
On the L(h, k)-Labeling of Co-Comparability
Graphs ⋆

Tiziana Calamoneri1, Saverio Caminiti1,
Stephan Olariu2, and Rossella Petreschi1

1 Dipartimento di Informatica, Università degli Studi di Roma “La Sapienza”
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Abstract. Given two non negative integers h and k, an L(h, k)-labeling
of a graph G = (V, E) is a map from V to a set of labels such that adjacent
vertices receive labels at least h apart, while vertices at distance at most
2 receive labels at least k apart. The goal of the L(h, k)-labeling problem
is to produce a legal labeling that minimizes the largest label used. Since
the decision version of the L(h, k)-labeling problem is NP-complete, it is
important to investigate classes of graphs for which the problem can be
solved efficiently.
Along this line of though, in this paper we deal with co-comparability
graphs and two of its subclasses: interval graphs and unit-interval graphs.
Specifically, we provide, in a constructive way, the first upper bounds on
the L(h, k)-number of co-comparability graphs and interval graphs. To
the best of our knowledge, ours is the first reported result concerning the
L(h, k)-labeling of co-comparability graphs.
In the special case where k = 1, our result improves on the best previously-
known approximation ratio for interval graphs.

Keywords: L(h, k)-Labeling, co-comparability graphs, interval graphs, unit-
interval graphs.

1 Introduction

Graph coloring is, without doubt, one of the most fertile and widely studied
areas in graph theory, as evidenced by the list of solved and unsolved problems
in Jensen and Toft’s comprehensive book on graph coloring [22]. The classic
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problem of (vertex) coloring, asks for an assignment of non-negative integers
(colors) to the vertices of a graph in such a way that adjacent vertices receive
distinct colors. Of interest, of course, are assignments (colorings) that minimize
the number of colors used.

In this paper we focus on a generalization of the classic vertex coloring prob-
lem – the so-called L(h, k)-labeling problem – that asks for the smallest λ for
which it is possible to assign integer labels {0, . . . , λ} to the vertices of a graph
in such a way that vertices at distance at most two receive colors at least k
apart, while adjacent vertices receive labels at least h apart. The span of a
L(h, k)-labeling is the difference between the maximum and the minimum label
used. In the remainder of this work we shall follow established practice and refer
to the largest label in an optimal L(h, k)-labeling for graph G as λh,k(G).

We note that for k = 0, the L(h, k)-labeling problem coincides with the usual
vertex coloring; for h = k, we obtain the well-known 2-distance coloring, which
is equivalent to the vertex coloring of the square of a graph.

The L(h, k)-labeling problem arises in many applications, including the de-
sign of wireless communication systems [20], radio channel assignment [8, 21],
data distribution in multiprocessor parallel memory systems [4, 34], and scala-
bility of optical networks [1, 36], among many others.

The decision version of the vertex coloring problem is NP-complete in general
[16], and it remains so for most of its variations and generalizations. In particular,
it has been shown that the decision version of the L(h, k)-labeling problem is
NP-complete even for h = k = 1 [20, 27]. Therefore, the problem has been widely
studied for many particular classes of graphs. For a survey of recent results we
refer the interested reader to [9].

In this paper we deal with co-comparability graphs and two of its subclasses:
interval graphs and unit-interval graphs. The literature contains a plethora of pa-
pers describing applications of these graphs to such diverse areas as archaeology,
biology, psychology, management and many others (see [18, 17, 23, 29, 30]).

In the light of their relevance to practical problems, it is somewhat surprising
to note the dearth of results pertaining to the L(h, k)-labeling of these graph
classes. For example, a fairly involved web search has only turned up no results
on the L(h, k)-labeling of co-comparability graphs and, as listed below, only two
results on the L(h, k)-labeling of interval graphs and unit-interval graphs.

