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Abstract

In this paper we present O(n)-time algorithms for encoding/decoding
n-node labeled trees as sequences of n−2 node labels. All known en-
codings of this type are covered, including Prüfer-like codes and the
three codes proposed by Picciotto - the happy, blob, and dandelion
codes. The algorithms for Picciotto’s codes are of special significance
as previous publications describe suboptimal approaches requiring
O(n log n) or even O(n2) time.
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1 Introduction

A tree code is any bijection between the set of all labeled unrooted trees
on n nodes and n − 2 tuples of node labels. The first code was proposed
by Prüfer [21] in 1918 in order to prove Cayley’s theorem that there are
nn−2 distinct labeled trees on n nodes. A number of different bijections
have been proposed since then, including the ones by Glicksman, Neville,
Eğecioğlu, Picciotto, Deo and Micikevičius. These codes can be classified
into two categories based on their encoding approach. Deletion (also known
as Prüfer-like) codes iteratively delete leaf nodes, recording their neighbors
to the code. Transformation codes convert trees into directed graphs and
then record the nodes’ parents to the code.
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Figure 1: a) An 9-node unrooted tree. b) Digraph after Dandelion encoding.
c) Digraph after Happy encoding. d) Digraph after Blob encoding.

Various tree codes have different structural properties and have found
applications in graph theory and computer science. For example, Agnars-
son et al [1] used the queue-based code to derive the order of the expected
radius/diameter of a random labeled tree. Many graph-theoretic theorems
for trees have simple proofs when using tree codes [15]. Computer science
applications include efficient generation of random trees and genetic algo-
rithms for optimization problems. The latter is of special interest and has
generated a number of publications on tree-code use as well as genetic prop-
erties of various codes [4, 7, 10, 12, 13, 19, 22]. Since genetic algorithms
require frequent decoding of the chromosomes (tree codes), time-optimal
algorithms are critical in reducing execution time. While all known tree
codes admit O(n) algorithms, genetic algorithm literature describes sub-
optimal O(n log n) or even O(n2) algorithms for transformation codes. In
this paper we present linear-time algorithms for encoding and decoding
both deletion and transformation codes.

1.1 Notation and Assumptions

We assume that a tree T is stored in the adjacency-lists data structure,
which allows checking and updating a node’s degree in O(1) time. The
code is stored in array C. The nodes are labeled with integers 1 through
n. Degree of node v is denoted by deg(v). For a rooted tree: the parent of
node v is denoted by p(v), max(v) refers to the greatest node on a directed
path from v to the root, µ(v) denotes the greatest node on a directed path
from v, where the length of the path is at least 1.



2 Deletion Codes

All deletion codes iteratively delete leaf nodes of a tree until only one edge
remains. Each time a node is deleted, its only neighbor is appended to the
code. Prüfer’s code [21] deletes the leaf with the smallest label each time.
In 1953 Neville [16] described three codes, the first one of which is identical
to Prüfer’s approach. Neville’s second code deletes the leaves in ascending
order of the labels level-by-level: first, all the original leaves of the tree are
deleted, next the leaves of the remaining subtree are deleted, etc. Neville’s
third code at each step deletes the leaf node with the smallest label, except
that a newly created leaf is always deleted next (no matter what its label is).
In 2002 Deo and Micikevičius [6] proposed a code where leaf nodes are kept
in a queue and the node at the head is always deleted next. The initial
queue contains leaves of the original tree arranged in ascending order of
their labels, newly created leaves are appended to the tail. A preliminary
classification of deletion codes, including a brand new stack-based code,
appears in [5, 15]. Surveys by Caminiti et al [2, 3] formulate these codes in
terms of sorting pairs of integers.

2.1 Encoding Algorithms

Deletion codes are differentiated by the order in which they delete leaf
nodes. To formalize the process, we assume that at any point the leaves are
stored in a list. If nodes are deleted level-by-level (as is done by Neville’s
second code) a separate list is maintained for each level. Thus, deletion
codes are classified by two general characteristics: list type and the number
of lists. We consider three list types: stack (first-in, first-out), queue (first-
in, last-out), and sorted list. There are two choices for the number of lists:
single and multiple. Prior to encoding the list contains the leaves arranged
in ascending order of the labels. For simplicity of presentation, we list
generic algorithms for single and multiple-list encoding separately.

Algorithm: Generic Single-list Encoding Algorithm

1: L ← leaves of T
2: for i ← 1 to n− 2 do
3: v ← node removed from the head of L
4: C[i] ← neighbor of v
5: delete v from T
6: if deg(C[i]) = 1 then add C[i] to L

The initial list on line 1 can be created in O(n) time by examining each
node’s adjacency-list. Operations on lines 3 through 5 all take O(1) time,
regardless of the list type. Line 6 takes O(1) time if L is a stack or a queue,
leading to O(n) complexity for the entire algorithm. Multiple-list encoding



performs the same operations, except that it adds newly created leaves to
the ”next” list. As soon as the current list is exhausted, the ”next” list
becomes current (line 8) and the process is repeated. This ensures that
nodes are deleted level-by-level.

