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Abstract. We consider the problem of coding labeled trees by means
of strings of node labels and we present a unified approach based on a
reduction of both coding and decoding to integer (radix) sorting. Apply-
ing this approach to four well-known codes introduced by Prüfer [18],
Neville [17], and Deo and Micikevicius [5], we close some open problems.
With respect to coding, our general sequential algorithm requires opti-
mal linear time, thus solving the problem of optimally computing the
second code presented by Neville. The algorithm can be parallelized on
the EREW PRAM model, so as to work in O(log n) time using O(n) or
O(n
√

log n) operations, depending on the code.
With respect to decoding, the problem of finding an optimal sequential
algorithm for the second Neville code was also open, and our general
scheme solves it. Furthermore, in a parallel setting our scheme yields the
first efficient decoding algorithms for the codes in [5] and [17].

1 Introduction

Labeled trees are of interest in practical and theoretical areas of computer sci-
ence. For example, Ethernet has a unique path between terminal devices, thus
being a tree: labeling the tree nodes is necessary to uniquely identify each device
in the network. An interesting alternative to the usual representations of tree
data structures in computer memories is based on coding labeled trees by means
of strings of node labels. This representation was first used in the proof of Cay-
ley’s theorem [2, 18] to show a one-to-one correspondence between free labeled
trees on n nodes and strings of length n − 2. In addition to this purely mathe-
matical use, string-based codings of trees have many practical applications. For
instance, they make it possible to generate random uniformly distributed trees
and random connected graphs [14]: the generation of a random string followed
by the use of a fast decoding algorithm is typically more efficient than random
tree generation by the addition of edges, since in the latter case one must pay
attention not to introduce cycles. In addition, tree codes are employed in genetic
algorithms, where chromosomes in the population are represented as strings of
integers, and in heuristics for computing minimum spanning trees with addi-
tional constraints, e.g., on the number of leaves or on the diameter of the tree



itself [7, 8, 20]. Not last, tree codes are used for data compression [19] and for
computing the tree and forest volumes of graphs [13].

Tree codes. We now survey the main tree codes known in the literature, refer-
ring the interested reader to the taxonomy in [6] for further details. We assume
to deal with a labeled n-node rooted tree T whose nodes have distinct labels
from [1, n]. All the codes that we discuss are obtained by progressively updating

the tree through the deletion of leaves: when a leaf is eliminated, the label of its
parent is added to the code.

The oldest and most famous code is due to Prüfer [18] and always deletes
the leaf with smallest label. In 1953, Neville [17] presented three different codes,
the first of which coincides with Prüfer’s one. The second Neville’s code, before
updating T , eliminates all the leaves ordered by increasing labels. The third
Neville’s code works by deleting chains. We call pending chain a path u1, . . . , uk

of the tree such that the starting point u1 is a leaf, and, for each i ∈ [1, k−1], the
elimination of ui makes ui+1 a leaf: the code works by iteratively eliminating
the pending chain with the smallest starting point. Quite recently, Deo and
Micikevicius [5] suggested the following coding approach: at the first iteration,
eliminate all tree leaves as in the second Neville’s code, then delete the remaining
nodes in the order in which they assume degree 1. For brevity, we will denote
the codes introduced above with PR, N2, N3, and DM, respectively.

All these codes have length n− 1 and the last element is the root of the tree.
If the tree is unrooted, the elimination scheme implicitly defines a root for it.
Actually, it is easy to see that the last element in the code is: a) the maximum
node label (i.e., n) for Prüfer’s code; b) the maximum label of a center of the
tree for the second Neville’s code; c) the label of the maximum leaf for the third
Neville’s code; d) the label of any tree center for Deo and Micikevicius’s code. In
cases a), c), and d), the value of the last element can be univocally determined
from the code and thus the code length can be reduced to n − 2. We remark
that codes PR and DM have been originally presented for free trees, while Neville’s
codes have been generalized for free trees by Moon [16].

Related work. A linear time algorithm for computing Prüfer codes is presented
in [3]. The algorithm can be easily adapted to the third Neville’s code. Deo and
Micikevicius give a linear time algorithm for code DM based on a quite different
approach. As stated in [6], no O(n) time algorithm for the second Neville’s code
was known so far: sorting the leaves before each tree update yields indeed an
O(n log n) bound. An optimal parallel algorithm for computing Prüfer codes,
which improves over a previous result due to Greenlaw and Petreschi [10], is
given in [9]. A few simple changes make the algorithm work also for code N3.
Efficient, but not optimal, parallel algorithms for codes N2 and DM are presented
in [7]. A simple – non optimal – scheme for constructing a tree T from a Prüfer
code is presented in [6]. The scheme can be promptly generalized for building T

starting from any of the other codes: this implies decoding in linear time codes N3
and DM, and in O(n log n) time codes PR and N2. An O(n) time decoding algorithm
for PR is described in [9]. In a parallel setting, Wang, Chen, and Liu [19] propose
an O(log n) time decoding algorithm for Prüfer codes using O(n) processors on



the EREW PRAM computational model. At the best of our knowledge, parallel
decoding algorithms for the other codes were not known in the literature until
this paper.

