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Abstract  Given two non-negative integers h and k, an L(h, k)-labeling of a graph G = (V, E) is a function from the set V
to a set of colors, such that adjacent nodes take colors at distance at least h, and nodes at distance 2 take colors at distance
at least k. The aim of the L(h, k)-labeling problem is to minimize the greatest used color. Since the decisional version of this
problem is NP-complete, it is important to investigate particular classes of graphs for which the problem can be efficiently
solved. It is well known that the most common interconnection topologies, such as Butterfly-like, Benes, CCC, Trivalent
Cayley networks, are all characterized by a similar structure: they have nodes organized as a matrix and connections are
divided into layers. So we naturally introduce a new class of graphs, called (I x n)-multistage graphs, containing the most
common interconnection topologies, on which we study the L(h, k)-labeling. A general algorithm for L(h, k)-labeling these
graphs is presented, and from this method an efficient L(2,1)-labeling for Butterfly and CCC networks is derived. Finally

we describe a possible generalization of our approach.
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1 Introduction

Graph coloring is one of the main topics in graph
theory. Many generalizations of the notion of graph
coloring are motivated by problems of channel assign-
ment in wireless communications, traffic phasing, fleet
maintenance, task assignment, and other applications.
(See [1] for a survey.)

Although in classical vertex coloring of graphs? a
condition is imposed only on colors of adjacent nodes,
many generalizations require colors to respect stronger
conditions, e.g., restrictions are imposed on colors both
of adjacent nodes and of nodes at distance 2 in the
graph.

This paper will focus on a specific graph coloring
generalization that arose first from a channel assign-
ment problem in radio networks: the L(h, k)-labeling
problem. This notion was introduced by Griggs and
Yeh in the special case h = 2 and k£ = 1 in connection
with the problem of assigning frequencies in a multihop
radio network!®. Formally:

Definition 1.1. Given two non-negative integers
h and k (h > k), an L(h,k)-labeling of an undirected
graph G = (V, E), is a function C from the node set
V' to a set of nonnegative integers, called colors, such
that:

1. |C(x) = C(y)| = hif {z,y} € E (i.e., dist(x,y) =

multistage interconnection network, L(h, k)-labeling, channel assignment problem

1) and

2. |C(z) — C(y)| = k if dist(x,y) =2
where the notation {x,y} means an (undirected) edge
and dist(x,y) is the length of the shortest path between
x and y.

The aim of the L(h, k)-labeling problem is to mini-
mize the greatest used color.

In the following we are interested in L(h, k)-labeling
introduced in [4] as a special case of the notion of
L(my,...,my)-labeling introduced in [3] and define as
follows.

Definition 1.2. Given a positive integer p, and
p non-negative integers my = Mg = -+ = My, aN
L(mi,...,mp)-labeling of a graph G = (V,E), is a
function C from the node set V' to a set of non-negative
integers such that |C(x) — C(y)| = m; if  and y are
at distance i. The aim is to minimize the greatest used
color.

Some references about the notion of L(h, k)-labeling
are in [4-9]. The three most studied particular cases
of the L(h,k)-labeling problem are L(1,0)-, L(1,1)-
and L(2,1)-labeling. The first one corresponds to the
classical vertex coloring of a graph, the second one
corresponds to the vertex coloring of the square of
a graph['?l, and the third one is studied in connec-
tion with the channel assignment problem!™!! in which

Short Paper

Work supported in part by Sapienza University of Rome (project “Parallel and Distributed Codes”).



Tiziana Calamoneri et al.: L(h, k)-Labeling Interconnection Networks 653

“close” transmitters have to be assigned different chan-
nels, and “very close” transmitters have to be assigned
channels at least two apart.

In general, the decisional version of the L(h,k)-
labeling problem is NP-complete even for small val-
ues of h and kP, Therefore, since the seminal work
of Griggs and Yeh, researchers have produced a wide
literature studying the problem for special values of A
and k on special classes of graphs'2=2! for a survey
see [22].

It is well known that the most common intercon-
nection topologies, such as Butterfly-like, Benes, CCC,
Trivalent Cayley networks, are all characterized by
a similar structure: they have nodes organized as a
matrix and connections are divided into layers. So
we naturally introduce a new class of graphs, called
(I x n)-multistage graphs, which contain the most com-
mon interconnection topologies. A general approach
to L(h, k)-labeling these graphs is presented, and from
this method an efficient L(2,1)-labeling for Butterfly
and CCC networks is derived.

