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Abstract

Trees are probably the most studied class of graphs in Computer Science. In

this thesis we study bijective codes that represent labeled trees by means of

string of node labels. We contribute to the understanding of their algorithmic

tractability, their properties, and their applications.

The thesis is divided into two parts. In the first part we focus on two

types of tree codes, namely Prüfer-like codes and Transformation codes. We

study optimal encoding and decoding algorithms, both in a sequential and in

a parallel setting. We propose a unified approach that works for all Prüfer-

like codes and a more generic scheme based on the transformation of a tree

into a functional digraph suitable for all bijective codes. Our results in this

area close a variety of open problems.

We also consider possible applications of tree encodings, discussing how

to exploit these codes in Genetic Algorithms and in the generation of random

trees. Moreover, we introduce a modified version of a known code that, in

Genetic Algorithms, outperform all the other known codes.

In the second part of the thesis we focus on two possible generalizations of

our work. We first take into account the classes of k-trees and k-arch graphs
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II ABSTRACT

(both superclasses of trees): we study bijective codes for this classes of graphs

and their algorithmic feasibility. Then, we shift our attention to Informative

Labeling Schemes. In this context labels are no longer considered as simple

unique node identifiers, they rather convey information useful to achieve

efficient computations on the tree. We exploit this idea to design a concurrent

data structure for the lowest common ancestor problem on dynamic trees.

We also present an experimental comparison between our labeling scheme

and the one proposed by Peleg for static trees.
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Chapter 1

Introduction

Trees are probably the most studied class of graphs in Computer Science.

They are used in a large variety of domains, including computer networks,

computational biology, databases, pattern recognition, web mining. In al-

most all applications, tree nodes and edges are associated with labels, weights,

or costs. Examples range from XML data to tree-based dictionaries (heaps,

AVL, RB-trees), from phylogenetic trees to spanning trees of communication

networks, from indexes to tries (used in compression algorithms). Many data

structures can be used to represents trees: adjacency matrices, adjacency

lists, parent vectors, and balanced parentheses are just a few examples.

An interesting alternative to the usual representations of tree data struc-

tures in computer memories is based on coding labeled trees by means of

strings of node labels. String-based codes for labeled trees have many practi-

cal applications. For example, they are used in fault dictionary storage [12],

distributed spanning tree maintenance [48], generation of random trees [36],

Genetic Algorithms [75, 92].

There are codes that define bijections between the set of labeled trees and

a set of strings of node labels. In these one-to-one mappings, the length of

the string must be equal to n−2, since Cayley has proved that the number of

labeled trees on n nodes is nn−2 [26]1, In his proof of Cayley’s theorem, Prüfer

1For the sake of correctness we report that Borchardt [13] proved this result almost
30 years before Cayley, in 1860. Cayley independently rediscovered it in 1889. Nowadays
this result is universally known as Cayley’s Theorem.

1



2 CHAPTER 1. INTRODUCTION

provided the first bijective string-based coding for trees [90]. Over the years,

many other bijective codes have been introduced [29, 39, 43, 78, 79, 89].

Motivated by the importance of labeled trees, in this thesis we study al-

gorithmic aspects related to bijective tree encodings. We contribute to the

understanding of bijective codes for labeled trees, their algorithmic tractabil-

ity, their properties, and their applications. The thesis is divided into two

parts. In the first part we focus on two types of tree codes, named Prüfer-like

codes and Transformation codes. We study optimal algorithms for encoding

and decoding, both in a sequential and in a parallel setting. Our results in

this area close a variety of open problems. We also consider possible appli-

cations of tree encodings, discussing how to exploit these codes in Genetic

Algorithms and in the generation of random trees.

In the second part of the thesis we focus on two possible generalizations

of our work. We first take into account the class of k-trees [57] (a super-

class of trees): we study bijective codes for this class of graphs and their

algorithmic feasibility for rooted, unrooted, and Rényi k-trees [94]. Then,

we shift our attention to Informative Labeling Schemes [87]. In this context

labels are no longer considered as simple unique node identifiers, they rather

convey information useful to achieve efficient computations on the tree. We

exploit this idea to design a concurrent data structure for the lowest common

ancestor problem on dynamic trees. In the literature other generalizations

and specializations of tree codes not considered in this thesis have been stud-

ied [44, 45, 83, 93].

Let us now detail the content of each chapter. We defer to Section 1.1 for

a description of all original contributions of this thesis. We refer the reader

to the Glossary at the end of this thesis for all notations and definitions not

explicitly introduced elsewhere.

Part I: Tree Encodings

In Chapter 2 we recall the Prüfer code as introduced in [90] and Prüfer-like

codes that hinge upon the same fundamental idea, i.e., recursive elimination

of leaves. Prüfer-like codes are due to Neville [79], Deo and Micikevičius [39].

We discuss how these codes can be used both for rooted and unrooted trees.
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In Chapter 3 we initially survey known optimal algorithms for encoding

and decoding Prüfer-like codes. Then, we introduce a unified approach that

works for all of them [17, 20]. By means of our unified approach we completely

close the problem of encoding and decoding all these codes in a sequential

setting. We also provide efficient parallel algorithms that either match or

improve the performances of the best previous known results.

In Chapter 4 we describe two possible applications of tree encodings: ran-

dom trees generation and Genetic Algorithms. The first application shows

how these combinatorial bijections can be fruitfully exploited to guarantee

that trees are generated uniformly at random, both in sequential and parallel

settings. We also present an experimental analysis showing that this method

is competitive with other known methods. Genetic Algorithms provide a

wider example of application of tree encodings. Many experimental compar-

isons have been presented in the literature, exploring several possible tree

encodings. Some of these experiments shifted our attention from Prüfer-like

code to Transformation codes.

In Chapter 5 we focus on bijective codes not belonging to the class of

Prüfer-like codes. We approaches proposed by Eğecioğlu and Remmel [43]

and by Picciotto [89], providing a general scheme based on the transformation

of a tree into a functional digraph (from which the name Transformation

codes). By means of our general scheme we are able to compare the codes

and provide theoretical reasons for their performances in Genetic Algorithm

implementations [24, 25].

Part II: Generalizations

In Chapter 6 we consider the class of k-trees, a natural generalization

of trees [57], and study bijective codes for labeled k-tree. We survey known

results and introduce a novel code together with encoding and decoding algo-

rithms. The running time of our algorithms is linear with respect to the size

of the encoded k-tree. Our code can be easily adapted to rooted, unrooted,

and Rényi k-trees, preserving bijectivity [22, 23]. We conclude the chapter

with some considerations on the number of k-arch graphs (a superclass of k-

trees): we consider enumerative results for this class given by Lamathe [72],
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we prove that one such result is erroneous and provide a suitable correc-

tion [21].

In Chapter 8 we present the concept of Informative Labeling Scheme (ILS)

introduced by Peleg [87] and propose an ILS for Lowest Common Ancestor

on dynamic trees. We exploit it to obtain a concurrent data structure for

LCA of dynamic trees [18]. We also experimentally compare our scheme with

the one proposed by Peleg and show pros and cons of both schemes [19].

1.1 Original Contributions of this Thesis

A Unified Approach for Prüfer-like Codes. The unified approach pre-

sented in Chapter 3 makes it possible to encode and decode all Prüfer-like

codes introduced by Prüfer [90], Neville [79], Deo and Micikevičius [39]. The

unified encoding algorithm is based on the definition of pairs associated to

tree nodes according to criteria dependent on the specific code: the coding

problem is then reduced to the problem of sorting these pairs in lexicographic

order. The unified decoding algorithm hinges upon the computation of the

rightmost occurrence of each value in a codeword. By exploiting this ap-

proach, we obtain optimal linear time algorithms for encoding and decoding

all Prüfer-like codes presented in Chapter 2. We close the open problem of

finding a linear time decoding algorithm for the Second Neville code. We

also show how it is possible to parallelize our unified approach: our unified

algorithms either match or improve by a factor
√

log n the performances of

the best ad hoc parallel algorithms known so far.

These results have been published on Theoretical Computer Science [20],

in the special issue devoted to the 6th Latin American Symposium on The-

oretical Informatics (LATIN‘04) where a preliminary version of this work

appeared [17]. A part of these results also appeared in Congressus Numer-

antium [16].

A General Scheme for Transformation Codes. In Chapter 5 we in-

troduce a general scheme for defining bijective codes based on the trans-
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formation of a tree into a functional digraph. The class of Transformation

codes (i.e., those codes that can be defined with our general scheme) contains

each possible bijective code for labeled trees. The same is not true for other

classes, such as Prüfer-like codes. As examples, we show how it is possible to

map the codes by Eğecioğlu and Remmel [43] and by Picciotto [89] into our

scheme. This also gives us a better comprehension of how encoding preserves

the topology of the tree, and therefore helps to understand which code better

fits some desirable properties, such as locality and heritability.

These results have been published in Proceedings of the 11th International

Conference on Computing and Combinatorics (COCOON‘05) [25]. An ex-

tended version of this work has been submitted to SIAM Journal of Discrete

Mathematics [24]. A part of these results also appeared in Congressus Nu-

merantium [16].

Optimal Algorithms for k-Trees Encoding. In Chapter 6 we introduce

a novel bijective code for rooted and unrooted k-trees (and also for Rényi

k-trees). We give a detailed description of linear time encoding and decoding

algorithms for our code. We also analyze, in Chapter 7, the result presented

by Lamathe [72] concerning the number of k-arch graphs. We point out an

error in his work: the closed formula he provided overestimates the cardinal-

ity of this class of graphs. We provide an exact counting result in terms of a

recursive function.

The results concerning k-trees encoding have been published in Proceed-

ings of the International Symposium on Combinatorics, Algorithms, Prob-

abilistic and Experimental Methodologies (ESCAPE‘07) [23]. An extended

version of this work has been submitted to Theory of Computing Systems [22].

The correct formula for the number of k-arch graphs appeared on Journal of

Integer Sequences [21].

Informative Labeling Schemes for LCA on Dynamic Trees. In Chap-

ter 8 we exploit the idea of Informative Labeling Schemes to design concur-

rent data structures. The scenario we have considered is a multiprocessor

machine with asynchronous access to a shared memory. We focus on a data
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structure for the Lowest Common Ancestor Problem on dynamic trees. We

propose a new Informative Labeling Scheme for Lowest Common Ancestor

that may be used for dynamic trees and show a detailed experimental com-

parison between our scheme and the one proposed by Peleg [87] for LCA on

static trees. These results have not yet been published [18, 19].
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Chapter 2

Prüfer-Like Codes

We start this chapter recalling the well known Prüfer code [90], originally

introduced by the German mathematician in 1918 to provide an alternative

proof of Cayley’s theorem.

The Prüfer code deals with unrooted trees on n nodes labeled with distinct

values from a set L of cardinality n. Such trees are known as Cayley trees.

Without loss of generality we will assume that the labels are integer numbers

in the range from 1 to n, i.e., that L = [1, n]. Moreover, we will identify a

node with its label: the node set of a tree on n nodes will therefore be [1, n].

The set of Cayley trees on n nodes is denoted as Tn. It is well known that

|Tn| = nn−2:

Theorem 2.1 (Cayley [26]). There exist nn−2 unrooted trees with n nodes

univocally labeled with n distinct labels.

Let us call Rn the class of rooted Cayley trees with n nodes. Since there

are n different possible ways to root a Cayley tree in Tn, it directly follows

that |Rn| = n|Tn|. More formally, from Theorem 2.1 we obtain:

Corollary 2.2. There exist nn−1 rooted trees with n nodes univocally labeled

with n distinct labels.

We continue the chapter surveying other codes that hinge upon the same

fundamental idea exploited by Prüfer: for this reason they are called Prüfer-

9



10 CHAPTER 2. PRÜFER-LIKE CODES

like codes. The codes we will study are due to Neville [79] and to Deo and

Micikevičius [39].

This chapter does not contain any original contribution but it is helpful to

understand the followings. It is organized as follows: in Section 2.1 we recall

the original encoding and decoding processes as introduced by Prüfer [90];

we also clarify how to apply it to rooted trees. In Section 2.2 and Section 2.3

we describe the Prüfer-like codes introduced by Neville [79] and by Deo and

Micikevičius [39], both for rooted and unrooted trees.

We will use adj(v) to refer to the set of all the nodes adjacent to any

node v. If adj(v) consists of a single node (i.e., v is a leaf), when there is no

ambiguity, we will use adj(v) to refer to the adjacent node, itself rather then

to a set of cardinality 1. Let T be a tree and v a leaf in T , we denote T � v

the tree obtained form T by removing the node v and the edge incident on

node v.

2.1 Prüfer Code

The Prüfer code is a bijective association between trees in Tn and sequences

of n− 2 node labels. We will say that the sequence associated to a tree T is

the codeword for T . Codewords are strings of length n− 2 over the alphabet

[1, n] and thus belong to [1, n]n−2. The operator :: will be used to denote the

concatenation of two strings.

The original definition of the Prüfer code was formulated in terms of a

recursive elimination of leaves. Given an unrooted tree T , recursively remove

the smallest leaf until a single node remains. Let ai be i-th removed leaf and

bi the node adjacent to ai when ai has been removed. The sequence:

(
a1, a2, . . . , an−1

b1, b2, . . . , bn−1

)
(2.1)

univocally describes T , since each edge of the tree appears as a pair (ai, bi)

for some i. This sequence of pairs is known as the Natural Code for T . Notice
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that bn−1 is always n, since this node will never be selected as a smallest leaf

to be removed.

The Prüfer code for T is the string:

C = (b1, b2, . . . , bn−2)

The following interesting property holds:

Property 2.3. Given an unrooted Cayley tree T , let C be its Prüfer code.

Each node v of T appears in C exactly deg(v)− 1 times.

Proof. Consider the Natural Code for T . Since Equation 2.1 is a list of all

edges in T , each node v appears in the Natural Code exactly deg(v) times.

Any node but n appears in the sequence a1, . . . , an−1 exactly once, while

n does not appear in this sequence: n appears in b1, . . . , bn exactly deg(n)

times and bn = n. This implies that each node appears in C = (b1, . . . , bn−1)

exactly deg(v)− 1 times.

Before showing how to invert this bijection (i.e., how to rebuild a tree

from its codeword), let us introduce a more formal definition for the code.

We will consider the encoding procedure of the Prüfer code as a recursive

function π:

π(T ) = adj(minT ) :: π(T � minT ) (2.2)

where minT denotes the minimum leaf in T . If T has only 2 nodes π(T ) is

the empty string.

Example 1. In Figure 2.1 an example of coding is provided. At the beginning

the smallest leaf is a1 = 3, adj(3) = {2} and then b1 = 2. Once node 3 is

removed from the tree, node 2 the smallest leaf: a2 = 2 and its adjacent node

is b2 = 5, then node 2 is removed. At the next steps a3 = 4, b3 = 1, a4 = 6,

b4 = 1. As soon as node 6 is removed node 1 becomes a leaf and then a5 = 1

and b5 = 5. The process stops when the tree consists of a single edge (5, 7)

since a codeword of length n − 2 has been computed. The Prüfer code for

this tree is (2, 5, 1, 1, 5).
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Figure 2.1: Step by step computation of Prüfer code. At each step the leaf with
smallest label is deleted. The resulting codeword is (2, 5, 1, 1, 5).

2.1.1 Decoding

We now show how it is possible to decode Prüfer code. Given any codeword

C in [1, n]n−2, the decoding computes a tree T such that π(T ) = C.

From Property 2.3 we know that leaves in T are all nodes that do not

appear in C = (b1, . . . , bn−2). We can therefore compute a1 as the smallest

number in [1, n] not in C. In order to compute a2 consider that (b2, . . . , bn−2)

is the codeword for T ′ = T � {a1}: indeed function π recursively computes

(b2, . . . , bn−2) as π(T ′) (see Equation 2.2). Thus we can identify the smallest

leaf in T ′ as the smallest number in [1, n] � {a1} not in (b2, . . . , bn−2). Anal-

ogously (b3, . . . , bn−2) = π(T ′
� {a2}), and then a3 is the smallest number in

[1, n] � {a1, a2} not in (b2, . . . , bn−2). In general ai is the smallest number in

[1, n] � {a1, . . . , ai−1} not in (bi, . . . , bn−2).

In order to complete the reconstruction of the Natural Code consider that

bn−1 is always n and an−1 should be the only number smaller than n not yet

used in (a1, . . . , an−2). The tree is T = ([1, n], {(ai, bi) : i ∈ [1, n− 1]}).

It is easy to see that the decoding procedure is the inverse function of π,

moreover π is injective and surjective: the Prüfer code is a bijection between

Tn and [1, n]n−2. For formal proofs of these assertions we refer the interested

reader to [90]. In these thesis we rather focus on algorithmic implications.
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Before showing how to extend the Prüfer code to rooted trees, let us show

an example of decoding.

Example 2. Given the codeword (2, 5, 1, 1, 5) we can easily deduce n = 7

since the codeword has length 5. The set of all leaves of the encoded tree T

is {3, 4, 6, 7}, i.e., all those numbers in [1, 7] not appearing the codeword. The

smallest leaf is a1 = 3. Leaves of T �{3} are all those nodes in [1, 7]�{3} not

appearing in the sequence (5, 1, 1, 5), i.e., {2, 4, 6, 7}. Then the leaf removed

at the second step of the encoding should be a2 = 2. The algorithm proceeds

by choosing a3 = min([1, 7]�{2, 3}�(1, 1, 5)) = 4, a4 = min([1, 7]�{2, 3, 4}�
(1, 5)) = 6, and a5 = min([1, 7] � {2, 3, 4, 6} � (5)) = 1. To complete the

reconstruction of the Natural Code for T the algorithm chooses b6 = 7 and

a6 = 5, i.e., the only number in [1, 6] not yet chosen as ai. The Natural Code

obtained univocally identifies the tree depicted in Figure 2.1:(
3, 2, 4, 6, 1, 5
2, 5, 1, 1, 5, 7

)

2.1.2 Rooted Trees

The encoding procedure proposed by Prüfer can be applied to a rooted tree.

In this case the root is never considered as a leaf, even if it has degree 1,

and is never removed from the tree during the encoding. This implies that,

in the Natural Code, bn−1 is the tree root. Since this information changes

according to the encoded tree, it cannot be omitted. Thus, the codeword has

length n− 1 and the code a bijection between Rn and [1, n]n−1.

We remark that Property 2.3 slightly changes when the code is applied

to rooted trees:

Property 2.4. Given a Cayley tree T rooted at r, let C be its Prüfer code.

The root r appears in C exactly deg(r) times and each other node v of T

appears in C exactly deg(v)− 1 times.

Example 3. In Figure 2.2 an example of encoding a rooted tree is presented.

At each step the smallest leaf is removed and its parent (i.e., its unique

adjacent node) is added to the codeword. We remember that the root is
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Figure 2.2: Step by step computation of Prüfer code for a rooted tree. At
each step the leaf with smallest label is deleted. The resulting codeword is
(7, 4, 4, 3, 3, 3, 7).

never considered as a leaf, even if it has degree 1. The resulting n− 1 length

codeword is (7, 4, 4, 3, 3, 3, 7).

The decoding procedure simply deduces the sequence of the n−1 removed

leaves, as described for unrooted trees. Then, it reconstructs the Natural

Code, and returns the corresponding tree rooted in the last symbol of the

codeword.

We can also deal with Cayley trees rooted in a fixed node x (such as the

node 1, the node with maximum label, the node with label �√n �, etc.), let

us call T x
n the class of such trees. In this case the codeword length can be

reduced to n− 2: there is no need to maintain the last element bn−1 since it

is always x. The code is bijective because, for each x, |T x
n | = nn−2.

It is worth noticing that the codeword that the Prüfer encoding procedure

associates to a tree T ∈ T n
n is exactly the same codeword obtained by the

original Prüfer code applied to T as an unrooted tree.

2.2 Neville’s Codes

In 1953, Neville [79] presented three different codes. The first one coincides

with Prüfer code, while the other two constitute novel bijections between

Cayley trees and strings of node labels. Remarkably, all of them have been
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described in terms of recursive leaves elimination; each time a leaf is removed

from the tree, the unique node adjacent to the leaf is added to the codeword.

Because of this similarity with the Prüfer code these codes are called Prüfer-

like codes. However, each code has a specific criterion to determine the

sequence of leaves eliminated at each step.

In the following we will describe all codes as applied to rooted Cayley

trees. To apply these codes to unrooted trees, as stated in Section 2.1.2, it

is enough to root the tree in a fixed node (e.g., always n) and omit the last

symbol in the codeword. Indeed Neville’s codes have been originally intro-

duced for trees rooted in the fixed node n, but have been later generalized by

Moon [78] to unrooted and arbitrarily rooted trees. All these codes, similarly

to the Prüfer code, satisfy Properties 2.3 and 2.4.

2.2.1 Second Neville Code

The Second Neville code, at each step, removes from the tree all the leaves

in increasing label order. The parent (the unique adjacent node) of each leaf

is added to the codeword.

Example 4. In Figure 2.3 an example of tree encoding with the Second Neville

code is shown. At the first step all leaves {8, 3, 5, 9, 4} are removed in in-

creasing label order: (3, 4, 5, 8, 9). The first five symbols in the codeword

corresponds to (6, 10, 6, 1, 7), i.e., the labels of nodes adjacent to removed

leaves. Iterating this process until the tree consists of a single node a code-

word of length n− 1 is obtained: (6, 10, 6, 1, 7, 2, 7, 7, 7).

The process of decoding the Second Neville code is analogous to the one

described in Section 2.1.1, except for the fact that, at each step, rather than

the smallest leaves we chose all leaves in increasing order. Let us show an

example of decoding the codeword C = (6, 10, 6, 1, 7, 2, 7, 7, 7) to obtain a

rooted tree.

Example 5. The codeword length is n− 1 then n = 10. The set of leaves of

the initial tree is {3, 4, 5, 8, 9}, i.e., all values not in C. These values, together

with the first 5 symbols in C, allow us to deduce the edges (3, 6), (4, 10), (5, 6),

(8, 1), and (9, 7). The remaining part of the codeword (2, 7, 7, 7) corresponds
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Figure 2.3: Step by step computation of the Second Neville code. At each
step all leaves are deleted in increasing label order. The resulting codeword is
(6, 10, 6, 1, 7, 2, 7, 7, 7).

to the encoding of the subtree whose nodes are [1, 10]�{3, 4, 5, 8, 9}. All these

nodes, but 2 and 7 that appear in the codeword, are leaves: {1, 6, 10}. The

edges identified are: (1, 2), (6, 7), and (10, 7). In the last step the codeword

consists of a single symbol (7) and the subtree represented by this codeword

has only two nodes: {2, 7}. Then the last edge is (2, 7).

We recall that, as noted in Section 2.1.2, the last symbol of the codeword

is the root of the tree. Moreover, each edge deduced during the decoding

process can be created as an oriented edge going from a node (the leaf) to

its parent (the node in the codeword).

We want to remark that when the Second Neville code is applied to

unrooted trees (as done by Moon in [78]) the last node remaining in the tree

after the encoding is the center of the tree. It corresponds to the last symbol

in the codeword (i.e., the one that should be omitted to obtain an n − 2

length codeword). If the tree has two centers the one with highest label will

be the last node.

2.2.2 Third Neville Code

The Third Neville code at the first step selects the smallest leaf and removes

it. In the subsequent steps, if the node adjacent to the last removed leaf

is now a leaf, it is selected and removed; otherwise the new smallest leaf is
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Figure 2.4: Step by step computation of the Third Neville code. At each step
the pending chain containing the leaf with smallest label is deleted. The resulting
codeword is (8, 3, 4, 4, 3, 3, 7).

selected. In other words, nodes that are not leaves in the initial tree are

removed as soon as they become leaves, while all leaves of the initial tree are

selected in increasing order.

The example in Figure 2.4 helps us to clarify the criterion.

Example 6. Initially we select leaf 1: when it is removed, its adjacent node

8 becomes a leaf and then it is suddenly chosen and removed. Node 3 still

has other children, and thus we seek for a new smallest leaf: 2. The removal

of node 2 does not let its parent 4 becomes a leaf, and then the smallest

leaf 5 is chosen. Once 5 is removed 4 becomes a leaf and is removed. The

only remaining leaf is 6 whose removal lets 3 become a leaf. Finally 3 is

removed. As in Prüfer code, each time a leaf is removed, the label of its

adjacent node is added to the codeword, then the Third Neville code for this

tree is (8, 3, 4, 4, 3, 3, 7).

An alternative way to look at this code is as it works by deleting chains.

We call pending chain a path u1, . . . , uk of maximal length such that the

starting point u1 is a leaf, and, for each i ∈ [1, k − 1], the deletion of ui

makes ui+1 a leaf: the code works by iteratively deleting the pending chain

containing the smallest leaf.

Moon in [78] applied the Third Neville code to unrooted trees. In this

case the last node remaining in the tree after the encoding is the leaf with

maximum label. Indeed, consider the set of all leaves of the initial tree in
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Figure 2.5: Step by step computation of the Stack-Queue code. At the first step
all the leaves are deleted in increasing label order, other nodes are deleted in the or-
der in which they become leaves. The resulting codeword is (6, 10, 6, 1, 7, 7, 7, 2, 2).

increasing order {l1, l2, . . . , lk}. After the removal of pending chains corre-

sponding to l1, l2, . . . , lk−2, the tree consists of a single chain joining lk−1 to

lk. This chain is removed starting from lk−1, then the last node must be lk.

2.3 Stack-Queue Code

Recently, Deo and Micikevičius [39] introduced a new Prüfer-like code called

Stack-Queue code. This code initially deletes all tree leaves in increasing

label order, as the Second Neville code. Then, it deletes all the internal

nodes in the order in which they become leaves. The original presentation

makes use of specific data structures. At the beginning of the encoding, a

FIFO queue Q is initialized with all tree leaves in increasing label order. At

each step the algorithm extracts a leaf from Q and removes it. Whenever a

node becomes a leaf, it is added to Q. We defer to Chapter 3 the explicit

presentation of their algorithm.

Example 7. Consider the tree in Figure 2.5. Let us explicitly report the

content of the queue Q at each step of the algorithm. It initially con-

tains all leaves in increasing order: Q(0) = (3, 4, 5, 8, 9); in the following

steps the queue changes as follows: Q(1) = (4, 5, 8, 9), Q(2) = (5, 8, 9, 10),

Q(3) = (8, 9, 10, 6), Q(4) = (9, 10, 6, 1), Q(5) = (10, 6, 1), Q(6) = (6, 1),

Q(7) = (1, 7), Q(8) = (7), Q(9) = (). The leaves elimination order is given by
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the sequence of nodes extracted from the queue: 3, 4, 5, 8, 9, 10, 6, 1, 7. The

resulting codeword is (6, 10, 6, 1, 7, 7, 7, 2, 2).

The original decoding algorithm proceeds backwards and uses a LIFO

stack S. As a first step the codeword C is scanned right to left and each

value is pushed in S (avoiding duplicates). Then all leaves (values not in C)

are pushed in S in decreasing label order. This ensures that S contains all

nodes that have been pushed to Q during the encoding in the reverse order.

Therefore, popping values out of S, we have the exact leaves elimination

order realized by the encoding. This correctly reconstructs the tree.

