
Engineering Tree Labeling Schemes: a

Case Study on Least Common Ancestors�

Saverio Caminiti1, Irene Finocchi1, and Rossella Petreschi1

Computer Science Department, Sapienza University of Rome
Via Salaria, 113 - 00198 Rome, Italy

{caminiti,finocchi,petreschi}@di.uniroma1.it

Abstract. We address the problem of labeling the nodes of a tree such
that one can determine the identifier of the least common ancestor of
any two nodes by looking only at their labels. This problem has applica-
tion in routing and in distributed computing in peer-to-peer networks. A
labeling scheme using Θ(log2 n)-bit labels has been previously presented
by Peleg. By engineering this scheme, we obtain a variety of data struc-
tures with the same asymptotic performances. We conduct a thorough
experimental evaluation of all these data structures. Our results clearly
show which variants achieve the best performances in terms of space
usage, construction time, and query time.

1 Introduction

Effective representations of large, geographically dispersed communication net-
works should allow the users to efficiently retrieve information about the network
in a distributed and localized way. Labeling schemes provide an answer to this
problem by assigning labels to the network nodes in such a way that queries
can be computed alone from the labels of the involved nodes, without any extra
information source. The primary goal of a labeling scheme is to minimize the
maximum label length, while keeping queries fast. Adjacency labeling schemes
were first introduced by Breuer and Folkman in [5, 6], and further studied in [12].
The interest in informative labeling schemes, however, was revived only more re-
cently, after Peleg showed the feasibility of the design of efficient labeling schemes
capturing distance information [16]. Since then, upper and lower bounds for la-
beling schemes have been proved on a variety of graph families and for a large
variety of queries, including distance [2, 9, 11], tree ancestry [1, 3], flow and con-
nectivity [14]. In spite of a large body of theoretical works, to the best of our
knowledge only few experimental investigations of the efficiency of informative
labeling schemes have been addressed in the literature [9, 13].

In this paper we focus on labeling schemes for answering least common an-
cestor queries in trees. Labeling schemes for least common ancestors can be
� Work partially supported by MIUR, the Italian Ministry of Education, University

and Research, under Project MainStream (“Algorithms for Massive Information
Structures and Data Streams”).

easily exploited to answer distance queries and are mainly useful in routing mes-
sages on tree networks, processing queries in XML search engines and distributed
computing in peer-to-peer networks (see, e.g., [3, 4, 13]). In [17], Peleg has proved
that for the class of n-node trees there exists a labeling scheme for least common
ancestors using Θ(log2 n)-bit labels, which is also shown to be asymptotically
optimal.

Peleg’s labeling scheme hinges upon two main ingredients: a decomposition of
the tree into paths, and a suitable encoding of information related to such paths
into the node labels. Peleg’s data structure uses an ad hoc path decomposition
as well as an ad hoc label structure. In this paper we first discuss different
path decomposition approaches and different ways of constructing node labels,
with the aim of engineering Peleg’s scheme and obtaining a variety of labeling
schemes for least common ancestors. We then perform a thorough experimental
evaluation of all these variants, also analyzing the effects of structural properties
of the input tree (such as balancing and degree) on their performances. The main
findings of our experiments can be summarized as follows:

– Among different path decompositions, those that generate the smallest num-
ber of paths (with the largest average path length) appear to be preferable
in order to minimize the total size of the data structure.

– A variant of Peleg’s scheme proposed in [7] achieves the best performances
in terms of space usage and construction time.

– Peleg’s scheme, used with a minor variant of the path decomposition origi-
nally proposed in [17], exhibits the fastest query times.

– All the data structures are very fast in practice. Although node labels have
size O(log2 n), only a small fraction of the labels is considered when answer-
ing random queries: typically, no more than a constant number of words per
query is read in all our experiments. However, query times slightly increase
with the instance size due to cache effects.

– Variants of the data structures carefully implemented with respect to align-
ment issues save 20% up to 40% of the space, but increase the query times
approximately by a factor 1.3 on our data sets. The space saving reduces as
the instance size gets larger.

The remainder of this paper is organized as follows. In Section 2 we describe the
data structures being compared, focusing on path decomposition, label structure,
and query algorithms. In Section 3 we give implementation details and discuss
our experimental framework. The main findings of our experimental study are
presented in Section 4.