This paper is organized as follows. Section 2 is
devoted to the description of a general approach for
L(h, k)-labeling collision free (I x n)-multistage rows-
bipartite graphs. Section 3 presents an application to
classical interconnection topologies. Two special exam-
ples for which our method gives results at most 1 far
from the optimal are provided in Section 4: namely, we
show an approximate L(2,1)-labeling of CCC and But-
terfly networks. In Section 5 we describe how to gen-
eralize our approach to collision free (I x n)-multistage
rows-p-partite graphs, so extending the class of inter-
connection topologies for which we are able to give an
L(h, k)-labeling; for this class we also provide an ap-
proach for the L(my,...,m,)-labeling problem. Pos-
sible future work and open problems are sketched in
Section 6.

2 L(h,k)-Labeling Multistage Rows-Bipartite
Graphs

In this section we define the (I x n)-multistage graph
and its quotient graph, then we focus our attention on
the subclass of bipartite multistage graphs. So we build
a class of graphs containing the most common intercon-
nection topologies. Working on the partition of nodes
into rows, we present a method of L(h, k)-labeling this
class of graphs. Our approach reduces the problem
of labeling a given multistage rows-bipartite graph of
I rows to the problem of labeling a multistage rows-
bipartite graph of only two rows, achieving a strong
reduction of complexity.

Let us introduce some definitions as follows.

Definition 2.1. Let V be a set of I x n nodes orga-
nized as a matriz; let R = {Ry, Ra, ..., Ri} be the set
of the matriz rows and let r; ; be the j-th node of row
R;. An (I x n)-multistage graph G is a simple loopless
graph whose node set is V and such that the subgraph
induced by each R; (i =1,...,1) is either a simple or-
dered path ri 1712 7in or a simple ordered cycle r; 1
7§22 Tin Ti1-

Given an (I x n)-multistage graph G, let us consider
the quotient graph G/R resulting from the following
contracting operation:

e cach row R; of G is a node i of G/R;

e an edge connects nodes i and j of G/R if and only
if there exists an edge (u,v) in G such that v € R; and
v E Rj.

Definition 2.2. An (I x n)-multistage graph G is
rows-bipartite if and only if its quotient graph G/R is
bipartite. We call Upper(G) and Lower(G) the sets of
rows of G corresponding to the two classes into which
nodes of G/R are partitioned.

Definition 2.3. The reduced graph R(G) of an
(I x n)-multistage rows-bipartite graph G is a simple
graph with 2n nodes partitioned into two rows U and
L containing nodes uy,us,...,u, and li,ls, ...
spectively. The edges of R(G) are:

1. all edges (u;,uiv1) and (L, liy1), i=1,...,n—1
(straight edges);

2. edge (un,u1) if and only if at least one row in
Upper(G) induces a cycle in G and edge (1,,11) if and
only if at least one row in Lower(G) induces a cycle in
G (back edges);

3. edge (ui,l;) if and only if there exist two rows
R, € Upper(G) and Ry, € Lower(G) such that (rq,
Tb,5) s an edge in G (cross edges).

An example of a multistage graph is depicted in
Fig.1(a). Figs.1(b) and 1(c) represent its quotient
graph and its reduced graph respectively.

Remark 2.1. Definition 2.3 becomes much shorter
if we define the mapping p from nodes of G to nodes of
R(QG) as follows:

) ln; re-

uj, if R; € Upper(G);
p(ri;) = { L
i, if R; € Lower(Q).
In this way the edge set of R(G) is {(u(x), u(y)) s.t.,
(x,y) is an edge of G}.
Observe that if two nodes = and y are adjacent, then
w(@) # uy).
Definition 2.4. We say that an (I x n)-multistage
rows-bipartite graph G is Collision Free if for any
two nodes x and y at distance 2, it holds p(x) # u(y).
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Fig.1. (a) (7 X 4)-multistage graph G. (b) Quotient graph G/R.
(¢) Reduced graph R(G).

In the following we will refer to Collision Free (I x n)-
multistage rows-bipartite graphs as (I x n)-CFMRB.
It is also worth noticing that the graph depicted in
Fig.1(a) is not collision free.