Example 8. For example, decoding the codeword C = (6, 10, 6, 1, 7, 7, 7, 2, 2)

will make the content of the stack to be S = (2, 7, 1, 6, 10) after the right to

left scan of C. Then adding all values not in C in decreasing order we obtain

S = (2, 7, 1, 6, 10, 9, 8, 5, 4, 3). Popping n−1 elements out of S we obtain the

same leaves elimination order realized by the encoding: 3, 4, 5, 8, 9, 10, 6, 1, 7.

Then we can rebuild the tree.

This code has been originally introduced for unrooted trees. In this case

the last node is the center of the tree (either of them if the tree has two

centers). This makes it possible to compute the tree diameter directly from

the codeword, as shown in [39]. The same property holds for the Second

Neville code.

2.4 Concluding Remarks

Up to now, we have recalled four well known Prüfer-like codes. All of them

are based on recursive leaves elimination and realize bijection between rooted

and unrooted Cayley trees an codewords of length n−2 and n−1, respectively.

In concluding this chapter, we want to highlight that the criterion used

by Prüfer to select the order in which tree nodes are removed (at each step

remove the smallest leaf) can be substituted by many other deterministic

criterions. The other codes we have seen in this chapter are just three possible

examples.
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In general, any deterministic criterion can be used to generate a bijective

Prüfer-like code, provided that it select, at each step of the encoding, a (non-

empty) sequence of the tree leaves exploiting only the current leaves set and

the sequences chosen in the previous steps. Indeed, the decoding scheme

proposed in Section 2.1.1, at each step, can identify the set of leaves removed

in the corresponding step of the encoding simply using the same deterministic

criterion.



Chapter 3

Algorithms for Prüfer-like
Codes

In this chapter we focus on algorithmic aspects related to the computation

of all Prüfer-like codes presented in Chapter 2. Initially, in Section 3.1, we

survey a series of ad hoc algorithms for Prüfer code, Neville’s codes, and

Stack-Queue code. All these algorithms strongly depend on the properties

of the code which has to be computed and thus are very different from each

other.

As a novel contribution of this thesis we present a unified approach that

makes it possible to encode and decode all Prüfer-like codes introduced so far.

It has been published in [20] (a preliminary version of this work appeared

in [17]). The unified encoding algorithm presented in Section 3.2 is

based on the definition of pairs associated to tree nodes according to criteria

dependent on the specific code: the coding problem is then reduced to the

problem of sorting these pairs in lexicographic order. The unified decod-

ing algorithm presented in Section 3.3 hinges upon the computation of

the rightmost occurrence of each value in a codeword. With these unified

algorithms we obtain optimal linear time algorithms for encoding and decod-

ing all Prüfer-like code seen in Chapter 2. It should be noted that we close

the open problem of finding a linear time decoding algorithms for the Second

Neville code.

Finally, in Section 3.4 we show how it is possible to parallelize our unified

21
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approach achieving very good results: our unified algorithms either match or

improve the performances of the best ad-hoc parallel algorithms known so far.

Namely we obtain parallel encoding algorithms that require O(n) operations

for the Prüfer code and the Third Neville code and O(n
√

log n) for the Second

Neville code and the Stack-Queue code. Concerning decoding we match the

O(n logn) bound known for Prüfer code and, for the first time, we provide

parallel algorithms for the Second Neville code, Third Neville code, and the

Stack-Queue code: these algorithms require O(n
√

log n) operations.

3.1 Known Algorithms

Here we recall known optimal sequential algorithms to encode and decode

Prüfer code, Second Neville code, Third Neville code, and Stack-Queue code.

We assume to deal with rooted trees.

3.1.1 Prüfer Code

A straightforward implementation of the idea described in Section 2.1 would

require to compute, at each of n− 1 steps, the minimum among a set. Even

using appropriate data structures, like a minimum heap, this would lead to

algorithms whose running time is O(n logn).

Since the introduction of Prüfer code in 1918, a linear time algorithm for

encoding a tree has been given for the first time only in the late 70’s. In

fact, it was left as an exercise both in [80] (exercise 46, page 293), and in [40]

(exercise 2, page 666). Maybe this is the reason why it has been rediscovered

several times, and still nowadays optimal algorithms for Prüfer code appear

to be not known by researchers (see for example [42, 51, 61]).

The linear time encoding algorithm that we propose here is the version

published in [17] and in [20] of an idea that, according to our knowledge, is

due to Klingsberg [68].

Let us assume that the tree is represented by means of adjacency lists and

that the degree of each node is known (otherwise, it can be easily computed
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with a simple scan of the adjacency lists). The input is an unrooted tree

represented by adjacency lists. The Prüfer code of T can be computed as

follows:

1. for each node v = 1 to n do

2. if deg(v) = 1 and v �= root then

3. let u be the unique node in adj(v)

4. append u to the code and decrease its degree by 1

5. while deg(u) = 1 and u < v and v �= root do

6. let z be the unique node in adj(u)

7. append z to the code and decrease its degree by 1

8. u← z

The idea is to consider all nodes in increasing order (variable v in the

algorithm), once a leaf is encountered it is selected for removal. Each removal

may let at most one node becomes a leaf (variable u). If u becomes a leaf

and has a label smaller than v, it will certainly be the smallest leaf, than it is

selected for removal. Removing u may let another node becomes a leaf, thus

implying a cascading effect: the inner while loop ensures that this problem

is handled correctly.

The algorithm terminates when the codeword reaches the desired length

(n − 1 for rooted trees). In order to achieve O(n) running time the explicit

removal of nodes from the tree is avoided. We simply decrease the degree of

a node each time a leaf adjacent to it is selected for removal. This allows us

to avoid expensive changes in adjacency lists. In this case line 3 requires a

scan of the adjacency list of v to identify the unique node not yet removed

(removed nodes can be marked with a flag). Each adjacency list is scanned

at most once, then the overall running time is linear.

Concerning decoding, a similar idea can be exploited to reconstruct a tree

from a codeword. The linear time decoding algorithm due to Klingsberg has

been explicitly published in [40]. We present here a slightly modified version.

Initially T is a graph with n = |C| + 2 nodes and no edges. A symbol n is

added at the end of the codeword to ensure that all n−1 edges are correctly
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computed. We preliminarily mark all nodes that do not appear in C: these

are candidate leaves. The algorithm works as follows:

1. for each v = 1 to n− 1 do

2. if v is marked then

3. u = pop(C) and add edge (v, u) to T

4. if u no longer appears in C then mark u

5. while u is marked and u < v do

6. z = pop(C) and add edge (u, z) to T

7. if z no longer appears in C then mark z

8. u← z

The operation pop(C) extracts the first symbol from the codeword. To

test if a certain node no longer appears in C in O(1) time we can precompute

the last occurrence of each value i ∈ [1, n] in C with a simple right to left

scan of the codeword. This is enough to conclude that the running time of

this algorithm is O(n).

3.1.2 Second Neville Code

A trivial implementation of the Second Neville code described in Section 2.2.1

would require to sort a set of integer numbers at each step. Using integer

sorting algorithms this requires O(n2) running time. In [38] an encoding

algorithm that uses a set of sorted lists is presented. Due to the use of sorted

lists, the running time decreases to O(n log n). The first linear time algorithm

for Second Neville code has been presented in [74] and is analogous to the

one obtained with the unified encoding algorithm described in Section 3.2.

There were no optimal algorithms for decoding the Second Neville code

known in the literature before the one obtained through our unified decoding

algorithm described in Section 3.3.
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3.1.3 Third Neville Code

A linear time algorithm for computing the Third Neville code is not diffi-

cult to obtain. Each step corresponding to the elimination of an internal

node does not imply any global computation on the tree (such as identify

a minimum or sort a set of nodes), thus each step requires constant time.

To efficiently identify the new smallest leaf, when required, it is enough to

precompute a list of all leaves of the initial tree in increasing order, this may

be done in linear time with any integer sorting algorithm [35]. Analogous

considerations hold for decoding.

The Third Neville code can be computed with an algorithm similar to

the one presented for Prüfer code in Section 3.1.1, by just omitting the test

u < v: this guarantees that internal nodes are removed as soon as they

become leaves.

1. for each node v = 1 to n do

2. if deg(v) = 1 and v �= root then

3. let u be the unique node in adj(v)

4. append u to the code and decrease its degree by 1

5. while deg(u) = 1 and v �= root do

6. let z be the unique node in adj(u)

7. append z to the code and decrease its degree by 1

8. deg(u) = 0

9. u← z

Line 8 avoids that a node u already used verifies the test in line 2 and

contributes to the codeword again.

The decoding algorithm can be obtained similarly from the Prüfer de-

coding algorithm by removing the test u < v. Also in this case, this implies

that labels appearing in the codeword are used as soon as they are marked

as candidate leaves. It is as follows:
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1. for each v = 1 to n do

2. if v is marked then

3. u = pop(C) and add edge (v, u) in T

4. if u no longer appears in C then mark u

5. while u is marked do

6. z = pop(C) and add edge (u, z) in T

7. if z no longer appears in C then mark z

8. unmark u

9. u← z

3.1.4 Stack-Queue Code

As mentioned in Section 2.3 Deo and Micikevičius, in their original presenta-

tion of the Stack-Queue code, provided linear time algorithms. The encoding

algorithm uses a FIFO queue Q, while the decoding algorithm uses a LIFO

stack S.

The encoding algorithm is the following:

1. for each node v = 1 to n except the root do

2. if deg(v) = 1 then enqueue(v, Q)

3. while Q is not empty do

4. v ← dequeue(Q)

5. let u be the parent of v

6. append u to the code and decrease its degree by 1

7. if deg(u) = 1 and u is not the root then enqueue(u, Q)

enqueue(v, Q) adds value v to the tail of queue Q, while dequeue(Q)

extracts a value from the head of Q.

The decoding algorithm is the following:

1. for each value v = 1 to n do

2. used[i] = false
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3. for i = n− 1 to 1 do

4. if not used[C[i]] then

5. push(i, S)

6. used[C[i]] = true

7. push all unused values in S in increasing order

8. for i = 1 to n− 1 do

9. v ← pop(S)

10. add edge (C[i], v) in T

push(i, S) inserts value i into the to of stack S, while pop(S) extracts an

value from the top of S.

Both these algorithms require linear time [39].

3.2 A Unified Encoding Algorithm

As we said, sequential and parallel encoding and decoding algorithms have

been presented in the literature [27, 38, 39, 53, 54, 104], but all of them

strongly depend on the properties of the code which has to be computed and

thus are very different from each other.

In this section we show a unified approach that works for all Prüfer-like

codes introduced so far. Through this unified approach we obtain linear

time coding and decoding sequential algorithms. Moreover this approach

can be easily exploited to obtain parallel algorithms: in Section 3.4 we will

show how to do this for the EREW PRAM parallel model. Namely, we

associate each tree node with a pair of integer numbers according to criteria

dependent on the specific code. Then we sort nodes using such pairs as

keys; the lexicographic order is obtained with integer (radix) sorting [35].

The obtained ordering corresponds to the order in which nodes are deleted

from the tree and can thus be used to compute the code. We remark that

in [74] the idea of sorting pairs has been used to obtain an ad-hoc linear time

algorithm for the Second Neville code. In the rest of this section we show

how different pair choices yield Prüfer, Neville, and Deo and Micikevičius

codes, respectively.
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Code Pair ( xv, yv )

Prüfer ( μ(v), d(μ(v), v) )

Second Neville ( l(v), v )

Third Neville ( λ(v), d(λ(v), v) )

Stack-Queue ( l(v), γ(v) )

Table 3.1: Pair (xv, yv) associated to node v for different codes.

3.2.1 Coding by Sorting Pairs

Let T be a rooted Cayley tree with n nodes, and let u and v be any two

nodes of tree T . Let us call:

• d(u, v): distance between two nodes u and v in T , d(u, u) = 0;

• l(v): the (bottom-up) level of node v, i.e., the maximum distance of v

from a leaf in Tv;

• μ(v): the maximum label among all nodes in Tv;

• λ(v): the maximum label among all leaves in Tv;

• γ(v): the maximum label among the leaves in Tv that have maximum

distance from v;

• (xv, yv): a pair associated to node v according to the specific code as

shown in Table 3.1;

• P : the set of pairs (xv, yv) for each v in T .

The following lemma establishes a correspondence between the set P of

pairs and the order in which nodes are deleted from the tree.

Lemma 3.1. For each code, the lexicographic ordering of the pairs (xv, yv)

in set P corresponds to the order in which nodes are deleted from tree T

according to the code definition.
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Proof. We discuss each code separately:

Prüfer code: notice that before a node v can be selected as a leaf the entire

subtree Tv should have been deleted. Furthermore, according to the

definition of Prüfer code, when the node μ(v) is chosen for deletion, Tv

consists of a chain from μ(v) to v. All the nodes in such a chain have

label smaller than μ(v) and thus will be chosen in the steps immediately

following the deletion of μ(v). The tree is therefore partitioned into

chains containing nodes with the same μ value and the rank of each

node v in the chain is d(v, μ(v)). Prüfer code deletes all the chains, in

increasing order, with respect to μ(v).

Second Neville code: the code deletes at each iteration all the leaves of

T , and thus nodes are deleted starting from smaller to higher levels.

Nodes within the same level are deleted in increasing label order. Hence

the pair choice.

Third Neville code: it is sufficient to use the definition of pending chain

given in Section 2.2.2 and to observe that, for each node v, λ(v) is the

head of the unique pending chain containing v.

Stack-Queue code: similarly to the Second Neville code, this code deletes

nodes from smaller to higher levels. As proved in [37], nodes within

the same level � are deleted in increasing order of their γ values. The

proof given by Deo and Micikevičius is by induction on �.

Nodes within level 0 (i.e., the leaves of T ) are such that γ(v) = v and

are deleted by increasing label order. Let u and v be two arbitrary

nodes at level �. According to the code definition, the order in which

u and v become leaves is strictly related to the deletion order of nodes

at level � − 1. Let u′ and v′ be the last deleted nodes of Tu and Tv

respectively. It is easy to see that l(u′) = l(v′) = � − 1. Furthermore,

by definition of γ, it holds γ(u′) = γ(u) and γ(v′) = γ(v). Since by

inductive hypothesis u′ is deleted before v′ if and only if γ(u′) < γ(v′),

the same holds for nodes u and v.
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Prüfer code

Pairs: (3,0) (4,0) (5,0) (6,0) (8,0) (8,1) (8,2) (9,0) (9,1)
Nodes: 3 4 5 6 8 1 2 9 7
Code: 6 10 6 7 1 2 7 7 10

Second Neville code

Pairs: (0,3) (0,4) (0,5) (0,8) (0,9) (1,1) (1,6) (1,10) (2,2)
Nodes: 3 4 5 8 9 1 6 10 2
Code: 6 10 6 1 7 2 7 7 7

Third Neville code

Pairs: (3,0) (4,0) (4,1) (5,0) (5,1) (8,0) (8,1) (8,2) (8,3)
Nodes: 3 4 10 5 6 8 1 2 7
Code: 6 10 7 6 7 1 2 7 9

Stack-Queue code

Pairs: (0,3) (0,4) (0,5) (0,8) (0,9) (1,4) (1,5) (1,8) (2,9)
Nodes: 3 4 5 8 9 10 6 1 7
Code: 6 10 6 1 7 7 7 2 2

Figure 3.1: Examples of encoding Prüfer-like codes using pairs specified in Ta-
ble 3.1. The pairs sorted in increasing order, the node corresponding to each pair,
and the resulting codeword are shown for each code. Bold edges in the trees related
to Prüfer code and Third Neville code indicate chains and pending chains, respec-
tively; dashed lines in the trees related to Second Neville code and Stack-Queue
code separate nodes at different levels.
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In Figure 3.1 the pairs relative to the four codes are presented. Bold

edges in the trees related to Prüfer code and Third Neville code indicate

chains and pending chains, respectively; dashed lines in the trees related to

Second Neville code and Stack-Queue code separate nodes at different levels.

In each figure the resulting codeword, the pairs sorted in increasing order,

and the node corresponding to each pair are also shown.

3.2.2 Sequential Algorithm

Our sequential coding algorithm works on rooted trees and hinges upon the

pairs defined in Section 3.2.1:

UNIFIED ENCODING ALGORITHM

1. for each node v do

2. compute the pair (xv, yv) according to Table 3.1

3. sort the tree nodes according to pairs (xv, yv)

4. for i = 1 to n− 1 do

5. let v be the i-th node in the ordering

6. append parent(v) to the code

Theorem 3.2. The unified encoding algorithm correctly computes

Prüfer code, Second Neville code, Third Neville code, and Stack-Queue code

in O(n) running time.

Proof. The correctness of the unified encoding algorithm follows from

Lemma 3.1. For all codes the information used in pairs can be easily com-

puted in O(n) time using a post-order traversal of the tree. To implement lin

2 notice that it is easy to sort the pairs (xv, yv) used in the encoding scheme.

Indeed, independently by the specific code, each element in such pairs is in

the range [1, n]. A radix-sort like approach [35] is thus sufficient to sort them

according to yv first and xv later, exploiting a stable integer sorting (e.g.,

counting sort [35]). Then the overall running time is O(n).
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We remark that the unified encoding algorithm works on rooted

trees and generates codewords of length n− 1. According to Section 2.1.2 it

can be exploited to encode unrooted trees by simply rooting them in a fixed

node and omitting the last symbol of the codeword.

3.3 A Unified Decoding Algorithm

In this section we present a unified sequential algorithm for decoding Prüfer-

like codes, i.e., for building the tree T corresponding to a given codeword

C. As seen above, to reconstruct T , it is sufficient to compute the ordered

sequence of the removed leaves, let us call it S. For each i ∈ [1, n − 1], the

pair (C[i], S[i]) will thus be an edge in the tree (C[i] and S[i] represent the

i-th element in C and S respectively). The decoding scheme is based on the

computation of the rightmost occurrence of each value in the codeword.

3.3.1 Decoding by Rightmost Occurrence

Recall that leaves of T are exactly those nodes that do not appear in the

codeword and each internal node, say v, in general may appear in C more

than once; each appearance corresponds to the deletion of one of its children,

and therefore implies that the degree of v decreases by 1. After the rightmost

occurrence in the code, v is clearly a leaf and thus becomes a candidate for

being deleted. This implies that v should appear in S after its rightmost

occurrence. More formally:

∀ v �= r, ∃ unique j > rm(v, C) such that S[j] = v

where r is the root of the tree (i.e., the last element in C) and rm(v, C)

denotes the index of the rightmost occurrence of node v in C. We assume

that rm(v, C) = 0 if v does not appear in C. It is easy to compute the

rightmost occurrence of each node with a simple right to left scan of C: this

requires O(n) time.
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Code test(v) position(v)

Prüfer rm(v, C) > prev(v, C) rm(v, C) + 1

Third Neville rm(v, C) > 0 rm(v, C) + 1

Stack-Queue rm(v, C) > 0 |leaves(T )|+ σ(rm(v, C))

Table 3.2: Condition on node v that is checked in the unified decoding algo-

rithm and position of v as a function of rm(v,C).

3.3.2 Sequential Algorithm

We now describe a decoding algorithm for Prüfer code, Third Neville code,

and Stack-Queue code that is based on the rightmost occurrences. Differently

from the other codes, for the Second Neville code the rightmost occurrence

of each node in C gives only partial information about sequence S. Thus, we

will discuss this code separately in Section 3.3.3.

We need the following notation. For each i ∈ [1, n − 1], let ρ(i) be 1 if i

is the rightmost occurrence of value C[i], and 0 otherwise. Let σ(i) be the

number of internal nodes whose rightmost occurrence is at most i, i.e.,

σ(i) =
∑
j≤i

ρ(j) (3.1)

Similarly to [104], let prev(v, C) denote the number of nodes with label

smaller than v that become leaves before v, i.e.,

prev(v, C) = |{u : u < v and rm(u, C) < rm(v, C)}|

The following lemma shows, for each code, how the position of a node

in the sequence S that we want to reconstruct can be expressed in terms of

rightmost occurrence of nodes.

Lemma 3.3. Let C be a codeword of n − 1 integers in [1, n]. Let test and

position be defined as in Table 3.2 for Prüfer code, Third Neville code, and

Stack-Queue code. Let S be the sequence of leaves deleted from the tree while
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building the codeword. The proper position in S of any node v that satisfies

test(v) is given by position(v).

Proof. We discuss each code separately, starting from the simplest one.

Third Neville code: each internal node v is deleted as soon as it becomes

a leaf. Thus, the position of v in sequence S is exactly rm(v, C) + 1.

Prüfer code: differently from the Third Neville code, in Prüfer code an

internal node v is deleted as soon as it becomes a leaf if and only

if there is no leaf with label smaller than v. In order to test this

condition we use information given by prev(v, C): the position of v in

S is rm(v, C) + 1 if and only if rm(v, C) ≥ prev(v, C).

Stack-Queue code: by the definition of this code, all the leaves of T , sorted

by increasing labels, are at the beginning of sequence S. Then, all the

internal nodes appear in the order in which they become leaves, i.e.,

sorted by increasing rightmost. Thus, the position of an internal node

v is given by |leaves(T )|+ σ(rm(v, C)).

We remark that some entries of S may be still empty after positioning nodes

according to Lemma 3.3. The definitions of the various codes imply that

all the nodes not positioned by Lemma 3.3, except for the root, should be

assigned to the empty entries of S in increasing label order. In particular,

for Third Neville code and Stack-Queue code, only the leaves of T are not

positioned and, in the case of Stack-Queue code, all of them will appear at

the beginning of S. We are now ready to describe our unified decoding

algorithm:

UNIFIED DECODING ALGORITHM

1. for each node v do

2. compute rm(v, C)

3. for each node v except for the root do

4. if test(v) = true then S[position(v)]← v

5. let L be the ordered list of unused (non-root) nodes in S
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Figure 3.2: An example of execution of the unified decoding algorithm in
the case of Prüfer code: content of the main data structures and tree returned as
output.

6. let P be the list of empty positions in S

7. for each i = 1 to |L| do

8. S[P [i]]← L[i]

where test(v) and position(v) are specified in Table 3.2. An example of

execution of the unified decoding algorithm in the case of Prüfer code

is shown in Figure 3.2.

For Third Neville and Stack-Queue code the unified decoding al-

gorithm requires linear time, while a straightforward implementation for

Prüfer code would require O(n log n) time due to the computation of prev.

This can be reduced to O(n) time by adapting the unified decoding al-

gorithm in such a way that the prev computation can be avoided. Namely,

lines 2–3 can be omitted (considering the test(v) as false for each node v),

and lines 6–7 can be replaced as follows:

6. for each i = 1 to |L| do

7. position← max{first empty pos(S), rm(L[i], C) + 1}
8. S[position]← L[i]

where first empty pos(S) returns the smallest empty position in S. In this

implementation, nodes are considered in increasing label order: node v is

assigned to position rm(v) + 1 of S if this position is still empty, and to the
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leftmost empty position otherwise. In order to see that this is equivalent to

the unified decoding algorithm, observe that nodes for which rm(v) >

prev(v) (see the test in line 3) will always find the position rm(v)+1 empty,

due to the definition of prev. Hence, they will be inserted in S exactly as in

line 3 of the unified decoding algorithm.

The performances of the unified decoding algorithm are summa-

rized by the following theorem.

Theorem 3.4. The unified decoding algorithm computes the tree cor-

responding to a codeword C in O(n) sequential time.

3.3.3 Second Neville Code

As we said, for this code the rightmost occurrence of each node in the code-

word C gives only partial information about sequence S. Here we show how

to efficiently extract from the codeword enough information to correctly de-

code C according with the Second Neville code. We remark that the problem

of finding an optimal sequential decoding algorithm for this code was open,

and our work close it.

We first observe that if all nodes were assigned with a level, sort nodes

according to pairs (l(v), v), as done by the encoding algorithm, would produce

the sequence S (see Section 3.2.1). We now show how to compute l(v) from

C.

Let x be the number of leaves of T : these nodes have both level and rm

equal to 0. Consider the first x elements of code C, say C[1], C[2], . . . , C[x].

For each i, 1 ≤ i ≤ x, such that i is the rightmost occurrence of C[i], we

know that node C[i] has level 1. The same reasoning can be applied to get

level-2 nodes from level-1 nodes, and so on. With respect to the running

time, a sequential scan of code C is sufficient to compute the level of each

node in linear time.
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3.4 Unified Parallel Algorithms

In this section we present a parallel version of the unified encoding algo-

rithm proposed in Section 3.2 and of the unified decoding algorithm

proposed in Section 3.3. Our algorithms are described for the classical EREW

PRAM model and costs are expressed as the number of elementary operations

needed to perform a task.

We chosen the PRAM theoretical model because we do not need to ad-

dress any specific hardware. In the last decade, PRAM model has been

deemed useless by many researchers because it is too abstract compared

with actual parallel architectures. It is worth noticing that this trend is

changing. At SPAA’07, Vishkin and Wen reported about the recent advance-

ments achieved at the University of Meryland within the project PRAM-On-

Chip [105]. The XMT (eXplicit Multi-Threading) general-purpose computer

architecture is a promising parallel algorithmic architecture to implement

PRAM algorithms. They also developed a single-instruction multiple-data

(SIMD) multi-thread extension of C language with the intent of provide an

easy programing tool to implement PRAM algorithms. I has primitives like:

Prefix Sum, Join, Fetch and Increment, etc.

An optimal PRAM algorithm for encoding Prüfer codes, which improves

over a previous result due to Greenlaw and Petreschi [54], is given in [53].

A few simple changes make the algorithm works also for the third Neville

code. In [27] non optimal encoding algorithm for Prüfer has been presented,

it makes use of the idea of sorting pairs but requires O(n log n) operations.

Efficient, but not optimal, parallel encoding algorithms for the Second Neville

code and the Stack-Queue code have been presented in [37]. Our unified

algorithm either matches or improves by a factor O(
√

log n) the performances

of the best ad-hoc approaches known so far.

Concerning decoding, Wang, Chen, and Liu [104] propose an O(log n)

time decoding algorithm for Prüfer code using O(n) processors on an EREW

PRAM. To the best of our knowledge, parallel decoding algorithms for the

other Prüfer-like codes were not known in the literature until our work.

Namely, we designed the first parallel decoding algorithm for Second Neville
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Code Encoding Decoding

known our result known our result

Prüfer O(n)[53] O(n) O(n log n)[104] O(n logn)

Second Neville O(n log n)[37] O(n
√

log n) open O(n
√

log n)

Third Neville O(n)[37, 53] O(n) open O(n
√

log n)

Stack-Queue O(n log n)[37] O(n
√

log n) open O(n
√

log n)

Table 3.3: Summary of our results on the EREW PRAM model. Costs are
expressed in terms of number of operations.

code, Third Neville code, and Stack-Queue code: our unified algorithm works

on a n-processors EREW PRAM in O(log n) time with cost O(n
√

log n). For

Prüfer code, the cost of our algorithm is O(n logn) and matches the best pre-

vious result [104]. Our parallel results both for encoding and for decoding

are summarized in Table 3.3.

3.4.1 Encoding

Before showing how to parallelize each step of the unified encoding al-

gorithm, we want to remark that if the tree is unrooted, the Euler tour

technique makes it possible to root it in O(logn) time with cost O(n) [59].

We now discuss how to compute all information that constitutes the pair

components as described in Section 3.2.