2 Labeling Schemes for Least Common Ancestors

All the tree labeling schemes that we study in this paper follow the same basic
approach: the tree is decomposed into a set of node disjoint paths, that we
will call solid paths, and information related to the highest node in each path,
called head of the path, is suitably encoded into the node labels. In the following

we will consider different path decomposition approaches, then we will describe
two possible ways of designing node labels. Different combinations of these two
ingredients yield different labeling schemes: one of them coincides with the tree
labeling scheme for least common ancestors originally proposed by Peleg in [17].

Path Decompositions. Let T be a tree with n nodes rooted at a given node r.
For any node u, we denote its parent and its level in T by p(u) and �(u), respec-
tively. We assume that the root has level 0. We also denote by Tu the subtree of
T rooted at u and by |Tu| the number of its nodes. In all the decompositions, for
any solid path π, we denote by head(π) the node of π with smallest level. We
will also say that a solid path π is an ancestral solid path of a node u if head(π)
is an ancestor of u.

Decomposition by Large Child. This decomposition hinges upon the distinction
between small and large nodes: a nonroot node v with parent u is called small
if |Tv| ≤ |Tu|/2, i.e., if its subtree contains at most half the number of nodes
contained in its parents’ subtree. Otherwise, v is called large. It is not difficult
to see that any node has at most one large child: we will consider the edge to
that large child, if any, as a solid edge. Solid edges induce a decomposition of
the tree into solid paths: we remark that the head of any solid path π is always
a small node, while all the other nodes in π must be large. Each node can have
at most �log n� small ancestors, and thus at most �log n� ancestral solid paths
(unless otherwise stated, all logarithms will be to the base 2).

Decomposition by Maximum Child. This is a minor variant of the previous
decomposition, using a relaxed definition of large nodes: a nonroot node v with
parent u is considered a maximum child of u if |Tv| = maxw:(u,w)∈T |Tw|. If two
or more children of u satisfy this condition, ties are broken arbitrarily. The edge
to the maximum child is considered as a solid edge. We note that a large node
is necessarily a maximum child; however, a maximum child exists even when all
the children v of a node u are such that |Tv| ≤ |Tu|/2. All the basic properties
of the decomposition by large child remain valid in this variant.

Decomposition by Rank. In this decomposition, an edge (u, v) is solid if and only
if �log |Tu|� = �log |Tv|�. It is not difficult to prove that for any node u there
exists at most one child v such that (u, v) is solid (see, e.g., [10, 15]). This implies
that solid edges univocally partition the tree into disjoint paths. Some of these
paths can consist of a single node: for instance, all the tree leaves are heads of
solid paths of length 0. We remark that for all nodes v belonging to a given path
π, the size of the subtree rooted at v satisfies the inequality 2i ≤ |Tv| < 2i+1,
for some i ≥ 0: we will say that i is the rank of path π. Since the rank of any
path can be at most �log n�, it follows that each node u can have at most �log n�
ancestral solid paths.

Label Structure and Query Algorithms. We present two different ways of
constructing node labels (the two approaches are extensively described in [17]
and [7], respectively). When combined with any of the path decompositions,
both schemes yield labels of size O(log2 n). We also describe how information

maintained in the node labels can be used to infer the least common ancestor of
any two nodes.

Peleg’s scheme. The first scheme [17] is based on a depth-first numbering
of the tree T : as a preprocessing step, each node v is assigned an interval
Int(v) = [DFS(v); DFS(w)], where w is the last descendent of v visited by
the depth-first tour and DFS(x) denotes the depth-first number of node x. The
label of each node v of the tree is defined as label(v) = < Int(v), list(v) >;
where list(v) contains information related to all the heads (t1, t2, . . . , th) of solid
paths from the root of T to v: for each head ti, list(v) contains a quadruple
(ti, �(ti), p(ti), succv(ti)), where succv(ti) is the unique child of ti on the path to
node v. We remark that this is slightly different (and optimized) with respect to
the scheme originally proposed in [17].

We now describe the query algorithm: given two nodes u and v, the algorithm
infers their least common ancestor z = lca(u, v) using only information contained
in label(u) and label(v). By well-known properties of depth-first search, we have
that for every two nodes x and y of T , Int(x) ⊆ Int(y) if and only if x is a
descendent of y in T : this fact can be easily exploited to check whether the
least common ancestor z coincides with any of the two input nodes u and v.
If this is not the case, let (u1, u2, . . . , uh) and (v1, v2, . . . , vk) be the heads of
solid paths from the root of T to u and v, respectively: information about these
heads is maintained in the node labels. The algorithm finds the least common
ancestor head h, which is identified by the maximum index i such that ui = vi. If
succu(h) �= succv(h), then h must be the least common ancestor. Otherwise, the
algorithm takes the node of minimum level between ui+1 and vi+1, and returns
its parent as the least common ancestor. We refer to [17] for a formal proof
of correctness. Here, we limit to remark that both depth-first numbering and
information about successors appear to be crucial in this algorithm.

