
Bijective Linear Time Coding

and Decoding for k-Trees �

Saverio Caminiti, Emanuele G. Fusco, and Rossella Petreschi

Computer Science Department
University of Rome “La Sapienza”, via Salaria, 113 – 00198 Rome, Italy

{caminiti, fusco, petreschi}@di.uniroma1.it

Abstract. The problem of coding labeled trees has been widely studied
in the literature and several bijective codes that realize associations be-
tween labeled trees and sequences of labels have been presented. k-trees
are one of the most natural and interesting generalizations of trees and
there is considerable interest in developing efficient tools to manipulate
this class of graphs, since many NP-Complete problems have been shown
to be polynomially solvable on k-trees and partial k-trees. In 1970 Rényi
and Rényi generalized the Prüfer code, the first bijective code for trees,
to a subset of labeled k-trees. Subsequently, non redundant codes that
realize bijection between k-trees (or Rényi k-trees) and a well defined set
of strings were produced. In this paper we introduce a new bijective code
for labeled k-trees which, to the best of our knowledge, produces the first
coding and decoding algorithms running in linear time with respect to
the size of the k-tree.

1 Introduction

The problem of coding labeled trees, also called Cayley’s trees after the cele-
brated Cayley’s theorem [8], has been widely studied in the literature. Coding
labeled trees by means of strings of node labels is an interesting alternative to
the usual representations of tree data structures in computer memories, and it
has many practical applications (e.g. Evolutionary Algorithms over trees [14],
random trees generation [12], data compression [11], and computation of forest
volumes of graphs [20]). Several different bijective codes that realize associations
between labeled trees and strings of labels have been introduced, see for exam-
ple [9, 13, 15, 23–26]. From an algorithmic point of view, the problem has been
investigated thoroughly and optimal coding and decoding algorithms for these
codes are known [4, 7, 9, 13].

k-trees are one of the most natural and interesting generalizations of trees
(for a formal definition see Section 2) and there is considerable interest in de-
veloping efficient tools to manipulate this class of graphs. Indeed each graph
� Work partially supported by MIUR: Italian Ministry for University and Scientific

Research. A preliminary version of this paper appeared in the Proceedings of the
IntErnational Symposium on Combinatorics, Algorithms, Probabilistic and Experi-
mental Methodologies (ESCAPE’07) [6].

with treewidth k is a subgraph of a k-tree, and many NP-Complete Problems
(e.g. Vertex Cover, Graph k-Colorability, Independent Set, Hamiltonian Circuit,
etc.) have been shown to be polynomially solvable when restricted to graphs of
bounded treewidth. We suggest the interested reader to see [2, 3].

In 1970 Rényi and Rényi [27] generalized Prüfer’s bijective proof of Cayley’s
theorem to code a subset of labeled k-trees (Rényi k-trees). They introduced a
redundant Prüfer code for Rényi k-trees and then characterized the valid code-
words. Subsequently, non redundant codes that realize bijection between k-trees
(or Rényi k-trees) and a well defined set of strings were produced [10, 16], to-
gether with coding and decoding algorithms. In [21], the authors presented linear
time algorithms for coding and decoding Rényi k-trees by means of the redun-
dant Prüfer code. This code is not bijective and the decoding algorithm proposed
fails on strings that are not valid codewords. To the best of our knowledge, this
paper is the first one that explicitly provides efficient algorithms to bijectively
code and decode k-trees. Moreover our code is suitable for Rényi k-trees and
arbitrarily rooted k-trees as well.

The paper is organized as follows: in Section 2 we provide a background
on k-trees. In Section 3 and 4 we introduce two building blocks of our coding
technique (characteristic tree and Generalized Dandelion Code) while all details
for the coding and decoding procedures are given in Section 5 and 6. In Section 7
we discuss the physical representation of our code. The paper ends with some
conclusions and future directions for research in this topic.

