V ′

d 6= ∅) do

5. begin

6. choose v ∈ V ′

d;

7. S ← S ∪ {v};
8. V ′ ← V ′ − {v} − adj(v);
9. for each k do update V ′

k

10. end;

11. S ← S ∪ V ′

0;

12. V ′ ← V ′ − V ′

0;

13. S ← S ∪ approximate MIDS for G′;
14. end.

Theorem 18 Given a bounded degree graph, Algorithm BounDegMIDS finds
an independent dominating set.

Proof Similar to the proof of Theorem 15 and therefore we cut it.

Lemma 19 Consider just one iteration of BounDegMIDS (lines 1-12) on a
graph of bounded degree d. Call G′ the remaining graph after the iteration.



108 CHAPTER 5. APPROXIMATION

Let iw be the number of vertices put in S and |V ′
0 | be the number of vertices

made isolated during the while-loop of this iteration.
The following inequalities hold:

a. iw ≥ |V ′

0
|

d(d−1)

b. iw ≤ n−|V ′

0
|

d+1

c. |V ′
0 | ≤ d(d−1)n

(d2+1) .

Proof During the execution of the while-loop (line 4-10), every time a
vertex is put in S, exactly d+ 1 vertices and at most d(d− 1) edges incident
to the remaining vertices are deleted from the graph. Therefore:

a. the graph contains no more than d(d − 1)iw isolated vertices.

b. the graph has at least |V ′
0 | vertices, and thus the number of vertices

removed from the graph is iw(d + 1) ≤ n − |V ′
0 |

c. From a. and b. the lemma follows.

Theorem 19 Algorithm BounDegMIDS approximates MIDS-d within Kd(d+

1), for d ≥ 4, where Kd = (d2−d+1)
d2+1 .

Proof By induction on the maximum degree d, we will show that, for
each d ≥ 4, BounDegMIDS determines S such that

|S| ≤ Kdn =

(
1 − d

d2 + 1

)
n.

Then, from Lemma 16,

|S|
|S∗| ≤

(d2 − d + 1)(d + 1)

d2 + 1

which will conclude the proof.

Basis: d = 4. BounDegMIDS finds a MIDS S of cardinality

|S| ≤ iw + |V ′
0 | +

1

2
(n − 5iw − |V ′

0 |)

Indeed, after the while-loop, the remaining at most cubic graph G′ has (n−
5iw − |V ′

0 |) vertices. Then, Algorithm CubMIDS is executed, and at most
half of such vertices are put in S.



5.2. MIDS IN BOUNDED DEGREE GRAPHS 109

Since d = 4 and in view of Lemma 19.a and c, the basis of the induction
is proved.

Inductive Step: Consider now d > 4; after each iteration, BounDegMIDS is
executed on G′, then the inductive hypothesis can be used:

|S| ≤ iw + |V ′
0 | + Kd−1(n − (d + 1)iw − |V ′

0 |)

Since the coefficient of iw is negative, from Lemma 19.a we have:

|S| ≤ nKd−1 +
|V ′

0 |
d(d − 1)

(1 − dKd−1 − Kd−1) + |V ′
0 |(1 − Kd−1) =

= nKd−1 + |V ′
0 |

d2 − Kd−1d
2 − d + 1 − Kd−1

d(d − 1)
.

From Lemma 19.c

|S| ≤
(

1 − d

d2 + 1

)
n.

Exploiting specific properties of regular graphs, a better performance
ratio can be achieved if the input graph is d-regular.

Lemma 20 Consider just one iteration of BounDegMIDS (lines 1-12) on a
d-regular graph. Let us call G′ the remaining graph after the iteration, iw the
number of vertices put in S and |V ′

0 | the number of vertices made isolated
during the while-loop of this iteration.

The following inequalities hold:

a. iw ≥ n
d2+1

b. |V ′
0 | ≤ (d − 1)iw

Proof During the execution of the while-loop, every time a vertex is
put in S:

a. up to d2 + 1 vertices of degree d become of lower degree (see Fig. 5.4);

b. exactly d+1 vertices and at most d(d−1) edges incident the remaining
vertices are deleted from the graph. Then G′ contains no more than
(d − 1)iw isolated vertices.

Theorem 20 Algorithm BounDegMIDS approximates MIDS for 4-regular
graphs within 2 and for d-regular graphs within (Kd− d−2

d2+1)(d+1), for d ≥ 5,

where Kd = (d2−d+1)
d2+1 .



110 CHAPTER 5. APPROXIMATION

Proof We first prove that the solution S found by BounDegMIDS for
d-regular graphs (d ≥ 5) is:

|S| ≤
(

1 − 2d − 1

d2 + 1

)
n.

Since after the while-loop BounDegMIDS is run on G ′ of bounded degree
d − 1, we use the result of Theorem 19:

|S| ≤ iw + |V ′
0 | + Kd−1

(
n − (d + 1)iw − |V ′

0 |
)
.

From Lemma 20.b.

|S| ≤ nKd−1+iw(1−dKd−1−Kd−1)+(1−Kd−1)(d−1)iw = nKd−1+iw(d−2dKd−1)

Therefore, in view of Lemma 20.a and of the definition of Kd, we see

|S| ≤ n

d2 + 1

(
Kd−1(d − 1)2 + d

)
≤

(
1 − 2d − 1

d2 + 1

)
n.

Similarly to the proof of Theorem 19, the theorem follows.

The proof for 4-regular graphs is analogous to the previous one by as-
suming K3 = 1/2, and therefore is omitted.

The algorithm proposed for the minimum independent dominating set
problem in cubic and at most cubic graphs (MIDS-3) is made up by two
phases. In the former greedy phase a partial solution is constructed by
sequentially selecting vertices of degree three and removing them and their
adjacent vertices from the graph. Then a local search phase (swap-step) is
performed in order to obtain a better complete solution.

For the minimum independent dominating set problem in any bounded
degree and regular graphs (MIDS-d) the proposed heuristic iteratively works
like the greedy phase in CubMIDS. Then, when the degree of the graph is
bounded by three, CubMIDS is applied.

Unfortunately it is not easy to extend the local search phase to graphs
of bounded degree higher than three. Indeed, when the degree of the graph
increases (even for d equal to four), connected components giving a negative
contribution to each swap can be more complex and shared among vertices
put in the solution in the first step. This fact leads to the lower improvement
in the quality of the solution achieved by our heuristics for graphs of degree
higher than three.



5.2. MIDS IN BOUNDED DEGREE GRAPHS 111

Besides, it is worth to notice that for cubic and at most cubic graphs
we have found independent dominating sets of size at most 0.48n and 0.5n,
respectively. Finding independent dominating sets of size less or equal than
half of the vertices could be not possible for any bounded degree graph.
Indeed, for degree higher than three there exist infinite instances for which
the cardinality of optimal solutions is greater than half of the number of
vertices. Such graphs can be obtained hanging two degree one adjacent
vertices up to each vertex of an odd length cycle (e.g. see Fig. 5.6).

Figure 5.6: Optimal MIDS greater than half of the vertices for a class of
graphs of bounded degree four.