CFP’s scheme. This scheme [7] avoids the use of depth-first numbers and of
successors. The label of each node v of the tree is now defined as label(v) = <
isHead(v), list(v) >. The Boolean value isHead(v) discriminates whether v is
the head of its solid path or not. As in Peleg’s scheme, list(v) contains informa-
tion related to all the heads (t1, t2, . . . , th) of solid paths from the root of T to
v. In this case, the information for each head is less demanding and list(v) con-
sists just of a sequence of triples: list(v) = [(t1, �(t1), p(t1)), . . . , (th, �(th), p(th)),
(v, �(v), p(v))]; where t1 always coincides with the root of T . The sentinel triple
(v, �(v), p(v)) is not necessary when v is head of its solid path, since th = v.

We now describe the query algorithm. Given any two nodes u and v, let
(u1, u2, . . . , uh) and (v1, v2, . . . , vk) be the heads of solid paths from the root of
T to u and v, respectively. Similarly to the previous data structure, the algorithm
first identifies the lowest head h which is ancestor of both u and v: let i be such
that h = ui = vi. If neither u nor v coincides with h (in this trivial case it would
be lca(u, v) = h), the algorithm searches the least common ancestor in the
solid path π with head h. At this aim, it identifies two candidates cu and cv and
returns the highest of them. Notice that node ui+1 is either the sentinel of list(u)
or the head following ui in list(u): in the former case the candidate cu is u itself,

while in the latter case the candidate is the parent of ui+1. The candidate cv is
computed similarly and the algorithm returns the highest level node among cu

and cv. We refer the interested reader to [7] for a formal proof of correctness. We
remark that this algorithm compensates for the absence of depth-first intervals
and successor information thanks to the use of sentinel triples.

3 Experimental Framework

In this section we describe our experimental framework, discussing implementa-
tion details of the data structures being compared, performance indicators we
consider, test sets, as well as our experimental setup. All implementations have
been realized by the authors in ANSI C. The full package is available over the
Internet at the URL: http://www.dsi.uniroma1.it/~caminiti/lca/.

Data Structure Implementation Issues. We implemented six different la-
beling schemes, obtained by combining the three path decompositions (rank,
largeChild, and maxChild) and the two label structures (Peleg and CFP). The
labeling scheme originally proposed in [17] corresponds to using Peleg’s labels
together with the decomposition by large child. It can be proved that all the ob-
tained labeling schemes guarantee maximum label size Θ(log2 n) for trees with
n nodes.

Each scheme comes in two variants, depending on alignment issues. In the
word variant, every piece of information maintained in the node labels is stored at
word-aligned addresses: some bytes are therefore used just for padding purposes.
The actual sizes of nodes labels may be larger than the size predicted theoreti-
cally, but we expect computations on node labels to be fast. In the bit variant,
everything is 1-bit aligned: this variant guarantees a very compact space usage,
but requires operations for bit arithmetics that might have a negative impact on
the running times of operations.

Performance Indicators. Main objectives that we considered to evaluate the
data structures include space usage, construction time, and query time. Space
usage is strictly related to the length of the lists in the node labels, i.e., to
the number of entries in such lists: besides the total size of the data structure
(measured in MB, unless otherwise stated), we have therefore taken into account
also the average and maximum list length. Other structural measures have been
used to study the effect of the different path decompositions on the labeling
schemes: among them, we considered the number of paths in which the tree is
decomposed, the average and maximum length of paths, and the variance of
path lengths.

Test Sets. Problem instances consist both of synthesized, randomly generated
trees and of real test sets. We used two random tree generators with different
characteristics.