Lemma 3.5. The pairs given in Table 3.1 can be computed on the EREW

PRAM model in O(log n) time with cost O(n).

Proof. We discuss separately the components of each pair.

μ(v): the maximum node in each subtree can be computed in O(logn) time

with cost O(n) using the Rake technique [59] as done in [54]. In order

to avoid concurrent reading during the Rake operation, the tree T must
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be preliminarily transformed into a binary tree TR as follows: for each

node v with k > 2 children, v is replaced by a complete binary tree

of height �log k� having v as root and v’s children as the k leftmost

leaves. This transformation can be also done in O(log n) time with

cost O(n) [53].

d(μ(v), v): we partition T into chains by marking each node v with the value

μ(v) and by deleting edges between nodes with different μ values. Now,

the rank of node v in its chain is exactly d(μ(v), v). In order to compute

the chains, each node links itself to its parent if μ(v) = μ(parent(v)). A

List Ranking then gives the position of each node in its chain in O(log n)

time with cost O(n) [59]. The use of the binary tree TR guarantees that

no concurrent read is necessary for accessing μ(parent(v)).

l(v): an Euler tour gives the distance d(v, r) of each node v from the root

r of tree T . Then, l(v) = d(f, r) − d(v, r), where f is a leaf of Tv at

maximum distance from r: f can be easily computed using the Rake

technique [59].

λ(v): the same techniques used for computing μ(v) can be adapted to obtain

the maximum leaf of each subtree with the same performances.

d(λ(v), v): analogous considerations as for computing d(μ(v), v) hold.

γ(v): given the distance of each node from the root, γ(v) is the node u ∈ Tv

such that (d(u, r), u) is maximum and can be computed with the Rake

technique.

The following theorem summarizes the performances of the unified encod-

ing algorithm in a parallel setting.

Theorem 3.6. On the EREW PRAM model, the unified encoding al-

gorithm computes Prüfer code and Third Neville code optimally (i.e., in

O(log n) time with cost O(n)) and Second Neville code and Stack-Queue code

in O(log n) time with cost O(n
√

log n).
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Proof. By Lemma 3.5, line 1 of the unified encoding algorithm requires

O(log n) time with cost O(n). Line 3 can be trivially implemented in O(1)

time with cost O(n). The sorting in line 2 is thus the most expensive opera-

tion. Following a radix-sort like approach and using the stable integer-sorting

algorithm presented in [55] as a subroutine, line 2 would require O(log n) time

with cost O(n
√

log n) on an EREW PRAM1. This gives the stated running

time and cost for Second Neville code and Stack-Queue code. For Prüfer

code and Third Neville code we can further reduce the cost of our algorithm

to O(n) by using a more clever sorting procedure that benefits from the

partitioning of the tree into chains.

Let us consider Prüfer code first. As observed in [54], the final node

ordering can be obtained by sorting chains among each other and nodes

within each chain. In our framework, the chain ordering is given by the

value μ(v), and the position of each node within its chain by the distance

d(μ(v), v). Instead of using a black-box integer sorting procedure, we exploit

the fact that we can compute optimally the size of each chain, i.e., the number

of nodes with the same μ(v), by means of prefix sums. Another prefix sum

computation can then be used to obtain, for each chain head, the overall

number of nodes in the preceding chains, i.e., its final position. At last,

the position of the remaining nodes is univocally determined by summing

up the position of the chain head μ(v) with the value d(μ(v), v). Similar

considerations can be applied to the Third Neville code.

We remark that our algorithm solves within a unified framework the par-

allel encoding problem. With respect to Prüfer code and Third Neville code,

it matches the performances of the (optimal) algorithms known so far [37, 53].

With respect to Second Neville code and Stack-Queue code, it improves of

an O(
√

log n) factor over the best approaches known in the literature [37].

1The result on parallel integer sorting in [55] holds when the machine word length is
O(log n). Under the more restrictive hypothesis that the word length is O(log2 n), the
cost of sorting can be reduced to O(n), and so does the cost of our algorithm.
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3.4.2 Decoding

We now show how to parallelize the unified decoding algorithm; as

done in Section 3.3 we consider the Second Neville code separately.

The following lemma analyzes the rightmost computation in parallel.

Lemma 3.7. The rightmost occurrences of nodes in a codeword C of length

n− 1 can be computed in O(log n) time with cost O(n
√

log n) on the EREW

PRAM model.

Proof. We reduce the rightmost occurrence computation to a pair sorting

problem: we sort in increasing order the pairs (C[i], i), for i ∈ [1, n − 1].

Indeed, in each sub-sequence of pairs with the same first element C[i], the

second element of the last pair is the index of the rightmost occurrence of

node C[i] in the code. Since each pair value is an integer in [1, n], we can

again use twice the stable integer-sorting algorithm described in [55]: this

requires O(log n) time and O(n
√

log n) cost on an EREW PRAM. Then,

each processor pi in parallel compares the first element of the i-th pair in

the sorted sequence to the first element of the (i + 1)-th pair, determining

whether i corresponds to the end of a subsequence or not. This requires

additional O(1) time and linear cost with exclusive read and exclusive write

operations.

The performances of the unified decoding algorithm in a parallel

setting are described by the following theorem.

Theorem 3.8. The unified decoding algorithm computes the tree cor-

responding to a codeword C, on the EREW PRAM model, in O(logn) time

with cost O(n log n) for Prüfer code and O(n
√

log n) for Third Neville code

and Stack-Queue code.

Proof. With respect to Prüfer code, the parallel version of the unified de-

coding algorithm yields essentially the same algorithm described in [104].

Its bottleneck is the prev computation that can be reduced to a dominance

counting problem and can be solved on the EREW PRAM in O(log n) time
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with cost O(n logn) [5, 32]: we refer to [53, 104] for a detailed analysis. For

the other codes, σ(i) (defined in Equation 3.1) can be computed for each i

using a prefix sum operation [59]. In order to compute list L in line 4, we can

mark each node not yet assigned to S and obtain its rank in L by computing

prefix sums. Similarly for list P in line 5. Hence, the most expensive step is

the rightmost computation, which requires integer sorting (Lemma 3.7).

Second Neville code

Unfortunately, the approach used in Section 3.3.3 is inherently sequential

and thus inefficient in parallel. We now discuss an alternative approach for

computing the level of each node v, from a codeword C. This approach can

be easily parallelized.

Lemma 3.9. Let C be the Second Neville code codeword for a tree T . The

level of each node in T can be computed from C on the EREW PRAM model

in O(log n) time with cost O(n
√

log n).

Proof. Let T ′ be the tree obtained by decoding C with the Stack-Queue code:

although T and T ′ are different, the level of each node is the same both in

T and T ′. Indeed, as shown in Table 3.1, for both Second Neville code and

Stack-Queue code the first element of the pair is xv = l(v).

Then, after T ′ is build using the unified decoding algorithm, we

compute node levels applying the Euler tour technique on it. We remark

that the Euler tour technique requires a particular data structure [59] that

can be built as described in [54]. The bottleneck of this procedure is sorting

pairs of integers in [1, n] and thus, once again, we can exploit the parallel

integer sorting presented in [55].

Given level information, the correct sequence S corresponding to tree T

can be easily obtained by sorting the pairs (l(v), v). We can summarize the

results concerning the Second Neville code as follows:

Theorem 3.10. The tree corresponding to a codeword C according to the

Second Neville code can be computed in O(n) sequential time and in O(logn)

time with cost O(n
√

log n) on the EREW PRAM model.
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Proof. The correctness follows from the definition of the Second Neville code

and from Lemma 3.1. The running time is guaranteed by Lemma 3.9 and by

the bounds on integer sorting given in [55].

3.5 Concluding Remarks

In this chapter we have presented a unified approach for coding labeled

trees by means of strings of node labels and have applied it to four well-

known Prüfer-like codes due to Prüfer [90], Neville [79], and Deo and Mi-

cikevičius [39]. The encoding scheme hinges upon the definition of pairs

associated to the nodes of the tree according to criteria dependent on the

specific code: the coding problem is then reduced to the problem of sort-

ing these pairs in lexicographic order. The decoding scheme is based on the

computation of the rightmost occurrence of each label in the code. In par-

ticular, we obtained the first linear time sequential decoding algorithm for

the Second Neville code.

We have also shown how it is possible to parallelize our unified encoding

and decoding algorithms. There where no decoding algorithms for the Second

Neville code, the Third Neville code, and Stack-Queue code before our work.

Concerning the encoding our results either improve or match the best results

known in the literature. Moreover, since integer sorting is the most expensive

operation in our parallel algorithms, any improvement on the computation

of integer sorting directly improves our results. The only exception is the

Prüfer decoding parallel algorithm: here the dominance counting problem

is the bottleneck. In [5] the lower bound Ω(n log n) has been shown for the

dominance counting problem in parallel. To the best of our knowledge, it is

an open question to understand if it is possible to overcome this bound when

the input is limited to n integer values in the range [1, n] or to avoid the prev

computation in the decoding algorithm for Prüfer code.

Algorithmic aspects related with encoding and decoding Prüfer-like codes

have been analyzed also in [38] where a different scheme relaying on lists has

been presented. Codes have been classified in function of used lists (FIFO,
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LIFO, or sorted lists), the ordering of initial leaves, and whether they require

a single list or multiple lists.



Chapter 4

Applications of Tree Encodings

Labeled trees are of interest in theoretical and practical areas of computer

science. They are used in a great variety of applications ranging from Phy-

logenetic Trees to data compression, from XML data representation and in-

dexing to the computation of graph volumes. Tree encodings are used in

applications like Fault Dictionary Storage [12], Distributed Spanning Tree

Maintenance [48], etc.

In this chapter we focus on two applications of tree encodings: random

trees generation and Genetic Algorithms. The first application shows how

these combinatorial bijection can be fruitfully exploited to guarantee that

the trees are generated uniformly at random, both in sequential and parallel

settings. Genetic Algorithms provide a wider example of application of tree

encodings. In this context the choice of an appropriate representation for

trees is fundamental. Many experimental comparisons have been presented

in the literature in order to explore several possible tree encodings. Some of

these experiments driven our attention on certain bijective code not belonging

to the class of Prüfer-like code. These codes will be studied in Chapter 5.

This chapter is organized as follows: Section 4.1 describes the use of

Prüfer-like codes to generate trees uniformly at random, we also show ex-

perimental results proving that this method is competitive with other fast

methods to generate random trees. In Section 4.2 we give a brief introduction

to Genetic Algorithms and discuss known experimental results on trees.

45
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4.1 Generating Random Trees

The problem of generating a random tree with certain properties is fun-

damental in Computer Science, especially in order to run experiments and

simulations. Its has been widely studied both in a sequential setting (see for

example [40, 70]) and in a parallel setting (see for example [36]). Roughly

speaking, this task can be performed in several ways: for example, by adding

random edges until the graph is completely connected, then breaking cycles

without disconnecting the graph. Another approach is the following: con-

struct the tree by adding nodes at random, connecting them to nodes already

in the tree. Other methods are possible. Easy methods often require more

than O(n) time, while efficient ones may have the drawback that the ran-

dom choice is not uniformly distributed among the set of all possible trees.

As shown by the following example, adding nodes at random, the star of

n nodes can be generated with a probability considerably higher than any

given n-nodes path.

Example 9. We want to generate random rooted Cayley trees by adding nodes

at random. At each step we select a random unused label v and a random

used one p an we add node v to the tree as a child of p. The first chosen

node will be the root. Now consider the probability that the star rooted at

node 1 is generated, call it S1. At the first step we must chose label 1, the

probability that it happen is Pr(1)[v = 1] = 1
n
. In the following steps we can

choose any label v but as p we have to choose always 1; the probability that

it happen depends on how many nodes are already been added to the tree.

At the second step Pr(2)[p = 1] (the probability that we choose p = 1) is 1,

at the third step Pr(3)[p = 1] = 1
2
, at the fourth step Pr(4)[p = 1] = 1

3
, an so

on. In general at step i we have Pr(i)[p = 1] = 1
i−1

. The overall probability

for S1 to be generated is:

Pr[S1] =
1

n

n∏
i=2

1

i− 1
=

1

n!

Let us now compute the probability that a given path P is generated; w.l.o.g.

we assume that P is rooted at node 1 and the node sequence is 1, 2, 3, . . . , n

(any other path has the same probability). At the first step we have to choose
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v = 1 as root: Pr(1)[v = 1] = 1
n
. At the second step we must choose v = 2

and p = 1: Pr(2)[v = 2] = 1
n−1

and Pr(2)[p = 1] = 1. At the third step we

must choose v = 3 and p = 1: Pr(3)[v = 3] = 1
n−2

and Pr(3)[p = 2] = 1
2
. In

general at step i we have Pr(i)[v = i] = 1
n−i+1

and Pr(i)[p = i − 1] = 1
i−1

.

The overall probability for given path P to be generated is:

Pr[P ] =
1

n

n∏
i=2

1

n− i + 1

n∏
i=2

1

i− 1
=

1

n!

1

(n− 1)!

Both S1 and P are Cayley trees in Rn but Pr[S1] is considerably higher than

Pr[P ].

Thus generate Cayley trees by adding nodes at random does not guarantee

uniform distribution (even for trees that are not stars nor paths).

Generating a random codeword of n − 1 integers in the range [1, n] and

applying a decoding algorithm is an easy and fast way to generate a random

tree. It also guarantees that, if each integer is chosen uniformly at random in

[1, n], each rooted Cayley tree will have the same probability to be generated.

Moreover, we have experimentally verified that this method is competitive,

in terms of running time, with the one based on random leaves addition.

4.1.1 Experimental Comparison

In order to verify if the generation of random trees based on Prüfer-like code

has good performances, we compared it with an effective implementation of

the add-leaves-at-random idea used in Example 9. In order to select, at each

step, a random leaf to add we precompute a permutation of [1, n]. It is well

known that the following algorithm ensures that the permutation is chosen

uniformly at random:

1. for i = 1 to n do

2. perm[i] = i

3. for i = 1 to n do

4. swap perm[i] and perm[Random(i,n)]
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Figure 4.1: Experimental comparison of Random Tree Generation algorithms,
from 1 to 10 million nodes. Y-axis report the time required to generate a single
tree in milliseconds. Decoding a random codeword with Third Neville code is 30%
faster than the Add Leaves based method.

The function Random(i,n) returns a random value in [i, n]. Then nodes are

added to the tree in the order given by vector perm. Each node v = perm[i]

is attached to one of those already added to the tree, i.e., all nodes between

perm[1] and perm[i− 1].

1. T = ([1, n], ∅)

2. for i = 1 to n do

3. add the edge (perm[i], perm[Random(1,i − 1)])

This algorithm has been compared against the decoding of a random

codeword. We choose the Third Neville code implementing of the unified

decoding algorithm presented in Section 3.3.

Both algorithms have been implemented in standard ansi C (C99 re-

vised standard), compiled with gcc (version 3.3.5) with optimization flag O3.
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Random values have been produced by the rand() pseudo-random source

of numbers provided by the ANSI C standard library. We used only odd

seeds to initialize the random generators and we randomly generated the

sequence of seeds used in each test starting from a base seed. Trees are im-

plemented through adjacency lists. Our experiments have been carried out

on a workstation equipped with two Dual Core Opteron processors with 2.2

GHz clock rate, 6 GB RAM, 1 MB L2 cache, and 64 KB L1 data/instruction

cache. The workstation runs Linux Debian (kernel 2.6.8). The running time

of each experiment has been measured by means of the standard system call

getrusage().

Trees from 1 million to 10 million nodes have been generated. Results

(reported in Figure 4.1) clearly show that decoding a random codeword with

Third Neville code is 30% faster than the Add Leaves based method. Thus

we conclude that using tree encodings is definitely the best way to generate

random trees.

4.1.2 Constrained Random Trees

Using Prüfer-like codes certain topological properties of a tree are explicit in

its codeword. This it is possible to impose constrains on the random trees

generated maintaining linear running time.

Let C be the codeword for a tree T obtained with any Prüfer-like code:

since each node appears in C a number of time equal to the number of its

children, information concerning degrees, leaves, and root are explicit in C

(see Property 2.4). Thus we can state that:

• to generate a tree rooted in a desired node r it is enough to ensure that

C[n− 1] = r;

• to let a certain node v be a leaf, it does not have to appear in C at all;

• if the set of leaves must be {v1, v2, . . . , vk}, all nodes but these must

appear in C at least once;
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• to guarantee that a node v gets degree d in T , it must appear exactly

d− 1 times in C (d times if v is the root).

All these observations can be combined together to generate random trees

satisfying several constraints. This same reasoning can be exploited to gen-

erate unrooted trees by decoding n− 2 length random codewords.

4.1.3 Parallel Random Trees Generation

Generating random trees in a parallel setting is an hard task. Add nodes

at random is an inherently sequential method, a straightforward use of this

idea would result in a misuse of the underling parallel architecture. On

the other hand, if each processor attaches a node to some other random

node, disregarding other processors activity, there is no guarantee that the

resulting graph is connected and acyclic; repair such a graph to obtain a tree

is expensive.

The idea of using bijective code to generate random tree is the easiest

one. Indeed in order to generate a codeword each processors can choose

a random number independently, then the tree is obtained directly with a

parallel decoding algorithm (see Section 3.4). This idea has been exploited

in [36] where a modified Prüfer code was used to obtain an architecture-

specific (8192-processors MAS-Par MP-1) almost-constant-time algorithm to

generate random trees. This result hinges upon the fact that, when n <

8192, they have an almost-constant-time integer sorting algorithm for MAS-

Par MP-1. The algorithms shown in Section 3.4 provides an architecture-

independent solution for this problem. Random trees can be generated taking

advantage from the best integer sorting algorithm available on each specific

architecture.

4.2 Genetic Algorithms

Genetic Algorithms (GAs) are search heuristics that hinge upon the evolu-

tionary ideas of natural selection and genetic. The basic concept of GAs is
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to simulate natural processes necessary for evolution, specifically those that

follow the principles of survival of the fittest. They represent an intelligent

exploitation of a random search within a defined search space to solve a prob-

lem. We will focus on GA whose search space is the set of trees, e.g., GA for

finding the Minimum Spanning Tree of a graph with additional constrains:

minimum diameter, fixed number of leaves, bounded maximum degree, etc.

(see for example [41, 106].)

A GA starts with a population of a certain number of random candidate

solution, called individuals, that in our case are simply random trees. Each

individual is represented by its chromosome: a code (usually a string) that

identifies the individual. Individual are compared according to a fitness func-

tion and a set of good ones is selected. The fitness function strictly depends

on the problem we are dealing with, for example if we are looking for MST

with minimum diameter meaning full fitness functions should assign higher

fitness to trees with smaller diameter. There are many criteria to determine

how to choose good individuals given their fitness, a deep discussion of them

is outside the scope of this thesis (we refer the interested reader to [75, 92]).

We just mention that the easiest criterion is to determine whether to keep

or discard an individual at random using a probability proportional to its

fitness.

Then selected individuals are used to produce offsprings via genetic oper-

ators, in this way a new generation of individual is obtained. Several genetic

operators have been introduced in the literature along the years, the most

used are crossover and mutation. In a crossover, two chromosomes are mixed

together (according to several possible criteria) to obtain a new chromosome,

the underlying idea is that the offspring individual should inherit parent’s pe-

culiarity and then it has chances to be better than both. In a mutation, the

chromosome of a single individual is slightly changed (at random), this may

or may not improve its fitness.

The GA repeats this selection/reproduction scheme until one among many

possible stop-criteria is reached:
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• a solution “good enough” is generated;

• the improvement in the fitness of the best individual is negligible with

respect to the previous generations;

• the number of generations has reached a given bound;

• the computational time has reached a given bound.

An effective individual representation and meaningful fitness evaluation

are the keys of the success in GAs. We refer the interested reader to [75, 92]

for a more detailed description of the fundaments of GAs.

While the fitness function strictly depends on the specific problem we are

trying to solve, the individual representation by means of chromosome strings

only depends on the solution space. There exist several tree representations

suitable for GA, but not all of them achieve good results. There are certain

desirable properties for a code in GA. It should:

be injective: it should be able to represent each tree with a different code-

word;

be unbiased: each tree should be represented by the same number of code-

words;

be surjective: every codeword should represent a tree;

have high locality: small changes in the tree should correspond to small

changes in the codeword, and vice versa;

have high heritability: when a codeword is obtained by mixing two code-

words (ancestors) each edge of the offspring tree should belong to either

of the ancestor trees;

be efficient: the encoding and decoding, should require small running time,

in order to efficiently compute the fitness.

Among the others [82, 96] Prüfer-like code look like an appealing choice

because they are bijective and linear time encoding and decoding algorithms
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Figure 4.2: a) A tree T , and corresponding Prüfer code and näıve code. b) T ′

obtained form T changing edge (2, 1) in (2, 7), together with corresponding Prüfer
code and näıve code.

are known. Unfortunately it has been experimentally observed that Prüfer-

like codes preform poorly in GA because they have poor locality and heri-

tability [51]. In all Prüfer-like codes the tree topology determines the elim-

ination order of nodes, so a small change in the tree may cause a variation

of this order and thus a big change in the string (see Figure 4.2a and 4.2b).

This is the reason why Prüfer and Prüfer-like codes exhibit low locality and

heritability [51].

In order to better understand how a code can exhibit high locality and

heritability we now consider the näıve code. This code represents a rooted

tree simply listing the parent of each node (see Figure 4.2a). Each edge

(v, p(v)) of a tree corresponds to the v-th element of the codeword, thus this

code has maximal locality: a single change in the tree corresponds to a single

change in its codeword, and vice versa (see 4.2b). Näıve code also has high

heritability. Consider two trees T1 and T2 and their codewords C1 and C2.

Let C be a string obtained by mixing C1 and C2 with a crossover and T the

corresponding tree. Since, for each i, either C[i] = C1[i] or C[i] = C2[i] we

deduce that each edge (v, p(v)) in T either comes from T1 or from T2. Notice

that T1 and T2 must have the same root in order to avoid that C contains 0

or 2 entries identifying a root, for this purpose it is enough to re-root T2 in

the root of T1 (or vice versa) before the crossover.

Unfortunately, näıve code is not bijective, certain codewords may rep-
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resent graphs not necessarily connected or containing cycles or loops. This

implies that codewords obtained by crossover or mutation are not necessar-

ily trees: more precisely, the probability of obtaining a tree is 1
n
. This is a

serious shortcoming for näıve code to be used in GAs.

In [61], an experimental analysis shows that locality and heritability prop-

erties are satisfied by Blob code much better than by the Prüfer code. The

Blob code is a bijective code introduced by Picciotto [89]. Like Prüfer-like

codes, all of them are bijection between Cayley trees and codewords but they

do not belong to the class of Prüfer-like codes because they are not base on

recursive leave elimination. Blob code has also been shown to be competitive

against other well known tree representations in GAs [61, 62, 91].

Unfortunately these promising experimental results do not provide any

insight on the underlying reasons that make the Blob code better than the

Prüfer code in this field. For this reason we decide to study the three codes

presented by Picciotto: Blob code, Happy code, and Dandelion code. In the

next chapter, a deep discussion of these code is presented. Here it is enough

to say that our study clarified the reasons why Blob code has good locality

and heritability. Moreover, interpreting the three codes as transformation of

trees into functional digraphs, we pointed out that the Dandelion code ap-

proximate the desirable properties held by the näıve code much better than

the Blob code. So, in a paper published in 2005 [25], we conjectured that

in GA Dandelion code (and a modified version of the Happy code we intro-

duced) should outperform Blob code. This assertion has been experimentally

verified in 2006 by Paulden and Smith [84, 85, 101]: moreover the proved that

our Modified Happy code has similar locality properties and slightly better

heritability properties to the Dandelion code [85].

4.3 Concluding Remarks

In this chapter we have seen two among many possible applications of tree

encoding. We have shown that they lead to efficient and unbiased algorithms

to generate random trees, both in sequential and parallel settings.
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In the field of Genetic Algorithms, where the choice of a good encoding

play a crucial role, experimental analysis shown that Prüfer-like codes are

outperformed by other bijective codes. In order to understand the underlying

reasons behind these results we decided to better investigate other codes.

In the next chapter a deep discission about these codes is presented. Our

study brought us to the definition of a general encoding and decoding scheme

based on the transformation of a tree into a functional digraph. This makes

it possible for us to obtain linear time algorithm for encoding and decoding

all Picciotto’s codes.
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Chapter 5

Transformation Codes

In Chapters 2 we have shown how Prüfer-like codes can be encoded and

decoded in optimal linear time. In Chapters 4 however we reported that

they lack other desirable properties. As observed in [51], Prüfer codes are a

poor tree representation for Genetic Algorithms, since they do not have good

locality and heritability (see Section 4.2). Experimental analysis [61] shown

that these properties are much better satisfied by the Blob code described

by Picciotto in her PhD thesis [89].

These experimental results do not provide any insight on the underlying

reasons that make the Blob code better than the Prüfer code in this field. So

our interest has been stimulated and therefore we decide to study, from an

algorithmic point of view, all the three codes described by Picciotto in [89]:

Blob code, Happy code and Dandelion code.

This chapter is organized as follows: initially we recall the original algo-

rithms given by Picciotto for her codes. We also recall the E-R Bijection:

a code introduced by Eğecioğlu and Remmel [43] several years before Pic-

ciotto’s work. In Section 5.4, as a novel result of this thesis, we present a

general scheme for defining bijective codes based on the transformation of a

tree into a functional digraph. We show how it is possible to map Picciotto’s

codes to our scheme (for this reason we call them Transformation codes).

This gives us a better comprehension of how encoding preserves the topol-

ogy of the tree, and therefore it helps to understand which code better fits

57
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desirable properties, such as locality and heritability [24, 25].

It should be remarked that the Dandelion code is basically equivalent to

the E-R Bijection and that the work by Eğecioğlu and Remmel inspired our

general scheme. We also want to highlight that the general scheme based

on graph transformation introduced in this chapter is capable to describe

all possible bijective tree codes, while only a strict subset of them can be

described as a Prüfer-like code. In the literature other codes for Cayley tree

not considered in this thesis have been introduced (e.g., Chen [29], Palmer e

Kershenbaum [82]) as well as their generalizations and specializations. For

example there are code designed to describe trees that are spanning trees of

bipartite or multipartite graphs (e.g., Ωn bijection [44], Rainbow code [83]).

Let us now introduce a few preliminary definitions and notations.

5.1 Preliminaries

In order to keep our description coherent with the one given by Picciotto, in

this chapter we will deal with unrooted Cayley trees, labeled with integers in

[0, n − 1] rather than [1, n]. Moreover all trees will be considered as rooted

at node 0 with edges oriented upwards, from a node to its parent.

Definition 5.1. Given a function g : A → A, the functional digraph G =

(V, E) associated with g is a directed graph with V = A and E = {(v, g(v)) :

v ∈ V }.

It is well known that:

Lemma 5.2. A digraph G = (V, E) is a functional digraph if and only if the

out degree of each node is equal to 1.

Corollary 5.3. Each connected component of a functional digraph is com-

posed of several trees, each of which is rooted in a node belonging to the core

of the component, which is either a cycle or a loop (see Figure 5.1a).