– In [33] the special case h = 2 and k = 1 is studied; the author proves that
2χ(G) − 2 ≤ λ2,1(G) ≤ 2χ(G) for unit-interval graphs, where χ(G) is the
chromatic number of G. In terms of the maximum degree ∆, as χ(G) ≤ ∆+1,
the upper bound becomes λ2,1(G) ≤ 2(∆ + 1), and this value is very close
to be tight, as the clique Kn, that is an interval graph, has λ2,1(Kn) =
2(n − 1) = 2∆.

– In [3] the authors present a 3-approximate algorithm for L(h, 1)-labeling
interval graphs and show that the same approximation ratio holds for the
L(h, k)-labeling problem of unit-interval graphs.



One of our main contributions is to provide, in a constructive way, the first
upper bounds on the L(h, k)-number of co-comparability and interval graphs. In
the special case where k = 1, our result improves on the best previously-known
approximation ratio for interval graphs.

This remainder of the paper is organized as follows: Section 2 is devoted
to definitions and a review of preliminary results; in particular we show that
the L(1, 1)-labeling problem is polynomially solvable for the three classes of
graphs discussed in this work. Sections 3 and 4 focus, respectively, on the L(h, k)-
labeling problem on co-comparability and interval graphs. Finally, Section 5
offers concluding remarks and open problems.

2 Preliminaries

The graphs in the work are simple, with no self-loops or multiple edges. We
follow standard graph-theoretic terminology compatible with [18] and [5].

(a) (b)

Fig. 1. Illustrating two forbidden configurations.

Vertex orderings have proved to be useful tools for studying structural and
algorithmic properties of various graph classes. For example, Rose, Tarjan and
Lueker [32] and Tarjan and Yannakakis [35] have used the well known simplicial
ordering of the vertices of a chordal graph to obtain simple recognition and
optimization algorithms for this class of graphs. To make this work as self-
contained as possible, suffice it to say that a graph G = (V, E) has a simplicial
ordering if its vertices can be enumerated as v1, v2, . . . , vn in such a way that for
all subscripts i, j, k, with 1 ≤ i < j < k ≤ n, the presence of the edges vivk and
vjvk implies the existence of the edge vivj . Refer to Figure 1(a) for a forbidden
configuration for a simplicial order.

Figure 1(b) illustrates a broader forbidden configuration that we shall refer
to as the umbrella. Kratsch and Stewart [24] have shown that a graph is a co-
comparability graph if and only if its vertices can be enumerated as v1, v2, . . . , vn

in such a way that for all subscripts i, j, k, with 1 ≤ i < j < k ≤ n, the presence
of the edges vivk implies the presence of at least one of the edges and vivk or
vivj . For alternate definitions of co-comparability graphs we refer to [19].

Later, Olariu [28] proved that a graph is an interval graph if and only if its
vertices can be ordered as v1, v2, . . . , vn in such a way that for all subscripts



i, j, k, with 1 ≤ i < j < k ≤ n, the presence of the edge vivk implies the
presence of the edge vivj .

Finally, for the sake of completeness, we recall that Looges and Olariu [26]
showed that a graph is a unit-interval graph if its vertices can be ordered as
v1, v2, . . . , vn in such a way that for all subscripts i, j, k, with 1 ≤ i < j < k ≤ n,
the presence of the edge vivk implies the presence of the edges vivj and vjvk.

The next proposition summarizes of previous discussion.

Proposition 1. Let G = (V, E) be a graph.

1. G is a co-comparability graph if and only if there exists an ordering of its
vertices v0 < . . . < vn−1 such that if vi < vj < vl and (vi, vl) ∈ E then either
(vi, vj) ∈ E or (vj , vl) ∈ E [24];

2. G is an interval graph if and only if there exists an ordering of its vertices
v0 < . . . < vn−1 such that if vi < vj < vl and (vi, vl) ∈ E then (vi, vj) ∈ E
[28];

3. G is a unit-interval graph if and only there exists an ordering of its vertices
v0 < . . . < vn−1 such that if vi < vj < vl and (vi, vl) ∈ E then (vi, vj) ∈ E
and (vj , vl) ∈ E [26].