Uniformly distributed trees. This generator exploits the existence of a one-to-one
correspondence between labeled rooted trees on n nodes and strings of length

n − 1: it first generates a random codeword of n − 1 integers in the range [1, n]
and then applies a linear-time decoding algorithm [8] to obtain the tree. The
approach guarantees that, if each integer is chosen uniformly at random in [1, n],
each tree will have the same probability to be generated.
Structured trees. This generator produces structured instances taking into ac-
count constraints on the degree and on the tree balancing. It works recursively
and takes as input four arguments, named n, d, D, and β: n is the number of
nodes of the tree T to be built; d and D are a lower and an upper bound for
its degree, respectively; β is the unbalancing factor of T , i.e., a real number in
[0, 1] which indicates how much T must be unbalanced (the larger is β, the more
unbalanced will be T).
Real test sets. Spanning trees of real networks have been obtained from data pro-
vided on the CAIDA (Cooperative Association for Internet Data Analysis) web
site. Specifically, we exploited the network of Autonomous Systems monitored by
the skitter project. We refer the interested reader to http://www.caida.org/
for detailed information about these datasets.

Experimental Setup. Our experiments have been carried out on a workstation
equipped with two Dual Core Opteron processors with 2.2 GHz clock rate, 6 GB
RAM, 1 MB L2 cache, and 64 KB L1 data/instruction cache. The workstation
runs Linux Debian (Kernel 2.6.8). All programs have been compiled through
the GNU gcc compiler version 3.3.5 with optimization level O3, using the C99
revised standard of the C programming language. Unless stated otherwise, in
our experiments we averaged each data point on 1000 different instances. When
computing running times of query operations, we averaged the time on (at least)
106 random queries.

4 Experimental Results

In this section we summarize our main experimental findings. We performed
experiments using a wide variety of parameter settings and instance families,
always observing the same relative performances of the data structures. Due
to the lack of space, we do not explicitly report results on real data in this
extended abstract: all measurements on these data sets completely confirm the
results obtained on synthetic instances.

Path Decomposition. Our first aim was to analyze the effects of different path
decomposition strategies on the size of node labels. A typical outcome of our
experiments on trees generated uniformly at random is exemplified in Table 1.
With respect to all measures, maxChild appears to be slightly preferable than
largeChild and considerably better than rank. Consider first the structural
measures: among the three decompositions, maxChild generates the smallest
number of solid paths. Paths are therefore longer on the average, and their
lengths exhibit a higher variance. On the opposite side, the number of paths
generated by rank is almost twice as large for the parameter setting of this
experiment, and their length is almost twice as small.

maxChild largeChild rank

Number of paths 3678739 4172966 6803270

Average path length (and variance) 2.72(73.7) 2.4(61.2) 1.47(7.9)

Maximum path length 15352 15351 6346

Average list length (and variance) for Peleg 5.72(2.16) 5.89(2.32) 12.40(10.58)

Maximum list length for Peleg 15 15 24

Data structure size for Peleg 1179 1203 2199

Average list length (and variance) for CFP 6.36(2.06) 6.47(2.18) 12.7(10.44)2

Maximum list length for CFP 15 15 24

Data structure size for CFP 1033 1045 1761

Table 1. Comparison of path decompositions. The results of this experiment are av-
eraged over 500 random trees with n = 107 nodes. Only the word variant of the data
structures is reported.

Additional experiments were aimed at analyzing the effects of structural
properties of the tree on the path decomposition: in all these tests, the relative
ranking among the three strategies was always the same observed on uniformly
distributed trees. The graphical outcome of two such experiments, obtained by
increasing tree unbalancing and maximum degree, is reported in Figure 1. As the
tree becomes more and more unbalanced, the advantages of using the maxChild
decomposition drop: the number of solid paths obtained by largeChild and
rank indeed decreases and, conversely, the average path length increases (see
Figure 1a and Figure 1c). To explain this, let u be any node and let v be the
child of u that is root of the maximum size subtree: the more Tu is unbalanced,
the more |Tu| and |Tv| are close to each other and the edge (u, v) is likely to be
solid. This reasoning cannot be applied to the maxChild strategy, according to
which any internal node has always a solid child: for this reason curves related
to maxChild exhibit an almost constant trend. Let us now analyze the effect of
increasing the degree. Let T1 and T2 be two trees generated with the same fixed
unbalancing factor β (β = 0.9 in the right column of Figure 1) and maximum
degrees D1 < D2: for all strategies, we expect the number of solid paths in T2

to be larger than the number of solid paths in T1, since a larger degree implies a
larger number of heads (not only among the children, but among all the descen-
dants of each node). This intuition has been confirmed by the experiments with
increasing maximum degree for all the decompositions, and explains the trend
of the curves in Figure 1b and Figure 1d.

