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Abstract. We address the problem of labeling the nodes of a tree such
that one can determine the identifier of the least common ancestor of
any two nodes by looking only at their labels. This problem has applica-
tion in routing and in distributed computing in peer-to-peer networks. A
labeling scheme using Θ(log2 n)-bit labels has been presented by Peleg.
By engineering this scheme and a new one due to the authors, we obtain
a variety of data structures with the same asymptotic performances. We
conduct a thorough experimental evaluation of all these data structures.
Our results clearly show which variants achieve the best performances in
terms of space usage, construction time, and query time.

Effective representations of large, geographically dispersed communication net-
works should allow the users to efficiently retrieve information about the net-
work in a distributed and localized way. Labeling schemes provide an answer
to this problem by assigning labels to the network nodes in such a way that
queries can be computed alone from the labels of the involved nodes, without
any extra information source. The primary goal of a labeling scheme is to mini-
mize the maximum label length, while keeping queries fast. Adjacency labeling
schemes were first introduced by Breuer and Folkman in [5, 6], and further stud-
ied in [11]. The interest in informative labeling schemes, however, was revived
only more recently, after Peleg showed the feasibility of the design of efficient la-
beling schemes capturing distance information [15]. Since then, upper and lower
bounds for labeling schemes have been proved on a variety of graph families
(including weighted trees, bounded arboricity graphs, intersection-based and c-
decomposable graphs) and for a large variety of queries, including distance [2,
8, 10], tree ancestry [1, 3], flow and connectivity [13]. In spite of a large body of
theoretical works, to the best of our knowledge only few experimental investi-
gations of the efficiency of informative labeling schemes have been addressed in
the literature [8, 12].

In our work [7] we focus on labeling schemes for answering least common an-
cestor queries in trees. Labeling schemes for least common ancestors are mainly
useful in routing messages on tree networks: the ability to compute the identifier
of the least common ancestor of any two nodes u and v turns out to be useful
when a message has to be sent from u to v in the network, because the message



has to go through lca(u, v). Other applications are related to query processing
in XML search engines and distributed computing in peer-to-peer networks (see,
e.g., [3, 4, 12]). In [16], Peleg has proved that for the class of n-node trees there
exists a labeling scheme for least common ancestors using Θ(log2 n)-bit labels,
which is also shown to be asymptotically optimal.

We finally remark that, when node levels are known, it is trivial to compute
the distance between any two nodes given their lca. Therefore, all the data
structures considered in this work can be easily exploited to answer distance
queries.

1 Labeling Schemes

All the tree labeling schemes that we studied follow the same basic approach: the
tree is decomposed into a set of node disjoint paths, that we will call solid paths,
and information related to the highest node in each path, called head of the
path, is suitably encoded into the node labels. In the following we will consider
different path decomposition approaches, then we will describe two possible ways
of designing node labels. Different combinations of these two ingredients yield
different labeling schemes: one of them coincides with the tree labeling scheme
for least common ancestors originally proposed by Peleg in [16].

Path Decompositions. Let T be a tree with n nodes rooted at a given node r.
For any node u, we denote its parent and its level in T by p(u) and `(u), respec-
tively. We assume that the root has level 0. We also denote by Tu the subtree
of T rooted at u and by |Tu| the number of its nodes. In all the decompositions,
for any solid path π, we call head the of π node with smallest level in π.
Decomposition by Large Child. This decomposition hinges upon the distinction
between small and large nodes: a nonroot node v with parent u is called small
if |Tv| ≤ |Tu|/2, i.e., if its subtree contains at most half the number of nodes
contained in its parents’ subtree. Otherwise, v is called large. It is not difficult
to see that any node has at most one large child: we will consider the edge to
that large child, if any, as a solid edge. Solid edges induce a decomposition of
the tree into solid paths (some path may consist of a single node).
Decomposition by Maximum Child. This is a minor variant of the previous
decomposition, using a relaxed definition of large nodes: a nonroot node v with
parent u is considered a maximum child of u if |Tv| = maxw:(u,w)∈T |Tw|. If two
or more children of u satisfy this condition, ties are broken arbitrarily. The edge
to the maximum child is considered as a solid edge.
Decomposition by Rank. In this decomposition, an edge (u, v) is solid if and only
if dlog |Tu|e = dlog |Tv|e. It is not difficult to prove that for any node u there
exists at most one child v such that (u, v) is solid (see, e.g., [9, 14]). This implies
that solid edges univocally partition the tree into disjoint paths.