Functional digraphs are easily generalizable to represent functions unde-

fined in some point: if g(x) is not defined, the node x in G does not have
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Figure 5.1: a) A functional digraph associated with a fully defined function. b)
A functional digraph associated with a function undefined in 0, 8, and 9.

outgoing edges. The connected component of G containing an x, such that

g(x) is not defined, is a tree rooted at x without cycles (see Figure 5.1b). In

the following loops will always be considered as cycles of length 1.

Remark 5.4. Let T be a rooted tree and p(v) be the parent of v for each node

v in T . T is the functional digraph associated with the function p.

Using the notation pathset(u, v) we refer to the set of nodes in the directed

path, between u and v. For our purposes we will assume that u and v do not

belong to pathset(u, v). As an example, consider the digraph of Figure 5.1a,

pathset(3, 6) is {0, 2, 8}.

5.2 Picciotto’s Codes

In this section we recall Blob code, Happy code, and Dandelion code as

originally presented by Picciotto in her PhD thesis [89]. As she explicitly

remarks, all of them hinges upon previous works. The first one gives explicitly

a bijection that in the Orlin’s proof of Cayley’s theorem appears in implicit

form [81]. The Happy code is based on a proof by Knuth [69]. The last

one is an implementation of the Joyal’s pseudo-bijective proof of Cayley’s

theorem [60] and is equivalent to the code introduced in [43] by Eğecioğlu

and Remmel: the E-R Bijection. Picciotto initially studied these codes in

terms of matrix transformations then, by means of the Kirchhoff’s Matrix
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Tree Theorem [102], she presented them as algorithms on trees. In this thesis

we focus only on algorithmic aspects related with these codes.

For all codes we recall only the encoding algorithm, since it is sufficient to

map these codes into our general scheme based on digraph transformation.

In this way we will obtain new linear time encoding algorithms; decoding

algorithms will be provided in terms of inverse transformations.

In this section we also explicitly recall the E-R Bijection, in order to show

that the Dandelion code is equivalent to this formerly introduced code.

5.2.1 Blob Code

Let us consider a tree with n nodes labeled with distinct integers in [0, n−1]

rooted at node 0. The encoding algorithm for the Blob code consider all

nodes but 0 in decreasing label order. Each node is detached from its parent

and added to a macro node called blob. This macro node has a parent in

the tree (a conventional node) and it may contain many nodes; each node

included in blob maintains its own subtree, if any (the example in Figure 5.2

provide a clarifying image). Nodes whose ascending path intersect the blob,

once detached, force the blob to change its parent, others do not. The formers

add to the codeword the parent of blob before the induced change, while the

others simply add their parents.

Formally the encoding algorithm can be described as follows:

BLOB ENCODING ALGORITHM

1. Root T in 0

2. Initialize C as an empty string of size n− 2

3. blob = {n− 1}
4. for v = n− 2 down to 1 do

5. if (pathset(v, 0)
⋂

blob) �= ∅ then

6. C[v − 1] = p(v)

7. delete (v, p(v))

8. insert v in blob

9. else
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Figure 5.2: a) A sample tree T rooted at node 0; b) an intermediate step of the
execution of the blob encoding algorithm. The grey area identify the blob,
question marks in the codeword correspond to values that are still unassigned;
c) the resulting codeword at the end of the execution.

10. C[v − 1] = p(blob)

11. delete (blob, p(blob))

12. add (blob, p(v))

13. delete (v, p(v))

14. insert v in blob

In Figure 5.2 an example of the execution of blob encoding algo-

rithm is given.

The computational complexity of original Blob encoding and decoding

algorithms is quadratic in the number of nodes of the tree, due to the com-

putation of pathset(v, 0) at each iteration (line 5).

Improvements

We now show how it is possible to improve the blob encoding algorithm

to obtain a linear time algorithm.

We will call stable all nodes satisfying the test in line 5 because they let

the blob parent unchanged. The value in the code corresponding with a stable

node v is simply p(v).
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Analyzing this algorithm we can see that the condition in line 5 is not

strictly connected to the incremental construction of the blob, but it can be

computed apriori as Lemma 5.5 asserts:

Lemma 5.5. Stable nodes are all nodes v such that v < max(pathset(v, 0)).

Proof. When node v is considered by the encoding algorithm the set blob

contains all the nodes from v + 1 to n. Then the condition of line 5 holds if

and only if at least a node greater than v occurs in pathset(v, 0). Remember

that pathset(v, 0) does not include v and 0.

Lemma 5.6. For each unstable node v, let z be the smaller unstable node

greater than v, p(z) is the value inserted in the code when v is considered by

the encoding algorithm.

Proof. In line 10 of blob encoding algorithm the current parent of blob

defines the code value corresponding to an unstable node v. In subsequent

lines the blob becomes child of p(v). It implies that p(blob) is equal to the

parent of the smaller unstable node greater than v, i.e. p(z).

Our characterization of stable nodes decreases the complexity of blob

encoding algorithm to O(n).

5.2.2 Happy Code

The encoding algorithm for the Happy code focuses on the path from 1 to

0. Since the aim of the algorithm is to ensure the existence of edge (1, 0),

all nodes on the original path from 1 to 0 are sequentially moved in order

to form cycles. Let us call maximal each node v in pathset(1, 0) such that

v > max(pathset(1, v)). The first cycle is initialized with p(1) and each time

a maximal node is encountered a new cycle starts. Non maximal nodes are

inserted in the current cycle.

The encoding algorithm has been described in [89] as follows:
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HAPPY ENCODING ALGORITHM

1. Root T in 0

2. Initialize J = p(1)

3. while p(1) �= 0 do // consider pathset(1, 0) until p(1) = 0

4. j = p(1)

5. delete (1, j) // detach j

6. delete (j, p(j)) and add (1, p(j)) // attach 1 above j

7. if j > J then // if j is maximal

8. J = j // start a new cycle

9. add (J, J)

10. else // insert j in the current cycle close to J

11. add (j, p(J))

12. delete (J, p(J))

13. add (J, j)

14. for v = 2 to n do

15. C[v − 2] = p(v) // compute the codeword

Figures 5.3a and 5.3b show an example of the happy encoding algo-

rithm applied to the tree T of Figure 5.2a. Notice that the algorithm inserts

a node j in a cycle immediately after J , the maximal node in the cycle. This

implies that nodes in a cycle of the resulting graph are in reversed order with

respect to their position in the original tree, e.g., in Figure 5.3b the edge

(5, 2) was (2, 5) in the original tree. With the intent of keep the digraph as

close as possible to the original tree, we now introduce a slightly modified

version of this code which avoids this inversion: j is attached immediately

before J instead of immediately after it. Let us call this modified version

of Happy code MHappy code. The resulting digraph obtained applying the

MHappy code to T is shown in Figure 5.3c.

The happy encoding algorithm works in O(n) running time since it

requires a number of steps equal to the length of the path between 1 and 0

in the tree.
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Figure 5.3: a) An intermediate step of the execution of the happy encoding

algorithm on T of Figure 5.2a; b) the end of the execution and the resulting
codeword, maximal nodes are represented in grey. c) Graph and codeword obtained
with the MHappy code.

5.2.3 Dandelion Code

The Dandelion code is equivalent to the E-R Bijection introduced in [43] by

Eğecioğlu and Remmel, but is described by Picciotto in a totally different

way. It encodes the tree recursively attaching all nodes to node 1. During

this process labels on edges are introduced, these labels will be used to create

the code.

The encoding algorithm for Dandelion code, as presented in [89], is the

following:

DANDELION ENCODING ALGORITHM

1. Root T in 0

2. for v = n down to 2 do

3. h = p(v)

4. k = p(1)

5. delete (v, h)

6. add (v, 1) with label label(v, 1) = h

7. if a cycle has been created then

8. delete (1, k)

9. add (1, h)
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Figure 5.4: The tree T of Figure 5.2a after the execution of the dandelion

encoding algorithm.

10. label(v, 1) = k

11. for v = 2 to n do

12. C[v − 2] = label(v, 1)

The poetic name Dandelion derives from the fact that connecting all the

nodes to node 1, a graph which looks like a dandelion flower is created (see

Figure 5.4.

Testing if a cycle has been created (line 7) is the most expensive operation

required at each step. A straightforward implementation of this algorithms

requires O(n2) running time.

Improvements

Analogously to what has been done for the Blob code, we here give a char-

acterization of all those node that satisfy the test in line 7, let us call them

flying nodes. This characterization allow us to precompute, for each node,

whether it satisfies the test or not, yielding a linear time algorithm.

Lemma 5.7. Flying nodes are all nodes v such that v ∈ pathset(1, 0) and

v > max(pathset(v, 0)).

Proof. The first condition trivially holds, otherwise cycles cannot be created.
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Given v ∈ pathset(1, 0), let m = max(pathset(v, 0)). If m > v then m

is processed before v by the algorithm, m is directly connected to 1 and it

introduces a cycle containing v. When the cycle is broken (line 8 and 9),

all the nodes in the cycle are excluded by the resulting pathset(1, 0). This

implies that in successive steps v cannot be a flying node.

On the other hand, if v > m it will be in pathset(1, 0) when it is processed

by the algorithm and so it obviously introduces a cycle.

The condition stated in Lemma 5.7 allows us to easily precompute whether

a node satisfies the test in line 7 with a simple scan of the path from 1 to 0.

This decreases the running time of the dandelion encoding algorithm

to O(n).

5.3 E-R Bijection

In [43] Eğecioğlu and Remmel introduce a bijection, called θn, that associates

functions in [1, n−2]→ [0, n−1] with Cayley trees (labeled in [0, n−1] rooted

in the fixed node n − 1)1. This bijection can be straightforward interpreted

as a code for labeled trees. Indeed a function in [1, n − 2] → [0, n − 1] can

be written as a sequence of n− 2 numbers in [0, n− 1]. When it is used as a

code, θn is often called E-R Bijection.

Give a function f : [1, n− 2]→ [0, n− 1], this bijection uses it to build a

graph G([0, n− 1], (i, j) : f(i) = j), i.e. the functional digraph associated to

g : [0, n− 1]→ [0, n− 1] defined as follows:

g(i) =

⎧⎨
⎩

undefined if i = 0
undefined if i = n− 1
f(i) otherwise

G will necessarily contains two trees rooted at node 0 and n − 1, re-

spectively. All other connected components in G have a cycle as core (see

Corollary 5.3).

According with the original definition of θn, the graph is drawn so that:

1In the original presentation authors used labels in [1, n] and n as root.
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a) i: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
f(i): 4 3 4 2 20 6 11 0 3 3 19 18 18 5 0 15 5 6 11

b)

c)

Figure 5.5: a) A function f : [1, 19] → [0, 20]; b) the digraph G corresponding to
f drawn according to rules 1-3; c) the tree T = θ21(G).

1. the tree rooted at 0 and n−1 are drawn on the extreme left and extreme

right respectively;

2. cycles are drawn so that their edges form a directed path on the line

between 0 and n− 1 with one backedge above the line;

3. each cycle is arranged so that its smallest node is on the right and the

cycles are ordered from left to right by increasing smallest node.

In Figure 5.5a and Figure 5.5b a function and the corresponding digraph

are shown. The digraph is draw according to rules 1-3.

Now, in order to obtain a tree we must break all cycles and join all

connected components. Let us call ri and li the rightmost and the leftmost

node in each cycle according to the described drawing. θn deletes all backedge

(ri, li) and inserts the edges (0, l1), (r1, l2), (r2, l3), . . . , (rk−1, lk), (rk, n − 1),

where k is the number of cycles in G. In Figure 5.5c the obtained tree is

shown.

The inverse θn, (i.e., the tree encoding), can be obtained directly from

its definition: consider the path between 0 and n − 1, each node v <
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min(pathset(v, n− 1)) will be a right node of a cycle. This is all we need to

correctly split the path between 0 and n−1 in cycles. Eğecioğlu and Remmel

also generalized their bijection so that any node can play the role of 0 and

n-1.

The idea of considering the codeword as the list of a function associated

to a functional digraph has inspired our general scheme described below.

5.4 Functional Digraph Transformation

The easiest method to associate a rooted Cayley tree with a string is to list,

for each node, its parent: this is the näıve code (see Section 4.2). If the tree

is always rooted in a fixed node (0 in our case) the resulting codeword has

length n− 1 and then this method is not bijective.

In this section we present a general scheme for defining bijections between

the set of labeled trees with n nodes and the set of codewords of length n−2.

Our idea is to modify the näıve code to reduce the length of the codeword

that it yields.

If the tree is rooted in a fixed node x, and there exists another fixed node

y having x as parent, the length of the näıve code can be reduced to n − 2

omitting the information related to both x and y. It is easy to root a given

unrooted tree at a fixed node x, while it is not clear how to guarantee the

existence of edge (x, y). For this reason our general scheme is parametrized

by a function ϕ that manipulates the tree in order to ensure the existence

of (x, y). Parameters ϕ, x, and y characterize each specific instance of our

general scheme.

In order to be suitable for our general scheme the function ϕ must satisfy

certain constraints. It must transform the tree into a graph such that:

1. x has no outgoing edges;

2. the only outgoing edge of node y is (x, y) ;

3. each other node has exactly one outgoing edge.
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these constraints guarantee that a codeword of length n−2 can be generated

listing the endpoint of the outgoing edge of each node but x and y.

The three constraints listed above imply that ϕ is a function that trans-

forms a tree T into a functional digraph G. G has n−1 edges and corresponds

to a function g such that g(x) is undefined and g(y) = x. We will call the

class of such graphs Fxy
n .

Lemma 5.8. |Fxy
n | = nn−2 = |Tn|

Proof. Consider all functions h : [0, n − 1] � {x, y} → [0, n − 1], there are

clearly nn−2 such functions. For each h we can derive a digraph in |Fxy
n |

associated to a function g defined as follows:

g(i) =

⎧⎨
⎩

undefined if i = x
x if i = y
h(i) otherwise

Thus |Fxy
n | ≥ nn−2.

On the other hand, for each digraph in |Fxy
n | associated to a function g,

we can univocally identify a function h such that h(i) = g(i) ∀i ∈ [0, n−1]�

{x, y}. This implies |Fxy
n | ≤ nn−2.

We now present the general encoding scheme when ϕ, x, and y are given:

GENERAL ENCODING SCHEME

1. Root T in x

2. Construct G = ϕ(T )

3. for v = 0 to n− 1 do

4. if v �= x and v �= y then

5. append g(v) to C

In order to guarantee the bijectivity of the obtained encoding, the function

ϕ must be invertible, i.e. there must exist a function ϕ−1 that, given a
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functional digraph G in Fxy
n , is able to revert it to the tree T corresponding

to G, i.e., ϕ(T ) = G.

If ϕ−1 exists, it is possible to define the general decoding scheme:

GENERAL DECODING SCHEME

1. for v = 0 to n− 1 do

2. if v �= x and v �= y then

3. extract the first element u from C

4. g(v) = u

5. g(x) = undef

6. g(y) = x

7. Reconstruct the graph G from g

8. Compute T = ϕ−1(G)

In the following we will show how to map Blob code, MHappy code and

Dandelion code into our scheme. For each code we will define a ϕ function

to compute it, we will provide an inverse function to decode it, and we will

discuss the running time required for both encoding and decoding. Linear

time algorithms for Happy and Dandelion code have been presented by Pic-

ciotto in terms of string permutations. We rather focus on graph algorithms

because it helps us to understand why these codes have good locality and

heritability.

5.4.1 Blob Transformation

In this section we introduce a function ϕb suitable to map the Blob code

presented in Section 5.2.1 into our general encodign scheme. We will

exploit the characterization of stable nodes given above. The function ϕb

constructs a graph G from a tree T in the following way: for each unstable

node v, remove edge (v, p(v)) and add edge (v, p(z)) where z = min{u : u >

v and u unstable}. If z does not exist (i.e., if v = n− 1), add edge (v, 0).

In Figure 5.6a all stable nodes (i.e., all v such that v < max(pathset(v, 0)))

of the tree T depicted in Figure 5.2a are marked in gray. Figure 5.6b shows
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Figure 5.6: a) The tree T of Figure 5.2a with stable nodes identified in grey;
b) G = ϕb(T ) and the Blob code representing T .

the digraph obtained transforming T by means of ϕb.

Before proving that ϕb allows us to correctly compute the Blob code we

need to prove the following lemma:

Lemma 5.9. Each path in T from a stable node v to m = max(pathset(v, 0))

is preserved in G = ϕb(T ).

Proof. Let v be a stable node. Let us assume by contradiction that the

path from v to m = max(pathset(v, 0)) is in T but not in G = ϕb(T ).

This means that in the transformation from T to G at least one node w in

pathset(v, m) has changed its parent. Since ϕb changes only edges outgoing

from unstable nodes, w should be unstable and then w > max(pathset(w, 0)).

w ∈ pathset(v, m) implies m ∈ pathset(w, 0), then w should be greater than

m contradicting m = max(pathset(v, 0)).

Theorem 5.10. Blob code fits into the General Scheme when x = 0, y =

n− 1, and ϕ = ϕb.

Proof. It is easy to see that graph G = ϕb(T ) is a functional digraph, since

each node has outdegree equal to 1. Moreover the function g associated with

G is undefined in 0 and g(y) = 0, by definition of ϕb.
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Figure 5.7: Nodes involved in the proof of Theorem 5.10 both in G and in T .
Stable nodes are represented in grey.

Lemmas 5.5 and 5.6 guarantee that the generated codeword C is equal

to the codeword computed by blob encoding algorithm.

Now we have to prove that ϕb is invertible, i.e. we have to show how to

rebuild T from G: all cycles in G must be broken, and stable and unstable

nodes recomputed.

Each cycle Γ is broken deleting the edge outgoing from γ, the maximum

label node in Γ. Lemma 5.9 implies that γ unstable in T , otherwise a path

from γ to max(pathset(γ, 0)) would have been preserved in G, then a node

greater than γ would appear in Γ. Notice that γ becomes the root of its

own connected component, while 0 is the root of the only connected com-

ponent not containing cycles. The identification of γ is a step towards the

recomputation of stable and unstable nodes.

We call stable in G each node v such that v < max(pathset(v, γv)
⋃
{γv}),

where γv is the root of the connected component containing v. Lemma 5.9

guarantees that each node v stable in T , is also stable in G. Now we prove

that vice versa is also true.

Let us assume, by contradiction, that there exists a node v stable in G

but unstable in T . Let m = max(pathset(v, γv)
⋃
{γv}) in G. It holds v < m

and m unstable both in G and in T . In G node m is unstable because there

is no node greater than m in pathset(v, γv)
⋃
{γv}; in T node m cannot be

stable because, as noted before, each stable node in T remains stable in G.

W.l.o.g. let us assume that all nodes between v and m are stable both in

G and in T . Let w be the parent of v in G. By definition of ϕb there exists
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a node u > v unstable in T such that p(u) = w in T . In Figure 5.7 v, m, u,

and w are depicted both in G and in T .

Since m is in the path from u to 0 in T and u is unstable in T , m must be

smaller than u. Then v < m < u and m is unstable in T , this is impossible

because ϕb chooses u as the smaller unstable node greater than v in T .

Once stable and unstable node are correctly identified, it is straightfor-

ward to rebuild the tree T = ϕ−1
b (G).

Linear running time algorithms for both encoding and decoding can be

obtained by fitting Blob code into our General Scheme. Indeed both ϕb and

ϕ−1
b can be implemented in O(n) sequential time: computation of the max-

imum node in the upper path (coding) and cycles identification (decoding)

can both be implemented by simple search techniques.

Let us now show a possible implementation:

function ComputeUpperMax(v)

1. if upperMax(p(v)) is undefined then

2. ComputeUpperMax(p(v))

3. upperMax(v) = max{p(v), upperMax(p(v))}

COMPUTE ϕb

1. upperMax(0) = 0

2. for v = 1 to n− 1 do

3. if upperMax(v) is undefined then

4. ComputeUpperMax(v)

5. prevNonStatic = n− 1

6. for v = n− 2 down to 1 do

7. if upperMax(v) > v then // if v is a static node

8. g(v) = p(v)

9. else // a non static node

10. g(v) = p(prevNonStatic)

11. prevNonStatic = v
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12. g(n− 1) = 0

13. g(0) = undefined

14. return G corresponding to g

This algorithm begins with the computation of upperMax(v), i.e. for each

node v it computes max(pathset(v, 0)). Then this information is exploited

to distinguish static and non static nodes and to assign the correct value

to g(v). Using this algorithm to compute ϕb together with the general

encoding scheme introduced in Section 5.4, it is possible to compute the

Blob code for a tree in O(n) time.

The decoding process is a bit more difficult, but still requires linear

time. The hardest part in the computation of ϕ−1
b is the computation of

max(pathset(v, γv)
⋃
{γv}) for each node v, let us call this information μ(v).

This can be done without explicitly identifying γv and then without break-

ing cycles. In order to avoid the risk of infinite recursion on cycles we will

associate to each node a variable status to distinguish whenever a node is

still being processed or not.

function ComputeMu(v)

1. if status(p(v)) = processed then // no need to iterate

2. μ(v) = max{μ(p(v)), p(v)}
3. status(v) = processed

4. else // iterate

5. status(v) = inProgress

6. if status(p(v)) = inProgress then // this is a cycle

7. μ(v) = MaxInCycle(v)

8. else

9. ComputeMu(p(v)) // recursive call

10. μ(v) = max{μ(p(v)), p(v)}
11. status(v) = processed

Let us clarify the condition of line 6 in function ComputeMu. The status

of a node v is inProgress only during a recursive call of ComputeMu on
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the ascending path of v. If the condition of line 6 is true, a cycle has been

identified, i.e. following outgoing edges we move from v back to v itself. At

this point, in order to avoid infinite recursion on cycles, an auxiliary function

to compute the maximum in this cycle is called and the recursion terminates.

The auxiliary function MaxInCycle simply follows outgoing edges from v until

it comes back on v and returns the maximum label encountered.

COMPUTE ϕ−1
b

1. μ(0) = 0

2. status(0) = processed

3. for v = 1 to n− 1 do

4. if status(v) �= processed then

5. ComputeMu(v)

6. prevNonStatic = n− 1

7. for v = n− 2 down to 1 do

8. if μ(v) > v then // if v is a static node

9. p(v) = g(v)

10. else // a non static node

11. p(prevNonStatic) = g(v)

12. prevNonStatic = v

13. p(prevNonStatic) = 0

14. p(0) = undefined

15. return T corresponding to p

Since function μ(v) can be computed, for each v, in overall linear time

with function ComputeMu, ϕ−1
b requires O(n) running time.

The experimental analysis presented in [61] shows that locality and heri-

tability are satisfied by the Blob code much better than by the Prüfer code.

The reasons behind this experimental result become clear when Blob code is

analyzed according to our method, which is quite different from Picciotto’s

description. The functional digraph generated by ϕb preserves an edge of

the original tree for each stable node, and for these nodes g(v) = p(v): this

partial similarity with näıve code is the reason why Blob code exhibits good
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locality and heritability. We recall that näıve code has maximal locality and

heritability (see Section 4.2).

In the next two sections we will see how MHappy code and Dandelion

code preserve similarities with näıve code more that Blob code.

5.4.2 MHappy Transformation

Here we show how to map our Modified Happy code introduced in Sec-

tion 5.2.2 into our general scheme. The same result for the original Happy

code can be obtained analogously.

We define a function ϕm which, given a tree T , constructs a graph G

by considering only the path from 1 to 0. For each maximal node v in

pathset(1, 0) remove the edge incoming in v, and add an edge (z, v) where z

is a node in pathset(v, 0) such that p(z) is the smaller maximal node greater

than v. If z does not exist, use the child of 0; finally remove the edge incoming

in 0 and add the edge (1, 0).

Theorem 5.11. MHappy code fits into the General Scheme when x = 0,

y = 1, and ϕ = ϕm.

Proof. It is trivial to see that MHappy encoding transforms T into the same

functional digraph generated by ϕm: this corresponds to a function g unde-

fined in 0 and is such that g(1) = 0.

To show that ϕm is invertible, first sort all cycles in G in increasing order

with respect to their maximum node γ, then break each cycle removing the

edge incoming in γ. Since the order of cycles obtained is the same as that in

which they were originally created, we rebuild the original tree inserting all

the nodes of each cycle in the path from 1 to 0 according to the order of the

cycles.

We now detail the implementation of ϕm and ϕ−1
m .



5.4. FUNCTIONAL DIGRAPH TRANSFORMATION 77

COMPUTE ϕm

1. g(v) = p(v) ∀v ∈ [0, n− 1]

2. identify all maximal nodes m1, m2, . . . , mk append mk+1 = 0

3. identify their predecessors pred(m1), . . . , pred(mk+1)

4. for i = 1 to k do

5. last(mi) = pred(mi+1) // the last element of mi’s cycle

6. g(last(mi)) = mi // close each cycle

7. g(1) = 0

8. return G corresponding to g

Computations of lines 2 and 3 can be easily achieved with a simple scan

of the path from 1 to 0, then the algorithm requires linear time.

To compute ϕ−1
m we exploit the same μ(v) computed in Section 5.4.1,

indeed it is easy to see that μ(v) = v if and only if v is the maximum node

in a cycle.

COMPUTE ϕ−1
m

1. p(v) = g(v) ∀v ∈ [1, n− 1]

2. identify all nodes m1, m2, . . . , mk such that μ(mi) = mi

3. identify their predecessors pred(m1), . . . , pred(mk) in cycles

4. p(1) = m1

5. for i = 1 to k − 1 do

6. p(pred(mi)) = mi+1 // break each cycle

7. p(pred(mk)) = 0

8. return T corresponding to p

μ(v) can be computed, for each v, in linear time, as shown in Section 5.4.1

and line 3 requires nothing more than a scan of each cycle. Therefore encod-

ing and decoding MHappy code requires O(n) running time; the same bound

holds for the original Happy code.

We underline that ϕm modifies only a subset of the edges on the path

between 1 and 0, so it preserves the topology of T much better than ϕb. For
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Figure 5.8: The digraph GD = ϕd(T ), flying nodes are represented in grey.

this reason in [25] we claimed that MHappy code should satisfy locality and

heritability properties better than Blob code.

5.4.3 Dandelion Transformation

In this section we map the Dandelion code into our general scheme. Let us

consider the dandelion encoding algorithm and the characterization

of flying nodes given in Section 5.2.3.

We define a function ϕd that transforms T in G considering only flying

nodes in decreasing order. For each flying node v, ϕd swaps p(v) and p(1)

(see Figure 5.8).

Theorem 5.12. Dandelion code fits into the General Scheme when x = 0,

y = 1, and ϕ = ϕd.

Proof. G = ϕd(T ) is a functional digraph corresponding to a function g

undefined in 0 and such that g(1) = 0. The code generated using ϕd is the

same as that using dandelion encoding algorithm. Indeed when the

algorithm breaks a cycle in a flying node v, node 1 is connected to h (the

former parent of v) and the label of edge (v, 1) becomes k (the former parent

of 1). In code C, the position corresponding to v contains the value k. Non-

flying nodes simply use their parents as edge labels. Thus, assigning p(v) = k
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for flying nodes, it is possible to avoid edge labels. In this way, each non-

flying node simply retrains its parent while each flying node exchanges its

parent h with the parent of node 1, i.e., k. Since the dandelion encoding

algorithm considers nodes in decreasing order, ϕd produces the same code.

To invert ϕd we again have to break cycles in the functional digraph

corresponding with a given code. Flying nodes are all and only maximal

nodes in cycles. Note that, in order to correctly rebuild the path from 1

to 0, cycles of G must be considered in increasing order of their maximum

node.