Size Comparison. Our next aim is to evaluate the requirements of Peleg’s
and CFP’s schemes with respect to the space usage. Besides the total size of the
data structure, we measured also the average number of solid heads in the lists
associated to tree nodes (average list length). We performed experiments varying
both structural properties of the input tree and the instance size.

At a first sight, it might appear that the average list length should be inversely
proportional to the average path length: if paths are shorter on the average, the

(a)

400000

450000

500000

550000

600000

650000

700000

750000

800000

850000

900000

0.5 0.6 0.7 0.8 0.9

Unbalancing

pa
th

s Maxchild

Largechild

Rank (b)

400000

500000

600000

700000

800000

900000

1000000

1100000

2 3 4 6 8 10 20 30 40 50

Degree

pa

th
s

Maxchild

Largechild

Rank

(c)

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0.5 0.6 0.7 0.8 0.9

Unbalancing

A
vg

 p
at

h
le

n

Maxchild

Largechild

Rank (d)

0.5

1

1.5

2

2.5

2 3 4 6 8 10 20 30 40 50

Degree

A
vg

 p
at

h
le

n

Maxchild

Largechild

Rank

(e)

4

6

8

10

12

14

16

0.5 0.6 0.7 0.8 0.9

Unbalancing

A
vg

 li
st

 le
n

Maxchild Peleg Maxchild CFP

Largechild Peleg Largechild CFP

Rank Peleg Rank CFP

(f)

2

3

4

5

6

7

8

9

10

2 3 4 6 8 10 20 30 40 50

Degree

A
vg

 li
st

 le
n

Maxchild Peleg Maxchild CFP

Largechild Peleg Largechild CFP

Rank Peleg Rank CFP

(g)

50

70

90

110

130

150

170

190

210

230

0.5 0.6 0.7 0.8 0.9

Unbalancing

S
iz

e

Maxchild Peleg Maxchild CFP

Largechild Peleg Largechild CFP

Rank Peleg Rank CFP

(h)

20

40

60

80

100

120

140

2 3 4 6 8 10 20 30 40 50

Degree

S
iz

e

Maxchild Peleg Maxchild CFP

Largechild Peleg Largechild CFP

Rank Peleg Rank CFP

Fig. 1. Experimental results on structured trees with n = 106 nodes: increasing unbal-
ancing factor β (left column, d = 2 = D) and increasing degree (right column, d = D,
β = 0.9).

number of paths in any root-to-leaf path is expected to be larger, and so is
the number of heads in node labels (both for Peleg and CFP). While this was
confirmed by the experiments on uniformly distributed trees (see Table 1), it is

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

1000 10000 100000 1000000 10000000

n

av
er

ag
e

lis
t l

en
gt

h

CFP

Peleg

0

200

400

600

800

1000

1200

0 2000000 4000000 6000000 8000000 10000000

n

si
ze

Peleg-Word

CFP-Word

Peleg-Bit

CFP-Bit

Fig. 2. Size comparison for Peleg’s and CFP’s schemes on uniformly distributed random
trees: average list length and total size, measured in MB.

not necessarily the case on more structured instances: in particular, both the
average path length (Figure 1d) and the average list length (Figure 1f) decrease
as the maximum degree increases. A more refined analysis suggests that the
topology of the tree should also be taken into account, and in particular the
average height of tree nodes should be considered: the deeper a node, the larger
the number of heads above it can be. As far as our generator works, trees with
larger degree have smaller average node height and, according to Figure 1f, the
effect of such smaller height appears to dominate on the shorter length of solid
paths.

The total size of the data structure is directly proportional to the average
list length, and curves related to these two measures exhibit the same trend
(see Figure 1g and Figure 1h). However, it is worth observing that the data
structure size in the case of CFP is considerably smaller than Peleg’s size, in
spite of a slightly larger average list length. This is also evident from Figure 2,
that reports on results obtained using the maxChild path decomposition on
uniformly distributed random trees with a number of nodes increasing from 103

to 107 (from this point on we will omit the discussion of rank and largeChild,
since maxChild proved to be consistently better in all the tests described so
far). The smaller data structure size in the case of CFP depends on the fact
that the lists are made of triples, instead of quadruples: the smaller list length
in Peleg’s scheme (due to the absence of sentinel triples) is not sufficient to
compensate for the presence of one more information in each element of the
lists. We remark that lists are very short in practice for both schemes: they
contain on the average 3 up to 6 elements for the data sets considered in this
experiment. This value is very close to log10 n, showing that the constant factors
hidden by the asymptotic notation in the theoretical analysis are very small for
the maxChild path decomposition. In Figure 2 we also distinguish between the
bit and word versions of the data structures (there is no such difference with
respect to the average list length): as expected, for both schemes the bit versions
can considerably reduce the space usage. We will analyze further these data later
in this section.