112 CHAPTER 5. APPROXIMATION



Glossary

Ackermann function (inverse):

‘The inverse Ackermann function arises in many applications in logic,
combinatorics and computer science. It approaches infinity as n grows,
but does this extremely slowly; for example, it does not exceed 5 for
n up to an exponential tower 222...

having 65536 2s. See [71] for more
details concerning this function.’ [153]

AC0:

‘The class AC0 consists of all decision problems solvable by constant
depth, polynomial size, unbounded fan-in circuits.’ [153]

Cayley graph:

‘Let p = p1p2 . . . pn be a permutation of {1, 2, . . . n}. Let Sn denote
the set of all permutations over {1, 2, . . . n}. Let p, q ∈ Sn. Define
an associative binary operation ‘·’ (called product) as (p · q)x = p(qx),
that is, ‘·’ denotes the usual (right to left) composition of functions.
This operation is not commutative. (Sn, ·) forms a group called the
symmetric permutation group. [...] Let (Γ, ·) be a finite permutation
group with I as identity. Let Ω ⊆ Γ be a generator set for Γ, such that

a. if g ∈ Ω then g−1 ∈ Ω
b. I 6∈ Ω.

Given (Γ,Ω), define a Cayley graph G = (V,E) as follows:

V = Γ
E = {(x, y)g | x, y ∈ V and g ∈ Ω such that y = x · g}.

113



114 CHAPTER 5. APPROXIMATION

i.e. two directed edges (x, y)g and (x, y)g−1 are viewed as an undirected
edge (x, y) in the graph G. Since Ω is a generator set for Γ, clearly G is
connected and |Ω| dictates the degree and the diameter of the Cayley
graph G.’ [88]

clique:

‘In an undirected graph G a set of vertices C is called a clique if every
two vertices of C are connected by an edge.’ [49]

colorability:

Given an arbitrary graph G:

chromatic index:
See ‘Edge Colorability.’

chromatic number:
See ‘Vertex Colorability.’

edge colorability:
‘An edge coloration is a decomposition of the edges in a graph G into
l classes G = H1 + H2 + · · · + Hl where no edges in the same class
have vertices in common. This may be considered as a coloration of
the edges such that no edges with the same color are incident. [...]
The smallest number l for any edge coloration is the chromatic index
χ′(G).’ [106]

vertex colorability:
‘An arbitrary graph G is said to be vertex colorable in k colors when
its vertex set V can be decomposed into k disjoint sets: V = C1 +C2 +
· · · + Ck such that no edges connect vertices in the same set, that is,
the sets Ci are independent in G. The decomposition defines a color
function f(v) for the vertices v of G when one puts f(v) = i, when
v ∈ Ci. Then, no vertices with the same color value i are connected by
an edge. [...] The smallest number k such that G is k-colorable is the
chromatic number χ(G). When G is the complete graph on n vertices,
one has χ(G) = n; when G is the null-graph, that is, has no edges, then
χ(G) = 1. [106]

connectivity:



5.2. MIDS IN BOUNDED DEGREE GRAPHS 115

articulation point:
‘A vertex v of a graph G is an articulation point of G if the graph
G − v will consists of a greater number of components than G. If G is
connected, then G − v will contain at least two components, that is,
G − v will be not connected. [...] The following theorem presents an
equivalent definition of an articulation point.

Theorem 21 A vertex v is an articulation point of a connected graph
G if and only if there exist two vertices u and w distinct from v such
that v is on every path from u to w. [147]

biconnectivity:
‘A biconnected graph is a connected graph with no articulation points.
A maximal biconnected subgraph of a graph is called connected com-
ponent of the graph.’ [147]

bridge:
‘A bridge of a graph G is an edge e such that G−e has more components
than G.’ [147]

bridgeless graph:
A bridgeless graph is a graph having no bridges.

cut:
‘Let S be a subset of vertices of a graph G = (V,E). The set of edges
connecting vertices of S with V − S is called cut defined by S.’ [49]
See also [97] for cuts of cubic graphs.

edge connectivity:
The edge connectivity κ′(G) of a graph G is the minimum number of
edges whose removal from G results in a disconnected graph. In other
words, κ′(G) is the number of edges in a cut having the minimum
number of edges.’ [147]

vertex connectivity:
‘The vertex connectivity κ(G) of a graph G is the minimum number of
vertices whose removal from G results in a disconnected graph.’ [147]

Euler Tour procedure:



116 CHAPTER 5. APPROXIMATION

‘Let T = (V,E) be a given tree and let T ′ = (V,E′) be the directed
graph obtained from T when each edge {u, v} ∈ E is replaced by two
arcs (u, v) and (v, u). Since the indegree of each vertex of T ′ is equal to
its outdegree, T ′ is an eulerian graph; that is, it has a direct circuit that
traverses each arc exactly once. It turns out that an Euler circuit of T ′

can be used for the optimal parallel computation of many functions on
T . [...] An Euler tour of T ′ = (V,E′) can be defined by specifying the
successor function s mapping each arc e ∈ E′ into the arc s(e) ∈ E′

that follows e on the circuit. There is a simple way to introduce a
suitable successor function. For each vertex v ∈ V of the tree T ,
we fix a certain ordering on the set of vertices adjacent to v –say,
adj(v) = (u0, u1, . . . , ud−1), where d is the degree of v. We define
successor of each arc e = (ui, v) as follows: s((ui, v)) = (v, u(i+1)mod d),
for 0 ≤ i ≤ d − 1.’ [77]

girth:

‘The girth of a graph G is the length of a shortest cycle (if any) in G’.
[68]

independence:

independence set:
‘Consider a graph G = (V,E). A subset S of V is an independent set
of G if no two vertices of S are adjacent in G. An independent set S
of G is maximum if G has no independent set S′ with |S| > |S′|.’ [147]

independence number:
The number of vertices in a maximum independent set of G is called
the independence number of G and is denoted by α0(G).’ [147]

matching:

‘A set of edges M of a graph G = (V,E) with no self-loops is called a
matching if every vertex is incident to at most one edge of M .[49]

NC:

‘The class NC consists of all those decision problems that are solvable
on a PRAM that simultaneously obeys a polylogarithmic bound on



5.2. MIDS IN BOUNDED DEGREE GRAPHS 117

the running time and a polynomial bound on the number of proces-
sors used. More informally, we might say that NC consists of those
problems solvable with a polynomial-bounded amount of hardware in
polylog time. As with the sequential complexity classes, this class is
substantially model-independent.’[153]

network:

A network N can be assimiled to a graph, therefore it is a pair (V,E),
where V is a set of processors or other identities (that in general we
will call nodes) and E is a set of communication links (undirected
edges, where not differently specified), that connect nodes among them.
Sometimes, certain nodes acquire a particular role, since they are cho-
sen as input and output nodes. All other nodes are considered as
switches of the network, routing messages toward their incident edges.