In the remainder of this work we shall refer to a linear orders satisfying the
above proposition as canonical and to the property that characterizes which
edges must exist in a certain class as the umbrella property of that class. Also,
Figure 2 summarizes the umbrella properties for co-comparability, interval, and
unit-interval graphs. Observe that Proposition 1 confirms the well-known fact
that unit-interval graphs ⊆ interval graphs ⊆ co-comparability graphs.

Fig. 2. Illustrating the umbrella properties for a) co-comparability, b) interval, and c)
unit-interval graphs.

Before proving general results concerning the L(h, k)-labeling of the above
classes of graphs, we make a few observations about the corresponding L(1, 1)-
labelings. To begin, we observe that unit-interval, interval and co-comparability
graphs are all perfect graphs and hence the vertex-coloring problem is polyno-
mially solvable [18]. As already mentioned, the L(1, 1)-labeling problem for a



graph G is exactly the vertex-coloring problem for its square graph G2 (i.e. the
graph having the same vertex set as G and having an edge connecting u to v if
and only if u and v are at distance at most 2 in G). Since all these classes are
closed under powers [13, 31], the following holds:

Remark 1. The L(1, 1)-labeling problem is polynomially solvable for unit-inter-
val, interval and co-comparability graphs.

3 The L(h, k)-Labeling of Co-Comparability Graphs

Given a co-comparability graph G = (V, E) of maximum degree ∆, in view of
the umbrella property (Proposition 1 item 1), if (vi, vl) ∈ E and vi < vl then
all the l − i − 1 vertices between vi and vl must be connected with at least one
of these two vertices: d′ are connected to vi and d′′ are connected to vl, with
l − i − 1 ≤ d′ + d′′.

The degree, d(vi), of vi is at least d′ + 1, analogously d(vl) ≥ d′′ + 1. Since
the maximum degree is ∆ we have 2∆ ≥ d′ + d′′ +2 ≥ l− i+1. Let us formalize
this fact in the following proposition:

Proposition 2. Given a co-comparability graph of maximum degree ∆, if there
is an edge (vi, vl) such that vi < vl then l − i < 2∆; if vi and vl are at distance
2 and vi < vl then l − i < 4∆.

Lemma 1. A co-comparability graph G can be L(h, k)-labeled with span at most
2∆h + k if k ≤ h

2
.

Proof. Let us consider the following ordered set of labels: 0, h, 2h, . . . , 2∆h, k, h+
k, 2h + k, . . . , 2∆h + k.

Let us label all vertices of G with labels in the given order following a canon-
ical order of G’s vertices; once the labels have been finished, we start again from
label 0.

We will now prove that such a labeling is a feasible L(h, k)-labeling by show-
ing that adjacent vertices are labeled with colors at least h apart and that
vertices at distance 2 are labeled with colors at least k apart. The proofs are by
contradiction and vi and vl are any two vertices with i < l.

Distance 1. Let vi and vl be adjacent vertices, assume by contradiction that
their labels l(vi) and l(vl) differ by less than h. Then only two cases are
possible:

(1.1) l(vi) = sh, for some s such that 0 ≤ s ≤ 2∆. Then |l(vl) − l(vi)| can be
smaller than h only if either l(vl) = sh+k or l(vl) = (s−1)h+k. In both
cases l− i ≥ (2∆−s)+(s−1)+1 = 2∆ as illustrated in Figure 3. This is
impossible, for otherwise either vi or vl would have degree greater than
∆ (see Proposition 2.) Notice that l(vl) cannot be sh because there are
4∆ distinct labels and l − i is bounded by 2∆.



(1.2) l(vi) = sh+k, with 0 ≤ s ≤ 2∆. Then l(vl) must be either sh or (s+1)h.
In both cases l− i ≥ (2∆−s)+s+1 = 2∆+1. Again, this is impossible.
As in the previous case, l(vl) cannot be equal to l(vi).

Distance 2. Let vi and vl be at distance two with labels l(vi) and l(vl) that
differ by less than k. Since k ≤ h

2
it must be l(vi) = l(vl), and therefore

that l − i = 4∆ + 2, i.e. the number of the different labels. This contradicts
Proposition 2.