The algorithms obtained fitting Dandelion code into our general scheme

are linear. Indeed the computation of ϕd and ϕ−1
d requires the same opera-

tions used for ϕm and ϕ−1
m . Let us detail the implementation of both ϕd and

ϕ−1
d :

COMPUTE ϕd

1. g(v) = p(v) ∀v ∈ [0, n− 1]

2. identify all flying nodes f1, f2, . . . , fk in path from 1 to 0

3. for i = 1 to k do

4. swap g(1) and g(fi)

5. return G corresponding to g

Since line 2 requires a simple backward scan of the path from 1 to 0, the

algorithm requires O(n) time.

The implementation of ϕ−1
m relies on the fact that flying nodes are all and

only maximal nodes in cycles. We already know that for these nodes it holds

μ(v) = v.

COMPUTE ϕ−1
d

1. p(v) = g(v) ∀v ∈ [1, n− 1]

2. identify all nodes fi such that μ(fi) = fi

3. sort f1, f2, . . . , fk in decreasing order
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4. for i = 1 to k do

5. swap g(1) and g(fi)

6. return T corresponding to p

In view of the considerations made in the previous sections regarding the

computation of μ, this algorithm runs in linear time.

5.5 Comparing Transformation Codes

Both MHappy code and Dandelion code modify only a subset of the edges

on the path between 1 and 0. Even the E-R Bijection focuses on a single

path of the tree and splits it into cycles. Moreover, if in the E-R Bijection

we use 1 instead of 0 and 0 instead of n− 1, the resulting encoding is almost

identical to the Dandelion code. The unique difference is that in the Dan-

delion code flying nodes are such that v > max(pathset(v, 0)), while in the

E-R Bijection rightmost nodes satisfy the inequality v < min(pathset(v, 0)).

Happy code and MHappy code, instead, focus on the pathset(1, v) so they

basically analyze the path in the reverse direction. Indeed, as Picciotto has

proved, given a tree T , if we obtain T ′ reverting the order of nodes in the

path between 1 and 0, the Happy code for T coincides with the Dandelion

code for T ′ and vice versa.

In a paper we published in 2005, we conjectured that MHappy code and

Dandelion code should have similar locality and heritability, and that both of

them are better than Blob code. Later then, in 2006, experimental compar-

isons of these codes in GA have been made by Paulden and Smith [85]. They

also tested all possible variations of codes that split a fixed path considering

foreward/backward minimum/maximum nodes in increasing/decreasing or-

der. They called them Dandelion-like codes. Their experiments show that,

with respect to performances in GA, these codes are splitted in two groups.

Paulden and Smith concluded that: “The Group 2 codings (including the

MHappy Code) were found to have similar locality properties and slightly bet-

ter heritability properties to the Group 1 codings (including the Dandelion

Code and Happy Code)” [85].
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Paulden and Smith also proved that Dandelion code has asymptotically

optimal locality [84].

5.6 Concluding Remarks

The General Scheme introduced in this section is suitable to interpreter

known codes as transformations between trees and functional digraphs. It

gives us a better comprehension of how encoding preserves the topology of

the tree, and therefore it helps to understand which code better fits desirable

properties, such as locality and heritability.

As we have seen, this General Scheme is suitable to code unrooted trees

considering them as rooted in a fixed node y. In order to code arbitrarily

rooted trees, it is enough to add the root label to an n − 2 length code-

word (e.g., as a last symbol) obtained re-rooting the tree in y. In this way

the scheme encodes a rooted tree with n nodes with codewords of length

n − 1, that is still a bijective mapping. If both x and y are added to the

codeword, each instance of the General Scheme becomes an implementation

of the Joyal [60] bijection between vertebrates (doubly-rooted labeled trees)

and strings of length n.

The class of Transformation codes (i.e., those codes that can be mapped

into our general scheme) contains each possible bijective code for labeled

trees. This is not true for other classes such as Prüfer-like codes (which are

based on recursive leaves elimination). As an example consider the tree T of

Figure 5.2a. The Dandelion code for T is CD = (5, 6, 10, 2, 4, 2, 1, 0, 3, 9), it

is not possible to find a Prüfer-like code able to associate T with CD, indeed

at the first step, among all leaves, no one has 5 as parent.

On the other hand, it is possible to define a function ϕp that yields the

Prüfer code through the general encoding scheme for any chosen x

and y. Let CP be the Prüfer code associated to T , then functional digraph

GP = ϕp(T ) should have an edge (x, y) and no edges outgoing from y. All

other edges can be derived directly from CP : consider the set V − x − y in

increasing order, the i-th node vi gets the outgoing edge (vi, CP [i]). Figure 5.9
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Figure 5.9: A sample tree T and its Prüfer code together with the digraph
GP = ϕp(T ); we used x = 0 and y = 6.

shows an example of applying ϕp, we have chosen x = 0 and y = n − 1.

In this example almost all edges have been changed, then the topology of

the functional digraph is completely different from the one of the tree, this

confirms the poor locality of Prüfer code.

This idea can be easily exploited to map any possible bijective code to our

General Scheme. In the second part of this thesis we will see how bijective

tree codes can be extended to the class of k-tree.
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Chapter 6

Encoding k-Trees

In this chapter we consider bijective codes for the class of k-trees, i.e., one

of the most natural and interesting generalizations of trees (for a formal def-

inition see Section 6.1). There is considerable interest in developing efficient

tools to manipulate this class of graphs. Indeed each graph with treewidth

k is a subgraph of a k-tree, and many NP-Complete Problems (e.g. Vertex

Cover, Graph k-Colorability, Independent Set, Hamiltonian Circuit, etc.)

have been shown to be polynomially solvable when restricted to graphs of

bounded treewidth [8, 9, 10]. Moreover each k-tree is also a minimal k-

connected graph and thus a minimal k-fault tolerant network [56].

In 1970 Rényi and Rényi [94] generalized Prüfer’s bijective proof of Cay-

ley’s theorem to code a subset of labeled k-trees (Rényi k-trees). They intro-

duced a redundant Prüfer code for Rényi k-trees and then characterized the

valid codewords. Subsequently, non redundant codes that realize bijection

between k-trees (or Rényi k-trees) and a well defined set of codewords was

produced [28, 46]. Attempts have been made to obtain an algorithm with

linear running time for the redundant Prüfer code [73].

As an original contribution of this thesis we present a novel bijective code

for k-tree. We also give a detailed description of linear time encoding and

decoding algorithms for our code. It is worth mention that our code can be

easily adapted to rooted, unrooted, and Rényi k-trees, always preserving

bijectivity. To the best of our knowledge, no linear time algorithms for
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encoding and decoding k-tree have been presented in the literature before

our work [22, 23].

The chapter is organized as follows: in Section 6.1 we provide definitions

and combinatorial results on k-trees. In Section 6.2, we survey known bi-

jective codes for k-tree. In Section 6.3 and 6.4 we introduce two building

blocks of our coding technique (Characteristic Tree and Generalized Dan-

delion Code) while all details for the encoding and decoding algorithm are

given in Section 6.5. In Section 6.6 we discuss the physical representation of

our code. The chapter ends with some conclusions and future directions for

research in this topic.

6.1 Preliminaries

In this section we recall the concepts of k-trees (both rooted and unrooted)

and Rényi k-trees and highlight some properties related to these classes of

graphs.

Definition 6.1. [57] A k-tree is defined in the following recursive way:

1. A k-clique is a k-tree.

2. If T ′
k = (V, E) is a k-tree, K ⊆ V is a k-clique and v /∈ V ,

then Tk = (V ∪ {v}, E ∪ {(v, x) | x ∈ K}) is a k-tree.

By construction, a k-tree with n nodes has
(

k
2

)
+k(n−k) edges, n−k cliques

on k + 1 nodes, and k(n − k) + 1 cliques on k nodes. Since every k-tree Tk

with k or k + 1 nodes is simply a clique, in the following we will assume

n ≥ k + 2.

In a k-tree, nodes of degree k are called k-leaves. Note that the neigh-

borhood of each k-leaf forms a clique and then k-leaves are simplicial nodes.

A rooted k-tree is a k-tree with a distinguished k-clique R = {r1, r2, . . . , rk};
R is called the root of the rooted k-tree.

Remark 6.2. Each k-tree Tk with n ≥ k + 2 nodes contains at least two k-

leaves; when Tk is rooted at R at least one of those k-leaves does not belong
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a) b)

Figure 6.1: a) An unrooted 3-tree T3 with 11 nodes; b) T3 rooted in the clique
{2, 3, 9}.

to R (see [94]). Since k-trees are perfect elimination order graphs [95], when

a k-leaf is removed from a k-tree the resulting graph is still a k-tree. If

the resulting k-tree is not a single clique, at most one node adjacent to the

removed k-leaf may become a k-leaf.

In Figure 6.1(a) we give an example of a k-tree with k = 3 and 11 nodes

labeled with integers in [1, 11]. The same k-tree, rooted at R = {2, 3, 9}, is

given in Figure 6.1(b).

Let us call T n
k the set of k-trees with n nodes labeled with distinct labels.

The cardinality of T n
k is (see [6, 47, 77, 94]):

|T n
k | =

(
n

k

)
(k(n− k) + 1)n−k−2

When k = 1 the set T n
1 is the set of Cayley’s trees and |T n

1 | = nn−2, i.e., the

well known Cayley’s theorem (see Chapter 2).

Arbitrarily rooted k-trees with n nodes labeled with distinct labels can

be denoted as a pair (T n
k , R). Since each k-tree Tk contains k(n − k) + 1

cliques on k nodes, the number of arbitrarily rooted k-trees is:

|T n
k | · (k(n− k) + 1) =

(
n

k

)
(k(n− k) + 1)n−k−1

Definition 6.3. [94] A Rényi k-tree Rk is a rooted k-tree with n nodes

labeled in [1, n] and root R = {n− k + 1, n− k + 2, . . . , n}.
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({9, 10, 11}, {2, 10, 11}, {9, 10, 11}, {1, 5, 8}, {5, 8, 9}, {8, 9, 10})

Figure 6.2: A Rényi 3-tree R3 with 11 nodes and root {9, 10, 11} together with
its redundant Prüfer code.

It has been proven [77, 94] that:

|Rn
k | = (k(n− k) + 1)n−k−1

where Rn
k is the set of Rényi k-trees with n nodes.

Remark 6.4. The set of labeled trees rooted at n is equivalent to the set of

unrooted labeled trees. This equivalence cannot be transposed on k-trees

when k > 1. Indeed, not all k-trees contain the clique {n − k + 1, n − k +

2, . . . , n} and then not all k-trees are eligible to be considered a Rényi k-trees.

This implies Rn
k ⊆ T n

k .

6.2 Known Codes

In 1970 Rényi and Rényi [94] generalized Prüfer’s bijective proof of Cayley’s

theorem to code Rényi k-trees. Their code recursively eliminate from the

k-tree the smallest k-leaf. Each time a k-leaf a is removed the set B of its

adjacent nodes (that form a k-clique) is added to the codeword as a single

symbol of the string. Nodes belonging to the root R = {n − k + 1, n − k +

2, . . . , n} are never considered as k-leaves. The procedure terminates when

the codeword reaches length n− k − 1.

Example 10. Consider the Rényi 3-tree in Figure 6.2. It has 3 k-leaves:

{3, 4, 7}. At the beginning a1 = 3 and B1 = {9, 10, 11}. At the second step
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a2 = 4 and B2 = {2, 10, 11}. When 4 is removed from the k-tree 2 becomes a

k-leaf and therefore a3 = 2 and B3 = {9, 10, 11}. The algorithm proceeds re-

moving 7, 1, 5, 6. The resulting codeword is ({9, 10, 11}, {2, 10, 11}, {9, 10, 11},
{1, 5, 8}, {5, 8, 9}, {8, 9, 10}) Notice that there is no need to remove 8 and add

Bn−k = R to the codeword, indeed, the last symbol is always the fixed root

and then can be omitted (as it is for Cayley trees).

Notice that when this procedure is applied to Rényi 1-tree (i.e., simple

Cayley trees rooted at n) it yields exactly the original Prüfer code.

The decoding is analogous to the one given by Prüfer: the leaf ai removed

at the i-th step of the encoding is deduced as the smallest number not yet

used in a1, . . . , ai−1 that does not appear in any subsequent symbol of the

codeword, i.e., Bi, . . . , Bn−k−1:

ai = min

{
a ∈ [1, n] � {ah}h<i �

⋃
j≥i

Bj

}

This code is not bijective, because each symbol of the codeword is a set

of k distinct elements in [1, n] and then each codeword belongs to the set:

(
[1, n]

k

)n−k−1

In order to obtain a correct counting result on the cardinality of the

set of Rényi k-trees, in [94] the authors characterized all valid codewords.

Unfortunately, computationally check whether a given codeword is valid or

not is not immediate. From an algorithmic point of view, we can say that

the validity conditions given by Rényi and Rényi basically correspond to an

attempt of decode the codeword: if there is a step i where the algorithm

is unable to deduce ai the codeword is not valid, if the algorithm correctly

reaches its end the codeword is valid.

From our perspective this is a severe shortcoming of this code: it cannot

be used in those applications where a bijective code is required, like Random

k-tree Generation and Genetic Algorithms over k-tree (topics of Chapter 4

naturally generalize to k-tree).
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Subsequently, non redundant codes that realize bijection between k-trees

(or Rényi k-trees) and a well defined set of codewords were produced by

Eğecioğlu and Shen [46] and by Chen [28]. The latter one deals only with

Rényi k-trees: the author motivates this choice saying that, as well as rooted

trees are more natural than unrooted trees, Rényi k-trees are more natural

than unrooted k-trees. We cannot agree with this claim, indeed, as discussed

above, when k > 1 Rényi k-trees are a strict subset of unrooted k-trees. Thus

we see this peculiarity of the Chen code as a limit. Moreover it does not seem

that this code can be extended to obtain bijective codes for unrooted and

arbitrarily rooted k-trees.

Eğecioğlu and Shen code

The work by Eğecioğlu and Shen is much more interesting than the one

by Chen. They noticed that, since a k-tree has K = k(n− k) + 1 cliques on

k nodes and K ′ = n− k cliques on k + 1 nodes, the number of k-tree can be

rewritten as:

|T n
k | =

(
n

k

)
KK ′−2

Their work relay on a generalization of the E-R Bijection: they interpreted

KK ′−2 as a function f mapping all (but two) (k−1)-cliques to k-cliques. Each

(k − 1)-cliques is divided into k + 1 “faces” (i.e., k-cliques), f describes how

these faces should be composed to obtain the k-tree. The encoding relies on

the existence of a complex orientation of all edges of the k-tree that induces

an order among the faces of a (k − 1)-clique and among the (k − 1)-cliques

themselves.

This code does not seem to admits efficient implementation. For these

reason we devoted our efforts in designing a novel bijective code that admits

linear time encoding and decoding.
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6.3 Characteristic Tree

In this section we introduce the characteristic tree of a rooted k-tree. This

is one of the building blocks of our code. We will use characteristic trees of

Rényi k-trees in our coding process.

Let us start by introducing the skeleton of a rooted k-tree.

Definition 6.5. Given a rooted k-tree Tk with root R, obtainable by T ′
k

rooted at R by adding a new node v connected to a k-clique K (see Defi-

nition 6.1), the skeleton S(Tk, R) is obtained by adding to S(T ′
k, R) a new

node X = {v} ∪K and a new edge (X, Y ). Y is the node of S(T ′
k, R) that

contains K at minimum distance from the root. If Tk is the single k-clique

R, its skeleton S(Tk, R) is a tree with a single node R.

The skeleton S(Tk, R) of a rooted k-tree Tk with root R is well defined:

indeed it is always possible to find a node Y containing K in T ′
k because K

is a clique in S(T ′
k, R). Moreover Y is unique: it is easy to verify that if

two nodes in S(T ′
k, R) contain a value v, their lowest common ancestor still

contains v. Since it holds for all v ∈ K, there always exists a unique node Y

containing K at minimum distance from the root.

Definition 6.6. The characteristic tree T (Tk, R) of a rooted k-tree Tk with

root R is obtained by labeling nodes and edges of S(Tk, R) as follows:

1. Node R is labeled 0 and each node {v} ∪K is labeled v.

2. Each edge from node {v} ∪ K to its parent {v′} ∪ K ′ is labeled with

the index of the node in K ′ (considered as an ordered set) that does

not appear in K. When the parent is R the edge is labeled ε.

The existence of a unique node in K ′
� K is guaranteed by Definition 6.5.

Indeed, v′ must appear in K, otherwise K ′ = K and the parent of {v′} ∪K ′

contains K. This contradicts the fact that each node in S(Tk, R) is attached

at minimum distance from the root. Therefore at least one element of x ∈ K ′

does not appear in K. Moreover x is unique because |K ′| = |K| and K =

K ′
� {x} ∪ {v′}.
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a) b) c)

Figure 6.3: a) A Rényi 3-tree R3 with 11 nodes and root {9, 10, 11}; b) the
skeleton of R3, with nodes {v} ∪K; c) the characteristic tree of R3.

Remark 6.7. For each node {v} ∪K of S(Tk, R), each w ∈ K � R appears

as label of a node in the path from v to 0 in T (Tk, R).

As we mentioned before, in our code we will use the characteristic tree of a

Rényi k-trees Rk. As in Rényi k-trees the root is fixed, we omit the argument

R, referring the skeleton as S(Rk) and the characteristic tree as T (Rk).

In Figure 6.3 a Rényi 3-tree with 11 nodes, its skeleton and its character-

istic tree are shown.

It is easy to see that, given a characteristic tree T , it is possible to re-

construct the corresponding Rényi k-tree: indeed the reconstruction of the

skeleton from T is straightforward, and the skeleton tells us, for each node,

which clique the node should be connected to.

We are interested in finding algorithms to compute T (Rk) from Rk and

vice versa in linear time. In order to satisfy this constraint the algorithms

detailed in the following sections will avoid the explicit construction of the

skeleton. Moreover, we have to remark that, when restricted to Rényi k-

trees, our characteristic tree coincides with the Doubly Labeled Tree defined

in a completely different way in [52] and used in [28]. Our new definition

gives us the right perspective to obtain linear time algorithms.

At the end of this section, let us consider the class of all characteristic trees
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of Rényi k-trees: Zn
k . More formally, Zn

k is the set of all trees with n− k + 1

nodes labeled with distinct integers in [0, n − k] in which all edges incident

on 0 have label ε and all other edges have arbitrary labels in [1, k]. The

association between a Rényi k-tree and its characteristic tree is a bijection

between Rn
k and Zn

k . Indeed, for each Rényi k-tree its characteristic tree

belongs to Zn
k , and this association is invertible. In Section 6.4 we will show

that |Zn
k | = |Rn

k |.

6.4 Generalized Dandelion Code

In the first part of this thesis, many bijective codes for labeled trees have

been presented. Here we show a generalization of the Dandelion code that

takes into account labels on edges and can be used to encode characteristic

trees of Rényi k-trees. We have arbitrarily chosen Dandelion code among

several possible others1. We refer to Chapter 5 for a detailed description of

Dandelion code. The approach we follow here is the one obtained through

our general scheme (see Section 5.4.3).

The Generalized Dandelion Code takes as parameters r and x. It con-

siders a tree T , with n nodes with distinct labels in [0, n − 1], and an edge

labeling function � such that: each edge incident on r has label ε and all other

edges have label over a given alphabet Σ. At the beginning of the encod-

ing procedure T is rooted at r, thus identifying, for each node v, its parent

p(v). Considering T as a digraph with labeled oriented edges, the code re-

cursively breaks the path between x and r into cycles until x reaches r. This

is obtained by means of swap operations (see compute ϕd in Section 5.4.3).

We should specify what happen with edge labels when a swap takes place.

Our algorithm ensures that the edge labels remain associated to parent nodes.

More formally, when two nodes x and w swap their parents, the new edge

(x, p(w)) will have the label of the old edge (w, p(w)) and the new edge

(w, p(x)) will have the label of the old edge (x, p(x)).

1As discussed at the end of Section 6.5.1 also E-R Bijection, Happy code, and MHappy
would have been valid choices.
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The graph resulting from the encoding process satisfies the following in-

variants:

• node r has no outgoing edges;

• each node except r has exactly one outgoing edge;

• the outgoing edge of node x is (x, r);

• each edge incoming in r has label ε.

Exploiting the invariants, the resulting graph can be univocally repre-

sented by p(v) and �(v, p(v)) for each v ∈ [0, n− 1] � {r, x}. The sequence of

these n− 2 pairs constitutes the Generalized Dandelion Code of the original

tree T . The encoding algorithm is as follows:

GENERALIZED DANDELION ENCODING ALGORITHM

1. identify all flying nodes f1, f2, . . . , fk in path from x to r

2. for i = 1 to k do

3. �(fi, p(x)) = �(x, p(x))

4. �(x, p(fi)) = �(fi, p(fi))

5. swap p(x) and p(fi)

6. for v ∈ V (T ) � {r, x} in increasing order do

7. append (p(v), �(v, p(v))) to the code

As for the Dandelion code, the running time of the encoding algorithm is

O(n).

In Figure 6.4 an example of Generalized Dandelion Encoding, with pa-

rameters r = 0 and x = 1, is presented.

As a further example let us encode (with r = 0 and x = 1) the tree shown

in Figure 6.3(c). Here the only swap occurring is p(1)↔ p(8). The codeword

obtained is: [(0, ε), (0, ε), (2, 1), (8, 3), (8, 2), (1, 3), (5, 3)].

Remark 6.8. The Dandelion code satisfies Property 2.3, it is easy to extend

this property to the Generalized Dandelion code. Consider the codeword
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a) b) c) d)

Figure 6.4: a) A tree T with 15 nodes labeled in [0, 14] and edge
labels in [1, 4], represented as rooted at 0; b) after the first swap
p(1) ↔ p(10), cycle {10, 9, 6} has been introduced; c) a loop 5 has been
introduced, after the second swap p(1) ↔ p(5); d) the tree T at the
end of the encoding, after the last swap p(1) ↔ p(3). The codeword is
[(3, 2), (2, 1), (6, 3), (5, 4), (10, 3), (1, 2), (10, 3), (6, 4), (9, 2), (1, 3), (8, 1), (3, 3),
(0, ε)].

associated to a tree T by the Generalized Dandelion code: all and only

internal nodes of T appear (as first element of a pair) in the codeword.

Let us now detail how to decode a codeword S. S is a sequence of n− 2

pairs, each pair is either (r, ε) or a pair in ([0, n− 1] � {r})× Σ.

Initially we construct a functional digraph G, whose node set is [0, n−1],

in the following way: consider all nodes except r and x, in increasing order.

Let vi be the i-th node and let (pi, li) be the i-th pair in S. Add to G the

oriented edges (vi, pi) with label li, for each vi. At the end add the oriented

edge (x, r) with label ε.

The decoding algorithms detailed below proceeds (as for the Dandelion

code) breaking cycles in order to correctly reconstruct the path between x

and r.
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GENERALIZED DANDELION DECODING ALGORITHM

1. Construct G from S

2. Identify all cycles in G and their maximal nodes

3. for each maximal node mi in increasing order do

4. �(mi, p(x)) = �(x, p(x))

5. �(x, p(mi)) = �(mi, p(mi))

6. swap p(x) and p(mi)

The algorithm retrains O(n) running time. Indeed, managing edge labels

only requires O(1) extra operations at each step.

As mentioned at the end of the previous section, we now exploit the

Generalized Dandelion Code to show that |Zn
k | = |Rn

k |. Each tree in Zn
k has

n−k+1 nodes and therefore is represented by a codeword of length n−k−1.

Each element of this string is either (0, ε) or a pair in [1, n − k] × [1, k].

Then there are exactly k(n − k) + 1 possible pairs. The number of possible

codewords is (k(n−k)+1)n−k−1, and then |Zn
k | = (k(n−k)+1)n−k−1 = |Rn

k |.

6.5 A New Code for k-Trees

In this section we present a new bijective code for k-trees and we detail,

for this code, linear time encoding and decoding algorithms. To the best

of our knowledge, this work is the first one that explicitly provides efficient

algorithms to encode and decode k-trees.

6.5.1 Encoding Algorithm

Our algorithm initially transforms a k-tree into a Rényi k-tree: we root the

k-tree Tk at a particular clique Q and we perform a relabeling to obtain a

Rényi k-tree Rk. Exploiting the characteristic tree T (Rk) and the Generalized

Dandelion Code, we bijectively encode Rk. The codeword for T (Rk) is then

modified (according with information related to Q) to obtain a codeword for

Tk. The most demanding step of this process is the computation of T (Rk)
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starting from Rk. We will show that even this step can be performed with a

running time linear in the size of the k-tree, i.e., O(nk).

As noted at the end of the previous section, using the Generalized Dan-

delion Code, we are able to associate elements in Rn
k with codewords in:

Bn
k = ({(0, ε)} ∪ ([1, n− k]× [1, k]))n−k−1

Since we want to encode all k-trees, rather than just Rényi k-trees, our

final code will consist of a substring of length n−k−2 of the Generalized Dan-

delion Code for T (Rk), together with information describing the relabeling

used to transform Tk into Rk.

Our bijective code for k-trees associated elements in T n
k with elements in:

An
k =

(
[1, n]

k

)
× ({(0, ε)} ∪ ([1, n− k]× [1, k]))n−k−2

Note that |An
k | = |T n

k |. In the next section we will describe a decoding

process that is able to associate each codeword in An,k to its corresponding

k-tree: this will prove that the obtained code is bijective.

The encoding algorithm takes as input a k-tree Tk with n nodes and

computes a code in An,k. It is summarized in the following 4 steps:

Encoding Algorithm

1. Identify Q, the k-clique adjacent to the leaf with maximum label lM in
Tk. By a relabeling process φ, transform Tk into a Rényi k-tree Rk.

2. Generate the characteristic tree T for Rk.

3. Compute the Generalized Dandelion Code for T with r = 0 and x =
φ(q), where q = min{v /∈ Q}. Remove from the obtained codeword S
the pair corresponding to φ(lM).

4. Return the codeword (Q, S).

Assuming that the input k-tree is represented by adjacency lists adj, we now

detail how to implement the Encoding Algorithm in linear time.
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Figure 6.5: Graphical representation of φ for 3-tree in Figure 6.1(a).

Step 1. Compute the degree d(v) of each node v and find lM , i.e. the

maximum v such that d(v) = k, then the node set Q is adj(lM). In order

to obtain a Rényi k-tree, nodes in Q should get labels in {n − k + 1, n −
k + 2, . . . , n}. This can be achieved by a relabeling φ (i.e., a permutation of

labels) defined as follows:

1. if qi is the i-th smallest node in Q, assign φ(qi) = n− k + i;

2. for each q /∈ Q ∪ {n− k + 1, . . . , n}, assign φ(q) = q;

3. unassigned values are used to close permutation cycles, formally: for

each q ∈ {n− k + 1, . . . , n}� Q, φ(q) = i such that φj(i) = q and j is

maximized.

Figure 6.5 provides a graphical representation of the permutation φ cor-

responding to the 3-tree in Figure 6.1(a), where Q = {2, 3, 9}, obtained as

the neighborhood of lM = 10. Forward arrows correspond to values assigned

by rule 1, small loops are those derived from rule 2, while backward arrows

closing cycles are due to rule 3.