Algorithm: Generic Multiple-list Encoding Algorithm

1: k ← 0
2: L[k] ← leaves of T
3: for i ← 1 to n− 2 do
4: v ← node removed from the head of L[k]
5: C[i] ← neighbor of v
6: delete v from T
7: if deg(C[i]) = 1 then add C[i] to L[k + 1]
8: if L[k] = ® then k ← k + 1

Straightforward implementation where the lists are either stacks or queues
takes O(n) time. Details of O(n) implementations for sorted lists are dis-
cussed in Section 2.3. As was proved in [5], single and multiple-list codes
are identical if lists are queues. Thus, there are 5 distinct encodings. The
deletion codes for the tree in Figure 1a are:

• Single-list sorted (Prüfer’s): (6, 2, 7, 5, 9, 8, 8);
• Multiple-list sorted (Neville’s second): (6, 2, 5, 7, 9, 8, 8);
• Single-list stack (Neville’s third): (6, 8, 2, 7, 8, 5, 9);
• Multiple-list stack (proposed in [5]): (6, 2, 5, 9, 7, 8, 8);
• Queue (D-M code proposed in [6]): (6, 2, 5, 8, 7, 9, 8).

2.2 Decoding Algorithms

Generic decoding algorithms reverse the encoding process to construct a
tree from its code. Initially, the list contains nodes missing from the code.
A node is added to the list (lines 5 and 6) if it does not appear in the code
to the right of the current position i. This test can be carried out in O(1)
time assuming some preprocessing. First, all nodes are marked as unvisited.
Next, the code is scanned from right to left. Each time an unmarked node
is encountered it is marked as visited and the position is marked as the
rightmost occurrence. Note that the unmarked nodes are the ones added
to the initial list on line 1. Preprocessing traverses the code once, requiring
O(n) time.

Algorithm: Generic Single-list Decoding Algorithm

1: L ← nodes that do not appear in code C
2: for i ← 1 to n− 2 do
3: v ← node removed from the head of L
4: add edge {v, C[i]} to T
5: if i is the rightmost position of v in C then
6: add v to L
7: v ← node removed from the head of L
8: add edge {v, C[n− 2]} to T



The same type of list L must be used by corresponding encoding and de-
coding algorithms. Multiple-list decoding algorithm performs the same
operations, except that it maintains multiple lists. Straightforward imple-
mentations for stacks and queues take O(n) time since all operations inside
the loop take constant time and preprocessing requires O(n) time.

Algorithm: Generic Multiple-list Decoding Algorithm

1: k ← 0
2: L[k] ← nodes that do not appear in code C
3: for i ← 1 to n− 2 do
4: v ← node removed from the head of L[k]
5: add edge {v, C[i]} to T
6: if i is the rightmost position of v in C then
7: add v to L[k + 1]
8: if L[k] = ® then k ← k + 1
9: v ← node removed from the head of L
10: add edge {v, C[n− 2]} to T

2.3 O(n) Encoding/Decoding with Sorted Lists

Straightforward implementations of the above algorithms with sorted lists
require inserting a newly created leaf into a correct sorted position, leading
to O(n log n) time.
Single-list. To the best of our knowledge, the first O(n)-time approach for
single sorted list (Prüfer) code was described by Kilingberg [17](page 271).
The method was subsequently rediscovered in [8]. The idea is to examine
the nodes in ascending order of the labels. Each time a leaf is encountered,
its neighbor is recorded to the code and it is deleted from the tree. If a
newly created leaf is smaller than the current node, the leaf is processed
next (while-loop on line 6, otherwise the next node in order of the labels
is examined (line 10). This method requires O(n) time since each node is
examined at most twice: when it is visited by the traversal and when it
becomes a leaf. Pseudo-code below uses variables i and v to indicate the
current code position and the current node being traversed, respectively.

Algorithm: Single Sorted List Encoding

1: i ← 1; v ← 1
2: while i ≤ n− 2 do
3: if deg(v) = 1 then
4: C[i] ← neighbor of v
5: delete v from T
6: while deg(C[i]) = 1 and C[i] < v and i < n− 2 do
7: C[i + 1] ← neighbor of C[i]
8: delete C[i] from T
9: i ← i + 1
10: i ← i + 1
11: v ← v + 1



The decoding process simply reverses the encoding. The nodes are traversed
in ascending order of the labels. If a node that does not appear in the code
is encountered, an edge is added between that node and the one in the
current position of the code i. If i is the rightmost occurrence of node
C[i] in the code, it is marked as missing from the code and, if its label
is smaller than the one current in the traversal, it is processed next. The
rightmost-position test requires O(1) time after preprocessing as described
for the generic algorithm above.