Fig. 3. Scheme for labeling vertices of a co-comparability graph.

Lemma 2. A co-comparability graph G can be L(h, k)-labeled with span at most
4k∆ + k, if k ≥ h

2
.

Proof. The proof is analogous to the one of Lemma 1. The only difference is the
ordered set of labels used: 0, 2k, 4k, . . . , 4k∆, k, 3k, 5k, . . . , 4k∆ + k.

We can summarize both previous results in the following theorem:

Theorem 1. A co-comparability graph G can be L(h, k)-labeled with span at
most 2∆ max{h, 2k}+ k.

4 The L(h, k)-Labeling of Interval Graphs

If the graph G is an interval graph, we can exploit its particular umbrella prop-
erty to derive better bounds on λh,k(G).

First observe that the degree of any vertex vi connected to a vertex vl, vi < vl,
is at least l − i; furthermore, if i 6= 0 then the degree of vi is at least l − i + 1 if
G is connected, because at least one edge must reach vi from vertices preceding
it in the ordering.

Proposition 3. Given a connected interval graph of maximum degree ∆, if
(vi, vl) ∈ E and vi < vl then l − i ≤ ∆ and, if i 6= 0 then l − i < ∆; if vi

and vl are at distance 2 and vi < vl then l − i ≤ 2∆ − 1.



Lemma 3. An interval graph G can be L(h, k)-labeled with span at most ∆h, if
k ≤ h

2
.

Proof. Without loss of generality, we focus on connected graphs. We proceed as
in Lemma 1 with the difference that the set of labels is 0, h, 2h, . . . , ∆h, k, h +
k, 2h + k, . . . , (∆ − 1)h + k.

Distance 1. Let vi and vl be adjacent vertices, assume by contradiction that
their labels l(vi) and l(vl) differ by less than h. Then only two cases are
possible:

(1.1) l(vi) = sh, for some s, and l(vl) is either sh + k or (s − 1)h + k. Then
l−i ≥ (∆−s)+(s−1)+1 = ∆. In view of Proposition 3 this is impossible
because G has maximum degree ∆. If i = 0 then l can be at most ∆;
hence, l(vl) − l(vi) is never smaller than h.

(1.2) l(vi) = sh + k, for some s, and l(vl) is either sh or (s + 1)h. Then i
cannot be 0 and l− i ≥ (∆− 1− s)+ s +1 = ∆. This is in contradiction
with Proposition 3.

Distance 2. Let vi and vl be vertices at distance two with labels l(vi) and l(vl)
that differ by less than k. Since k ≤ h

2
it must be l(vi) = l(vl), and therefore

l − i = 2∆ + 1, i.e. the number of the different labels. This contradicts
Proposition 3.

From the previous proof it easily follows:

Corollary 1. If an interval graph G has a canonical order such that the degree of
v0 is strictly less than ∆, G can be L(h, k)-labeled with span at most (∆−1)h+k,
if k ≤ h

2
.

The bound stated in the previous lemma is the best possible, as shown by the
following:

Theorem 2. There exists an interval graph requiring at least span ∆h to be
L(h, k)-labeled.

Proof. Consider K∆+1, the clique on ∆ + 1 vertices. As all vertices are adjacent
a span of ∆h is necessary.

Lemma 4. An interval graph G can be L(h, k)-labeled with span at most 2k∆,
if k ≥ h

2
.

Proof. The proof is analogous to the one of Lemma 3. The only difference is the
ordered set of labels used: 0, 2k, 4k, . . . , 2k∆, k, 3k, 5k, . . . , 2k(∆ − 1) + k.

Again, it easily follows:

Corollary 2. If the canonical order of an interval graph G is such that the
degree of v0 is strictly less than ∆, G can be L(h, k)-labeled with span at most
2k(∆ − 1) + k, if k ≥ h

2
.



Unfortunately, we are not able to exhibit an interval graph requiring at least
span 2k∆, if k ≥ h

2
, so it remains an open problem to understand if this result

is tight or not.

