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Abstract

Given two non negative integers h and k, an L(h, k)-labeling of a graph G = (V, E)
is a function from the set V to a set of colors, such that adjacent nodes take colors
at distance at least h and nodes at distance 2 take colors at distance at least k. The
aim of the L(h, k)-labeling problem is to minimize the greatest used color. Since
the decisional version of this problem is NP-complete, it is important to investigate
particular classes of graphs for which the problem can be efficiently solved.

In this work the L(h, k)-labeling problem for a new class of graphs, called (l×n)-
multistage graphs, is studied. These graphs are characterized to have nodes orga-
nized as a matrix and they include the most common interconnection topologies,
such as Butterfly-like, Beneš, CCC, Trivalent Cayley networks. The general al-
gorithm presented in this paper leads to an efficient L(2, 1)-labeling scheme for
Butterfly and CCC networks.

Keywords: L(h, k)-Labeling, Interconnection Topologies, CCC Networks,
Butterfly-like Networks, Trivalent Cayley Networks.



1 Introduction

Graph coloring is one of the main topics in graph theory. Many generaliza-
tions of the notion of graph coloring are motivated by problems of channel as-
signment in wireless communications, traffic phasing, fleet maintenance, task
assignment, and other applications. (See [7] for a survey.)

Although in classical vertex coloring of graphs [4] a condition is imposed
only on colors of adjacent nodes, many generalizations require colors to respect
stronger conditions, e.g. restrictions are imposed on colors both of adjacent
nodes and of nodes at distance 2 in the graph.
This paper will focus on a specific graph coloring generalization that arose first
from a channel assignment problem in radio networks: the L(h, k)-labeling
problem. This notion was introduced by Griggs and Yeh in the special case
h = 2 and k = 1 in connection with the problem of assigning frequencies in a
multihop radio network [3]. Formally:

Definition 1.1 Given two non negative integers h and k, an L(h, k)-labeling
of a graph G = (V,E), is a function C from the node set V to a set of
nonnegative integers, called colors, such that:

(i) |C(x)− C(y)| ≥ h if {x, y} ∈ E (i.e. dist(x, y) = 1) and

(ii) |C(x)− C(y)| ≥ k if dist(x, y) = 2.

The aim of the L(h, k)-labeling problem is to minimize the greatest used
color.

The L(h, k)-labeling is a special case of the following notion of L(m1, . . . ,mp)-
labeling [3]:

Definition 1.2 Given a positive integer p, and p non negative integersm1,m2,
. . . ,mp, an L(m1, . . . ,mp)-labeling of a graph G = (V,E), is a function C from
the node set V to a set of nonnegative integers such that |C(x)−C(y)| ≥ mi

if x and y are at distance i. The aim is to minimize the greatest used color.

The decisional version of the L(h, k)-labeling problem is NP-complete even
for small values of h and k [3]. Therefore, since the seminal work of Griggs
and Yeh, researchers have produced a wide literature studying the problem
for special values of h and k on special classes of graphs (for a survey see [1]).
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In this work we study the L(h, k)-labeling problem on a class of graphs,
called (l×n)-multistage graphs, containing the most common interconnection
topologies such as Butterfly-like networks, Beneš networks, CCC networks,
and Trivalent Cayley networks. A general approach for L(h, k)-labeling these
topologies is presented, and from this method an efficient L(2, 1)-labeling for
Butterfly and CCC networks is derived.

2 L(h, k)-Labeling Multistage Rows-Bipartite Graphs

In this section we define the (l × n)-multistage graph and its quotient graph,
then we focus our attention on the subclass of bipartite multistage graphs.
Working on the partition of nodes in rows, we present a method for L(h, k)-
labeling this class of graphs. Our approach reduces the problem of labeling
a given multistage row-bipartite graph of l rows to the problem of labeling a
multistage row-bipartite graph of only two rows, implying a strong reduction
of complexity.