Label Structure. Now we present two different ways of constructing node
labels. When combined with any of the path decompositions, both schemes yield
labels of size O(log2 n). Due to the lack of space, we omit the descriptions of
query algorithms.



Peleg scheme. The first scheme is based on a depth-first numbering of the
tree T : as a preprocessing step, each node v is assigned an interval Int(v) =
[DFS(v); DFS(w)], where w is the last descendent of v visited by the depth-
first tour and DFS(x) denotes the depth-first number of node x. The label of
each node v of the tree is defined as label(v) = < Int(v), list(v) >; where list(v)
contains information related to all the heads (t1, t2, . . . , th) of solid paths from
the root of T to v: for each head ti, list(v) contains a quadruple (ti, `(ti), p(ti),
succv(ti)), where succv(ti) is the unique child of ti on the path to node v. We
remark that this is slightly different (and optimized) with respect to the scheme
originally proposed in [16].
CFP scheme. This scheme avoids the use of depth-first numbers as well as of
successors. The label of each node v of the tree is now defined as label(v) =
< isHead(v), list(v) >. The Boolean value isHead(v) discriminates whether v
is the head of its solid path or not. As in the previous scheme, list(v) contains in-
formation related to all the heads (t1, t2, . . . , th) of solid paths from the root of T
to v. In this case, the information for each head is less demanding and list(v) con-
sists just of a sequence of triples: list(v) = [ (t1, `(t1), p(t1)), . . . , (th, `(th), p(th)),
(v, `(v), p(v)) ]; where t1 always coincides with the root of T . The sentinel triple
(v, `(v), p(v)) is not necessary when v is head of its solid path, since in this case
th = v.

2 Experimental Results

We implemented six labeling schemes, obtained by combining the three path
decompositions and the two label structures. Each scheme comes in two variants:
word aligned and bit aligned.

We tested them on instances consisting of both synthesized (randomly gen-
erated trees1) and of real test sets (spanning trees of real networks have been
obtained from data provided by the CAIDA project). In our experiments we
averaged each data point on 1000 different instances. When computing running
times of query operations, we averaged the time on (at least) 106 random queries.

Main objectives that we considered to evaluate the data structures include
space usage, construction time, and query time. Other structural measures have
been used to study the effect of the different path decompositions on the labeling
schemes: among them, we considered the number of paths in which the tree is
decomposed, the average and maximum length of paths, and the variance of
path lengths.

The main findings of our experiments can be summarized as follows.

– Among different path decompositions, those that generate the smallest num-
ber of paths (with the largest average path length) appear to be preferable
in order to minimize the total size of the data structure.

– CFP scheme achieves the best performances in terms of space usage and
construction time.

1 We tested on both random trees generated with uniform distribution and random
balanced trees generated using a variety of balancing factors.



– Peleg scheme, used with Maximum Child path decomposition, exhibits the
fastest query times.

– All the data structures are very fast in practice. Although node labels have
size O(log2 n), only a small fraction of the labels is considered when answer-
ing random queries: typically, no more than a constant number of words per
query is read in all our experiments. However, query times slightly increase
with the instance size due to cache effects.

– Data structures implemented with bit alignment save 20% up to 40% of the
space, but increase the query times approximately by a factor 1.3 on our
data sets. The space saving reduces as the instance size gets larger.

3 Future Directions

The experimental analysis of the query times has raised an interesting theoretical
question that deserves further investigation. The experiments suggest that, even
if the instance size increases, the average number of list elements scanned during
(random) queries remains almost constant: thus, using labels of size Θ(log n), it
appears that one can answer the majority of queries in constant time. Moreover,
as far as labels are designed and the query algorithms work, if a query on two
nodes u and v fails, then u and v must belong to a subtree of small size and
must be rather close to each other. It may be therefore interesting to devise an
alternative approach for answering these failing queries, to be combined with
the use of node labels for “long-distance” queries: the alternative approach, for
instance, might exploit a few extra, localized information sources.
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