Algorithm: Single Sorted List Decoding

1: mark all nodes that do not appear in code C
2: i ← 1; v ← 1
3: while i ≤ n− 2 do
4: if v is marked then
5: add edge {C[i], v} to T
6: if i is the rightmost position for C[i] in C then mark C[i]
7: while C[i] is marked and C[i] < v and i < n− 2 do
8: add edge {C[i], C[i + 1]} to T
9: i ← i + 1
10: if i is the rightmost position for C[i] in C then mark C[i]
11: i ← i + 1
12: v ← v + 1
13: add edge {C[n− 2], n} to T

Multiple-list. The leaves are deleted level-by-level. Let the leaves of the
original tree be level-0 nodes. The nodes that are leaves after all level-0
nodes are deleted are level-1 nodes, etc. Alternatively, if a tree is rooted at
its center, the level of a node is defined recursively: l(v)=0 if v is a leaf;
l(v) = max{l(u), where u is a child of v} otherwise. A center of a tree
can be found in O(n) time with two Depth-First Traversals (DFT). The
tree can be rooted and levels for all nodes can be computed in O(n) time
with another DFT using the recursive definition. Next, for each node v
create a pair (l(v), v) and sort these pairs in ascending lexicographic order
using radix sort (O(n) time). The sorted pairs specify precisely the order
in which the nodes are deleted from the tree during encoding. Thus, C[i]
is the parent (the tree has been rooted) of the node corresponding to the
ith sorted pair.

During decoding, we reconstruct the same sorted list of pairs. First,
we mark all the rightmost occurrences of nodes in the code (as described
earlier, this takes O(n) time). The nodes missing from the code are assigned
level 0. The levels of the nodes that do appear in the code are computed
in O(n) time as follows. Let numl(k) be the number of nodes at level
k. Level-1 nodes appear in the marked positions among the first numl(0)
positions of the code (since during encoding a node becomes a leaf exactly
when it is written to the code for the last time). Level-2 nodes appear in
the marked positions among the next numl(1) positions of the code, etc.



In general, level-k nodes appear in marked positions of the code between

positions
k−2∑

i=0

numl(i) and
k−1∑

i=0

numl(i). Lexicographic order of the pairs is

obtained in O(n) time. Edges between C[i] and the node corresponding to
the ith sorted pair are added to the tree. The tree is completed by adding
the edge between C[n− 2] and the node corresponding to the n− 1st pair.

3 Transformation Codes

Transformation codes convert a given tree into a digraph before recording
the nodes’ parents to the code. First, the tree is rooted at node 1 and
all edges are assigned direction from child to parent. Next, the digraph is
transformed, possibly creating cycles, to satisfy a specific property. Finally,
the parents of n−2 nodes are recorded to the code. It is the transformation
process and the property that differentiate various codes.

In her PhD thesis [20] Picciotto described three codes: Happy, Blob,
and Dandelion. As she points out, these codes are related to previous
results. One gives explicitly a bijection that is implicit in the Orlin’s proof of
Cayley’s theorem [18]. Another is based on a proof of Knuth [14]. The last
one is an implementation of the Joyal’s pseudo-bijective proof of Cayley’s
theorem [11] and is equivalent to the one introduced by Eğecioğlu and
Remmel [9]. The three transformation codes for the tree in Figure 1a are:

• Dandelion: (2, 5, 9, 6, 8, 7, 8);
• Happy: (7, 2, 5, 9, 6, 8, 8);
• Blob: (2, 5, 9, 8, 7, 6, 8).

3.1 Preprocessing

The transformation codes operate on trees rooted at node 1. An unrooted
tree can be rooted (node-parents computed) in O(n) time with a Depth-
First Traversal (DFT).

For each node v, the Dandelion and Blob encoding algorithms require
the knowledge of max(v) – the greatest node on the directed path from
v to the root (including v). A DFT can compute these values during the
rooting process.

All transformation decoding algorithms require µ(v) for each node v.
µ(v) is the greatest node on the directed path from p(v). Note that µ(v) = v
implies that v is the greatest node in a cycle. Again, a DFT algorithm is
easily modified to compute µ values in O(n) time (see [4] for details).



3.2 Dandelion code

The Dandelion code transforms a tree into a digraph rooted at node 1 that
contains the edge (2, 1). This is accomplished by iteratively swapping the
parent of node 2 with max(p(2)) - the node with the greatest label on a path
from p(2) to the root. Note that each swap creates a cycle and max(p(2))
is the greatest label in that cycle. All operations inside the loops take
constant time, leading to O(n) time for the encoding algorithm.