The Rényi k-tree Rk is obtained relabeling Tk according with φ. The final

operation of Step 1 consists in ordering the adjacency lists of Rk. The reason

for this operation will be clear in the next step.

Figure 6.3(a) gives the Rényi 3-tree R3 obtained by relabeling the T3 of

Figure 6.1(a) according with φ represented in Figure 6.5. The root of R3 is

{9, 10, 11}.

Let us now prove that the overall running time of Step 1 is O(nk). The

computation of d(v) for each node v can be implemented by scanning all

adjacency lists of Tk. Since a k-tree with n nodes has
(

k
2

)
+ k(n − k) edges,

it requires O(nk) time.
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The procedure to compute φ in O(n) time is:

function COMPUTE-PHI

1. for qi ∈ Q in increasing order do

2. φ(qi) = n− k + i

3. for i = 1 to n− k do

4. j = i

5. while φ(j) is assigned do

6. j = φ(j)

7. φ(j) = i

Let us show the correspondence between rules in the definition of the

function φ and lines of the algorithm: assignments of rule 1 are made by the

loop in Line 1. The loop in Line 3 implements rules 2 and 3 in linear time.

Indeed the while loop condition of Line 5 is always false for all those values

not belonging to Q ∪ {n − k + 1, . . . , n}. Moreover, for all other nodes the

inner while loop scans each permutation cycle only once, according to rule 3

of the definition of φ. Thus the program runs in O(n) time.

Relabeling all nodes of Tk to obtain Rk requires O(nk) operations, as well

as the standard procedure used to order its adjacency lists:

function ORDER-ADJACENCY-LISTS

1. for i = 1 to n do

2. for each j ∈ adj(i) do

3. append i to newadj(j)

4. return newadj

Step 2. The goal of this step is to build the characteristic tree T of Rk. In

order to guarantee linear running time we avoid the explicit construction of

the skeleton S(Rk). We build the node set and the edge set of T separately.

The node set is computed identifying all maximal cliques in Rk; this can

be done by pruning Rk from k-leaves. The pruning proceeds by scanning the
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adjacency lists in increasing order: whenever it finds a node v with degree

k, a node in T labeled by v, representing the maximal clique with node set

v ∪ adj(v), is created. Then v is removed from Rk and consequently the

degree of each of its adjacent nodes is decreased by one.

In a real implementation of the pruning process, in order to limit the

running time, the explicit removal of each node should be avoided. We keep

this information by marking removed nodes and by decreasing node degrees.

When v becomes a k-leaf, the node set identifying its maximal clique is given

by v union the nodes in the adjacency list of v that have not been marked

as removed yet. We will store this subset of the adjacency list of v as Kv: a

list of exactly k integers.

Note that, when v is removed, at most one of its adjacent nodes becomes

a k-leaf (see Remark 6.2). If this happens, the pruning process selects the

minimum between the new k-leaf and the next k-leaf in the adjacency list

scan.

At the end of this process, the original Rényi k-tree is reduced to its root

R = {n−k+1, . . . , n}. To represent this k-clique the node labeled 0 is added

to T (the algorithm also assigns K0 = R).

The algorithm to Prune Rk is detailed below. Its overall running time is

O(nk). Indeed, it removes n−k nodes and each removal requires O(k) time.

PRUNE Rk ALGORITHM

function remove(x)

1. let Kx be adj(x) without all marked elements

2. create a new node in T with label x

3. mark x as removed

4. for each unmarked y ∈ adj(x) do

5. d(y) = d(y)− 1

main

1. for v = 1 to n− k do

2. w = v
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3. if d(w) = k then

4. remove(w)

5. while ∃ unmarked u ∈ adj(w) : u < v and d(u) = k do

6. w = u

7. remove(w)

In order to build the edge set, let us consider for each node v the set of its

eligible parents, i.e. all w in Kv. Since all eligible parents must occur in the

ascending path from v to root 0 (see Remark 6.7), the correct parent is the

one at maximum distance from the root. This is the reason why we proceed

following the reversed pruning order.

The edge set is represented by a vector p identifying the parent of each

node. 0 is the parent of all those nodes such that Kv = R. The level of these

nodes is 1.

To keep track of the pruning order, nodes can be pushed into a stack

during the pruning process. Now, following the reversed pruning order, as

soon as a node v is popped from the stack, it is attached to the node in Kv

at maximum level. We assume that the level of nodes in R (which do not

belong to T ) is 0.

The pseudo-code of this part of Step 2 is:

function ADD-EDGES

1. for each v ∈ [1, n− k] in reversed pruning order do

2. if Kv = R then

3. p(v) = 0

4. level(v) = 1

5. else

6. choose w ∈ Kv whit maximum level(w)

7. p(v) = w

8. level(v) = level(w) + 1

This function requires O(nk) time. Indeed, it assigns the parent of n− k

nodes, each assignment involves the computation of a maximum (Line 6) and
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requires k comparisons.

To complete Step 2, it remains to label each edge (v, p(v)). When p(v) =

0, the label is ε; in general, the label l(v, p(v)) must receive the index of the

only element in Kp(v) that does not belong to Kv. This information can be

computed in O(nk) by simply scanning lists Kv. Indeed, the execution of

ORDER-ADJACENCY-LISTS at the end of Step 1 ensures that elements in

all Kv appear in increasing order.

Figure 6.3(c) shows the characteristic tree computed for the Rényi 3-tree

of Figure 6.3(a).

Step 3. Applying the Generalized Dandelion Code with parameters r = 0

and x = φ(q), where q = min{v /∈ Q}, we obtain a codeword S consisting

in a list of n − k − 1 pairs. For each v ∈ {0, 1, 2, . . . , n − k} � {0, x} there

is a pair (p(v), �(v, p(v))) taken from the set {(0, ε)} ∪ ([1, n− k]× [1, k]).

As it is, the obtained codeword S is redundant because we already know,

from the relabeling process performed in Step 1, that the greatest leaf lM of

Tk corresponds to a child of the root in T . Therefore the pair associated to

φ(lM) must be (0, ε) and can be omitted. The Generalized Dandelion Code

already omits the information (0, ε) associated with the node x, so, in order

to effectively reduce the codeword length, we must guarantee that φ(lM) �= x.

Lemma 6.9. Given a k-tree Tk with n nodes, let lM be the maximum leaf

of Tk and φ the permutation described in Step 1. Then, if x is chosen as

φ(min{v /∈ Q}), it holds φ(lM) �= x.

Proof. From Remark 6.2, we already know that a k-tree on n ≥ k + 2 nodes

has at least 2 k-leaves. Q cannot contain a k-leaf, since it is chosen as the

adjacent k-clique of the maximum leaf lM . So there exists at least a k-leaf

smaller than lM that does not belong to Q. q = min{v /∈ Q} will be less than

or equal to this k-leaf. Consequently lM �= q and, since φ is a permutation,

φ(lM) �= φ(q) = x.

The removal of the redundant pair from the codeword S completes Step

3. Since the Generalized Dandelion Code can be computed in linear time,
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the overall running time of the encoding algorithm is O(nk).

It should be now clear that we have chosen Dandelion Code because it

allows us to easily identify an information (the pair (0, ε) associated to φ(lM))

that can be removed in order to reduce the codeword length from n−k−1 to

n− k − 2: this is crucial to obtain a bijective code for all k-trees. The same

could have been done with E-R Bijection, Happy code, and MHappy code

as well. Blob code and Prüfer-like codes, can be generalized to encode edge

labeled trees, obtaining bijection between Rényi k-trees and codewords in

Bn,k. However, with these codes, it is not clear how to identify a removable

redundant pair. This means that not any code for Rényi k-trees can be

directly exploited to obtain a code for k-trees.

The final codeword (Q, S) belongs to An,k, indeed Q ∈
(
[1,n]

k

)
and S is a

string obtained by removing a pair from a string in Bn,k.

The Generalized Dandelion Code obtained from the characteristic tree in

Figure 6.3(c), using as parameters r = 0 and x = 1, is: [(0, ε), (0, ε), (2, 1),

(8, 3), (8, 2), (1, 3), (5, 3)] ∈ B11
3 ; this is a code for the Rényi 3-tree in Fig-

ure 6.3(a). The 3-tree T3 in Figure 6.1(a) is encoded as: ({2, 3, 9}, [(0, ε), (2, 1),

(8, 3), (8, 2), (1, 3), (5, 3)]) ∈ A11
3 . We recall that in this example Q = {2, 3, 9},

lM = 10, q = 1, φ(lM) = 3, and φ(q) = 1.

6.5.2 Decoding Algorithm

Any codeword (Q, S) ∈ An,k can be decoded to obtain a k-tree whose encod-

ing is (Q, S). This process can be performed with the following algorithm:

Decoding Algorithm

1. Compute φ starting from Q and find lM and q.

2. Insert the pair (0, ε) corresponding to φ(lM) in S and decode it to
obtain T .

3. Rebuild the Rényi k-tree Rk by visiting T .

4. Apply φ−1 to Rk to obtain Tk.
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Let us detail the decoding algorithm. Since Q is known, it is straightfor-

ward to compute q = min{v ∈ [1, n] : v /∈ Q} and φ as described in Step 1 of

the encoding algorithm. Since all internal nodes of T explicitly appear

in S (see Remark 6.8), it is easy to derive the set L of all leaves of T by a

simple scan of S. Note that leaves in T coincide with k-leaves in Rk. Ap-

plying φ−1 to all elements in L we can deduce the set of all k-leaves of the

original Tk, and therefore find lM , the maximum leaf in Tk.

In order to decode S, a pair (0, ε) corresponding to φ(lM) needs to be

added, and then the decoding phase of the Generalized Dandelion Code with

parameters 0 and φ(q) has to be applied. The obtained tree T is represented

by its parent vector.

The reconstruction of the Rényi k-tree Rk is now detailed. We assume

that each Kv is a list of k integers in increasing order.

REBUILD Rk ALGORITHM

1. initialize Rk as the k-clique R on {n− k + 1, n− k + 2, . . . , n}
2. for each v in T in breadth first order do

3. if p(v) = 0 then

4. Kv = R

5. else

6. let w be the element of index l(v, p(v)) in Kp(v)

7. Kv = Kp(v) � {w} ∪ {p(v)}
8. add v to Rk

9. add to Rk all edges (u, v) such that u ∈ Kv

The last step of the decoding process consists in applying φ−1 to Rk in

order to obtain Tk. The overall complexity of the decoding algorithm is

O(nk). The only step of deserves explanation is Line 7 of the rebuild Rk

algorithm. Assuming that Kp(v) is ordered, to create Kv in increasing

order, it is enough to scan Kp(v) omitting w and inserting p(v) in the correct

position. Since when Kv = R = {n− k + 1, . . . , n} it is trivially ordered, all

Kv can be easily produced as ordered lists.
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6.6 Compact Representation

In this section we present some technical details about the physical repre-

sentation of codewords in memory. A codeword in An,k can be represented

efficiently using roughly log(|An,k|) bits.

First we detail how to represent S, the sequence of pairs. Each pair

(p, �) ∈ [1, n−k]×[1, k] can be easily represented in �log(n−k)�+�log k� bits.

In order to optimize the space requirement of a single pair, we can represent

it as the single integer (p − 1) · k + (�− 1), thus using �log((n − k)k)� bits.

When ((n−k)k) is not a power of two, we can represent the special pair (0, ε)

with any bit sequence not corresponding to any other pair in [1, n−k]× [1, k].

Otherwise one more bit must be used. Hence (n−k−2)�log((n−k)k+1)� bits

are required to represent the whole sequence S. Applying the same reasoning

we exploited on pairs we can represent S as a single integer, thus the total

number of bits can be further reduced to �(n− k − 2) log((n− k)k + 1)�.

We now discuss several ways to represent Q ∈
(

n
k

)
.

The easiest form consists in a list of k values in [1, n]. This requires

k�log n� bits. Even though nk has the same asymptotical order of
(

n
k

)
, the

possibility to represent lists with repetitions is a drawback.

If k = Θ(n) we can consider to represent Q with its characteristic vector.

This requires exactly n bits but still allow us to represent values not in
(

n
k

)
.

A non redundant representation of Q is given by its index in the lexico-

graphically ordered list L of all X ∈
(

n
k

)
. In order to efficiently compute this

index id(Q), notice that the first
(

n−1
k−1

)
elements in L contain 1, while the re-

maining
(

n−1
k

)
elements do not contain it. Exploiting this observation we can

compute id(Q) with the following recursive function as id(Q) = ρ(Q, 1, k, n),

where:

ρ(Q, i, k, n) =

⎧⎨
⎩

0 if k = 0,
ρ(Q � i, i + 1, k − 1, n− 1) if i ∈ Q,(

n−1
k−1

)
+ ρ(Q, i + 1, k, n− 1) otherwise.

This computation requires O(nk) time since all binomial coefficients can
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be precomputed with dynamic programming techniques (or with more sophis-

ticate approaches [103]) and each sum between
(

n−1
k−1

)
and ρ(Q, i+1, k, n−1)

can be done in O(k) (these numbers are bigger that log n bits, then it is not

correct to assume that basic operations require constant time).

6.7 Concluding Remarks

In this chapter we have introduced a new bijective code for labeled k-trees,

together with coding and decoding algorithms whose running time is linear

with respect to the input size. To the best of our knowledge, no linear

time algorithms for encoding and decoding k-tree have been presented in the

literature before our work.

In order to develop our bijective code for k-trees we exploited a transfor-

mation of a k-tree in a Rényi k-tree and developed a new coding for Rényi

k-trees based on a generalization of the Dandelion code. The choose of

Dandelion code is motivated by the necessity to identify and discard some

redundant information. This is crucial to ensure the resulting code for k-trees

to be bijective.

It is worth to notice that our code can be exploited, with minor changes,

to bijectively encode Rényi k-trees and arbitrarily rooted k-trees as well. For

Rényi k-trees, it is enough to omit Step 1 of the coding process, and return the

codeword S produced by the Generalized Dandelion Code without removing

any redundant pair. The resulting codewords belong to the set Bn
k . In the

case of arbitrarily rooted k-trees, it is enough to assign Q = R in Step 1,

without computing lM . This will have no drawback as we do not need to

remove any redundant pair from S in Step 3. The resulting codewords belong

to the set
(
[1,n]

k

)
× ({(0, ε)} ∪ ([1, n− k]× [1, k]))n−k−1.

We think our work completely solves the problem of coding and decoding

k-trees efficiently. As a future direction for research in this topic, we propose

to work on bijective codes for the class of partial k-trees.



Chapter 7

Counting k-Arch Graphs

The class of k-trees studied in the previous chapter can be further generalized

by relaxing the second constraint of Definition 6.1 asking for the node set

K to be a clique. Graphs belonging to this class, introduced by Todd [100],

are known as the k-arch graphs. Formally a k-arch graph can be defined as

follows:

1. A complete graph on k nodes is a k-arch graph.

2. If A′
k = (V, E) is a k-arch graph, K ⊆ V of cardinality k and v /∈ V ,

then Ak = (V ∪ {v}, E ∪ {(v, x) | x ∈ K}) is also a k-arch graph.

An attempt to count the number of labeled k-arch graphs has been made

by Lamathe [72]. He used on k-arch graphs the very same generalization of

the Prüfer code given by Rényi and Rényi [94] for k-trees (see Section 6.2).

Thus each k-arch graph is associated with a strings over the alphabet Σ =(
[1,n]

k

)
. He claimed that this correspondence is a bijection and that the number

of labeled k-arch graphs on n nodes is:(
n

k

)n−k−1

Unfortunately this result is not correct, as many codewords do not repre-

sent any k-arch graph. We prove the flaw in Lamathe’s formula by showing a

simple counterexample (in Section 7.2). As a novel contribution of this thesis

107
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we provide the characterization of valid codeword and exploit it to define a

recursive function that computes the number of labeled k-arch graphs of n

nodes, for any given n and k [21].

This chapter is organized as follows: in Section 7.1 we explicitly recall

the generalization of the Prüfer code used by Lamathe on k-arch graphs. In

Section 7.2 we discuss the decoding procedure and characterize the set of

valid codewords. The main counting result is given in Section 7.3.

7.1 Encoding k-Arch Graphs

Let An
k be the set of all k-arch graphs of n nodes and let Bn

k be the set of

all possible strings of length n − k − 1 over the alphabet
(
[1,n]

k

)
. We use the

notation adj(v) to identify the set of all nodes adjacent to a given node v,

and the term k-leaf to mean a node u such that |adj(u)| = k; any other node

v has |adj(v)| > k and is called internal.

Let us define the following function:

ρ(An
k) =

{
ε, if An

k is a single k + 1 clique;

adj(min{v ∈ An
k : |adj(v)| = k}) :: ρ(An

k � {v}), otherwise.

The function ρ is the injective function between An
k and Bn

k used by

Lamathe [72], i.e., the generalization made by Rényi and Rényi [94] of the

Prüfer bijection applied to k-arch graphs. The recursion described by ρ

operates a pruning of the k-arch graph An
k that starts from the smallest k-

leaf v; as v is removed from An
k , its adjacent set constitutes the first symbol of

the codeword. This symbol is concatenated (by string concatenation operator

::) to the string obtained by recursively applying the function to the pruned

graph. The recursion terminates when the pruning gives a clique on k + 1

nodes, as ρ applied to a clique gives the empty string ε.

Note that, by definition of k-arch graphs, every subgraph produced during

the pruning process is a k-arch graph.

It is worth to notice that we are assuming n > k, analogously the Prüfer

code assumes the tree to have at least 2 nodes. When n = k the only
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Figure 7.1: A labeled 3-arch graph on 10 nodes.

admissible k-arch graph is a single clique then |Ak
k| = 1, when n < k obviously

|An
k | = 0.

Let us show an example of the encoding process realized by the function

ρ. Starting from the 3-arch graph of Figure 7.1 we prune it by recursively

removing the smallest k-leaf. At each step the set of nodes adjacent to the

removed k-leaf is added to the codeword.

The smallest k-leaf of the initial graph is v1 = 2 and its adjacent nodes

are B1 = {1, 6, 9}. Then node 2 is removed from the graph and the smallest

k-leaf in the resulting graph is v2 = 3 implying B2 = {1, 5, 8}. Iterating this

procedure we obtain v3 = 6, v4 = 4, v5 = 7, v6 = 9 and B3 = {4, 8, 10}, B4 =

{1, 5, 9}, B5 = {5, 8, 10}, B6 = {1, 5, 8} respectively. The remaining graph

is a single clique of 4 nodes {1, 5, 8, 10}. Therefore the resulting codeword

is (B1, B2, B3, B4, B5, B6) = ({1, 6, 9}, {1, 5, 8}, {4, 8, 10}, {1, 5, 9}, {5, 8, 10},
{1, 5, 8}).

For a given k-arch graph An
k , we say a node v ∈ V (An

k) appears in ρ(An
k)

if there exists Bi ∈ ρ(An
k) such that v ∈ Bi.

Lemma 7.1. v is an internal node in An
k if and only if it appears in ρ(An

k).

Proof. Consider an internal node v in An
k : its initial degree is strictly greater

than k. The pruning process operated by ρ ends with a (k +1)-clique, where

each node has degree k: either v has been eliminated in some step or it

belongs to the remaining clique; in both cases its degree must decrease to k.
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Since the degree of an internal node v can decrease only if in some step i a

k-leaf adjacent to v is removed, v must belong to Bi.

Let us now show that if an element appears in ρ(An
k), then it is an internal

node. Consider a k-leaf v, and suppose by contradiction that there exists

some value i such that v ∈ Bi. This means that after removing a k-leaf

on step i, in the resulting graph node v has degree k − 1. This contradicts

the fact that each subgraph produced during the encoding process is k-arch

graph.

Lemma 7.2. Function ρ is injective.

Proof. We have to show that, given two k-arch graphs An
k
′ and An

k
′′, if

ρ(An
k
′) = ρ(An

k
′′) = (B1, . . . , Bn−k−1) then An

k
′ = An

k
′′.

Let us proceed by induction on n− k. If n− k = 1, ρ(An
k
′) = ρ(An

k
′′) = ε,

then An
k
′ = An

k
′′ as the only k-arch graph on k + 1 nodes is a (k + 1)-clique.

For inductive hypothesis, assume the thesis holds when n − k < h. We

have to prove that it holds when n− k = h.

In order to have ρ(An
k
′) = ρ(An

k
′′), for Lemma 7.1, the sets of internal

nodes and the sets of k-leaves in An
k
′ and An

k
′′ must coincide. It follows that

the minimum k-leaf v1 in An
k
′ coincides with the minimum k-leaf in An

k
′′ and

both are adjacent to the same node set B1. Moreover, the graphs obtained

by pruning v1 from An
k
′ and An

k
′′, in order to produce the same substring

(B2, . . . , Bn−k−1), have to be the same graph by inductive hypothesis. This

implies An
k
′ = An

k
′′, as removing the same node and the same edge set from

them we obtain the same graph.

7.2 Decoding k-Arch Graphs

In this section we show how to revert function ρ in order to rebuild an encoded

k-arch graph.

Starting from a codeword (B1, . . . , Bl) that is the encoding of an unknown

k-arch graph An
k , initially we need to recover values n and k: k = |B1| =
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|B2| = · · · = |Bl| and, since l = n − k − 1, we can derive n = l + k + 1.

The node set of An
k is [1, n] so, to complete the decoding process, we need to

reconstruct its edge set.

In view of Lemma 7.1 it is easy to derive the set of all k-leaves of An
k

as [1, n] �
⋃

Bi. We can compute v1 (the first k-leaf removed during the

encoding process) as the minimum of this set. We also know adj(v1) = B1.

Now, v2 is the smallest k-leaf of An
k �{v1} and we know both the node set

of this k-arch graph (i.e., [1, n] � {v1}) and its codeword (B2, . . . , Bl). Then

v2 = min{v ∈ [1, n] � {v1}�
⋃l

i=2 Bi}.

Generalizing this idea it is possible to derive a formula analogous to the

one given by Prüfer for trees:

vi = min

{
v ∈ [1, n] � {vh}h<i �

⋃
j≥i

Bj

}
∀i ∈ [1, l] (7.1)

Knowing the k-leaf removed at each step of the encoding process it is easy

to rebuild the edge set of An
k . Indeed, all the k + 1 nodes not in {v1, . . . , vl}

form a clique and each vi should be connected with all nodes in Bi. We will

refer to this decoding process as ρ−1. It is easy to see that the codomain of

ρ−1 is An
k .

Not all strings in Bn
k are eligible for this decoding procedure. Indeed,

ρ−1 implicitly requires that, at each step i, the set from which each vi is

chosen (Equation 7.1) must be not empty. We now show a simple string

not corresponding to the encoding of any k-arch graph: this is the easiest

counterexample that proves the incorrectness of Lamathe’s formula.

Consider the string ({1, 2}, {3, 4}, {5, 6}): in this case k = 2 and n =

3 + 2 + 1 = 6. Since the set [1, 6] � ({1, 2} ∪ {3, 4} ∪ {5, 6}) is empty, there

is no value for v1, so there can not exist any k-arch graph whose encoding is

({1, 2}, {3, 4}, {5, 6}).

It is quite easy to see, from definition of ρ−1, that ρ−1(ρ(An
k)) = An

k for

each k-arch graph An
k . We now characterize all those strings in Bn

k resulting

by the encoding of some k-arch graph. Let us call the set of these strings
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Cn
k ⊆ Bn

k . Notice that Cn
k is the image ofAn

k under function ρ, i.e., Cn
k = ρ(An

k).

Theorem 7.3. Given (B1, . . . , Bl) ∈ Bn
k if ∃{v1, . . . , vl} ∈

(
[1,n]

l

)
such that

vi /∈
⋃l

j=i Bj then (B1, . . . , Bl) ∈ Cn
k .

Proof. The existence of such a sequence {v1, . . . , vl} ∈
(
[1,n]

l

)
ensures that the

decoding process can be applied successfully, but this is not enough to ensure

(B1, . . . , Bl) ∈ Cn
k . Indeed there is a reasonable doubt that the k-arch graph

An
k = ρ−1(B1, . . . , Bl) obtained by decoding an arbitrary string in Bn

k , can

produce a different string (B′
1, . . . , B

′
l) = ρ(An

k) when encoded, thus implying

(B1, . . . , Bl) /∈ Cn
k . We will show this is not the case.

Without loss of generality assume that v1, . . . , vl coincides with the se-

quence of nodes chosen by ρ−1 at each step during the decoding process.

Now, by induction on l, we prove that ρ(ρ−1(B1, . . . , Bl)) = (B1, . . . , Bl).

When l = 0, the string can only be ε, the resulting graph is a (k + 1)-

clique and its encoding is again ε. We assume, by inductive hypothesis, the

thesis holds for any string of length l < h and we prove it holds for strings of

length l = h. First note that if the string (B1, . . . , Bl) is decoded as the k-arch

graph An
k , then the substring B2, . . . , Bl is decodable and results in the graph

An−1
k = An

k � {v1}. By inductive hypothesis ρ(An−1
k ) = (B2, . . . , Bl) (here

the node set does not contain v1). The degree of v1 in An
k is |B1| = k, so it is

a k-leaf. Any other node with label smaller than v1 appears in (B1, . . . , Bl),

as otherwise ρ−1 would have done a different choice for v1. This implies

that v1 is the minimum k-leaf in An
k . Then ρ(An

k) = adj(v1) :: ρ(An−1
k ) =

(B1, . . . , Bl).

Since in the proof of Theorem 7.3 we proved that ρ(ρ−1(B1, . . . , Bl)) =

(B1, . . . , Bl) for each codeword in Cn
k , we can state that ρ−1 : Cn

k → An
k is

exactly the inverse function of ρ : An
k → Cn

k .

7.3 Enumerating k-Arch Graphs

We are interested in finding the number of k-arch graphs on n nodes, i.e.,

|An
k |. Since |An

k | = |Cn
k |, in order to count labeled k-arch graphs we will count
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Figure 7.2: Recursion tree for counting 3-arch graphs on 7 nodes.

valid codewords. The condition for a string (B1, . . . , Bl) to be a valid code-

word of a k-arch graph (stated in Theorem 7.3) can be easily reformulated

as:

∀i : 1 ≤ i ≤ l, |
l⋃

h=i

Bh| ≤ n− i (7.2)

Exploiting Equation 7.2, it possible to define a recursive function to count

the number of labeled k-arch graphs on n nodes. Before providing this general

formula, let us show an example of our approach applied to |C7
3 |.

The basic idea is to simulate the generation of a valid codeword (B1, B2,

B3), from right to left, and count how many choices we have at each step. The

choice for B3 gives
(
7
3

)
alternatives, as Equation 7.2 requires that no more

than 4 different numbers appear in substring (B3); this substring always

contains 3 distinct numbers, then the requirement is always satisfied.

Now consider B2. Equation 7.2 requires at most 5 distinct numbers to

appear in substring (B2, B3), thus imposing some limits on the choices for

B2. In fact valid choices are those selecting 3, 2 or 1 numbers appearing

in B3 and respectively 0, 1 or 2 unused numbers, giving
(
3
3

)(
4
0

)
,
(
3
2

)(
4
1

)
and(

3
1

)(
4
2

)
distinct alternatives. Similar arguments hold for B1 and constraints

depend on how many distinct numbers appear in (B2, B3). More explicitly,

since Equation 7.2 imposes to have at most 6 distinct numbers, if u distinct

numbers appear in (B2, B3), then B1 can introduce up to min(3, 6−u) unused

numbers.