2 Preliminaries

In this section we recall the concepts of k-trees and Rényi k-trees and highlight
some properties related to these classes of graphs.

Let us call k-clique a clique on k nodes and [a, b] the interval of integers from
a to b (a and b included).

Definition 1. [19] A k-tree is defined in the following recursive way:

1. A k-clique is a k-tree.
2. If T ′

k = (V, E) is a k-tree, K ⊆ V is a k-clique and v /∈ V ,
then Tk = (V ∪ {v}, E ∪ {(v, x) |x ∈ K}) is a k-tree.

By construction, a k-tree with n nodes has
(
k
2

)
+ k(n − k) edges, n − k cliques

on k + 1 nodes, and k(n− k) + 1 cliques on k nodes. Since every k-tree Tk with
k or k + 1 nodes is simply a clique, in the following we will assume n ≥ k + 2.

In a k-tree, nodes of degree k are called k-leaves. Note that the neighborhood
of each k-leaf forms a clique and then k-leaves are simplicial nodes. A rooted
k-tree is a k-tree with a distinguished k-clique R = {r1, r2, . . . , rk}; R is called
the root of the rooted k-tree.

Remark 1. Each k-tree Tk with n ≥ k + 2 nodes contains at least two k-leaves;
when Tk is rooted at R at least one of those k-leaves does not belong to R

(a) (b)

Fig. 1. (a) An unrooted 3-tree T3 with 11 nodes. (b) T3 rooted at the clique {2, 3, 9}.

(see [27]). Since k-trees are perfect elimination order graphs [28], when a k-leaf
is removed from a k-tree the resulting graph is still a k-tree. If the resulting
k-tree is not a clique, at most one node adjacent to the removed k-leaf may
became a k-leaf.

In Figure 1(a) we give an example of a k-tree with k = 3 and 11 nodes labeled
with integers in [1, 11]. The same k-tree, rooted at R = {2, 3, 9}, is given in
Figure 1(b).

Let us call T n
k the set of k-trees with n nodes labeled with distinct labels.

The cardinality of T n
k is (see [1, 17, 22, 27]):

|T n
k | =

(
n

k

)
(k(n − k) + 1)n−k−2

When k = 1 the set T n
1 is the set of Cayley’s trees and |T n

1 | = nn−2, i.e., the
well known Cayley’s theorem.

Arbitrarily rooted k-trees with n nodes labeled with distinct labels can be
denoted as a pair (T n

k , R). Since each k-tree Tk contains k(n− k) + 1 cliques on
k nodes, the number of arbitrarily rooted k-trees is:

|T n
k | · (k(n − k) + 1) =

(
n

k

)
(k(n − k) + 1)n−k−1

Without loss of generality, in the rest of this paper we will use integers in
[1, n] as labels for a k-tree of n nodes.

Definition 2. [27] A Rényi k-tree Rk is a rooted k-tree with n nodes labeled in
[1, n] and root R = {n − k + 1, n− k + 2, . . . , n}.

It has been proven [22, 27] that:

|Rn
k | = (k(n − k) + 1)n−k−1

where Rn
k is the set of Rényi k-trees with n nodes.

Remark 2. Note that the set of labeled trees rooted at n is equivalent to the
set of unrooted labeled trees. This equivalence cannot be transposed on k-trees
when k > 1. Indeed, not all k-trees contain the clique {n−k+1, n−k+2, . . . , n}
and then not all k-trees are eligible to be Rényi k-trees. This implies Rn

k ⊆ T n
k .

3 Characteristic Tree

In this section we introduce the characteristic tree of a rooted k-tree. This struc-
ture is fundamental in the rest of this paper as we will use the characteristic tree
of a Rényi k-tree in our coding process.

Let us start by introducing the skeleton of a rooted k-tree.