Let us introduce some definitions:

Definition 2.1 Let V be a set of l × n nodes organized as a matrix; let
R = {R1, R2, . . . , Rl} be the set of the matrix rows and let ri,j be the j-th
node of row Ri. An (l × n)-multistage graph G is a simple loopless graph
whose node set is V and such that the subgraph induced by each Ri (i =
1, . . . , l) is either a simple ordered path ri,1, ri,2, . . . , ri,n or a simple ordered
cycle ri,1, ri,2, . . . , ri,n, ri,1.

Given an (l × n)-multistage graph G, let us consider the quotient graph
G/R resulting from the following contracting operation:

• each row Ri of G is a node i of G/R;

• an edge connects nodes i and j of G/R if and only if there exists an edge
(u, v) in G such that u ∈ Ri and v ∈ Rj.

Definition 2.2 An (l× n)-multistage graph G is rows-bipartite if and only if
its quotient graph G/R is bipartite. We call Upper and Lower the sets of rows
of G corresponding to the two classes in which nodes of G/R are bipartitioned.

Definition 2.3 The reduced graphR(G) of an (l×n)-multistage rows-bipartite
graph G is a simple graph with 2n nodes partitioned into two rows U and L
containing nodes u1, u2, . . . , un and l1, l2, . . . , ln, respectively. The edges of
R(G) are:

(i) all edges (ui, ui+1) and (li, li+1), i = 1, . . . , n− 1 (straight edges);



(ii) edge (un, u1) if and only if at least one row in Upper induces a cycle in G
and edge (ln, l1) if and only if at least one row in Lower induces a cycle
in G (closing edges);

(iii) edge (ui, lj) if and only if there exist two rows Ra ∈ Upper and Rb ∈
Lower such that (ra,i, rb,j) is an edge in G (cross edges).

An example of a multistage graph is depicted in Figure 1a). Figures 1b)
and 1c) represent its quotient graph and its reduced graph respectively.
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Fig. 1. a) A (7 × 4)-multistage graph G. b) The quotient graph G/R. c) The
reduced graph R(G).

Remark 2.4 Definition 2.3 becomes much shorter if we define the mapping
µ from nodes of G to nodes of R(G) as follows:

µ(ri,j) =







uj if Ri ∈ Upper

lj if Ri ∈ Lower

In this way the edge set of R(G) is {(µ(x), µ(y)) s.t. (x, y) is an edge of G}.

Theorem 2.5 Let G be an (l × n)-multistage rows-bipartite graph and R(G)
be its reduced graph. If R(G) admits an L(h, k)-labeling using colors from 0
to c then G admits an L(h, k)-labeling using colors from 0 to c.

Proof. Let CR be a feasible L(h, k)-labeling for R(G) using colors from 0
to c. A labeling CG for G can be derived from CR using the mapping µ:
CG(ri,j) = CR(µ(ri,j)). By definition of R(G), if x, y are adjacent nodes in G
then µ(x), µ(y) are adjacent nodes in R(G), and if x, y are at distance 2 in G
then µ(x), µ(y) are at distance 2 in R(G). As a consequence, CG is a feasible
L(h, k)-labeling for G. 2

The previous theorem provides a simple algorithmic technique for com-
puting an L(h, k)-labeling of any (l×n)-multistage rows-bipartite graph. The



computational complexity of this technique depends on the time necessary to
compute the L(h, k)-labeling of R(G): the worst case happens when we use
an exhaustive approach, and this requires O(2n) time. It is to notice that if
l = O(2n), this time complexity is linear in the number of nodes of G.

Remark 2.6 For any graph G, with maximum degree ∆(G), the number of
necessary colors to L(h, k)-label G is never less than h + (∆(G) − 1)k when
h ≥ k. Since graph R(G) may be dense even if graph G is sparse, this implies
that ∆(R(G)) may be much bigger than ∆(G) and then the greatest used
color is not necessarily minimized.

3 Interconnection Topologies

An interconnection network consists of a collection of processors or routing-
switches with direct connections between them. An interconnection topology
is the undirect graph underlying an interconnection network: it has a node
for each processor/switch and an edge between each pair of connected pro-
cessors/switches. A large variety of topologies have been investigated: the
interested reader can refer to [5] for a wide survey.