Our contribution. We show that both coding and decoding can be reduced to
integer (radix) sorting. Based on this reduction, we present a unified approach
that works for all the codes introduced so far and can be applied both in a
sequential and in a parallel setting. The coding scheme is based on the definition
of pairs associated to the nodes of T according to criteria dependent on the
specific code: the coding problem is then reduced to the problem of sorting these
pairs in lexicographic order. The decoding scheme is based on the computation
of the rightmost occurrence of each label in the code: this is also reduced to
integer radix sorting.

Concerning coding, our general sequential algorithm requires optimal linear
time for all the presented codes; in particular, it solves the problem of computing
the second Neville code in time O(n), which was still open [6]. The algorithm
can be parallelized, and its parallel version either matches or improves by a
factor O(

√
log n) the performances of the best ad-hoc approaches known so far.

Concerning decoding, we design the first parallel algorithm for codes N2, N3,
and DM, working on the EREW PRAM model in O(log n) time and O(n

√
log n)

operations (with respect to PR, our algorithm matches the performances of the
best previous result). Our parallel results both for coding and for decoding are
summarized in the following table:

Coding Decoding
before this paper before this paper

PR O(n) [9] O(n) O(n log n) [19] O(n log n)

N2 O(n log n) [7] O(n
√

log n) open O(n
√

log n)

N3 O(n) [7, 9] O(n) open O(n
√

log n)

DM O(n log n) [7] O(n
√

log n) open O(n
√

log n)

where costs are expressed in terms of number of operations. We remark that
the problem of finding an optimal sequential decoding algorithm for code N2

was also open, and our general scheme solves it optimally. Hence, we show that
labeled trees can be coded and decoded in linear sequential time independently
of the specific code. Due to lack of space, we omit many details in this extended
abstract.

2 A unified coding algorithm

Many sequential and parallel coding algorithms have been presented in the lit-
erature [3, 5, 6, 9, 10, 19], but all of them strongly depend on the properties of
the code which has to be computed and thus are very different from each other.
In this section we show a unified approach that works for all the codes intro-
duced in Section 1 and can be used both in a sequential and in a parallel setting.



Table 1. Pair (xv, yv) associated to node v for different codes.

PR N2 N3 DM

xv µ(v) l(v) λ(v) l(v)

yv d(µ(v), v) v d(λ(v), v) γ(v)

Namely, we associate each tree node with a pair of integer numbers and we sort
nodes using such pairs as keys. The obtained ordering corresponds to the order
in which nodes are removed from the tree and can be thus used to compute the
code. In the rest of this section we show how different pair choices yield Prüfer,
Neville, and Deo and Micikevicius codes, respectively. We then present a linear
time sequential coding algorithm and its parallelization on the EREW PRAM
model. The parallel algorithm works in O(log n) time and requires either O(n)
or O(n

√
log n) operations, depending on the code.

Coding by sorting pairs. Let T be a rooted labeled n-node tree. If T is not
rooted, we choose a root r as in points a) – d) in Section 1. Let u, v be any two
nodes of tree T . Let us call: Tv, the subtree of T rooted at v; d(u, v), the distance
between any two nodes u and v (d(v, v) = 0); l(v), the level of a node v, i.e., the
maximum distance of v from a leaf in Tv; µ(v), the maximum label among nodes
in Tv; λ(v), the maximum label among leaves in Tv; γ(v), the maximum label
among the leaves in Tv at maximum distance from v; (xv, yv), a pair associated
to node v according to the specific code as shown in Table 1; P , the set of pairs
(xv, yv). The following lemma establishes a correspondence between the set P

of pairs and the order in which nodes are removed from the tree. Due to lack of
space, we defer the proof to the extended version of this paper.

Lemma 1. For each code, the lexicographic ordering of the pairs (xv, yv) in set

P corresponds to the order in which nodes are removed from tree T according to

the code definition.