Figure 7.2 gives the complete recursion tree for the described process.

The root represents choices for B3; children of the root represent choices for
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B2 and leaves represent choices for B1. For each level, on the left the bound

given by Equation 7.2 is reported; labels on edges represent how many new

numbers are introduced. |C7
3 | = 34405 is given by the sum of the products of

labels given by each leaf-to-root path in the tree:

(
7
3

)( (
3
3

)(
4
0

) ((
3
3

)(
4
0

)
+

(
3
2

)(
4
1

)
+

(
3
1

)(
4
2

)
+

(
3
0

)(
4
3

))
+(

3
2

)(
4
1

) ((
4
3

)(
3
0

)
+

(
4
2

)(
3
1

)
+

(
4
1

)(
3
2

))
+(

3
1

)(
4
2

) ((
5
3

)(
2
0

)
+

(
5
2

)(
2
1

)) )

Now we introduce our main result on k-arch graphs.

Theorem 7.4. The number of labeled k-arch graphs on n > k + 1 nodes is

|An
k | = fn

k (n− k − 1, 0, k) where fn
k is the recursive function defined as:

fn
k (i, u, j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
n−u

j

)(
u

k−j

)
, if i = 1;

(
n−u

j

)(
u

k−j

)min(k,n−(i−1)−(u+j))∑
c=0

fn
k (i− 1, u + j, c), otherwise.

When n = k or n = k + 1 we have |An
k | = 1; when n < k we have |An

k | = 0.

Proof. Given the string (B1, . . . , Bl) ∈ Cn
k , we call characteristic of this string

the vector c = (c1, . . . , cl−1) such that ci = |Bi �
⋃

j>i Bj |, i.e., the number

of elements in Bi that do not appear in the substring (Bi+1, . . . , Bl).

Consider the recursion tree generated by applying the function fn
k to

(n− k− 1, 0, k). This tree is a generalization of the one presented in Fig. 7.2

for the special case n = 7 and k = 3: node labels correspond to the bi-

nomials product and edge labels correspond to the value of the variable c

discriminating recursive applications of function fn
k .

Notice that, considering the edge labels in any leaf to root path of this

tree, we obtain a vector (c1, . . . , cn−k−2) which represents the sequence of

newly inserted numbers (from right to left), and so it coincides with the

characteristic of some string in Cn
k . It is also true that if c is the characteristic
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of a string in Cn
k , then a leaf to root path whose edge labels vector is c must

exist.

|Cn
k | can be obtained by summing cardinalities of disjoint sets of strings

sharing the same characteristic. The size of any such set is given by the

product of node labels following the corresponding leaf to root path in the

recursion tree. By summing those products, we thus obtain |Cn
k |, i.e., the

value computed by fn
k (n− k − 1, 0, k).

7.3.1 Experimental Results

We implemented the recursive function to enumerate the labeled k-arch

graphs on n nodes using the open source algebraic system PARI/GP [31].

The code performing the counting is given in Figure 7.3.

f(n,k,i,u,j)={

local(s=0);

if (i==1,

binomial(n-u,j)*binomial(u,k-j),

for (c=0, min(k,n-(i-1)-(u+j)),

s+=f(n,k,i-1,u+j,c)

);

binomial(n-u,j)*binomial(u,k-j)*s

)

}

Figure 7.3: PARI/GP code implementing the recursive function fn
k .

The size of the recursion tree is exponential in the order of (k + 1)n−k−2

so the value can only be computed if the difference between n and k is small.

As done by Lamathe we report values of |An
k | for n ∈ [1, 10] and k ∈ [1, 7] in

the following table:
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k\n 1 2 3 4 5 6 7 8 9 10
1 1 1 3 16 125 1296 16807 262144 4782969 100000000
2 0 1 1 6 100 3285 177471 14188888 1569185136 229087571625
3 0 0 1 1 10 380 34405 5919536 1709074584 764754595200
4 0 0 0 1 1 15 1085 216230 92550276 74358276300
5 0 0 0 0 1 1 21 2576 982926 898027452
6 0 0 0 0 0 1 1 28 5376 3568950
7 0 0 0 0 0 0 1 1 36 10200

The first row of this table gives exactly the well known Cayley’s formula, as

1-arch graphs are trees. Apart from this row (reported as Sequence A000272)

no other row of the table was listed in the on-line Encyclopedia of Integer

Sequences [98] before our work.

7.4 Concluding Remarks

In this chapter we have presented a recursive function that computes the

number of labeled k-arch graphs of n nodes, for any given n and k. In order

to obtain this function, we have used a code that maps labeled k-arch graphs

to strings and we have derived the counting function by characterizing valid

code strings. Moreover, we have proved the counting function for k-arch

graphs provided by Lamathe to be incorrect by showing a counterexample.

Unfortunately this result does not help us in developing a bijective code

for k-arch graphs. It remains an open problem to find, provided that it exists,

a closed formula for the number of k-arch graphs |An
k |, when k > 1. When

k = 1, from Cayley’s formula, we have |An
1 | = nn−2. Furthermore, it would

be interesting to investigate k-arch graphs with fixed or arbitrary root.



Chapter 8

Informative Labeling Scheme
for LCA on Dynamic Trees

In this chapter we abandon the idea of labels as simple unique identifiers of

nodes, as seen in all previous chapters. Here we investigate a richer concept

of label that makes it possible to perform computations directly from node

labels: Informative Labeling Scheme (ILS). We focus on ILS for trees. As

the idea of ILS naturally realizes a localization of the information required

to perform a computation, we decided to exploit this concept to design con-

current data structures. As a first example we focus on the lowest common

ancestor (lca) problem for dynamic trees.

Namely, our goal is to associate each node of a tree with a label such

that it will be possible to compute the lowest common ancestor of any two

nodes directly from their labels. Moreover it should be reasonably efficient

to update the labels in order to reflect changes in the tree. We will also

use locking system to allow multiple processors to access the data structure

simultaneously.

In the second part of this chapter we will present an experimental com-

parison between our data structure and an ILS for lowest common ancestor

queries introduced by Peleg for static trees [87].

This chapter is organized as follows: initially we recall the concept of In-

formative Labeling Scheme and describe the concurrency model we consider

117
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for our data structure. Then we recall the ILS introduced by Peleg for an-

swering lca queries. In Section 8.3 we introduce our ILS for lca on dynamic

trees while in Section 8.4 we describe how to use it in a concurrent setting.

Finally, in Section 8.5, we present our experimental comparison.

8.1 Preliminaries

An Informative Labeling Scheme (ILS) [87, 88] for a target function f is

formally defined as a couple of algorithms (M,D). The Marker Algorithm

M, given a graph G, computes a label(v), for each node v in G. The Decoding

Algorithm D is then used to compute, for each pair of nodes u, v in G

the target function f(u, v) using only label(u) and label(v). In other words

D(label(u), label(v)) = f(u, v). The primary goal of a labeling scheme is to

minimize the maximum label length, while keeping queries fast.

Adjacency labeling schemes were first introduced by Breuer and Folkman

in [14, 15], and further studied in [63]. The interest in informative label-

ing schemes, however, was revived only more recently, after Peleg showed

the feasibility of the design of efficient labeling schemes capturing distance

information [86]. Since then, upper and lower bounds for labeling schemes

have been proved on a variety of graph families (including weighted trees,

bounded arboricity graphs, intersection-based and c-decomposable graphs)

and for a large variety of queries, including distance [2, 30, 49, 50, 64, 67, 99],

tree ancestry [1, 3], flow and connectivity [66].

We focus on labeling schemes for answering least common ancestor queries

in trees. We recall that the least common ancestor of any two tree nodes u

and v, denoted as lca(u, v), is the common ancestor of u and v having the

smallest distance to u (and to v). The least common ancestor problem has

been extensively studied over the last three decades in different models of

computation [4, 7, 33, 34, 58, 97]. Labeling schemes for least common ances-

tors are mainly useful in routing messages on tree networks: the ability to

compute the identifier of the least common ancestor of any two nodes u and

v turns out to be useful when a message has to be sent from u to v in the

network, because the message has to go through lca(u, v). Other applica-
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tions are related to query processing in XML search engines and distributed

computing in peer-to-peer networks (see, e.g., [3, 11, 65]). In [87], Peleg has

proved that for trees there exists a labeling scheme for least common an-

cestors using Θ(log2 n)-bit labels, which is also shown to be asymptotically

optimal (as usual n represents the number of nodes in the tree).

In spite of a large body of theoretical works, to the best of our knowl-

edge only few experimental investigations of the efficiency of compact labeling

schemes have been addressed in the literature [30, 65]. For this reason we de-

cided to enrich our study with an experimental comparison (see Section 8.5).

As stated in the introduction of this chapter we exploit ILS to design a

concurrent data structure for lca on dynamic trees. The tree is dynamic in

the sense that we allow it to grow by insertion of new leaves.

Our data structure will implement two operations:

Query: given any two tree nodes u and v, compute their lowest common

ancestor lca(u, v);

Update: given a tree node p, add to the tree a new node v as a child of p.

8.1.1 The Concurrency Model

Throughout this chapter we focus on a multiprocessor system in which pro-

cessors communicate by writing and reading shared variables in a common

memory address space. We assume that processors work asynchronously and

that each processor has its own local (i.e., non shared) memory. Moreover, in

order to use timestamps associated to shared variables, we assume that pro-

cessors share a common clock: this is typically not a restrictive assumption

in a multiprocessor system.

We will use locking primitives to guarantee concurrent access to our data

structures. In particular, we will analyze our data structures under the con-

current read, exclusive write (CREW) model by using two different kinds of

locks: shared and exclusive. Several processes can hold shared locks on a

variable simultaneously, whereas if one process holds an exclusive lock, then
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no other process may hold any lock on that variable.

For more information about concurrent data structures, locking primitives

and related matters we refer the interested reader to [76].

We remark that concurrent data structures are much more difficult to

design and analyze than sequential ones: indeed, in the design of a concur-

rent data structure, the goal is to allow concurrent operations to proceed in

parallel when they do not access the same parts of the data structure. On

the other side, the presence of locks introduces a sequential bottleneck on the

execution of the operations, thus decreasing the speedup. This bottleneck

can be reduced by using a fine-grained locking scheme such that multiple

locks of small granularity can be introduced to protect different parts of the

data structure.

Correctness analysis. In order to prove that a data structure is correct

under concurrent operations, we will show that in every execution there exists

a total ordering of the operations with the following properties: (1) the

ordering is consistent with the desired insert/search semantics, and (2) if one

operation completes before another begins, then the first operation precedes

the second one in the ordering.

8.2 Peleg’s Labeling Scheme

In [87], Peleg has proved that for trees there exists a labeling scheme for least

common ancestors using Θ(log2 n)-bit labels. Peleg’s labeling scheme hinges

upon two main ingredients: a decomposition of the tree into paths, and a

suitable encoding of information related to such paths into the node labels.

Peleg’s data structure uses an ad hoc path decomposition as well as an ad

hoc label structure.

Let T be a tree with n nodes rooted at a given node r. As usual, for any

node u we denote its parent and its level in T by p(u) and l(u), respectively

(the root has level 0). The tree is decomposed into a set of node disjoint

paths, that we will call solid paths. For any solid path π, we denote by
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head(π) the node of π with smallest level. We will also say that a solid path

π is an ancestral solid path of a node u if head(π) is an ancestor of u.

Decomposition by Large Child. This decomposition hinges upon the

distinction between small and large nodes: a nonroot node v with parent u

is called small if |Tv| ≤ |Tu|/2, i.e., if its subtree contains at most half the

number of nodes contained in its parent’s subtree. Otherwise, v is called

large. It is not difficult to see that any node has at most one large child: we

will consider the edge to that large child, if any, as a solid edge. Solid edges

induce a decomposition of the tree into solid paths: we remark that the head

of any solid path π is always a small node, while all the other nodes in π

must be large. Each node can have at most �log n� small ancestors, and thus

at most �log n� ancestral solid paths (unless otherwise stated, all logarithms

will be to the base 2).

The Marker Algorithm Mp. The Peleg labeling scheme is based on a

depth-first numbering of the tree T : as a preprocessing step, each node v

is assigned an interval Int(v) = [DFS(v); DFS(w)], where w is the last

descendent of v visited by the depth-first tour and DFS(x) denotes the

depth-first number of node x. The label of each node v of the tree is defined

as follows:

label(v) = < Int(v), list(v) >

where list(v) contains information related to all the heads (t1, t2, . . . , th) of

solid paths from the root of T to v: for each head ti, list(v) contains a

quadruple (ti, l(ti), p(ti), succv(ti)), where succv(ti) is the unique child of ti on

the path to node v. We remark that this is slightly different (and optimized)

with respect to the scheme originally proposed in [87].

The Decoder Algorithm Dp. We now describe how to query for a lowest

common ancestor: given two nodes u and v, the algorithm infers their least

common ancestor z = lca(u, v) using only information contained in label(u)

and label(v). By well-known properties of depth-first search, we have that

for every two nodes x and y of T , Int(x) ⊆ Int(y) if and only if x is a

descendent of y in T : this fact can be easily exploited to check whether
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the least common ancestor z coincides with any of the two input nodes u

and v. If this is not the case, let (u1, u2, . . . , uh) and (v1, v2, . . . , vk) be the

heads of solid paths from the root of T to u and v, respectively: information

about these heads is maintained in the node labels. The algorithm finds the

least common ancestor head h, which is identified by the maximum index i

such that ui = vi. If succu(h) �= succv(h), then h must be the least common

ancestor. Otherwise, the algorithm takes the node of minimum level between

ui+1 and vi+1, and returns its parent as the least common ancestor. We refer

to [87] for a formal proof of correctness. Here, we limit to remark that both

depth-first numbering and information about successors appear to be crucial

in this algorithm.

8.3 A Dynamic Sequential Data Structure

The Peleg’s labeling scheme is not suitable for dynamic trees, indeed it hinges

upon the depth-first numbering of the tree nodes. The insertion of a new node

can affect the depth-first numbering of many other nodes. This implies that

at each insertion a relevant part of the data structure needs to be recomputed.

Our data structure relays on the concept of ILS and, similarly to the

Peleg’s one, is based on a decomposition of the tree into solid path. The

decomposition we use is the same used in [71] and is described below. More-

over, in order to avoid depth-first numbering, we maintain slightly different

information in node labels.

We first present a sequential data structure for maintaining lowest com-

mon ancestors upon insertions of new tree nodes and we discuss its correct-

ness. Although not optimal in a sequential setting, this data structure is

well suited for an efficient concurrent implementation, as we will show in

Section 8.4.
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8.3.1 Tree Decomposition

For each edge (u, v), we call the edge solid if and only if �log |Tu|� = �log |Tv|�.
We will also say that v is a solid child of u. It is not difficult to see that solid

edges decompose T into solid paths, also known as centroid paths [33]. We

will say that a solid path π has rank i if, for all nodes v belonging to π, the

size of the subtree rooted at v satisfies the following inequality:

2i ≤ |Tv| < 2i+1 (8.1)

solid paths univocally partition the tree into disjoint paths, as proved in the

following lemma:

Lemma 8.1. For any node u there exists at most one child v such that (u, v)

is solid.

Proof. Assume by contradiction that both (u, v1) and (u, v2) are solid, where

v1 and v2 are distinct children of u such that, without loss of generality,

|Tv2 | ≥ |Tv1 |. Then it must be �log |Tv1 |� = �log |Tv2 |�. Since |Tu| ≥ |Tv1 | +
|Tv2 | ≥ 2|Tv1 |, we have �log |Tu|� ≥ �log |Tv1 |� + 1. This contradicts the

hypothesis that (u, v1) is solid.

We will refer to the partition induced by solid paths as solid path de-

composition. For any solid path π, we denote by head(π) and tail(π) the

node of π with smallest and largest level, respectively. The root of the tree

is always head of a solid path. Notice that a solid path can have length 0

(i.e., it can consist of a single node) and that all the leaves are heads of solid

paths. We will say that a solid path π is an ancestral solid path of a node

u if head(π) is an ancestor of u, and that π is an ancestral solid path of a

path π′ if head(π) is an ancestor of head(π′). The following property easily

follows from Equation 8.1:

Property 8.2. Each node u has at most �log n� ancestral solid paths.

Similarly to [71], we now introduce relaxed solid paths: these paths will be

useful to deal with dynamic trees in order to avoid frequent recomputations
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of the decomposition upon insertions of new nodes. We allow a node v to

belong to a relaxed solid path of rank i, with i ≥ 2, if the size of the subtree

rooted at v satisfies the following inequality:

2i ≤ |Tv| < 2i+1(1 + α) (8.2)

where α is an arbitrary constant such that 0 < α < 1. We will call a node

stable (with respect to rank i) if it satisfies Inequality (8.1), and unstable (with

respect to rank i) if it satisfies Inequality (8.2) but not Inequality (8.1).

We remark that relaxed solid paths do not univocally induce a partition

of the tree. Indeed, it may be the case that an unstable node u in a path

π of rank i has two children that satisfy Inequality (8.2) with respect to i:

both of these children could therefore belong to π, that would be no longer

a path. We will break these ties by including in π at most one of these two

children, and by considering the other child as head of a different path π′

also of rank i. Namely, if only one of the two children is stable, we choose

it as head of π′. Otherwise, we break the tie arbitrarily. We remark that u

might also have more than two children: however, since it belongs to a path

of rank i, at most two of its children can have size large enough to satisfy

Inequality (8.2).

This tie breaking approach, however, introduces a different problem: more

than one path of rank i may now appear in the path from the root to any

given node, thus invalidating Property 8.2. We will now show that this is

not a real problem, since the number of ancestral (relaxed) solid paths of any

node can at most double.

Lemma 8.3. Let u be a node in a relaxed solid path of rank i, and let v and

w be two children of u both satisfying Inequality (8.2) with respect to i. Then

u and at most one between v and w is unstable with respect to i.

Proof. We first notice that u satisfies Inequality (8.2) because it belongs to

a relaxed solid path of rank i. Since v and w satisfy Inequality (8.2) by

hypothesis, we have |Tu| > |Tv|+ |Tw| ≥ 2i+1. Hence, u is unstable. We now

consider v and w. If both of them are unstable, then their subtree sizes would

be larger than or equal to 2i+1 and it would be |Tu| > 2i+2. This contradicts

the hypothesis that u belongs to a relaxed solid path of rank i.
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Corollary 8.4. Let π and π′ be any two solid paths of rank i such that π is

an ancestral path of π′. Then no other solid path can exist between π and π′,

i.e., no other solid path π′′ such that π is an ancestral path of π′′ and π′′ is

an ancestral path of π′ can exist.

Proof. Let us assume by contradiction that there exists a path π′′ such that

π is an ancestral path of π′′ and π′′ is an ancestral path of π′. Let v be

the head of π′′ and let u be its parent. It is easy to see that it must be

rank(π) ≥ rank(π′′) ≥ rank(π′). This implies that rank(π′′) = i and that u

belongs to a path of rank i. In the following, without loss of generality we

will assume that the solid path of node u coincides with π.

Since rank(π) = i = rank(π′′), then π′′ must be the result of an appli-

cation of the tie breaking rule. By Lemma 8.3, u is unstable. Let w be the

child of u in π. Lemma 8.3 guarantees that, if w is unstable, then v must

be stable. If w is stable, then u cannot be unstable: if this is not the case,

then the tie breaking rule would have included v in π instead of w. In both

cases, v is stable. This implies that no tie breaking can take place below it,

contradicting the existence of π′.

By Corollary 8.4, we can have at most two consecutive paths with the

same rank. Hence, the tie breaking rule implies that the number of (relaxed)

ancestral solid paths of any node can at most double, i.e.:

Property 8.5. Each node u has at most 2�log n� ancestral relaxed solid

paths.

We remark that in [71] the same problem related to relaxed solid paths

has been encountered and solved in a different way: our solution is simpler

and still allows us to design an ILS whose labels size is O(log2 n) bits.

8.3.2 The Data Structure

For each node v of a tree T , we maintain its parent, the list of all its children,

and a pointer to its solid child (if any). We also maintain a label defined as
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follows:

label(v) = < isHead(v), list(v) >

where isHead(v) is a Boolean value discriminating whether v is the head

of its relaxed solid path or not, and list(v) contains information related to

all the heads (t1, t2, . . . , th) of relaxed solid paths from the root of T to v.

Namely, list(v) consists of a sequence of triples:

list(v) = [ (t1, l(t1), p(t1)), . . . , (th, l(th), p(th)), (v, l(v), p(v)) ]

where t1 always coincides with the root of T . The sentinel triple (v, l(v), p(v))

is not necessary when v is head of its path, since in this case th = v.

For each v head of a relaxed solid path π, we also explicitly maintain

in our data structure the size of its subtree |Tv| and the rank of its path

rank(π).

We now describe the implementation of the update and query operations.

Update. Each time a new node v is added to T as a child of a node u,

besides updating the children list of u, we compute label(v) as follows:

label(v) =

{
< true, list(u) :: (v, l(u) + 1, u) > if isHead(u)
< true, list(u) � (u, l(u), p(u)) :: (v, l(u) + 1, u) > otherwise

where :: concatenates a new triple to a list and � is used to remove the

sentinel triple of list(u) when u is not head of its solid path. We remark

that the new leaf v is always head of a solid path of rank 1, since the relaxed

Inequality (8.2) only applies to paths of rank at least 2.

Due to the addition of node v, the subtree size of its ancestors changes,

and some ancestor may no longer satisfy Inequality (8.2). This implies that

the decomposition into relaxed solid paths and the labels of some nodes may

need to be updated. We now describe how to tackle this problem.

After label(v) has been computed, the size |Tti | of the subtree rooted at

ti is incremented by one for each head ti in list(v). Let t be the topmost

head that no longer satisfies Inequality (8.2), if any. The idea is to move t

upward in the decomposition so that, after the update is completed, it will
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belong to a relaxed solid path of rank i = �log |Tt|�. At this aim, let π′ be

the relaxed solid path above t: notice that p(t) belongs to π′. We can easily

find the head of π′ at the end of list(t). By accessing the data associated to

head(π′), we can also retrieve rank(π′). Three cases may now arise:

1. If rank(π′) > i, then t becomes the head of a new solid path of rank i.

2. If rank(π′) = i and p(t) has no solid child, then t can join π′.

3. If rank(π′) = i and p(t) already has a solid child, this prevents t from

joining π′ and t will be the head of a new relaxed solid path of rank i.

We notice that the second case is a correct implementation of the tie breaking

rule described in Section 8.3.1: indeed, t is stable with respect to rank i =

�log |Tt|�.

After t has been correctly placed in a relaxed solid path, we recompute

from scratch all the information related to t and to its subtree: the labels,

the size of the subtree and the rank of each head in Tt, and the decomposition

into solid paths. While recomputing the decomposition, we force each node

to respect Inequality (8.1); this guarantees that all the unstable nodes that

were in the same path of node t before the update will be moved upward in

the decomposition together with t. We defer to Section 8.3.3 the proof of

correctness of this approach. We will also show that each update requires

O(log2 n) amortized running time.

We remark that, considering our data structure as an ILS, this update

procedure plays the role of the Marker algorithm. The main difference is

that a Marker Algorithm is ran only once, as a single precomputation step,

while the update takes place each time a new node is inserted in the tree.

Query. Our query algorithm computes the lowest common ancestor lca(u, v)

of any two nodes u and v as follows (tui and tvi denote the i-th head in list(u)

and list(v), respectively):

Lines 1 and 2 consider some trivial cases: either u = v or one of them

coincides with the root. In line 3 the algorithm finds the lowest head tk which
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Program 1 Query(u,v)

1. if u = v then return u
2. if u = r or v = r then return r

3. Let k = max{i : tui = tvi } and call tk = tuk = tvk

4. if u = tk or v = tk then return tk

5. if tuk+1 = u and not isHead(u) then cu = u
6. else cu = p(tuk+1)

7. if tvk+1 = v and not isHead(v) then cv = v
8. else cv = p(tvk+1)

9. if l(cu) < l(cv) then return cu

10. else return cv

is ancestor of both u and v: line 3 can be easily implemented by scanning

list(u) and list(v) together until the first different head is found. If neither

u nor v coincides with the last common head (trivial case handled by line 4),

we search lca(u, v) in the relaxed solid path π with head tk. Namely, the

algorithm identifies two candidates cu and cv and returns the highest of them.

Notice that node tuk+1 is either the sentinel of list(u) or the head following

tk in list(u): in the former case (line 5 and Figure 8.1a) the candidate cu is

u itself, while in the latter case (line 6 and Figure 8.1b) the candidate is the

parent of tuk+1. The candidate cv is computed similarly and the algorithm

returns the highest level node among cu and cv. We defer to Section 8.3.3 a

formal proof of correctness.

We remark that all the information used by the algorithm are taken from

label(u) and label(v). Then the query procedure is indeed a Decoder algo-

rithm for an ILS.

8.3.3 Analysis

We will now prove that each update maintains a correct decomposition into

relaxed solid paths in O(log2 n) amortized running time and each query cor-

rectly computes the lowest common ancestor of any two nodes in O(logn)

worst case running time.
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Update. The insertion of a new node v as a child of a node u requires

adding v to T , computing label(v) and updating the decomposition into

relaxed solid paths. Adding v to T requires constant time in order to update

the children list of u. Computing label(v) requires O(log n) worst case time

since list(u) must be copied and slightly modified. We recall that (from

Property 8.5) list(u) contains O(log n) integer values.

The most demanding step is to deal with changes in the path decompo-

sition. The algorithm first scans list(v) in order to identify all the heads ti

in the path from the root r down to v and to increment |Tti | by one: since

there are at most 2�log n� such heads, this requires O(logn) time. Whenever

a head t that no longer satisfies Inequality (8.2) is found, t is moved upward

in the path decomposition and everything in Tt is recomputed: let us call

this operation a rebuild of Tt.

Retrieving the head of π′ and its rank, discriminating which case applies,

and updating the path decomposition, require only constant time. The re-

build of Tt requires instead O(|Tt| log n) time: a traversal of Tt is performed

recomputing the size of each subtree and the label of each node from the

label of its parent (this requires O(log n) time by the upper bound on the

label length). Let us now discuss how to amortize this cost on each update.

Let π be any solid path of rank j that has been created during some

rebuild. We recall that the algorithm forces the head of π to satisfy Inequal-

ity 8.1 with respect to j. Hence, before a new rebuild takes place again at

head(π), at least α · 2j+1 new nodes must have been added to its subtree.

We amortize the cost of this new rebuild (i.e., O(2j+1(1 + α) log n)) over

these insertions as follows: each insertion pays O((1+1/α) logn) = O(log n)

credits for path π. Since, by Property 8.5, each node has O(log n) ancestral

relaxed paths, its insertion will pay in total O(log2 n) credits to amortize fu-

ture rebuilds of all its ancestral paths. This proves that each update requires

O(log2 n) amortized running time.