array network:
Processors are disposed on a straight line, therefore each (interior) node
has a right neighbor and a left neighbor, except two (outermost) nodes,
having only one neighbor. ‘Each interior processor is connected with
bidirectional links to its left neighbor and its right neighbor. The out-
ermost processors may have just one connection each, and may serve
as input/output points for the entire network [...] An r-dimensional
N-sided array has N r nodes and rN r − rN r−1 edges. Each node cor-
responds to an N -ary r-vector (i1, i2, . . . , ir) where 1 ≤ ij ≤ N for
1 ≤ j ≤ r. Two nodes are linked by an edge if they differ in pre-
cisely one coordinate and if the absolute value of the difference in that
coordinate is 1.’ [91]

rearrangeable network:
‘A network with N inputs and N outputs is said to be rearrangeable
if for any one-to-one mapping π of the inputs to the outputs, we can
construct edge-disjoint path in the network linking the i-th input to
the π(i)-th output for 1 ≤ i ≤ N .’[91]

Beneš network:
‘The Beneš network consists of two back-to-back butterflies. [...] Over-
all, the r-dimensional Beneš network has 2r + 1 levels, each with 2r

nodes. The first and last r + 1 levels in the network form an r-
dimensional butterfly (the middle level of the Beneš network is shared



118 CHAPTER 5. APPROXIMATION

by these butterflies). Not surprisingly, the Beneš network is very sim-
ilar to the butterfly, in terms of both its computational power and its
network structure. Indeed, at first glance, the network hardly seems
worth defining at all. The reason for defining the Beneš network is
that it is an excellent example of rearrangeable network. Indeed, we
can have two inputs for each level 0 node and two outputs for every
level 2r node, and still connect every permutation of inputs to outputs
with edge-disjoint paths.’ [91]

butterfly network:
See Section 4.1.

de Bruijin network:
‘The r-dimensional de Bruijin network consists of 2r nodes and 2r+1

directed edges. Each node corresponds to an r-bit binary string,
and there is a directed edge from each node u1u2 . . . ulog N to nodes
u2 . . . ulog N0 and u2 . . . ulog N1. [...] In addition to having outdegree 2,
every node of the de Bruijin network also has indegree 2.’ [91]

hypercube network:
‘The r-dimensional hypercube has N = 2r nodes and r2r edges. Each
node corresponds to an r-bit binary string, and two nodes are linked
with an edge if and only if their binary strings differ in precisely one
bit. As a consequence, each node is incident to r = log N other nodes,
one for each bit position.’ [91]

shuffle-exchange network:
‘The r-dimensional shuffle-exchange network has N = 2r nodes and
3 ·2r−1 edges. Each node corresponds to a unique r-bit binary number,
and two nodes u and v are linked by an edge if either

1. u and v differ in precisely the last bit, or
2. u is a left or right cyclic shift of v.

If u and v differ in the last bit, the edge is called an exchange edge.
Otherwise, the edge is called a shuffle edge.’ [91]

star network:
‘An n-dimensional star network Sn has n! nodes that are in a 1-1 cor-
respondence with the permutations [p1p2 . . . pn] of the set {1, 2, . . . , n}.
Two nodes of Sn are connected by one of the n! × (n−1)

2 edges if and
only if the permutation of one node can be obtained from the other by



5.2. MIDS IN BOUNDED DEGREE GRAPHS 119

interchanging the first symbol p1 with the i-th symbol pi, 2 ≤ i ≤ n.
[...] The star network has uniform node degree n − 1.’ [66]

NP :

‘The class NP is defined informally to be the class of all decision
problems that, under reasonable encoding schemes, can be solved by
polynomial time non-deterministic algorithms. [...] It should be evi-
dent that a “polynomial time non-deterministic algorithm” is basically
a definition device for capturing the notion of polynomial time verifi-
ability, rather than a realistic method for solving decision problems.’
[58]

NP-complete problem:
‘Let D1 and D2 be decision problems. We say that there exists a
polynomial reduction of D1 to D2 (D1 ∝ D2) if there exists a function
f(I1) from the set of inputs of D1 to the set of inputs of D2, such that
the answer to I1 is ‘yes’ with respect to D1, if and only if the answer
to f(I1) is ‘yes’ with respect to D2, and there exists a polynomially
bounded algorithm to compute f(I1). [...] If D1 ∝ D2 and D2 can
be answered by a polynomially bounded algorithm A2 then D1 is also
solvable by a polynomially bounded algorithm: Given an input I1 for
D1, use first the polynomially bounded algorithm to produce f(I1), and
assume this computation is bounded by the polynomial q(n), where n
is the length of I1. Now, use A2 to answer f(I1) with respect to
D2. Let p(m) be the polynomial bounding the computation time of
A2, where m is the length of I2 = f(I1). Since m ≤ q(n), the total
computation time to answer D1 is bounded by q(n) + p(q(n)), which
is clearly polynomial. Following Karp’s approach [86], let us define
a decision problem D to be NP-complete if D ∈ NP and for every
D′ ∈ NP , D′ ∝ D. [...] Note that the relation ∝ is transitive; i.e. if
D1 ∝ D2 and D2 ∝ D3 then D1 ∝ D3.’ [49]

optimization:

NP Optimization problem (NPO):
‘An NP Optimization problem B is a fourtuple (I, sol,m, goal) such
that:

1. I is the set of the instances of B and it is recognizable in polynomial
time.



120 CHAPTER 5. APPROXIMATION

2. Given an instance x of I, sol(x) denotes the set of feasible solutions
of x. These solutions are short, that is, a polynomial p exists such
that, for any y ∈ sol(x), |y| ≤ p(|x|). Moreover, it is decidable
in polynomial time whether, for any x and for any y such that
|y| ≤ p(|x|), y ∈ sol(x).

3. Given an instance x and a feasible solution y of x, m(x, y) denotes
the positive integer measure of y. The function m is computable in
polynomial time and is also called the objective function.

4. goal ∈ {max,min}.
The class NPO is the set of all NP Optimization problems.’ [38]

performance ratio:
‘Let B be an NP Optimization problem. Given an instance x and
a feasible solution y of x, we define the performance ratio of y with
respect to x as

R(x, y) = max

{
m(x, y)

opt(x)
,

opt(x)

m(x, y)

}
.

The performance ratio is always a number greater than or equal to 1
and is as close to 1 as y is close to the optimum solution.’ [38]

APX :
‘Let B be a NP Optimization problem and let A be an algorithm
that, for any instance x of B, returns a feasible solution A(x) of x.
Given an arbitrary function r : N → (1,∞), we say that A is an r(n)-
approximate algorithm for B if, for any instance x, the performance
ratio of the feasible solution A(x) with respect to x verifies the following
inequality:

R(x,A(x)) ≤ r(|x|).
If a problem admits an r(n)-approximate polynomial time algorithm
we say that it is approximable within r(n). An NP Optimization
problem B belongs to the class APX if it is approximable within ǫ,
for some constant ǫ > 1.’ [38]

planarity:

planar graph:
A graph G is said to be embeddable on a surface S if it can be drawn
on S so that its edges intersect only at their end points. A graph is
said to be planar if it can be embedded in the plane.