0

2000

4000

6000

8000

10000

12000

0 2000000 4000000 6000000 8000000 10000000

n

C
on

st
ru

ct
io

n
tim

e

Peleg-Word

CFP-Word

Peleg-Bit

CFP-Bit

0

200

400

600

800

1000

1200

1000 10000 100000 1000000 10000000

n

Q
ue

ry
 ti

m
e

Peleg-Word

CFP-Word

Peleg-Bit

CFP-Bit

Fig. 3. Running time comparison for Peleg’s and CFP’s schemes on uniformly dis-
tributed random trees: construction time (in milliseconds) and average query time (in
milliseconds per 106 queries).

Running Times. According to the theoretical analysis, the construction times
and the query times for the different labeling schemes are asymptotically the
same. A natural question is whether this is the case also in practice. Our ex-
periments confirmed the theoretical prediction only in part, showing that the
constant factors hidden by the asymptotic notation can be rather different for
Peleg’s and CFP’s schemes. The charts in Figure 3, for instance, have been ob-
tained on the same data sets used for the test reported in Figure 2: these charts
show that Peleg is slower than CFP when considering initialization time, but
faster when considering query times. The bit versions of the data structures are
always slower than the corresponding word versions.

In order to explain the larger construction time of Peleg’s scheme, notice that
Peleg makes use of a depth-first numbering of the tree, that is instead avoided
by CFP: all the other operations performed by the initialization algorithms (i.e.,
path decomposition and list construction) are instead very similar. We also recall
that Peleg’s data structure is larger than CFP, and the size of a data structure is
clearly a lower bound on its construction time. The larger amount of information
maintained by Peleg in the list of each node is however efficiently exploited in
order to get faster query times: as an example, if one of the two input nodes
is ancestor of the other, the query algorithm used by CFP needs to scan the
beginning of the nodes’ lists, while the depth-first intervals directly provide the
answer in the case of Peleg data structure.

To get a deeper understanding of the query times, we also measured the aver-
age number of list elements scanned by the query algorithms during a sequence
of operations. This number turns out to be very small both for Peleg and for
CFP, as shown by the left chart reported in Figure 4: on the average, slightly
more than 2 elements are considered in each query even on the largest instances.
Peleg considers less elements than CFP, especially for small values of n: on small
trees, two nodes taken uniformly at random have indeed a higher probability to
be one ancestor of the other, and for all these queries Peleg can avoid to scan
the list at all, as we observed above. Quite surprisingly, however, for the largest

1.85

1.9

1.95

2

2.05

2.1

2.15

2.2

1000 10000 100000 1000000 10000000

n

sc

an
ne

d
lis

t e
le

m
en

ts
CFP

Peleg

0.E+00

2.E+08

4.E+08

6.E+08

8.E+08

1.E+09

1.E+09

1.E+09

2.E+09

2.E+09

1000 10000 100000

n

L2
 c

ac
he

 r
ef

er
en

ce
s

an
d

m
is

se
s

Total cache refs

Read refs

Write refs

Total cache misses

Read misses

Write misses

Fig. 4. Average number of list elements scanned by the query algorithms on uniformly
distributed random trees (left chart); number of references to L2 cache and number of
cache misses incurred by the CFP query algorithm on the same dataset (right chart).

0

0.5

1

1.5

2

2.5

3

3.5

4

1000 10000 100000 1000000 10000000

n

C
F

P
 b

it
/ w

or
d

ra
tio

InitTime CFP-Bit / InitTime CFP-Word

Size CFP-Bit / Size CFP-Word

QueryTime CFP-Bit / QueryTime CFP-Word

0

0.5

1

1.5

2

2.5

3

3.5

4

1000 10000 100000 1000000 10000000

n

P
e

le
g

 b
it

/
w

o
rd

 r
a

tio

InitTime Peleg-Bit/InitTime Peleg-Word

Size Peleg-Bit / Size Peleg-Word

QueryTime Peleg-Bit / QueryTime Peleg-Word

Fig. 5. Space/time saved by the bit/word versions: CFP (left chart) and Peleg (right
chart). Tests are made on uniformly distributed random trees.