We can summarize the previous results in the following theorem:

Theorem 3. An interval graph G can be L(h, k)-labeled with span at most
max(h, 2k)∆ and, if G has a canonical order such that the degree of v0 is strictly
less than ∆, G can be L(h, k)-labeled with span at most max(h, 2k)(∆ − 1) + k.

Next theorem allows us to compute another bound for λh,k(G), introducing
also the dimension of the maximum clique ω.

Theorem 4. An interval graph G can be L(h, k)-labeled with span at most
min((ω − 1)(2h + 2k − 2), ∆(2k − 1) + (ω − 1)(2h − 2k)).

Proof. Consider the following greedy algorithm that generalizes the coloring al-
gorithm for interval graphs:

ALGORITHM Greedy-Interval

consider the canonical order v0, v1, . . . vn−1

FOR i = 0 TO n − 1 DO
label vi with the first available label, taking into account
the labels already assigned to neighbors of vi

and to vertices at distance 2 from vi.

At the i-th step of this O(n2) time algorithm, consider the vertex set Ci consti-
tuted by all the labeled neighbors of vi and the vertex set Di constituted by all
the labeled vertices at distance 2 from vi. It is straightforward that Ci ∩Di = ∅.
As an example consider the graph of Figure 4, when i = 3 we have C3 = {v1, v2}
and D3 = {v0}.

Let vmin be the vertex in Ci with the minimum index; in view of the umbrella
property for interval graphs, vmin is connected to all vertices inside Ci. On the
other hand, each vertex vk in Di must be adjacent to some vertex in Ci, as it is
at distance 2 from vi; therefore the umbrella property implies that all vertices
in Di are connected to vmin. It follows that ∆ ≥ d(vmin) ≥ |Di|+ (|Ci| − 1)+1.

Observe also that both Ci ∪ {vi} and Di ∪ {vmin} are cliques, and hence
|Ci| ≤ ω − 1 and |Di| ≤ ω − 1.

So, when vertex vi is going to be labeled, each labeled vertex in Ci forbids at
most 2h − 1 labels and each labeled vertex in Di forbids at most 2k − 1 labels.
Hence the number f of forbidden labels is at most |Ci|(2h − 1) + |Di|(2k − 1).
About f we can also say:

f ≤ (ω−1)(2h+2k−2) due to the inequalities |Ci| ≤ ω−1 and |Di| ≤ ω−1;
f ≤ (|Ci| + |Di|)(2k − 1) + |Ci|2(h − k) ≤ ∆(2k − 1) + (ω − 1)(2h − 2k) for
the inequalities ∆ ≥ |Di| + |Ci| and |Ci| ≤ ω − 1.

As the previous reasoning does not depend on i, the maximum span is
bounded by min((ω − 1)(2h + 2k − 2), ∆(2k − 1) + (ω − 1)(2h − 2k)).



In Figure 4 it is shown a graph L(2, 1)-labeled with the greedy algorithm.
It is easy to see that in this case the bounds given in the previous theorem,
arguments of the min function, coincide and are exactly equal to the required
span.

Fig. 4. A graph L(2, 1)-labeled with the greedy algorithm.

Observe that a trivial lower bound for λh,k(G) is (ω − 1)h. So, when k = 1
the previous theorem provides a 2-approximate algorithm for interval graphs,
improving the approximation ratio of [3].

5 Concluding Remarks and Open Problems

In the literature there are no results concerning the L(h, k)-labeling of general
co-comparability graphs. It is neither known whether the problem remains NP-
complete when restricted to this class or to some subclasses, as interval or unit-
interval graphs.