5.2. MIDS IN BOUNDED DEGREE GRAPHS 121

plane graph:
A plane graph has already been embedded in the plane.

face:
We will refer to the regions defined by a plane graph as its faces, the
unbounded region being called exterior face.

Euler formula:
for any plane graph having n vertices, m edges and f faces, n−m+f =
2.’ [68]

pointer jumping technique:

‘The pointer jumping (or path doubling) technique allows the fast pro-
cessing of data stored in the form of a set of rooted-directed trees. [...]
This technique consists of updating the successor of each vertex by
that successor’s successor. As the technique is applied repeatedly, the
successor of a vertex is an ancestor that becomes closer and closer to
the root of the tree containing that vertex. As a matter of fact, the
distance between a node and its successor doubles unless the successor
of the successor vertex is a root.’ [77]

PRAM:

‘In the shared-memory model many processors have access to a single
shared memory unit. More precisely, the shared-memory model con-
sists of a number of processors, each of which has its own local memory
and can execute its own local program, and all of which communicate
by exchanging data through a shared memory unit. [...] In the syn-
chronous mode of operation, all the processors operate synchronously
under the control of a common clock. A standard name for the syn-
chronous shared-memory model is the parallel random-access machine
(PRAM) model. [...] There are several variations of the PRAM model
based on the assumptions regarding the handling of the simultaneous
access of several processors to the same location of the global memory.
The exclusive read exclusive write (EREW) PRAM does not allow any
simultaneous access to a single memory location. The concurrent read
exclusive write (CREW) PRAM allows simultaneous access for a read
instruction only. Access to a location for a read or a write instruction is
allowed in the concurrent read concurrent write (CRCW) PRAM. The



122 CHAPTER 5. APPROXIMATION

three principal varieties of CRCW PRAMs are differentiated by how
concurrent writes are handled. The common CRCW PRAM allows
concurrent writes only when all processors are attempting to write the
same value. The arbitrary CRCW PRAM allows an arbitrary proces-
sor to succeed. The priority CRCW PRAM assumes that the indices
of the processors are linearly ordered, and allows the one with the min-
imum index to succeed. Other variations of the CRCW PRAM model
exist.’ [77]

prefix sum technique:

‘Consider a sequence of n elements {x1, x2, . . . , xn} drawn from a set S
with a binary associative operation, denoted by +. The prefix sums of
this sequence are the n partial sums defined by si = x1+x2+. . .+xi, 1 ≤
i ≤ n. [...] We can use a balanced binary tree to derive a fast parallel
algorithm to compute the prefix sums. Each internal vertex represents
the application of the operation + to its children during a forward
traversal of the tree. Hence, each vertex v holds the sum of the elements
stored in the leaves of the subtree rooted at v. During a backward
traversal of the tree, the prefix sums of the data stored in the vertices
at a given height are computed.’ [77]

spanning tree:

‘Assume G=(V,E) is a finite, connected (undirected) graph. [...] A
subgraph of G, which contains all of its vertices and is a tree is called
a spanning tree of G.’ [49] Set E results implicitly partitioned into
two subsets: all edges of G belonging to the spanning tree are called
tree edges, the other ones, giving no contribution to the tree are called
non-tree edges.

Maximum Leaf Spanning Tree Problem:
The problem of finding a spanning tree of any graph G is easy to solve.
Not always easy is the problem of finding a spanning tree with some
constrains. The Maximum Leaf Spanning Tree Problem has as instance
a graph G and the solution is a spanning tree such that the number of
its leaves is maximized. The problem is, in general, NP-complete.



5.2. MIDS IN BOUNDED DEGREE GRAPHS 123

vertex cover:

‘A vertex and an edge of a graph are said to cover each other if they
are incident. A set of vertices which covers all the edges of a graph
G is called a vertex cover for G. [...] The smallest number of vertices
in any vertex cover for G is called its vertex covering number and is
denoted by α0(G). [...] A vertex cover is called minimum if contains
α0(G) elements.’ [68]



124 CHAPTER 5. APPROXIMATION



Bibliography

[1] AHO,A. –HOPCROFT, J.K. –ULLMAN, J.D.: The design and analysis of computer
algorithms. Addison Wesley, Reading,MA, 1973.

[2] AHUJA,R.K. – MAGNANTI,T. L. – ORLIN,J. B.: Network flows. Prentice-Hall,
1993.

[3] AKERS, S. B. –KRISHNAMURTHY,B.: A group-theoretic model for symmetric in-
terconnection networks. International Conference Parallel Processing, 1986, pp 216–
233.

[4] ALBERTSON,M.O. –HAAS,R.: Parsimonious Edge Coloring. Discrete Math. 148,
1996, pp 1–7.

[5] ALIMONTI,P. –CALAMONERI,T.: Improved Approximations for Independent
Dominating Set in Bounded Degree Graphs. Proc. 22-th International Workshop on
Graph-Theoretic Concepts in Computer Science (WG ‘96), Lectures Notes in Com-
puter Science 1197, Springer-Verlag, 1996, pp 2–16.

[6] ANNEXSTEIN,F. –BAUMSLAG,M. –ROSENBERG,A. L.: Group Action Graphs
and Parallel Architectures. SIAM J. Comput., 19(3), 1990, pp 544–569.

[7] ARDEN,B.W. –TANG,K.W.: Representations and Routing for Cayley Graphs.
IEEE Trans. on Communic., 39(11), 1991, pp 1533–1537.

[8] AVIOR,A. – CALAMONERI,T. –EVEN, S. – LITMAN,A. – ROSENBERG,A. L.: A
Tight Layout of the Butterfly Network. Proc. 8-th Annual ACM Symposium on Par-
allel Algorithms and Architectures (SPAA ‘96), ACM Press Ed., 1996, pp 170–175.

[9] BAMPIS, E. – GIANNAKOS,A. –KARZANOV,A. –MANOUSSAKIS,Y. –MILIS, I.:
Perfect Matching in General vs. Cubic Graphs: The Planar and Bipartite Cases.
Tech. Rpt. No.12, 1995.

[10] BARNETTE, D.: Trees in polyedral graphs. Canad.J.Math., 18, 1966, pp 731–736.

[11] BELLARE,M. –GOLDWASSER,S. – LUND,C. –RUSSELL,A.: Efficient probabilis-
tically checkable proofs and applications to approximation. Proc. of the 25th Annual
ACM Symp. on Theory of Comp., 1995, pp 294–304.

[12] BELLARE,M. – SUDAN,M.: Improved non-approximpability results. Proc. of the
26th Annual ACM Symp. on Theory of Comp., 1994, pp 184–193.

[13] BENEŠ,V.: Permutation groups, complexes, and rearrangeable multistage connect-
ing networks. Bell System Technical Journal, 43, July 1964, pp 1619–1640.

125



126 BIBLIOGRAPHY

[14] BERGE, C.: Alternating chain methods: a survey. In [121]

[15] BERMAN,P. –FUJITO,T.: On Approximation Properties of the Independent Set
Problem for Low Degree Graphs. Proc. 4th Workshop on Algorithms and Data Struc-
tures (WADS’95), Lecture Notes in Computer Science 955, Springer Verlag, 1995,
pp 449–460.