Query. We first prove that the algorithm correctly finds the lowest common

ancestor of any two nodes u and v. Apart from trivial cases handled by

lines 1 and 2, in line 3 the algorithm identifies tk, which is the lowest head
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a) b)

Figure 8.1: Two cases of query(u, v): tk is the lowest common head of u and v
and cv is the parent of tvk+1. a) u ∈ π: there are no heads following tk in list(u)
(i.e., tuk+1 = u is the sentinel at the end of list(u) and it is not a head). In this
case cu = u; b) u �∈ π: in this case cu = p(tuk+1).

of a relaxed solid path appearing both in list(u) and in list(v). It is not

difficult to see that tk is a common ancestor of u and v, but not necessarily

the lowest one. Moreover, lca(u, v) must belong to π, the relaxed solid path

whose head is tk: otherwise, there should have been another head, lower than

tk, appearing both in list(u) and in list(v).

If either u or v coincides with tk, then it must be tk = lca(u, v): this case

is considered in line 4. Otherwise, the algorithm identifies two candidates cu

and cv, both in π, and returns the highest of them as the lowest common

ancestor. The test in line 5 succeeds if and only if u ∈ π (see Figure 8.1a):

this case can be identified by checking if there are no other heads of relaxed

solid paths between u and tk (tuk+1 = u, i.e., the scan has reached the sentinel

triple) and if u itself is not a head (otherwise it would not be in π). In this

case the candidate cu = u. If u �∈ π (see Figure 8.1b), line 6 chooses the

candidate cu as the parent of tuk+1 (the first head below tk in list(u)). This

candidate is the lowest node belonging to π in the ascending path from u to

tk. We compute cv analogously.

Once we have identified the two candidates cu and cv, we compare their
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levels in order to select the highest one. This node is ancestor of both u and

v. Let us assume without loss of generality that the selected candidate is

cv (the other case is symmetric). If cv = v, there cannot be any common

ancestor of u and v below v itself. If cv �= v, then the node below cv in

the path to v (i.e., tvk+1) is not an ancestor of u because it does not appear

in list(u). This proves that the selected candidate is the lowest common

ancestor of u and v.

We now discuss the running time. Scanning the node lists (line 3) is the

most expensive operation in the query algorithm described in Section 8.3.2.

Since list lengths are bounded by 2�log n� (Property 8.5), the query algorithm

requires O(logn) time in the worst case.

8.4 A Concurrent Implementation

In this section we describe how to exploit the data structure presented in

Section 8.3 in order to obtain a concurrent data structure for lowest common

ancestor in dynamic trees.

Each label label(v) has its own timestamp timestamp(v) that represents

last time the label has been computed or updated. Timestamps are especially

useful when answering queries in order to check whether the information

contained in the two node labels are reciprocally consistent.

Update. The update procedure used to add a new node v as a child of u is

detailed in Program 2. Writing locks are exclusive, all other locks are shared

to maximize concurrency. children(u) represents the children list of node u.

Initially, the new node is added to its parent children list and its label

is created starting from the label of its parent (lines 4 to 11). Subsequently,

subtree sizes are incremented for all head in list(v). Notice that t, tsv, and

tst are local (non shared) variables; also list(v) used in line 12 is a local copy

of the information contained in label(v). If condition in line 16 is true, this

means that a rebuild took place after v has been added. Then, everything

in this subtree has been recomputed. Otherwise, the size update continues
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Program 2 ConcurrentUpdate(v,u)

1. Acquire Exclusive Lock on children(u)
2. Add v to children(u)
3. Release Exclusive Lock on children(u)

4. Create a label for v
5. Acquire Exclusive Lock on label(v)
6. Acquire Shared Lock on label(u)
7. Compute label(v) from label(u)
8. timestamp(v) = timestamp(u)
9. Release Shared Lock on label(u)
10. Let tsv = timestamp(v)
11. Release Exclusive Lock on label(v)

12. for each t in list(v) do
13. Acquire Shared Lock on label(t)
14. Let tst = timestamp(t)
15. Release Shared Lock on label(t)
16. if tst > tsv then return
17. else
18. Acquire Exclusive Lock on |Tt|
19. |Tt| = |Tt|+ 1
20. Release Exclusive Lock on |Tt|
21. if t changes rank then
22. rebuild(Tt)
23. return

until a node whose rank changes (that no longer satisfy Inequality 8.2) is

eventually encountered: here a rebuild takes place.

The function rebuild(Tt) initially acquires an exclusive lock on label(t),

this will prevent any query to access information in Tt. Then, visiting the

subtree, the decomposition into solid paths is recomputed, as well as the

size of each subtree rooted in any head (proper locks are acquired on each

part of the data structure being read or wrote). Another visit of Tt is per-

formed to recompute all node labels. Timestamps are updated to reflect

the rebuild, timestamp(t) will be the instant in which labels recomputation

started. Other node timestamps should satisfy the constraint that each node

must have a timestamp greater or equal to the one of its parent. At the
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end the exclusive lock on label(t) is released. Each time the label of a node

in Tt is written, an exclusive lock is acquired and then is released, to avoid

undesired readings in the meanwhile.

Query. In order to answer a query (see Program 3) we make a local copy

of u and v labels, we check their consistency by comparing their timestamps

with those of tui and tui+1 (and tvi and tvi+1 respectively). If we find an ancestor

whose timestamp is newer than the one of u (or v) this means that a rebuild

took place and a new label for u (or v) has been computed (or is going to be

computed). In this case the query fails; the process can try querying again

(possibly after a little random delay). Notice that there is no need to check

timestamps of nodes below tui+1 (or tvi+1) because, even if a rebuild took place

in one of these subtrees, this would not affect the query. If timestamps are

consistent the lca is computed as described in Section 8.3.2.

All locks are shared so that multiple queries can take place at the same

time.

Program 3 ConcurrentQuery(u,v)

1. Acquire Shared Lock on label(u) and label(v)
2. Make a local copy of label(u) and label(v)
3. Release Shared Lock on label(u) and label(v)

4. Scan list(u) and list(v) until tui = tvi
5. Let x be the last tui = tvi
6. Acquire Shared Lock on label(x)
7. Let tsx = timestamp(x)
8. Release Shared Lock on label(x)
9. if tsx > min{timestamp(u), timestamp(v)} then fail

10. Let yu = tui+1 and yv = tvi+1

11. Acquire Shared Lock on label(yu) and label(yv)
12. Let tsyu = timestamp(yu) and tsyv = timestamp(yv)
13. Release Shared Lock on label(yu) and label(yv)
14. if tsyu > timestamp(u) or tsyv > timestamp(v) then fail

15. Compute cu and cv and return the one of minimum level
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8.4.1 Analysis

We now discuss the correctness of our concurrent implementation. First of

all, we remark that the data structure is deadlock free. Deadlocks can only

be caused by exclusive locks, therefore the query procedure cannot produce

any undesired situation. On the other hand, updates alway acquire locks in

a top down order, so it is not possible that two updates produce a deadlock.

If a rebuild on a certain node v is going on, then all updates that try to

acquire a lock on v will be suspended (waiting for the lock to be acquired)

until the end of the rebuild.

Two (or more) query operations can be executed concurrently without

any problem and in any order. Indeed, queries only acquire shared locks and

do not change the labels, therefore none of the two can affect the correctness

of the other. If a query (on u and v) is executed concurrently with an up-

date, some interaction may happen. More specifically, if the update causes a

rebuild of a tree Tx containing the two nodes of the query, the labels of these

nodes can be not reciprocally consistent. Indeed, the lists of heads of ances-

tral solid paths are changing and it may be the case that one label reflects

this change while the other still does not. To prevent the query to produce a

wrong result, timestamps are checked (see Program 3), and in case of incon-

sistency, the query fails. Two updates can be executed concurrently, indeed

exclusive locks ensure that the operations are serialized. If two rebuilds (one

on Tx and the other on Ty, with Ty subtree of Tx) are executed concurrently,

they are serialized. Indeed, the rebuild on Ty holds an exclusive lock on y.

When the rebuild of Tx will visit the tree, it will be not able to acquire a

lock on y until the other rebuild is running: rebuild of Tx will be suspended,

waiting for the lock on y to be released.

Let us now show the running time of the operations does not change.

Here we also discuss how many locks each operation requires. A query ac-

quires O(log n) shared locks. The operations required to compute the lca are

exactly those used in Program 1: then the overall worst case running time

is O(log n). Same reasoning applies for the update procedure: it requires

O(log n). However, an update may imply a rebuild. As we have discussed
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in Section 8.4.1, the cost of each rebuild can be amortized resulting in an

O(log2 n) amortized running time of each update. The number of locks ac-

quired by a rebuild operation, is linear in the size of the subtree being rebuilt.

Therefore, the number of locks can be amortized on update operations with

the very same argument used to the running time: each update requires

O(log2 n) locks (in an amortized sense).

8.5 Experimental Comparison

In this section we report details and results of an experimental analysis aimed

to compare the labeling scheme proposed by Peleg and the one due to us.

Peleg’s labeling scheme is intended only for static trees and is not designed

for a concurrent settings. For this reason we limited the analysis to static

trees in a sequential setting: the features of our data structure have been

only partially implemented in this investigation. In particular, we don’t

need to implement concurrency and all details related to our relaxed solid

path decomposition (needed to handle dynamic trees).

Namely, in this section we compare three different solid path decom-

positions and the two label structures due to Peleg and to us. Different

combinations of these two ingredients yield different labeling schemes: one

of them coincides with the tree labeling scheme for least common ancestors

originally proposed by Peleg. The main findings of our experiments can be

summarized as follows.

• Among different path decompositions, those generating the smallest

number of paths (with the largest average path length) appear to be

preferable in order to minimize the total size of the data structure.

• A variant of Peleg’s scheme proposed in [20] achieves the best perfor-

mances in terms of space usage and construction time.

• Peleg’s scheme, used with a minor variant of the path decomposition

originally proposed in [87], exhibits the fastest query times.
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• All the data structures are very fast in practice. Although node labels

have size O(log2 n) bits, only a small fraction of the labels is considered

when answering random queries: typically, no more than a constant

number of words per query is read in all our experiments. However,

query times slightly increase with the instance size due to cache effects.

• Variants of the data structures carefully implemented with respect to

alignment issues save 20% up to 40% of the space, but increase the

query times approximately by a factor 1.3 on our data sets. The space

saving reduces as the instance size gets larger.

8.5.1 Ingredients

As mentioned, we will compare three different solid path decompositions and

two label structures. The first solid path decomposition is the one based on

Large Child used by Peleg (described in Section 8.2). The second one is a

minor variant of the first one, it is based on the concept of Maximum Child

and is described below. The third one is the one based on Rank (as described

in the first part of Section 8.3.1). There is no need to consider relaxed solid

paths because we are not going to deal with dynamic trees. We remark that

these decompositions have proven to be a useful tool for computing least

common ancestors in different models [33, 34, 71, 87].

Decomposition by Maximum Child. This is a minor variant of the

decomposition based on Large Child, that uses a relaxed definition of large

nodes: a nonroot node v with parent u is considered a maximum child of u if

|Tv| = maxw: (u,w)∈T |Tw|. If two or more children of u satisfy this condition,

ties are broken arbitrarily. The edge to the maximum child is considered

as a solid edge. We note that a large node is necessarily a maximum child;

however, a maximum child exists even when all the children v of a node u

are such that |Tv| ≤ |Tu|/2. All the basic properties of the decomposition by

large child remain valid in this variant.

We combine these three decompositions with the two label structures due

to Peleg (see Section 8.2) and to us (see Section 8.3.2) obtaining six different
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labeling schemes. Notice that, since each path decomposition ensures that

each node has O(log n) ancestral solid path, all the obtained labeling schemes

have maximum label size Θ(log2 n) bit.

From now on, we will refer to our label structure as CFP (from the name

of the authors: Caminiti, Finocchi, and Petreschi).

8.5.2 Experimental Framework

In this section we describe our experimental framework, discussing imple-

mentation details of the data structures being compared, the performance

indicators we consider, the problem instances generators, as well as our ex-

perimental setup. All implementations have been realized by the authors in

ANSI C.

Data Structure Implementation Issues

As stated in Section 8.5.1, we implemented six labeling schemes. Each scheme

comes in two variants, depending on alignment issues. In the word variant,

every piece of information maintained in the node labels is stored at word-

aligned addresses: some bytes are therefore used just for padding purposes.

The actual sizes of node labels may be larger than the size predicted theo-

retically, but we expect computations on node labels to be fast. In the bit

variant, everything is 1-bit aligned: this variant guarantees a very compact

space usage, but requires operations for bit arithmetics that might have a

negative impact on the running times of operations.

Performance Indicators

Main objectives we considered to evaluate the data structures include space

usage, construction time, and query time. Space usage is strictly related to

the length of the lists in the node labels, i.e., to the number of entries in such

lists: besides the total size of the data structure (measured in MB, unless

otherwise stated), we have therefore taken into account also the average and

maximum list length. Other structural measures have been used to study the
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effect of the different path decompositions on the labeling schemes; among

them, we considered the number of paths in which the tree is decomposed,

the average and maximum length of paths, and the variance of path lengths.

Experimental Setup

Our experiments have been carried out on a workstation equipped with two

Dual Core Opteron processors with 2.2 GHz clock rate, 6 GB RAM, 1 MB

L2 cache, and 64 KB L1 data/instruction cache. The workstation runs Linux

Debian (Kernel 2.6.8). All programs have been compiled through the GNU

gcc compiler version 3.3.5 with optimization level O3, using the C99 revised

standard of the C programming language.

Random values have been produced by the rand() pseudo-random source

of numbers provided by the ANSI C standard library. We used only odd seeds

to initialize the random generators; we randomly generated the sequence of

seeds used in each test starting from a base odd seed.

In our experiments we averaged each data point on (at least) 1000 differ-

ent instances. When computing running times of query operations, we aver-

aged the time on (at least) 106 random queries. The running time of each

experiment was measured by means of the standard system call getrusage()

and, unless stated otherwise, is given in milliseconds.

8.5.3 Experimental Results

In this section we summarize our main experimental findings. We performed

experiments using a wide variety of parameter settings and instance families,

always observing the same relative performances of the data structures. For

this reason we report the results of our experiments on trees generated uni-

formly at random. We remark that random trees are generated with the fast

method based on tree encoding deeply described in Chapter 4 of this thesis.
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maxChild largeChild rank

Number of paths 3678739 4172966 6803270
Average path length 2.72 2.4 1.47
Variance of path length 73.7 61.2 7.9
Maximum path length 15352 15351 6346
Average list length (Peleg) 5.72 5.89 12.40
Variance of list length (Peleg) 2.16 2.32 10.85
Maximum list length (Peleg) 15 15 24
Data structure size (Peleg) 1179 1203 2199
Average list length (CFP) 6.36 6.47 12.72
Variance of list length (CFP) 2.06 2.18 10.44
Maximum list length (CFP) 15 15 24
Data structure size (CFP) 1033 1045 1761

Table 8.1: Comparison of path decompositions. The results of this experiment
are averaged over 250 random trees with n = 107 nodes. Only the word variant of
the data structures is considered.

Path Decomposition

Our first aim was to analyze the effects of different path decomposition strate-

gies on the size of node labels. A typical outcome of our experiments is exem-

plified in Table 8.1. With respect to all measures, maxChild (the decomposi-

tion by Maximum Child) appears to be slightly preferable than largeChild

(the decomposition by Large Child) and considerably better than rank (the

decomposition by Rank). Consider first the structural measures: among

the three decompositions, maxChild generates the smallest number of solid

paths. Paths are therefore longer on the average, and their lengths exhibit

a higher variance. On the opposite side, the number of paths generated by

rank is almost twice as large, and their length is almost twice as small.

The number of paths is strictly related to the number of solid heads

in the lists associated to tree nodes, i.e., to the list lengths. Indeed, this

is the case both for Peleg and CFP labels, not only when considering the

maximum list length, but also on the average. In particular, Table 8.1 shows

that the average list length appears to be inversely proportional to the path

length: this can be easily explained by observing that if paths are longer on
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Figure 8.2: Size comparison for Peleg’s and CFP’s schemes: a) average list length;
b) total size, measured in MB.

the average, the number of paths in any root-to-leaf path is expected to be

smaller, and so is the number of heads in the node labels.

We remark that for all the decompositions the average and the maximum

list length for Peleg and CFP are very similar: the list length in the case

of Peleg’s scheme appears to be only slightly smaller, due to the presence

of sentinel triples in CFP. Instead, the total size of the data structure is

considerably smaller in the case of CFP: we will further discuss this aspect in

the next section.

Size Comparison

Our next aim is to evaluate the requirements of Peleg’s and CFP’s schemes

with respect to the space usage. We will limit to use maxChild as a common

path decomposition for both labeling schemes, since it proved to be consis-

tently better than the other two decompositions in all the experiments we

performed. To compare the size of the data structures, we measured both

the average list length and the total data structure size on random trees with

an increasing number of nodes. Figure 8.2 illustrates one such experiment,

where the number n of nodes ranges from 103 to 107.

As already observed in Table 8.1, lists in Peleg’s scheme are shorter, but

the total size of the data structure is larger than in CFP: this is because the
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lists are made of triples, instead of quadruples, and the smaller list length

in Peleg’s scheme is not sufficient to compensate for the presence of one

more information in each element of the lists. We remark that lists are very

short in practice for both schemes: they contain on the average 3 up to 6

elements for the data sets considered in this experiment. This value is very

close to log10 n, showing that the constant factors hidden by the asymptotic

notation in the theoretical analysis are very small for the maxChild path

decomposition. In Figure 8.2(b) we also distinguish between the bit and

word versions of the data structures (there is no such difference with respect

to the average list length): as expected, for both schemes the bit versions

can considerably reduce the space usage. We will analyze further these data

below.

Running Times

According to the theoretical analysis, the construction times and the query

times for the different labeling schemes are asymptotically the same. A

natural question is whether this is the case also in practice. Our experiments

confirmed the theoretical prediction only in part, showing that the constant

factors hidden by the asymptotic notation can be rather different for Peleg’s

and CFP’s schemes. The charts in Figure 8.3, for instance, have been obtained

on the same data sets used for the experiment reported in Figure 8.2: these

charts show that Peleg is slower than CFP when considering initialization

time, but faster when considering query times. The bit versions of the data

structures are always slower than the corresponding word versions.

In order to explain the larger construction time of Peleg’s scheme, notice

that Peleg makes use of a depth-first traversal of the tree, that is instead

avoided by CFP: all the other operations performed by the initialization al-

gorithms (i.e., path decomposition and list construction) are instead very

similar. We also recall that Peleg’s data structure is larger than CFP, and

the size of a data structure is clearly a lower bound on its construction time.

However, the larger amount of information maintained by Peleg in the node

lists is efficiently exploited in order to get faster query times: as an example,

if one of the two input nodes is ancestor of the other, the query algorithm
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Figure 8.3: Running time comparison for Peleg’s and CFP’s schemes: a) con-
struction time; b) average query time.
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Figure 8.4: a) Average number of list elements scanned by the query algorithms;
b) number of references to L2 cache and number of cache misses.

used by CFP needs to scan the beginning of the node lists, while the depth-first

intervals directly provide the answer in the case of Peleg’s data structure.

To get a deeper understanding of the query times, we also measured the

average number of list elements scanned by the query algorithms during a

sequence of operations. This number turns out to be very small both for

Peleg and for CFP, as shown by the charts reported in Figure 8.4(a): on

the average, slightly more than 2 elements are considered in each query even

on the largest instances. Peleg considers less elements than CFP, especially

for small values of n: on small trees, two nodes taken uniformly at random

have indeed a higher probability to be one ancestor of the other, and for all
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Figure 8.5: Space saved by the bit versions and time saved by the word versions:
a) CFP; b) Peleg.

these queries Peleg can avoid to scan the list at all, as we observed above.

Quite surprisingly, however, for the largest values of n the number of scanned

list elements remains almost constant for both data structures: this seems

to be in contrast to the fact that the query times increase (see Figure 8.3),

and suggests that the larger running times may be mainly due to cache

effects. To investigate this issue, we conducted a preliminary experimental

analysis of the number of cache misses incurred by the data structures using

the valgrind profiler: the outcome of one such experiment is reported in

Figure 8.4(b) and confirms that the number of L2 cache read misses increases

with n, even if the number of cache references does not increase substantially.

Trading Space for Time

The experimental results discussed up to this point show that the bit ver-

sions of the data structures require more space than the corresponding word

versions, but have larger construction and query times. In Figure 8.5 we

summarize the space-time tradeoffs, both for Peleg and for CFP. The charts

show the differences between bit and word versions tend to decrease for all

measures as the instance size increases: this depends on the fact that, as n

increases, the value log n becomes progressively closer to the word size spe-

cific of the architecture, and therefore the number of bits wasted by the word

versions becomes smaller. The size of the bit versions ranges approximately

from 60% up to 80% of the size of the word versions on our data sets. On
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the other side, construction and query times of the bit versions are approx-

imately 1.3 times higher than the word versions for the largest values of n

(for small values of n the ratio is even larger).

8.6 Concluding Remarks

In this chapter we have exploited the concept of Informative Labeling Scheme

to devise a concurrent data structure that allow fast computation of the

lowest common ancestor on dynamic trees. We want to explicitly remark

how our data structure can be easily adapted to answer distance queries

on trees. Given two nodes u and v, their levels (lu and lv) are explicitly

maintained in the data structure. When we compute the lowest common

ancestor w of u and v, we also explicitly obtain its level lw. The distance

between u and v is simply d(u, v) = (lu − lw) + (lv − lw).

In future we plan to extend this data structure to handle dynamic trees

that admit deletion of leaves and insertion of internal nodes (edge splitting).

Moreover, the idea of using ILS to design concurrent data structure seems

to be promising and deserves to be better investigated. Problems other than

lowest common ancestor can be considered both on trees and other classes

of graphs.

It would be finally interesting to run an experimental analysis of the

labeling scheme proposed in this chapter on a real concurrent architecture.



Chapter 9

Conclusions and Future Work

In this thesis we studied algorithmic aspects related to bijective tree encod-

ings and their generalizations. We proposed a unified approach that works for

all Prüfer-like codes and a more generic scheme based on the transformation

of a tree into a functional digraph suitable all bijective codes. By means of

these ideas we devised optimal encoding and decoding sequential algorithms

for many known codes as well as for interesting variants of known codes. We

considered parallel algorithms for Prüfer-like codes on the EREW PRAM

model. In all cases our results either match or improve the performances of

the best previous known algorithms. We also described possible applications

of these codes to Genetic Algorithms and to random tree generation. Specif-

ically, in the field of Genetic Algorithms, our modified version of the Happy

code has been experimentally proven to be the best known code for trees by

Paulden and Smith [85].

We believe that, at the moment, this field does not offer further interesting

algorithmic problems to investigate. More stimuli may eventually come from

other applications requiring codes to satisfy new unstudied properties.

Shifting our attention from trees to their superclasses, we proposed a new

bijective encode for k-trees. For the best of our knowledge, our work is the

first one that presents linear time encoding and decoding algorithms. Our

idea can be adapted to obtain bijective codes for both rooted and unrooted

k-trees as well as for Rényi k-trees.
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Looking at k-arch graphs (a superclass of k-trees), we discovered that

the known result concerning the number of such graphs was wrong [72]. We

corrected this result providing a recursive formula to compute the number of

labeled k-arch graphs on n nodes. Unfortunately, this result does not help

us in defining a bijective code for this class of graphs. This work deserves

to be continued by investigating whether or not it is possible to obtain a

closed formula for counting k-arch graphs. If this question can be settle

affirmatively, an attempt to devise a bijective code can be made.

In the last chapter we focused on Informative Labeling Schemes: a way

to associate to each node a rich label, so that it is possible to perform com-

putations directly from labels. Since Informative Labeling Schemes naturally

realize a localization of the information required to perform a computation,

we decided to exploit them to design concurrent data structures. As a first

example, we presented a concurrent data structure that allow fast compu-

tation of lowest common ancestors and distances on dynamic trees (leaves

insertion only).

The results obtained in this initial investigation reveal that this is a

promising idea. There are many possible directions for future work:

• we plan to extend our data structure to handle dynamic trees that

admit deletion of leaves and insertion of internal nodes (edge splitting);

• this approach can be applied to other classes of graphs (e.g., k-trees,

weighted trees, direct acyclic graphs, etc.);

• problems other than lowest common ancestor can be considered (e.g.,

routing, distance, flow, connectivity, etc.);

Finally, it would be interesting to run experimental analysis on a real

concurrent architecture comparing classical concurrent data structures with

those obtained by means of Informative Labeling Schemes.



Glossary

:: : with symbol “::” we denote the concatenation of two strings.

[a, b]: the interval of integers from a to b (a and b included).

A � B: if B is a set this is the difference among sets: A � B = {x ∈ A : x /∈
B}; if B = (b1, b2, . . . , b|B|) is a string this is the difference among a set

and a string A � B = {x ∈ A : x /∈ {b1, b2, . . . , b|B|}}.(
A
k

)
: be the set of all k-subset of the set A. |

(
A
k

)
| =

(|A|
k

)
.

adj(v): the set of nodes adjacent to v in a graph, i.e., {u : d(u, v) = 1}. If v

has only one adjacent node u, adj(v) may be used to refer to u itself

rather than to the set {u}.

d(u, v): the distance between nodes u and v, i.e., the number of edges in the

shortest path between u and v. The distance of a node from itself is 0,

i.e., d(v, v) = 0.

deg(v): the degree of node v, i.e., |adj(v)|.

l(v) : bottom up level of node v, i.e., l(v) = max{d(v, u) : u is a leaf in Tv}.
Each leaf has level 0.

Tv : the subtree of T rooted at node v.

T � v: the tree obtained by removing a leaf v from a tree T .

k-Arch Graphs: a generalization of k-trees, see Chapter 7.

Cayely tree: a tree on n nodes labeled with distinct integers in [1, n].
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Center of a graph: a node minimizing the maximum distance from all

other nodes. A tree has at least one and at most two centers.

k-Clique: a complete graph on k nodes.

Digraph: a directed graph G = (V, E). Each edge (u, v) ∈ E is oriented

from u towards v.

EREW: Exclusive Read Exclusive Write.

Euler Tour: of a connected, directed graph G = (V, E) is a cycle that

traverses each edge of graph G exactly once. The Euler Tour of a tree

can be efficiently computed on a PRAM [59].

FIFO: First In First Out.

Functional Digraph: a graph G = (V, E) is a functional digraph for a

function g if and only if g : V → V and E = {(v, g(v)) : v ∈ V }.

Genetic Algorithm: a search heuristic that hinge upon the evolutionary

ideas of natural selection and genetic (see Section 4.2).

LIFO: Last In First Out.

PRAM: Parallel Random Access Machine [59].

Rényi k-Tree: a k-tree on n nodes rooted in {n− k + 1, . . . , n}, see Chap-

ter 6.

Star: a graph G = (V, E) having a single node c (the center) connected with

all the others nodes and no other edges, i.e., E = {(c, v) : v ∈ V �{c}}.
Analogously, a tree of height 2. Analogously, a connected bipartite

graph G = (V ′, V ′′, E) with |V ′| = 1.

String: a string over an alphabet Σ is a sequence S = (s1, s2, . . . , sk) where

each symbol si ∈ Σ. The length of the string is k and S ∈ Σk.

k-Trees: a generalization of trees, see Chapter 6.
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[53] R. Greenlaw, M.M. Halldórsson, and R. Petreschi. On Computing
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