Theorem 2.1. Let G be an (I x n)-CFMRB and
R(QG) be its reduced graph. If R(G) admits an L(h,k)-
labeling using colors from 0 to ¢ then G admits an
L(h, k)-labeling using colors from 0 to c.

Proof. Let Cg be a feasible L(h, k)-labeling for R(G)
using colors from 0 to ¢. A labeling Cg for G can
be derived from Cg using the mapping p: Cg(r; ;) =
Cr(u(ri ;). By definition of R(G), if =,y are adjacent
nodes in G then p(z), u(y) are adjacent nodes in R(G),
and if x,y are at distance 2 in G then p(z), pu(y) are
either adjacent or at distance 2 in R(G); indeed, G is
collision free and then it cannot be u(z) = p(y).

As a consequence, since h > k, Cg is a feasible
L(h, k)-labeling for G. O

The previous theorem provides a simple algorith-
mic technique for computing an L(h, k)-labeling of any
(I x n)-CFMRB. The computational complexity of this
technique depends on the time necessary to compute
the L(h,k)-labeling of R(G): the worst case happens
when we use an exhaustive approach, and this requires
time exponent in n. It is to notice that if [ is exponen-
tial in n, this time complexity is polynomial (and often
linear) in the number of nodes of G.

Remark 2.2. For any graph G, with maximum de-
gree A(G), the number of necessary colors to L(h, k)-
label G is never less than h + (A(G) — 1)k + 1. Since
graph R(G) may be dense even if graph G is sparse,
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this implies that A(R(G)) may be much greater than
A(G) and then the greatest used color is not necessarily
minimized.

3 Interconnection Topologies

An interconnection network consists of a collection of
processors or routing-switches with direct connections
between them. An interconnection topology is the undi-
rected graph underlying an interconnection network: it
has a node for each processor/switch and an edge be-
tween each pair of connected processors/switches. A
large variety of interconnection networks have been in-
vestigated; the interested reader can refer to [23] for a
wide survey.

In this section we show how to exploit Theorem
2.1 to L(h,k)-label interconnection topologies. In-
deed, looking at the classical representation of the
most common interconnection topologies, it is quite
simple to see that most of them belong to the class
of multistage graphs. See for example the classical
two-dimensional layout of the Cube-Connected-Cycles
(CCC) network!?4 in Fig.2(a) and the classical repre-
sentation of the Butterfly network[®? in Fig.2(b).

Remark 3.1. In Definition 2.1 the nodes of the
graph are organized as a matrix; in the following we
choose the matrix naturally induced by the classical
representation of an interconnection topology.

This representation is not always suitable for obtain-
ing a multistage graph. Indeed some interconnection
topologies — such as Flip, Omega, Baseline and Re-
verse Baseline networks (see [23], pp.731-735) — are
not multistage graphs if the matrix is chosen with the
criterion in Remark 3.1, because their rows are neither
simple paths nor cycles. Nevertheless, we are able to
produce a matrix organization suitable for obtaining a
multistage graph applying the same mapping used for
showing that these graphs are all topological equivalent
to a Butterfly network(25!.

Moreover, most of the interconnection topologies are
also rows-bipartite. Only few of them — such as the
3-ary Butterfly (see [23], pp. 740) and Trivalent Cayley
networks(26:27) —— have not this property. Indeed, their
reduced graphs are 3- and 4-partite, respectively. We
will deal with these interconnection topologies in Sec-
tion 5. Finally, it is straightforward to see that all these
interconnection topologies are collision free.

Theorem 2.1 allows us to L(h, k)-label each inter-
connection topology G that is (I x n)-CFMRB, in the
following simple way.

1) Compute the reduced graph R(G) associated with
G;
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Fig.2. (a) Two-dimensional layout of a 3-dimensional CCC net-
work. (b) Classical representation of an 8-input Butterfly net-

work.

2) Compute an L(h, k)-labeling of R(G);

3) Assign to each node r; ; of G the color of its cor-
responding node p(r; ;) of R(G).

It is not difficult to see that Steps 1) and 3) work
in linear time with respect to the size of G. We re-
mark that we are dealing with interconnection topolo-
gies whose maximum degree is bounded by a constant,
then the size of G is linear with respect to the number
of its nodes.