[16] BERMAN,P. –FÜRER,M.: Approximating Maximum Independent Set in Bounded
Degree Graphs. Proc. 5th Annual ACM-SIAM Symp. on Discrete Algorithms
(SODA’94), ACM-SIAM, 1994, pp 365–371.

[17] BERMAN,F. – SNYDER,L.: On mapping parallel algorithms into parallel architec-
tures. J. Parallel Distr. Comput. 4, 1987, pp 439-458.

[18] BHATT, S.N. –CHUNG,F. R.K. –HONG, J.-W. –LEIGHTON,
F.T. –OBRENIĆ, B. –ROSENBERG,A. L. – SCHWABE, E. J.: Optimal emulations
by butterfly-like networks. J. ACM, 1996, to appear.

[19] BHATT, S.N. –COSMADAKIS,S.: The Complexity of Minimizing Wire Lengths in
VLSI Layouts. Inform. Processing Letters, 25(4), pp 263–267, 1987.

[20] BHATT, S.N. – LEIGHTON,F.T.: A Framework for Solving VLSI Graph Layout
Problems. Journ. of Computer and Systems Sciences, 28, 1984, pp 300–343.

[21] BHATT, S.N. – LEISERSON,C. E.: Minimizing the Longest Edge in a VLSI Layout.
MIT VLSI Memo, 1982, pp 82–86.

[22] BIEDL,T.: New Lower Bounds for Orthogonal Graph Drawings. Proc.Graph Drawing
95 (GD ‘95), Lectures Notes in Computer Science 1027, Springer-Verlag, 1995, pp
28–39.

[23] BIEDL,T. –KANT,G.: A Better Euristic for Orthogonal Graph Drawings. Proc.2nd
European Symposium on Algorithms (ESA ‘94), Lectures Notes in Computer Science
855, Springer-Verlag, 1994, pp 24–35.

[24] BJORKEN, J.D. –DRELL, S.D.: Relativistic Quantum Fields. Mc-Graw Hill, New
York, 1965.

[25] BOKARI, S.H.: On the mapping problem. IEEE Trans. Comp.,C-30, 1981, pp 207-
214.

[26] BONDY,J.A. –ENTRINGER,R.C.: Longest cycles in 2-connected graphs with pre-
scribed maximum degree. Canad. J. Math., 32, 1980, pp 1325–1332.

[27] BROOKS,R.L.: On colouring the nodes of a network. Proc. Cambridge Phil. Soc.,
37, 1941 pp 194–197.

[28] CALAMONERI,T. – PETRESCHI,R.: An Efficient Orthogonal Grid Drawing Algo-
rithm for Cubic Graphs. Proc. 1-st Annual International Conference on Computing
and Combinatorics (Cocoon ‘95), Lectures Notes in Computer Science 959, Springer-
Verlag, 1995, pp 31–40.

[29] CALAMONERI,T. – PETRESCHI,R.: A Parallel Algorithm for Orthogonal Grid
Drawings of Cubic Graphs. Proc. 5-th Italian Conference on Theoretical Computer
Science (ICTCS ‘95), World Scientific Publ. , 1995, pp 118–133.

[30] CALAMONERI,T. – PETRESCHI,R.: Cubic Graphs as model of Real Systems.
Proc. Matrices and Graphs: Theory and Applications, World Scientific Publ., 1995,
to appear.



BIBLIOGRAPHY 127

[31] CALAMONERI,T. – PETRESCHI,R.: Visual Representations of Trivalent Cayley
Interconnection Networks. Proc. 11-th International Symposium on Computer and
Information Sciences (ISCIS-XI), 1996, pp 555–564.

[32] CALAMONERI,T. – PETRESCHI,R.: A New 3D Representation of Trivalent Cayley
Networks. To appear on Inform. Processing Letters, 1997.

[33] CALAMONERI,T. – STERBINI,A.: Drawing 2-, 3- and 4-colorable Graphs in O(n2)
volume. Proc. Graph Drawing ‘96, Lectures Notes in Computer Science, Springer-
Verlag, 1996, to appear. Also to appear on Inform. Processing Letters, 1997

[34] CARLSSON,G. –CRUTHIRDS,J.E. – SEXTON,H.B. – WRIGHT,C.G.: Intercon-
nection networks based on a generalization of cube-connected cycles. IEEE Trans.
Comp., C-34, 1985, pp 769–772.

[35] CHVÁTAL,V.: Tough graphs and hamiltonian circuits. Discrete Math., 5, 1973,
pp 215–228.

[36] COHEN,R.F. –EADES,P. – LIN,T. –RUSKEY,F.: Three-dimensional graph draw-
ing. Proc. Graph Drawing ‘96, Lecture Notes in Computer Science, Springer-Verlag ,
894, 1994, pp 1-11. Also in Algorithmica, 17, 1997, pp 199–209.

[37] COLE,R.: Parallel Merge Sort. SIAM J.Comput., 17(4), 1988, pp 770–785.

[38] CRESCENZI, P. –KANN,V.: A compendium of NP optimization problems. Tech.
Rep. SI/RR-95/02, Dipartimento di Scienze dell’Informazione, Università di Roma
“La Sapienza”, 1995. The list is updated continuously. The latest version is available
as http://www.nada.kth.se/theory/problemlist.html.

[39] DAHLHAUS,E. – KARPINSKI,M.: Perfect Matching for regular graphs is AC0-hard
for the general matching problem, Journal of Computer and System Sciences, 44,
1992, pp 94–102.

[40] DAY,K. –TRIPATHI,A.: Arrangement graphs: A class of generalized star graphs,
Inform. Process. Letters, 42, 1992, pp 235–241.

[41] DI BATTISTA,G. –EADES,P. – TAMASSIA,R.TOLLIS: Algorithms for Drawing
Graphs: an Annotated Bibliography Computational Geometry: Theory and Appli-
cations., 4(5), 1994, pp 235–282.

[42] DI BATTISTA,G. –LIOTTA,G. – VARGIU,F.: Spirality of Orthogonal Representa-
tions and Optimal Drawings of Series-Parallel Graphs and 3-Planar Graphs. Proc.2-nd
Workshop on Algorithms and Data Structures (WADS ‘93), Lectures Notes in Com-
puter Science 709, Springer-Verlag ,1993, pp 151–162.

[43] DINITZ,Y.: A compact layout of butterfly on the square grid. Tech. Rpt. 873, The
Technion, 1995.

[44] EDMONDS, J.: Paths, trees and flowers. Canad. J. Math, 17, 1995, pp 449–467.

[45] EPPSTEIN, D. –GALIL, Z. – ITALIANO,G.F. – NISSENZWEIG,A.: Sparsification–
A technique for speeding up dynamic graph algorithms. Proc. of 33rd Ann. Symp. on
Found. of Comp. Science (FOCS ‘92), 1992.

[46] ERDÖS,P.: Problems and results in combinatorial analysis and graph theory. Dis-
crete Math., 72, 1988, pp 81–92.