Definition 3. Given a rooted k-tree Tk with root R, obtainable by T ′
k rooted in

R by adding a new node v connected to a k-clique K (see Definition 1), the
skeleton S(Tk, R) is obtained by adding to S(T ′

k, R) a new node X = {v} ∪ K
and a new edge (X, Y). Y is the node of S(T ′

k, R) that contains K at minimum
distance from the root. If Tk is the single k-clique R, its skeleton S(Tk, R) is a
tree with a single node R.

The skeleton S(Tk, R) of a rooted k-tree Tk with root R is well defined: indeed it
is always possible to find a node Y containing K in T ′

k because K is a clique in
S(T ′

k, R). Moreover Y is unique: it is easy to verify that if two nodes in S(T ′
k, R)

contain a value v, their lowest common ancestor still contains v. Since this holds
for all v ∈ K, there always exists a unique node Y containing K at minimum
distance from the root.

Definition 4. The characteristic tree T (Tk, R) of a rooted k-tree Tk with root
R is obtained by labeling nodes and edges of S(Tk, R) as follows:

1. Node R is labeled 0 and each node {v} ∪ K is labeled v;
2. each edge from node {v}∪K to its parent {v′}∪K ′ is labeled with the index

of the node in K ′ (considered as an ordered set) that does not appear in K.
When the parent is R the edge is labeled ε.

The existence of a unique node in K ′
� K is guaranteed by Definition 3. Indeed,

v′ must appear in K, otherwise K ′ = K and the parent of {v′} ∪ K ′ contains
K. This contradicts the fact that each node in S(Tk, R) is attached at minimum
distance from the root.

Remark 3. For each node {v}∪K of S(Tk, R), each w ∈ K � R appears as label
of a node in the path from v to 0 in T (Tk, R).

As we mentioned before, in our code we will use the characteristic tree of a
Rényi k-trees Rk. As in Rényi k-trees the root is fixed, we omit the argument
R, referring the skeleton as S(Rk) and the characteristic tree as T (Rk).

In Figure 2 a Rényi 3-tree with 11 nodes, its skeleton and its characteristic
tree are shown.

(a) (b) (c)

Fig. 2. (a) A Rényi 3-tree R3 with 11 nodes and root {9, 10, 11}. (b) The skeleton of
R3, with nodes {v} ∪ K. (c) The characteristic tree of R3.

It is easy to see that, given a characteristic tree T , it is possible to reconstruct
the corresponding Rényi k-tree: indeed the reconstruction of the skeleton from
T is straightforward, and the skeleton tell us, for each node, which clique the
node should be connected to.

We are interested in finding algorithms to compute T (Rk) from Rk and vice
versa in linear time. In order to satisfy this constraint the algorithms detailed in
the following sections will avoid the explicit construction of the skeleton. More-
over, we have to remark that, when restricted to Rényi k-trees, our characteristic
tree coincides with the Doubly Labeled Tree defined in a completely different way
in [18] and used in [10]. Our new definition gives us the right perspective to ob-
tain linear time algorithms.

At the end of this section, let us consider the class of all characteristic trees
of Rényi k-trees: Zn

k . More formally, Zn
k is the set of all trees with n − k + 1

nodes labeled with distinct integers in [0, n − k] in which all edges incident
on 0 have label ε and all other edges take a label from [1, k]. The association
between a Rényi k-tree and its characteristic tree is a bijection between Rn

k and
Zn

k . Indeed, for each Rényi k-tree its characteristic tree belongs to Zn
k , and this

association is invertible. In Section 4 we will show that |Zn
k | = |Rn

k |, proving that
the association between a Rényi k-tree and its characteristic tree is a bijection.

4 Generalized Dandelion Code

As stated in the introduction, many codes producing bijection between labeled
trees with n nodes and strings of length n− 2 have been presented in the litera-
ture. Here we show a generalization of one of these codes, that takes into account
labels on edges and can be use to code characteristic trees of Rényi k-trees. We
have chosen Dandelion code due to the special structure of the code strings it
produces. This structure will be crucial to ensure the bijectivity at the end of
the coding process of a k-tree (see Section 5 Step 3).