Before describing the sequential and parallel algorithms, note that it is easy
to sort the pairs (xv, yv) used in the coding scheme. Indeed, independently of
the code, each element in such pairs is in the range [1, n]. A radix-sort like
approach [4] is thus sufficient to sort them according to yv, first, and xv, later.
In Figure 1 the pairs relative to the four codes are presented. The tree used in
the example is the same in the four cases and is rooted according to points a) –
d) in Section 1. Bold arcs in the trees related to codes PR and N3 indicate chains 3

and pending chains, respectively; dashed lines in the trees related to codes N2

and DM separate nodes at different levels. In each figure the string representing
the generated code is also shown.

Sequential algorithm. Using the pairs defined in Table 1, an optimal sequential
coding algorithm is now straightforward:

3 According to the definition of Prüfer’s code, when the node µ(v) is chosen for re-
moval, the only remaining subtree of Tv consists of a chain from µ(v) to v.



PR: 6 10 6 7 1 2 7 7 10 N3: 6 10 7 6 7 1 2 7 9

N2: 6 10 6 1 7 2 7 7 7 DM: 6 10 6 1 7 7 7 2 2

Fig. 1. Pair associated to each tree node as specified in Table 1.

UNIFIED CODING ALGORITHM:

1. for each node v, compute the pair (xv, yv)
2. sort the tree nodes according to pairs (xv, yv)
3. for i = 1 to n− 1 do

4. let v be the i-th node in the ordering

5. append parent(v) to the code

The unified coding algorithm clearly requires linear time: the set of pairs
can be easily computed in O(n) time using a post-order visit of the tree, and
two bucket-sorts can be used to implement step 2. Hence we have the following
theorem:

Theorem 1. Let T be a n-node tree and let the pair (xv, yv) associated to each

node v of T be defined as in Table 1. The unified coding algorithm computes

codes PR, N2, N3, and DM in O(n) worst-case running time.

Parallel algorithm. We now show how to parallelize each step of the sequential
algorithm presented above. We work in the simplest PRAM model with exclusive
read and write operations (EREW [12]). The Euler tour technique makes it
possible to root the tree at the node r specified in Section 1 in O(log n) time
with cost O(n) [12]. The node r can be easily identified; in particular, when r is
the center of the tree, we refer to the approach described in [15]. The pairs given



in Table 1 can be computed in O(log n) time with cost O(n) using standard
techniques, such as Euler tour, rake, and list ranking [12].

Step 3 can be trivially implemented in O(1) time with cost O(n). The sort-
ing in step 2 is thus the most expensive operation. We follow a radix-sort like
approach and use the stable integer-sorting algorithm presented in [11] as a sub-
routine. This requires O(log n) time, linear space and O(n

√
log n) cost on an

EREW PRAM with O(log n) word length. Under the hypothesis that the ma-
chine word length is O(log2 n), the cost of sorting can be reduced to O(n) [11],
and so does the cost of our coding algorithm.

We remark that our algorithm solves within a unified framework the problem
of computing four different tree codes. In addition, with respect to codes N2 and
DM, it improves of an O(

√
log n) factor over the best approaches known in the

literature [7]. Unfortunately, as far as we have described it, it does not match
the perfomances of the optimal algorithms available for codes PR [9] and N3 [7].
However, in these cases we can further reduce the cost of our algorithm to O(n)
by using an ad-hoc sorting procedure that benefits from the partition into chains.

Let us consider Prüfer codes first. As observed in [10], the final node ordering
can be obtained by sorting chains among each other and nodes within each chain.
In our framework, the chain ordering is given by the value µ(v), and the position
of each node within its chain by the distance d(µ(v), v). Instead of using a black-
box integer sorting procedure, we exploit the fact that we can compute optimally
the size of each chain, i.e., the number of nodes with the same µ(v). A prefix sum
computation gives, for each chain head, the number of nodes in the preceding
chains, i.e., its final position. At last, the position of the remaining nodes is
univocally determined summing up the position of the chain head µ(v) with
the value d(µ(v), v). Similar considerations can be applied to the third Neville’s
code. The following theorem summarizes our results on parallel coding:

Theorem 2. Let T be a n-node tree and let the pair (xv, yv) associated to each

node v of T be defined as in Table 1. On the EREW PRAM model, the unified

coding algorithm computes codes PR and N3 optimally, i.e., in O(log n) time

with cost O(n), and codes N2 and DM in O(log n) time with cost O(n
√

log n).

3 Decoding algorithms

In this section we present sequential and parallel algorithms for decoding, i.e.,
for building the tree T corresponding to a given code C. As far as C is computed,
each node label in it represents the parent of a leaf eliminated from T . Hence, in
order to reconstruct T , it is sufficient to compute the ordered sequence of labels
of the eliminated leaves, say S: for each i ∈ [1, n− 1], the pair (Ci, Si) will thus
be an arc in the tree. Before describing the algorithms, we argue that computing
the rightmost occurrence of a node in the code is very useful for decoding, and
we show how to obtain such an information both in a sequential and in a parallel
setting.