128 BIBLIOGRAPHY

[47] EULER,L.: Solutio Problematis ad Geometriam Situs Pertinantis. Academiae
Petropolitanae, 7, 1736, pp 128–140. Engl. Transl.: The Königsberg bridges.
Sci.Amer., 189, 1953, pp 66–70.

[48] EVANS, J.R. –MINIEKA,E.: Optimization Algorithms for Networks and Graphs.
Marcel Dekker Inc., 1992.

[49] EVEN, S.: Graph Algorithms. Pitman, 1979.

[50] EVEN, S. – LITMAN,A.: Layered cross product — a technique to construct intercon-
nection networks. 4th ACM Symp. on Parallel Algorithms and Architectures, 1992,
pp 60-69.

[51] EVEN, S. –TARJAN,R.E.: Computing an st-numbering. Theoret. Comp. Sci., 2,
1976, pp 436–441.

[52] FOUQUET, J. L: These d’etat, Universite de Paris-Sud, 9 Juin 1981.

[53] FRANK,G. –HUI,D. –WARE,C.: Visualizing object oriented software in three di-
mensions. Proc.CASCON, 1993.

[54] FREDERICKSON,G. N.: Data Structures for On-line Updating of minimum Span-
ning Trees, with Applications. SIAM J.Comput., 14(4), 1985, pp 781–798.

[55] GALIL, Z. – ITALIANO,G.F.: Fully dynamic algorithms for edge connectivity prob-
lems. Proc. 23rd ACM Symp. Theory of Computing (STOC ‘91), 1991, pp 317–327.

[56] GALIL, Z. – ITALIANO,G.F.: Fully dynamic algorithms for 2-edge-connectivity.
SIAM Journal on Computing, 21, 1992, pp 1047–1069.

[57] GARDNER,M.: Mathematical Games: Snarks, Boojums and other conjectures re-
lated to the four-color-map theorem. Scientific American, 234 (4), 1976, pp 126–130.

[58] GAREY,M. R. – JOHNSON,D. S.: Computers and Intractability: A Guide to the
Theory of NP-completeness. W.H. Freeman and Co., 1979.

[59] GAREY,M. R. – JOHNSON,D. S. – STOCKMEYER,L.: Some simplified NP-com-
plete graph problems. Theoretical Computer Science, 1, 1976, pp 237–267.

[60] GODDARD,W.: The Toughness of Cubic Graphs. Graphs and Combinatorics., 12,
1996, pp 17–22.

[61] GOEMANS,M.X.: A generalization of Petersen’s theorem. Discrete Math., 115, 1993,
pp 277–282.

[62] GREENLAW,R. –PETRESCHI,R.: Cubic graphs. ACM Computing Surveys, 27 (4),
1995, pp 471–495.

[63] GRÜNBAUM,B. – MOTZKIN,T.S.: Longest simple paths in polyedral graphs. J.
London Math. Soc., 37(2), 1962, pp 152–160.

[64] GRÜNBAUM,B. – SHEPHARD,G.C.: Tilings and Patterns. W.H. Freeman and Co.,
New York, 1987.

[65] GRÜNBAUM,B. – WALTHER,H.: Shortness exponents of families of graphs. J.
Combin.Theory ser.A, 14, 1973, pp 364–385.

[66] GU,Q. –PENG, S.: Node-to-node cluster fault tolerant routing in star graphs. Inform.
Process. Letters, 56, 1995, pp 29–35.



BIBLIOGRAPHY 129

[67] HALLDORSSON,M.M.: Approximating the minimum maximal independence num-
ber. Inform. Process. Lett., 46, 1993, pp 169–172.

[68] HARARY,F.: Graph Theory. Addison-Wesley, Readiag, MA, 1969.

[69] HARARY,F. –KOVÁCS,P.: Smallest graphs with given girth pair. Carribb.J.Math.,
1, 1982, pp 24–26.

[70] HARARY,F. –KOVÁCS,P.: Regular graphs with given girth pair. J. of Graph The-
ory, 7, 1983, pp 209–218.

[71] HART,S. – SHARIR,M.: Nonlinearity of Davenport-schinzel sequences and of gener-
alized path compression schemes. Combinatorica, 6, 1986, pp 151–177.

[72] HOBBS,M. – SCHMEICHEL,E.: On the Maximum Number of Independent Edges
in Cubic Graphs. Discrete Math., 42, 1982, pp 317–320.

[73] HOEL,P.G. –PORT,S.C. – STONE,C. J.: Introduction to stochastic processes.
Houghton Mifflin Company, 1972.

[74] HOLYER, I.: The NP-completeness of edge-coloring. SIAM J. Comp., 10, 1981,
pp 718–720.

[75] HOPKINS,G. – STATON,W.: Extremal Bipartite Subgraphs of Cubic Triangle-Free
Graphs. J. Graph Theory, 6, 1982, pp 115–121.

[76] HORÁK,P. –QING,H. –TROTTER,W.T.: Induced Matchings in Cubic Graphs. J.
of Graph Theory., 17(2), 1993, pp 151–160.

[77] JÁJÁ, J.: An Introduction to Parallel Algorithms. Addison Wesley, 1992.

[78] JÁJÁ, J. – SIMON,J.: Parallel Algorithms in Graph Theory: Planarity Testing.
SIAM J. Comput., 11, 1982, pp 314–328.

[79] JACKSON,B.: Longest Cycles in 3-Connected Cubic Graphs. J. Combin. Theory ser.
B, 41, 1986, pp 17–26.

[80] JOHNSON,D. S.: The NP-completeness column: An ongoing guide. Journal of Al-
gorithms, 2(4), 1981, pp 393–405.

[81] JOHNSON,E. L.: A proof of the four-coloring of the edges of a regular three-degree
graph. O.R.C., 63-28 (R.R.) Mimeographed report, Operation Research Center, Univ.
of Calif.,1963.

[82] JOHNSON,D. S.: Approximation algorithms for combinatorial problems. J. Comput.
System Sci., 9, 1974, pp 256–278.

[83] KANN,V.: Maximum bounded degree 3-dimensional matching is MAX SNP com-
plete. Inform. Process. Lett, 37, 1991, pp 27–35.

[84] KANN,V.: On the Approximability of NP-Complete Optimization Problems. PhD
Thesis, Department of Numerical Analysis and Computing Science, Royal Institute
of Technology, Stockolm, 1992.

[85] KANT,G.: Drawing Planar Graphs Using the canonical ordering. Proc. 33th Ann.
IEEE Symp. on Found. of Comp. Science (FOCS ‘92), 1992, pp 101–110. Revised
version in Algorithmica - Special Issue on Graph Drawing, 16, 1996, pp 4–32.

[86] KARP,R.M.: Reducibility among Combinatorial Problems. In [142], pp 85-104.



130 BIBLIOGRAPHY

[87] KLEITMAN,D. –LEIGHTON,F.T. – LEPLEY,M. –MILLER,G.L.: New Layouts
for the Shuffle-Exchange Graph, Thirteenth Annual ACM Symposium on Theory of
Computings (STOC ‘81), 1981, pp 278–292.