values of n the number of scanned list elements remains almost constant for
both data structures: this seems to be in contrast with the fact that the query
times increase (see Figure 3), and suggests that the larger running times may
be mainly due to cache effects. To investigate this issue, we used the valgrind
profiler to conduct a preliminary experimental analysis of the number of cache
misses incurred by the query algorithms: the outcome of one such experiment,
related to CFP, is reported in the right chart of Figure 4. The experiment con-
firms that the total number of cache references does not increase substantially
with n (in agreement with the result on the number of scanned list elements),
while the number of L2 cache read misses increases sharply, thus justifying the
larger query times.

Trading Space for Time. The experimental results discussed up to this point
show that the bit versions of the data structures require more space than the
corresponding word versions, but have larger construction and query times. In
Figure 5 we summarize the space-time tradeoffs, both for Peleg and for CFP. The
charts show that, for all measures, the differences between bit and word versions
tend to decrease as the instance size increases: this depends on the fact that, as

n increases, the value log n becomes progressively closer to the word size specific
of the architecture, and therefore the number of bits wasted by the word versions
becomes smaller. The size of the bit versions ranges approximately from 60%
up to 80% of the size of the word versions on our data sets. On the other side,
construction and query times of the bit versions are approximately 1.3 times
higher than the word versions for the largest values of n (for small values of n
the ratio is even larger).

References

1. S. Abiteboul, S. Alstrup, H. Kaplan, T. Milo, and T. Rauhe. Compact labeling
schemes for ancestor queries. SIAM J. on Computing, 35(6), 1295–1309, 2006.

2. S. Alstrup, P. Bille, and T. Rauhe. Labeling schemes for small distances in trees.
SIAM J. on Discrete Mathematics, 19(2), 448–462, 2005.

3. S. Alstrup, C. Gavoille, H. Kaplan and T. Rauhe. Nearest common ancestors: a
survey and a new distributed algorithm. In Proc. ACM SPAA’02, 258–264, 2002.

4. N. Bonichon, C. Gavoille, and A. Labourel. Short labels by traversal and jumping.
In Proc. SIROCCO’06, 143–156, 2006.

5. M.A. Breuer. Coding the vertexes of a graph. IEEE Transactions on Information
Theory, IT-12, 148–153, 1966.

6. M.A. Breuer and J. Folkman. An unexpected result on coding the vertices of a
graph. J. of Mathematical Analysis and Applications, 20, 583–600, 1967.

7. S. Caminiti, I. Finocchi, and R. Petreschi. Concurrent data structures for lowest
common ancestors. Manuscript available from the authors upon request, 2008.

8. S. Caminiti, I. Finocchi, and R. Petreschi. On coding labeled trees. Theoretical
Computer Science, 382(2), 97–108, 2007.

9. E. Cohen, E. Halperin, H. Kaplan and U. Zwick. Reachability and Distance Queries
via 2-hop Labels. In Proc. ACM-SIAM SODA’02, 937–946, 2002.

10. R. Cole and R. Hariharan. Dynamic LCA Queries on Trees. SIAM J. on Comput-
ing, 34(4), 894–923, 2005.

11. C. Gavoille, D. Peleg, S. Perennes and R. Raz. Distance labeling in graphs. In
Proc. ACM-SIAM SODA’01, 210–219, 2001.

12. S. Kannan, M. Naor, and S. Rudich. Implicit representation of graphs. In Proc.
ACM STOC’88, 334–343, 1988.

13. H. Kaplan, T. Milo and R. Shabo. A Comparison of Labeling Schemes for Ancestor
Queries. In Proc. ACM-SIAM SODA’02, 954–963, 2002.

14. M. Katz, N.A. Katz, A. Korman and D. Peleg. Labeling schemes for flow and
connectivity. SIAM J. on Computing, 34(1), 23–40, 2004.

15. T. Kopelowitz and M. Lewenstein. Dynamic weighted ancestors. In Proc. ACM-
SIAM SODA’07, 565–574, 2007.

16. D. Peleg. Proximity-preserving labeling schemes and their applications. In Proc.
WG’99, 30-41, 1999.

17. D. Peleg. Informative labeling schemes for graphs. Theoretical Computer Science,
340, 577–593, 2005. Preliminary version in Proc. MFCS’00, LNCS 1893, 579–588,
2000.