Algorithm: Dandelion encoding

1: v ← p(2)
2: while v 6= 1 do
3: swap v and p(max(v))
4: for i ← 1 to n− 2 do
5: C[i] ← p(i + 2)

To reconstruct a tree from its code, we first add edges (2, 1) and (i +
2, C[i]), where 1 ≤ i ≤ n− 2, to an empty digraph. Next, for each cycle in
the digraph we identify the nodes with the greatest label. Note that every
such node v = µ(v). The parents of these nodes were swapped during
encoding (line 3), thus we can reconstruct the original tree.

Algorithm: Dandelion decoding

1: p(2) ← 1
2: for i ← 1 to n− 2 do
3: p(i + 2) ← C[i]
4: for v = 3 to n do
5: if µ(v) = v then
6: swap p(2) and p(v)

Since all operations inside the loops take O(1) time after preprocessing, the
entire algorithm requires O(n) time. Another O(n) approach for endoc-
ing/decoding Dandelion code was proposed by Paulden and Smith [19].

3.3 Happy code

The Happy code traverses the path from 2 to 1, placing the intermediate
nodes in cycles. The first cycle is started with p(2). Every time a node
whose parent is greater than the cycle starter node is reached, a new cycle
containing that one node is started (lines 5 through 7). Other nodes are
inserted into the current cycle immediately after the starter node (lines 9
and 10). Note that the starter node always has the greatest label on its
cycle. Since the algorithm traverses the path from 2 to 1 once, the algorithm
requires O(n) time.



Algorithm: Happy encoding

1: starter ← 0
2: while p(2) 6= 1 do
3: v ← p(2)
4: p(2) ← p(v)
5: if v > starter then
6: starter ← v
7: p(starter) ← starter
8: else
9: p(v) ← p(starter)
10: p(starter) ← v
11: for i ← 1 to n− 2 do
12: C[i] ← p(i + 2)

To reconstruct a tree from its code, we first add edges (2, 1) and (i+2, C[i]),
where 1 ≤ i ≤ n − 2, to an empty digraph. Next, the decoding algorithm
considers each cycle-starter node (a node equal to its µ-value) in descending
order. Each starter node’s cycle is traversed (lines 6 through 11), reinstating
the edges originally in the rooted T .

Algorithm: Happy decoding

1: p(2) ← 1
2: for i ← 1 to n− 2 do
3: p(i + 2) ← C[i]
4: for starter ← n downto 3 do
5: if µ(starter) = starter then
6: v = p(starter)
7: while p(2) 6= starter do
8: next ← p(v)
9: p(v) ← p(2)
10: p(2) ← v
11: v ← next

The algorithm requires O(n) time as it visits each node at most twice:
during the traversal by the for-loop on line 4 and while traversing a cycle
by the while-loop.

3.4 Blob code

Algorithm: Blob encoding

1: last ← p(n)
2: for v ← n− 1 downto 2 do
3: if max(v) = v then
4: swap p(v) and last
5: for i ← 1 to n− 2 do
6: C[i] ← p(i + 1)

Picciotto’s description of the Blob code adds nodes to the macro-node in
decreasing order of the labels, possibly modifying their parents. We forgo



the use of the macro-node and simply describe the encoding in terms of
parent modification. The parent of node v is changed to the last node if v
is the greatest label on the path from v to the root (v = max(v)). Since all
operations in the loops take O(1) time, the algorithm requires O(n) time.

Algorithm: Blob decoding

1: p(n) ← 1
2: for i ← 1 to n− 2 do
3: p(i + 1) ← C[i]
4: last = 1
5: for v = 2 to n do
6: if µ(v) ≤ v then
7: swap p(v) and last

Even though encoding does not explicitly reassign p(n), decoding algorithm
assumes that p(n) = 1. Thus, decoding is started by adding edges (n, 1)
and (i + h1, C[i]), where 1 ≤ i ≤ n − 2, to an empty digraph. Note that
the path from each v, such that max(v) > v, to max(v) is the same in the
original tree and the initial digraph. Furthermore, there is no path from
v = max(v) to a node greater than v in the digraph. Thus, utilizing µ(v)
we can reconstruct the parent swaps in O(n) time. Proof of correctness
appears in [4].

4 Conclusions

We have described O(n)-time algorithms for both computing and decod-
ing all known deletion and transformation tree codes. To the best of our
knowledge, no O(n) algorithms have been published for the Blob and Happy
codes, even though they are used by the genetic algorithm community. The
deletion algorithms assume non-rooted trees. However, these algorithms
can be easily extended to operate on rooted trees by ensuring that the
chosen root is never added to the list of leaves (and, therefore, is never
deleted). This extension would not affect the time-complexity as it would
simply add an if-statement.
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