The complexity of Step 2) is related to how the al-
gorithm for L(h, k)-labeling R(G) works; however, even
if the algorithm searches the solution in an exhaustive
way, this step requires time exponent in n, where n is
the number of columns of G. Since we are considering
interconnection topologies whose number [ of rows is ex-
ponential with respect to the number n of the columns,

this step is polynomial with respect to the size of G.

The worth of our approach consists in coloring a
graph of only 2n nodes instead of a graph of O(n2")
nodes.

We have to highlight that the considered intercon-
nection topologies are often characterized by a high
symmetry. This implies that the density of their re-
duced graphs is of the same order of their density and
then, despite the Remark 2.2, the size of our solution
is nearly optimal. The results presented in the next
section will confirm this statement.

4 Direct Labeling of Two Particular Networks

In this section, applying the algorithm stated in Sec-
tion 3, we provide a labeling scheme in the special case
h = 2 and k = 1 for two well-known interconnection
topologies: Cube-Connected-Cycles and Butterfly net-
works.

The special structure of the reduced graph of both
these topologies allows us to avoid the exhaustive ap-
proach and to give a direct labeling scheme. Finally,
we prove that these two L(2,1)-labeling schemes use a
number of colors at most 1 far from optimal.

4.1 L(2,1)-Labeling CCC Networks

The n-dimensional Cube-Connected-Cycles network,
CCC,, is constructed from the n-dimensional hyper-
cube by replacing each node of the hypercube with a
cycle of n nodes. The i-th dimension edge incident to
a node of the hypercube is connected to the i-th node
of the corresponding cycle of the CCC. In Fig.2(a) the
classical representation of a 3-dimensional CCC net-
work is depicted. The resulting graph has n2™ nodes
each with degree 3.

This degree gives us a trivial lower bound on the
number of colors needed to L(2,1)-label a CCC net-
work, that is 6. Indeed, let v be a node colored with
a color C(v) different from both 0 and the maximum
used color. The 3 nodes adjacent to v must have colors
different from each other and at distance 2 from C(v),
i.e., different from C(v) — 1, C(v) and C(v) + 1. It
follows that at least 6 colors are necessary.

In this subsection we show how to L(2,1)-label a
CCC,, with at most 7 colors.

The quotient graph of a CCC,, is the n-dimensional
hypercube, that is bipartite; hence the 2™ cycles of
G can be easily partitioned into sets Upper(G) and
Lower(G). The reduced graph is then constituted by
two n length cycles U and L in which each u; is con-
nected with the corresponding I; (see Fig.3).



656
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Fig.3. Reduced graph of a 3-dimensional CCC network.

The following direct L(2,1)-labeling scheme is ex-
pressed as a pair of n length strings Sy and S, each
representing the sequence of colors assigned respec-
tively to uy, us,...,u, and ly,lo, ..., 1,.

Lemma 4.1. Given an n-dimensional Cube-Connec-
ted-Cycles network G, there exists an L(2,1)-labeling of
the reduced graph of G that uses 6 colors if n is multiple
of 3, and 7 colors otherwise.

Proof. We give a constructive proof. If n < 2 the
labeling is trivial, then assume n > 3. First, let us
consider the case n multiple of 3, i.e., n = 3¢ (¢ > 1).
Sy = (024)7 and Sz, = (351)%, where the power means
that the string is repeated ¢ times.

Now, let n = 3¢+ (1 < r < 2); then Sy =
02624(025)9~1 and S1, = 640y2(641)7~1, where

6’ 67

x_{L y_{a

and € is the empty string. Notice that if ¢ = 1 the re-

peated substrings do not appear, i.e., Sy = 026x4 and
St = 640y2.

It is easy to verify that the provided L(2, 1)-labelings
are feasible and that they use either 6 or 7 colors, de-
pending on the value of n. |

Exploiting Theorem 2.1, it is possible to immediately
transfer this L(2,1)-labeling to CCC,,. Observe that,
as the proof of Lemma 4.1 gives a direct labeling of each
node depending only on its own position in R(G) and
on n, the algorithm can be run on CCC,, in distributed
constant time, provided that each node knows its own
position.