[88] LAKSHMIVARAHAN,S. – JUNG-SING JWO –DHALL,S.K.: Symmetry in inter-
connection networks based on Cayley graphs of permutation groups: A survey. Paral.
Comput., 19, 1993, pp 361–407.

[89] LANG,R. –WALTHER,H.: Über Längste Kreise in reguläen Graphen. in “Beitrage
zur Graphentheorie”, Kolloquium Manebach, 1967, pp 91–98.

[90] LEIGHTON,F.T.: Complexity Issues in VLSI: Optimal Layouts for the Shuffle-
Exchange Graph and Other Networks. MIT Press, Cambridge, Mass, 1983.

[91] LEIGHTON,F.T.: Introduction to Parallel Algorithms and Architectures: Arrays,
Trees, Hypercubes. Morgan Kaufmann Publishers, Inc., 1992.

[92] LEV,A. –PIPPENGER,N. –VALIANT,L.G.: A fast parallel algorithm for routing
in permutation networks. IEEE Trans. on Computers, 30(2), 1981, pp 93–100.

[93] LEWIN,K.: Principles of Topological Psycology. Mc-Graw-Hill, New York, 1936.

[94] LIU,Y. –MARCHIORO,P. – PETRESCHI,R. – SIMEONE,B.: Theoretical Results
on at most 1-bend embeddability of graphs. Acta Mathematicae Applicatae Sinica,
8(2),1992, pp 188–192.

[95] LIU,Y. –MARCHIORO,P. – PETRESCHI,R.: At most single bend embedding of cu-
bic graphs. Applied Mathematics (Chin. Journ.) ser.B, 9(2),1994, pp 127–142.

[96] LOCKE, S.C.: Maximum k-colorable subgraphs. J. Graph Theory, 6, 1982, pp 123–
132.

[97] LOEBL,M.: Efficient Maximal Cubic Graphs Cuts. Proc. of 18th International Col-
loquium on Automata, Languages and Programming (ICALP ‘91), Lecture Notes in
Computer Science 510, Springer-Verlag, 1991, pp 351–362.

[98] LUND,C. –YANNAKAKIS,M.: On the Hardness of Approximating Minimization
Problems. J. ACM 41, 1994, pp 960-981.

[99] MACKINLEY, J. –ROBERTSON,G. –CARD,S.: Cone trees: Animated 3d visual-
ization of hierarchical information. Proc.SIGCHI Conf. on Human Factors in Com-
puting, 1991, pp. 189-194.

[100] MEAD,C. –CONWAY,L.: Introduction to VLSI Systems. Addison-Wesley, Read-
ing, Mass., 1980.

[101] MEHLHORN,K. – PREPARATA,F.P. – SARRAFZADEH,M.: Channel routing in
knock-knee mode: simplified algorithms and proofs. Algorithmica, 1, 1986, pp 213-
221.

[102] MICALI, S. –VAZIRANI,V.V.: An O(|V |1/2|E|) algorithm for finding maximum
matchings in general graphs. Proc. of 21st Ann. Symp. on Found. of Comp. Science
(FOCS ‘80), 1980, pp 17–23.

[103] MOLLOY,M. –REED,B.: The Dominating Number of a Random Cubic Graph.
Random Structures and Algorithms, 7 (3), 1995, pp 209–221.

[104] MONIEN,B. – SPECKENMEYER, E.: Some Further Approximation Algorithms for
the Vertex Cover Problem. Proc. 8th Colloquium on Trees in Algebra and Program-
ming (CAAP ‘83), Lecture Notes in Computer Science 159, Springer-Verlag, pp 341–
349, 1983.



BIBLIOGRAPHY 131

[105] MONIEN,B. – SPECKENMEYER, E.: Ramsey numbers and an approximation al-
gorithm for the vertex cover problem. Acta Informatica, 22, 1985, pp 115–123.

[106] ORE,O.: The four-color Problem. Accademic Press, 1967.

[107] PACH, J. – TÓTH,G.: Private communications, November 1996, and Three-
dimensional grid drawings of graphs, Manuscript, 1997.

[108] PAPADIMITRIOU,C. – YANNAKAKIS,M.: Optimization, Approximation, and
Complexity Classes. Journal of Computer and System Sciences, 43, 1991, pp 425-440.

[109] PAPAKOSTAS,A. – TOLLIS, I.G.: Improved Algorithms and Bounds for Orthogo-
nal Drawings. Proc.Graph Drawing ‘94 (GD ‘94), Lectures Notes in Computer Science
894, Springer-Verlag, 1994, pp 40–51.

[110] PARKER,D. S.: Notes on Shuffle-Exchange Type Switching Networks. IEEE Trans-
actions on Computers, C-29(3), 1980, pp 213-222.

[111] PATERSON,M. –RUZZO,W. – SNYDER,L.: Bounds on Minimax Edge for Com-
plete Binary Trees. Thirteenth Annual ACM Symposium on Theory of Computings
(STOC ‘81), 1981, pp 293–299.

[112] PETERSEN, J.: Die Theorie der regulären graphen. Acta Mathematica, 15, 1891,
pp 193–220. Engl. vers. in [158].

[113] PINTER,R.Y.: On routing two-point nets across a channel. 19th ACM-IEEE Design
Automation Conf., 1982, pp 894-902.

[114] PRADHAN,D.K. – SAMATHAM,M. R.: The deBruijn multiprocessor network: a
versatile parallel processing and sorting network for VLSI. IEEE Trans. Comput., 38,
1989, pp 567–581.

[115] PRATHER,R.E.: Design and Analysis of Hierarchical Software Metrics. ACM Com-
puting Surveys., 32, 1980, pp 331–334.

[116] PREISSMANN,M.: Even Polyedral Decompositions of Cubic Graphs. Discrete
Math., 27(4), 1995, pp 331–334.

[117] PREPARATA,F. P. –VUILLEMIN, J.: The Cube-Connected Cycles: A Versatile
Network for Parallel Computation. Communications of ACM, 24(5), 1981, pp 300–
309.

[118] RABIN,M. O.: Maximum Matching in general graphs through randomization. J. of
Algorithms, 10, 1989, pp 557–567.

[119] RAUCH,M.: Fully dynamic biconnectivity in graphs. Proc. 33rd IEEE Symp. Foun-
dations of Computer Science (FOCS ‘92), 1992, pp 50–59.

[120] RAUCH,M.: Improved data structures for fully dynamic biconnectivity. Proc. 26th
Symp. Theory of Computing (STOC ‘94), 1994, pp/,686–695.

[121] READ,R.C. editor: Graph Theory and Computing, Academic Press, New York and
London, 1972.

[122] READ,R.C.: Some Enumeration Problems in Graph Theory, Doctoral Thesis, Lon-
don University, 1958.

[123] REID,P.: Dynamic Interactive Display of Complex Data Structures. Graphics Tools
for Software Engineers, Cambridge, 1989, pp. 62–70.



132 BIBLIOGRAPHY

[124] ROBINSON,R.W. –WORMALD,N.C.: Almost all Cubic Graphs are Hamiltonian.
Random Structures and Algorithms, 3(2), 1992, pp 117–125.