Decoding by rightmost occurrence computation. We first observe that
the leaves of T are exactly those nodes that do not appear in the code, as they



are not parents of any node. Each internal node, say v, in general may appear in
C more than once; each appearance corresponds to the elimination of one of its
children, and therefore to decreasing the degree of v by 1. After the rightmost
occurrence in the code, v is clearly a leaf and thus becomes a candidate for being
eliminated. More formally:

∀v 6= r, ∃ unique j > rightmost(v, C) such that Sj = v

where r is the tree root (i.e., the last element in C) and rightmost(v, C) de-
notes the index of the rightmost occurrence of node v in C. We assume that
rightmost(v, C) = 0 if v is a leaf of T .

It is easy to compute the rightmost occurrence of each node sequentially by
simply scanning code C. In parallel, we can reduce the rightmost occurrence
computation problem to a pair sorting problem. Namely, we sort in increasing
order the pairs (Ci, i), for i ∈ [1, n − 1]. Let us now consider the sub-sequences
of pairs with the same first element Ci: the second element of the last pair in
each sub-sequence is the index of the rightmost occurrence of node Ci in the
code. Since each pair value is an integer in [1, n], we can use twice the stable
integer-sorting algorithm of [11]: this requires O(log n) time and O(n

√
log n) cost

in the EREW PRAM model. Then, each processor pi in parallel compares the
first element of the i-th pair in the sorted sequence to the first element of the
(i + 1)-th pair, deciding if this is the end of a sub-sequence or not. This requires
additional O(1) time and linear cost with exclusive read and write operations.

A unified decoding algorithm. We now describe a decoding algorithm for
codes N3, PR, and DM that works on the rightmost occurrences and can be used
both in a sequential and in a parallel setting. First, for each code, we show
how the position of a node in the sequence S that we want to construct can be
expressed as a function of rightmost.

Third Neville code. By definition of code N3, each internal node v is elimi-
nated as soon as it becomes a leaf. Thus, the position of v in sequence S is
exactly rightmost(v, C) + 1. The entries of S which are still free after posi-
tioning all the internal nodes are occupied by the leaves of T in increasing
order.

Prüfer code. Differently from the third Neville’s code, in code PR an internal
node v is eliminated as soon as it becomes a leaf if and only if there is no leaf
with label smaller than v. In order to test this condition, following [19], we in-
troduce the number of nodes with label smaller than v that become leaves be-
fore v: prev(v, C) = |{u : u < v and rightmost(u, C) < rightmost(v, C)}|.
Thus, the position of v in sequence S is rightmost(v, C) + 1 if and only
if rightmost(v, C) ≥ prev(v, C). All the other nodes are assigned to the
remaining entries of S by increasing label order.

Deo and Micikevicius code. All the leaves of T , sorted by increasing labels,
are at the beginning of sequence S. Then, all the internal nodes appear in
the order in which they become leaves, i.e., sorted by increasing rightmost.
It is possible to get a closed formula giving the position of each node. For



each i ∈ [1, n − 1], let ρ(i) be 1 if i is the rightmost occurrence of node Ci,
and 0 otherwise. Let σ(i) =

∑
j≤i ρ(j). The position of an internal node v is

exactly |leaves(T )|+ σ(rightmost(v, C)).

Our unified decoding algorithm is as follows:

DECODING ALGORITHM:

1. for each node v compute rightmost(v,C)
2. for each node v except for the root do

3. if (test(v) = true) then S[position(v)]← v

4. let L be the list of nodes not yet assigned in increasing order

5. let P be the set of positions of S which are still empty

6. for each i = 1 to |P| do

7. S[P [i]]← L[i]

where test(v) and position(v) are specified in Table 2. With respect to Prüfer’s
code, the algorithm is essentially the same as the one described in [19], and
we refer to [19, 9] for a detailed parallel analysis. As observed in Section 1, a
linear sequential decoding algorithm for Prüfer codes is presented in [9], while
the straightforward sequential implementation of our algorithm would require
O(n log n) time. This can be easily reduced to O(n) time by adapting the de-

coding algorithm in such a way that the prev computation can be avoided.
With respect to codes N3 and DM, the decoding algorithm runs in linear time.