The trivial lower bound proved for CCC,, holds also
for its reduced graph, as it is regular of degree 3. Nev-
ertheless, supported by experimental results, we con-
jecture that 7 colors are also necessary for R(G), if n is
not multiple of 3. On the other hand, for what concerns
CCC,,, we experimentally verified that there exist some
values of n (e.g., n = 5) admitting a 6-colors L(2,1)-
labeling, even if its reduced graph needs 7 colors.

if r =1;
if r=2;

if r =1,
ifr=2;

4.2 L(2,1)-Labeling Butterfly Networks

The N-input Butterfly network By (with N power
of 2) has N(log, N+1) nodes. The nodes correspond to
pairs (7, j), where ¢ (0 < 4 < N) is a binary number and
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denotes the row of the node, and j (0 < j < log, N)
denotes its column. Two nodes (4, j) and (', j') are con-
nected by an edge if and only if 5/ = j + 1 and either
i and ¢’ are identical (straight edge) or i and i’ differ in
precisely the j'-th bit (cross edge).

A Butterfly network, depicted in Fig.2(b), is an
(N x (logy N + 1))-multistage graph whose quotient
graph is the (log, N)-dimensional hypercube, and hence
is rows-bipartite. Its reduced graph R(By) is consti-
tuted by two n length paths U and L in which each wu;
(or ;) is connected with both ;_; (or w;—1) and l;41
(or uit1), if they exist (see Fig.4).

U e e

L N\ N\
Fig.4. Reduced graph of an 8-input Butterfly network.

A trivial lower bound on the number of colors needed
to L(2,1)-label a Butterfly network is 7. This value can
be obtained with considerations similar to the one used
for CCC network, since all internal nodes of By have
degree 4.

Also for By, as we will show in the following, it is
possible to give a direct L(2, 1)-labeling using a number
of colors at most 1 far from optimal. More in detail,
if N is either 22 or 22, we provide a labeling using 7
colors, that is optimal; for all greater values of N our
method requires 8 colors.

As in the previous subsection, the following L(2,1)-
labeling of R(By) is expressed as a pair of logy N + 1
length strings Sy and Sp.

Lemma 4.2. Given an N-input Butterfly network
G, there exists an L(2,1)-labeling of the reduced graph
of G that uses 7 colors if N is either 22 or 23, and 8
colors otherwise.

Proof. Let us initially consider N = 22 and N = 23;
in the first case Sy = 250 and S; = 361 and in the
second case Sy = 2503 and Sy, = 3614.

For all greater values of N, the strings Sy and Sp
are built by repeating the pattern 036 and 147, respec-
tively, until the paths are completely labeled; of course,
the last occurrences of the patterns could not be com-
plete. More formally, let logy N+1 = 3¢+7r (0 < r < 2);
then Sy = (036)%z and Si = (147)%, where

e, if r=0; e, if r=0;
r=<¢ 0, ifr=1 y=<1, if r=1;
03, if r=2; 14, if r=2.

It is easy to verify that the provided L(2, 1)-labelings
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are feasible and that they use 8 colors, unless N = 22
or N = 23, in which cases 7 colors are sufficient. O

This direct labeling can be computed on By in
distributed constant time, provided that each node
knows its own position. The provided L(2,1)-labeling
of R(By) is optimal, as proven by the following rea-
soning. If N < 2% the claim can be directly proven.
Otherwise, by contradiction suppose that the optimal
number of colors is 7 and, for any 2 < j < logy N — 2,
consider the six nodes u;_1, uj, ujy1, lj—1, [; and lj4;.
As these nodes are at mutual distance < 2, they receive
different colors and at least one of them is colored with
color ¢, where 2 < ¢ < 4. Without loss of generality,
let u; be such a node. Of course, nodes adjacent to u;,
ie., uj_1, ujy1, l;—1 and l;11 receive the four colors
different from ¢ — 1, ¢, ¢+ 1. It follows that node [;
must be colored with either ¢c—1 or ¢+ 1. With reason-
ings identical to the previous ones, nodes adjacent to
lj, ie., uj_1, ujt1, lj—1 and ;41 receive the four colors
different either from ¢ — 2, ¢ — 1, ¢, or from ¢, ¢ + 1,
¢+ 2. In both cases we get a contradiction.