In this paper we offered the first known upper bounds for λh,k of co-comparability
and interval graphs. The presented proofs are constructive and give the following
upper bounds:

λh,k(G) ≤ max(h, 2k)2∆ + k

if G is a co-comparability graph, and

λh,k(G) ≤ max(h, 2k)∆

if G is an interval graph.
Moreover, for interval graphs with certain restrictions, we have reduced this

latter bound to max(h, 2k)(∆ − 1) + k. We have also shown a greedy algorithm
that guarantees, for all interval graphs, a new upper bound on λh,k(G) in terms
of both ω and ∆, that is:

λh,k(G) ≤ min((ω − 1)(2h + 2k − 2), ∆(2k − 1) + (ω − 1)(2h− 2k))

This bound is provided by a 2-approximate algorithm, improving the approx-
imation ratio in [3].

Finally, we have shown that the L(1, 1)-labeling problem is polynomially
solvable for co-comparability graphs.

Many open problems are connected to this research. Here we list just some
of them:



– Is the L(2, 1)-labeling polynomially solvable on co-comparability graphs?
– Is it possible to find some lower bounds to understand how much our results

are tight?
– Circular-arc graphs are a natural super-class of interval graphs. Is it possible

to extend the results achieved in this paper in order to find an L(h, k)-
labeling of circular-arc graphs? What about the complexity of the L(1, 1)-
labeling on circular-arc graphs?

– What can we say about the L(h, k)-labeling of comparability graphs? It is
easy to see that their L(1, 1)-labeling is polynomially solvable as they are
perfect and the square of a comparability graph is still a comparability graph;
does the L(2, 1)-labeling remain polynomially solvable?

Last, but not least, we wish to point out the connection between the linear
orderings of co-comparability, interval and unit-interval graphs with a more gen-
eral concept, namely that of a dominating pair, introduced by Corneil, Olariu
and Stewart [11]. Considerable attention has been paid to exploiting the linear
structure exhibited by various graph families. Examples include interval graphs
[25], permutation graphs [15], trapezoid graphs [10, 14], and co-comparability
graphs [19].

The linearity of these four classes is usually described in terms of ad-hoc
properties of each of these classes of graphs. For example, in the case of interval
graphs, the linearity property is traditionally expressed in terms of a linear order
on the set of maximal cliques [6, 7]. For permutation graphs the linear behavior
is explained in terms of the underlying partial order of dimension two [2], for co-
comparability graphs the linear behavior is expressed in terms of the well-known
linear structure of comparability graphs [24], and so on.

As it turns out, the classes mentioned above are all subfamilies of a class of
graphs called the asteroidal triple-free graphs (AT-free graphs, for short). An
independent set of three vertices is called an asteroidal triple if between any pair
in the triple there exists a path that avoids the neighborhood of the third. AT-
free graphs were introduced over three decades ago by Lekkerkerker and Boland
[25] who showed that a graph is an interval graph if and only if it is chordal
and AT-free. Thus, Lekkerkerker and Boland’s result may be viewed as showing
that the absence of asteroidal triples imposes the linear structure on chordal
graphs that results in interval graphs. Recently, the authors [11] have studied
AT-free graphs with the stated goal of identifying the “agent” responsible for the
linear behavior observed in the four subfamilies. Specifically, in [11] the authors
presented evidence that the property of being asteroidal triple-free is what is
enforcing the linear behavior of these classes.

One strong “certificate” of linearity is the existence of a dominating pair of
vertices, that is, a pair of vertices with the property that every path connecting
them is a dominating set. In [11], the authors gave an existential proof of the
fact that every connected AT-free graph contains a dominating pair.

In an attempt to generalize the co-comparability ordering while retaining the
AT-free property, Corneil, Koehler, Olariu and Stewart [12] introduced the con-
cept of path orderable graphs. Specifically, a graph G = (V, E) is path orderable



if there is an ordering v1, . . . , vn of its vertices such that for each triple vi, vj , vk

with i < j < k and vivk /∈ E, vertex vj intercepts each vi, vk-path of G; such an
ordering is called a path ordering.

It is easy to confirm that co-comparability graphs are path orderable. It is
also clear that path orderable graphs must be AT-free. It is a very interesting
open question whether the results in this paper about the L(h, k)-labeling of
co-comparability graph can be extended to

– graphs that have an induced dominating pair, and/or
– graphs that are path orderable.

This promises to be an exciting area for further investigation.
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