[125] ROSENBERG,A. L.: Issues in the Study of Graphs Embeddings. Proc. 6-th In-
ternational Workshop on Graph-Theoretic Concepts in Computer Science (WG80),
Lectures Notes in Computer Science 100, Springer-Verlag, 1980, pp 150–176.

[126] ROSENBERG,A. L. –HEATH,L. S.: Graph Separators, with Applications, 1996, in
preparation.

[127] SAAD,Y. – SCHULTZ,M. H.: Topological properties of hypercubes. IEEE Trans.
Comput., 37, 1988, pp 867–872.

[128] SACHS,H.: On Regular Graphs with Given Girth. Theory of Graphs and its Appli-
cations, Proc. of the Symp. held in Smolenice, Academic Press 1963, pp 91–97.

[129] SHARAN,R. –WIGDERSON,A.: A new NC algorithm for Perfect Matching in
Bipartite Cubic Graphs. 4-th Israel Symposium on Theory of Computing and Systems,
IEEE, 1996, pp 202–207.

[130] SHILOACH,Y. –VISHKIN,U.: An O(log n) Parallel Connectivity Algorithm. Jour-
nal of Algorithms, 3(1), 1982, pp 57–67.

[131] SNYDER,L.: Type architectures, shared memory, and the corollary of modest po-
tential. Ann. Rev. Computer Science 1, 1986, pp 289-317.

[132] STATON,W.: Edge deletion and the chromatic number. Ars Combinatoria, 10 1980,
pp 103–106.

[133] STEWART, I.A.: Deciding wheather a planar graph has a cubic subgraph is NP-
complete. Discr. Math., 126(1-3), 1994, pp 349–357.

[134] STORER, J.A.: Constructing Full Spanning Trees for Cubic Graphs. Inform. Pro-
cess. Letters, 13(1), 1981, pp 8–11.

[135] STORER, J.A.: On Minimal-Node-Cost Planar Embeddings. Networks, 14, 1984,
pp 181–212.

[136] SZEKERES,G.: Polyhedral decompositions of cubic graphs. Bull. Aust. Math. Soc.,
8, 1973, pp 367–387.

[137] TAIT,P.G.: On the Colouring of Maps. Proc. Roy. Soc. Edinb., 10, 1878, pp 501–
503.

[138] TAIT,P.G.: Note on a theorem in the geometry of position. Trans. Roy. Soc. Edinb.,
29, 1880, pp 657–660.

[139] TAMASSIA,R.: On Embedding a Graph in the Grid with the Minimum Number of
Bends. SIAM J. Comput., 16(3), 1987, pp 421–444.

[140] TAMASSIA,R. – TOLLIS, I.G., –VITTER, J. S.: Lower Bounds and Parallel Algo-
rithms for Planar Orthogonal Grid Drawings. Proceedings IEEE Symposium on Par-
allel and Distributed Processing, 1991, pp 1–8.

[141] TAMASSIA,R. – VITTER, J. S: Parallel Transitive Closure and Point Location in
Planar Structures. SIAM J.Comput., 20(4), 1991, pp 708–725.

[142] THATCHER, J. W. editor: Complexity of Computer Computations, Plenum Press,
1972.



BIBLIOGRAPHY 133

[143] THOMPSON,C.D.: Area-time complexity for VLSI. 11-th Annual ACM Symposium
on Theory of Computing (STOC ‘79), 1979, pp 81–88.

[144] THOMPSON,C.D.: A complexity theory for VLSI. Ph.D. thesis, Carnegie-Mellon
Univ. Pittsburgh, 1980.

[145] THOMPSON,C.D.: Fourier transforms in VLSI. IEEE Trans. Comp. C-32, 1983,
pp 1047-1057.

[146] THULLER,H: Contribution à l’ étude des graphes cubiques et des graphes gracieux.
Ph.D. thesis, University Paris-XI, 1987.

[147] THULASIRAMAN,K. – SWAMY,M. N. S.: Graphs: Theory and Algorithms. John
Wiley & Sons, Inc., 1992.

[148] TUTTE, W.T.: On hamiltonian circuits. J. London Math. Soc., 21, 1946, pp 98–101.

[149] TVERSKY,O. – SNIBBE,O. – ZELEZNIK,R.: Cone trees in the uga graphics sys-
tem: suggestions of a more robust visualization tool. Technical Report CS-93-07,
Brown University, 1993.

[150] TZVIELI,D.: Minimal diameter double-ring networks I: Some very large infinite
optimal families. Louisiana State Univ., Baton Rouge, LA, 1988.

[151] VADAPALLI,P. – SRIMANI,P.K.: Trivalent Cayley graphs for Interconnection Net-
works. Informat.Process.Letters, 54, 1995, pp 329–335.

[152] VADAPALLI,P. – SRIMANI,P.K.: Shortest Routing in Trivalent Cayley Graph
Networks. Informat.Process.Letters, 57(4), 1996, pp 183–188.

[153] VAN LEEUWEN,J., editor: Algorithms and Complexity. Elsevier Science Publ.,
1990.

[154] VAZIRANI,V.V.: A theory of alternating paths and blossoms for proving correct-
ness of the O(

√
V E) general graph maximum matching algorithm. Combinatorica,

14, 1994, pp 71–109.

[155] VIZING,V.G.: On an estimate of the chromatic class of a p-graph. Diskret. Analiz.,
3, 1964, pp 23–30.

[156] WALTHER,H.: Über die Anzahl der Knotenpunkte eines längsten Kreises in
planaren, kubischen dreifach knotenzusammenhagenden Graphen. Studia Sci. Math.
Hungar., 2, 1967, pp 391–398.

[157] WALTHER,H.: Über Extremalkreise in regulären Landkarten. Wiss. Z. Techn.
Hochsch. Ilmenau, 15, 1969, pp 139–142.

[158] WATKINS, J. J. – WILSON,R. J.: A survey of Snarks. Graph Theory, Combinatorics
and Applications, vol.II – Proc. of the 6th quadre. intern. conf. on the theory and
applications of graphs, 1991, pp 1129–1144.

[159] WISE,D. S.: Compact layouts of banyan/FFT networks. VLSI Systems and Com-
putations (H.T. Kung, B. Sproull, G. Steele, eds.) Computer Science Press, Rockville,
Md., 1981, pp 186-195.

[160] WONG,P.K.: Cages – A Survey. J. Graph Theory, 6 1982, pp 1–22.

[161] WORMALD,N.C.: The Asymptotic Distribution of Short Cycles in Random Reg-
ular Graphs. J. Combin. Theory ser. B, 31 1981, pp 168–182.



134 BIBLIOGRAPHY

[162] YANNAKAKIS,M.: Node- and edge-deletion NP-complete problems. Proc. of 10th
Annual ACM Symp. on the Theory of Computing (STOC ‘78), Association for Com-
puting Machinery, New York, 1978, pp 253–264.

[163] ZÝKA,O.: On the Bipartite Density of Regular Graphs with Large Girth. Journ.
of Graph Theory, 14(6) 1990, pp 631–634.