In parallel, σ(i) can be computed for each i using a prefix sum operation [12].
In order to get set L in step 4, we can mark each node not yet assigned to S

and obtain its rank in L by computing prefix sums. Similarly for set P . Hence,
the most expensive step is the rightmost computation, which requires integer
sorting. This implies the following result:

Theorem 3. Let C be a string of n−1 integers in [1, n]. Let C be the set of codes

PR, N3, and DM. For each i ∈ [1, n− 1], let test(C[i]) and position(C[i]) be

defined as in Table 2. For each code in C, the decoding algorithm computes

the tree corresponding to string C in O(n) sequential time. Decoding on the

EREW PRAM model requires O(log n) time with cost O(n log n) for code PR

and O(log n) time with cost O(n
√

log n) for codes N3 and DM.

Second Neville code. Differently from the other codes, in code N2 the right-
most occurrence of each node in C gives only partial information about sequence
S. Thus, we treat N2 separately in this section. We first observe that if all nodes
were assigned with a level, an ordering with respect to pairs (l(v), v) would give
sequence S, and thus the tree. We refer to Section 2 for details on the correctness
of this approach. We now show how to compute l(v).

Let x be the number of leaves of T , which have level 1 and rightmost occur-
rence 0. Consider the first x elements of code C, say C[1], . . . , C[x]. For each i,
1 ≤ i ≤ x, such that i is the rightmost occurrence of C[i], we know that node
C[i] has level 2. The same reasoning can be applied to get level-3 nodes from
level-2 nodes, and so on. With respect to the running time, a sequential scan



Table 2. Condition on node v that is checked in the decoding algorithm and posi-
tion of v as a function of rightmost(v,C).

test(v) position(v)

N3 true rightmost(v,C) + 1

PR rightmost(v, C) ≥ prev(v,C) rightmost(v,C) + 1

DM true |leaves(T )|+ σ(rightmost(v,C))

of code C is sufficient to compute the level of each node in linear time. Integer
sorting does the rest. Unfortunately, this approach is inherently sequential and
thus inefficient in parallel.

Before describing our parallel approach, we note that the procedure for level
computation described above can be applied also for code DM. Indeed, let T ′

be the tree obtained interpreting C as the code by Deo and Micikevicius and
let S′ be the corresponding sequence: although T and T ′ are different, they
have the same nodes at the same levels and, both in S and S′, nodes at level
i + 1 appear after nodes at level i, but are differently permuted within the level.
In view of these considerations, we are able to solve our problem in parallel,
using T ′ to get our missing level information. Namely, first we build tree T ′

using the decoding algorithm, then we compute node levels applying the
Euler tour technique, and finally we obtain sequence S (corresponding to tree
T ) by sorting the pairs (l(v), v). It is to remark that the Euler tour technique
requires a particular data structure [12] that can be built as described in [10].
The bottleneck of this procedure is sorting of pairs of integers in [1, n], and thus
we can use the parallel integer sorting presented in [11]. We can summarize the
results concerning code N2 as follows:

Theorem 4. Let C be a string of n − 1 integers in [1, n]. The tree correspond-

ing to C according to code N2 can be computed in O(n) sequential time and in

O(log n) time with cost O(n
√

log n) on the EREW PRAM model.

4 Conclusions and open problems

We have presented a unified approach for coding labeled trees by means of
strings of node labels and have applied it to four well-known codes: PR [18],
N2 [17], N3 [17], and DM [5]. The coding scheme is based on the definition of pairs
associated to the nodes of the tree according to some criteria dependent on the
specific code. The coding problem is reduced to the problem of sorting these
pairs in lexicographic order. The decoding scheme is based on the computation
of the rightmost occurrence of each label in the code: this is also reduced to radix
sorting. We have applied these approaches both in a sequential and in a parallel
setting. We have completely closed the sequential coding and decoding problem,
showing that both operations in all the four codes can be done in linear time.
In the parallel setting, further work is still needed in order to improve all the



non optimal coding and decoding algorithms. We remark that any improvement
on the computation of integer sorting would yield better results for our parallel
algorithms.
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12. Jájá, J.: An Introduction to parallel algorithms. Addison Wesley, 1992.
13. Kelmans, A., Pak, I., and Postnikov, A.: Tree and forest volumes of graphs.

DIMACS Technical Report 2000-03, 2000.
14. Kumar, V., Deo, N., and Kumar, N.: Parallel generation of random trees and

connected graphs. Congressus Numerantium, 130, pp. 7–18, 1998.
15. Lo, W.T., and Peng, S.: The optimal location of a structured facility in a tree

network. Journal of Parallel Algorithms and Applications, 2, pp. 43–60, 1994.
16. Moon, J.W.: Counting labeled trees. William Clowes and Sons, London, 1970.
17. Neville, E.H.: The codifying of tree structures. Proceedings of Cambridge Philo-

sophical Society, 49, pp. 381–385, 1953.
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