5 L(m,...,my)-Labeling Multistage
Rows-p-Partite Graphs

As we have already noted (cf. Section 3), some inter-
connection topologies are not multistage rows-bipartite,
since their reduced graphs are not bipartite. In this sec-
tion we will introduce a generalization of our technique
in order to L(m, ..., my)-label, 2 < p’ < p, also those
topologies whose reduced graph is p-partite. This leads
to an L(h, k)-labeling of these graphs in the special case
p =2

Definition 5.1. An (I x n)-multistage graph G is
rows-p-partite if and only if its quotient graph G/R is
p-partite. We call S1,Sa,...,S, the sets of rows of G
corresponding to the classes in which nodes of G/R are
partitioned.

Definition 5.2. The reduced graph R(G) of an
(I x n)-multistage rows-p-partite graph G is a graph with
p X n nodes partitioned into p Tows containing nodes
vivh, o0l (1< < p). The set of edges of R(G) is
{(p(x), u(y)) s.t. (z,y) is an edge of G} where:

w(rep) = vl’; s.t. R, € S;.

Definition 5.3. An (Ixn)-multistage rows-p-partite
graph G is p’-Collision Free (2 < p' < p) if for any
two nodes x and y at distance less than or equal to p’,
it holds p(x) # u(y).

Notice that, if G is p’-Collision Free, nodes at dis-
tance d < p’ in G are mapped into nodes at distance no
longer than d in R(G) by function p. This ensures that

a feasible L(my, ..., my )-labeling (p’ < p) of R(G) can
be transposed on G by way of p, justifying the following
theorem.

Theorem 5.1. Let G be a p'-Collision Free (I x n)-
multistage rows-p-partite graph and R(G) its reduced
graph. If R(G) admits an L(ma,...,my)-labeling
(2 < p” < ') using colors from 0 to ¢ then G admits
an L(ma, ..., my)-labeling using colors from 0 to c.

The time complexity for labeling R(G) grows up
with p, namely, when an exhaustive approach is used,
it requires time exponent in pn.

Let us now consider the application of Theorem 5.1
to interconnection topologies. Since in general p is lim-
ited by a constant, the complexity for labeling these
topologies remains linear in the number of nodes of
graph G, then we are able to efficiently label networks
such as N-input s-ary Butterfly and n-dimensional
Trivalent Cayley networks. In Fig.5 the 3-ary Butterfly
network and its reduced graph are shown.

Ist Row — 003
2nd Row — 013 \ /
AN
3rd Row — 02 .
’ QONG Y
4th Row — 10 }&‘)'( h/
~‘ SOROK
5th Row — 11 'A.‘\ AN /‘
o AR
6th Row — 123 .‘A KNS
‘ l7 V“‘\
7th Row — 20 "AAA'\
3 ,v
8th Row — 2154
9th Row — 223
(@
S I
AV
S3 ()
(b)

Fig.5. (a) Classical representation of a 9-input 3-ary Butterfly
network G. (b) Reduced graph R(G).

6 Conclusions and Open Problems

In this paper we have dealt with the L(h, k)-labeling
problem. The decisional version of this problem has
been shown to be NP-complete, then it is important
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to investigate particular classes of graphs for which
this problem can be efficiently solved. In this con-
text we have introduced the new class of p’-Collision
Free (I x n)-multistage rows-p-partite graphs, including
most of the well-known interconnection topologies, and
we have studied the L(my, ..., my,~)-labeling problem,
2 < p” < p/, on this class providing a general approach
to efficiently label these multistage graphs.

Our method allows us to label the most common
interconnection topologies in linear time, although a
good approximation ratio is not guaranteed. In practice
this approach gives good results as shown in Section 4.
As an example, we have presented how to L(2, 1)-label
CCC and Butterfly networks in distributed constant
time using a number of colors at most 1 far from the
optimal. We are trying to apply this method to other
classes of graphs.

It remains an open problem to show if a constant
approximation ratio can be guaranteed (even for sub-
classes), exploiting some special properties studied for
interconnection topologies; for example, the Buddy
Property[23 could guarantee the sparsity of the reduced
graph.

Finally, it would be interesting to investigate if the
decisional version of the L(my,...,m,)-labeling prob-
lems remains NP-complete for the classical interconnec-
tion topologies.
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