In this section we show how to exploit Theorem 2.5 to L(h, k)-label inter-
connection topologies. Indeed, looking at the classical representation of most
of the common interconnection topologies, it is quite simple to see that most
of them belong to the class of row-bipartite multistage graphs. See for exam-
ple the classical bidimensional layout of the Cube-Connected-Cycles (CCC)
network [6] and the classical representation of the Butterfly network [5].

Remark 3.1 In Definition 2.1 the nodes of the graph are organized as a ma-
trix: in the following we choose the matrix naturally induced by the classical
representation of an interconnection topology.

Theorem 2.5 allows us to L(h, k)-label each interconnection topology G
that is (l × n)-multistage rows-bipartite, in the following simple way:

(i) compute the reduced graph R(G) associated to G;

(ii) compute an L(h, k)-labeling of R(G);

(iii) assign to each node ri,j of G the color of its corresponding node µ(ri,j) of
R(G).

It is not difficult to see that steps 1 and 3 work in linear time with respect to
the size of G. We remark that we are dealing with interconnection topologies
whose maximum degree is bounded by a constant, then the size of G is linear



with respect to the number of its nodes.

The complexity of step 2 is related to how the algorithm for L(h, k)-labeling
R(G) works; however, even if the algorithm searches the solution in an ex-
haustive way, this step does not require more then O(2n) time, where n is the
number of columns of G. Since we are considering interconnection topologies
whose number l of rows is exponential with respect to the number n of the
columns, this step is linear with respect to the size of G.

The worth of our approach consists in coloring a graph of only 2n nodes
instead of a graph of O(n2n) nodes and it allows us to L(h, k)-label an inter-
connection topology in linear time with respect to its size.
We have to highlight that the considered interconnection topologies are of-
ten characterized by a high symmetry. This implies that the density of their
reduced graphs is of the same order of their density and then, despite the
Remark 2.6, the size of our solution is nearly optimal. The results stated in
the following in the special case h = 2 and k = 1 for two well known intercon-
nection topologies will confirm this statement (due to the lack of space, we
omit proofs.).

Theorem 3.2 Given an n-dimensional Cube-Connected-Cycles network G,
there exists an L(2, 1)-labeling of G that is optimal if n is multiple of 3, and
that uses a number of colors 1 far from optimal otherwise.

Theorem 3.3 Given an N-input Butterfly network G, there exists an L(2, 1)-
labeling of G that is optimal if N is either 22 or 23, and that uses a number
of colors 1 far from optimal otherwise.

We have seen that most of the interconnection topologies are rows-bipartite.
Only few of them – such as the 3-ary Butterfly (see [5] pp. 740) and Trivalent
Cayley networks [2,8] – have not this property: indeed their reduced graphs
are 3- and 4-partite, respectively. It is possible to introduce a generalization of
our technique in order to L(m1, . . . ,mp′)-label those topologies whose reduced
graph is p-partite (p′ ≤ p):

Definition 3.4 An (l×n)-multistage graph G is rows-p-partite if and only if
its quotient graph G/R is p-partite. We call S1, S2, . . . , Sp the sets of rows of
G corresponding to the classes in which nodes of G/R are partitioned.

Definition 3.5 The reduced graph R(G) of an (l × n)-multistage rows-p-
partite graph G is a graph with p×n nodes partitioned into p rows containing
nodes vi

1, v
i
2, . . . , v

i
n (1 ≤ i ≤ p). The set of edges of R(G) is {(µ(x), µ(y)) s.t.

(x, y) is an edge of G} where: µ(ra,b) = vi
a s.t. Rb ∈ Si.



Theorem 3.6 Let G be an (l× n)-multistage rows-p-partite graph and R(G)
its reduced graph. If R(G) admits an L(m1, . . . ,mp′)-labeling (p′ ≤ p) using
colors from 0 to c then G admits an L(m1, . . . ,mp′)-labeling using colors from
0 to c.
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