Dandelion code was originally introduced in [15], but its poetic name is due
to Picciotto [25]. Our description of this code is based on [7] where linear time
coding and decoding algorithms are detailed.

The basic idea behind Dandelion code is to root the tree at 0 and to transform
it to ensure the existence of edge (1, 0). Performing these operations, the parent
vector of the transformed tree will contain two useless information p(0) and p(1),
whose elimination leads to a n − 2 labels representation of the tree.

The Generalized Dandelion Code takes as parameters r and x. It considers
a tree T , with n nodes with distinct labels in [0, n − 1], and an edge labeling
function � such that: each edge incident on r has label ε and all other edges
have label over a given alphabet Σ. At the beginning of the coding procedure
T is rooted at r, thus identifying, for each node v, its parent p(v). Considering
T as a digraph with edges oriented upwards, T is the functional digraph of the
function p. The existence of the oriented edge (x, r) is guaranteed by breaking
the original path between x and r into cycles (or loops): until p(x) �= r, p(x) is
swapped with p(w), where w is the node with maximum label in the ascending
path from x to r.

At each swap a new cycle is introduced: node w is connected either to itself
in a loop or with a node belonging to its subtree. As each parent swap changes
the set of graph edges, we should specify what happens with edge labels. Our
algorithm ensures that the edge labels remain associated to parent nodes. More
formally, the new edge (x, p(w)) will have the label of the old edge (w, p(w)) and
the new edge (w, p(x)) will have the label of the old edge (x, p(x)).

The graph resulting from the coding process satisfies the following invariants:

– node r has no outgoing edges,
– each node except r has exactly one outgoing edge,
– the outgoing edge of node x is (x, r),
– each edge incoming in r has label ε.

Exploiting the invariants, the resulting graph can be univocally represented
by p(v) and �(v, p(v)) for each v ∈ [0, n−1]�{r, x}. The sequence of these n−2
pairs constitutes the Generalized Dandelion Code of the original tree T .

In Program 1 the coding algorithm is detailed.

Program 1 Generalized Dandelion Coding
1. for v from x to r do
2. if w = max{v ∈ path(x, r)} then
3. �(w, p(x)) = �(x, p(x))
4. �(x, p(w)) = �(w, p(w))
5. swap p(x) and p(w)
6. for v ∈ V (T) � {r, x} in increasing order do
7. append (p(v), �(v, p(v))) to the code

(a) (b) (c) (d)

Fig. 3. (a) A tree T with 15 nodes labeled in [0, 14] and edge labels in [1, 4], repre-
sented as rooted at 0. (b) After the first swap p(1) ↔ p(10), cycle {10, 9, 6} has been
introduced. (c) a loop 5 has been introduced, after the second swap p(1) ↔ p(5). (d)
The tree T at the end of the coding, after the last swap p(1) ↔ p(3). The codeword is
[(3, 2), (2, 1), (6, 3), (5, 4), (10, 3), (1, 2), (10, 3), (6, 4), (9, 2), (1, 3), (8, 1), (3, 3), (0, ε)].

The condition of Line 2 can be precomputed for each node with a simple
traversal of the path between x and r, so the linear time complexity of the
algorithm is guaranteed.

In Figure 3 and example of Generalized Dandelion Coding, with parameters
r = 0 and x = 1, is presented.

As a further example let us code (with r = 0 and x = 1) the tree shown
in Figure 2(c). Here the only swap occurring is p(1) ↔ p(8). The code string
obtained is: [(0, ε), (0, ε), (2, 1), (8, 3), (8, 2), (1, 3), (5, 3)].

Remark 4. During the coding, the set of parents {p(v) : v ∈ T } does not change
because we never introduce new parents or remove them, only swaps may occur.
Since the codeword is generated using node parents, each internal node of the
original tree appears in the codeword (except perhaps the root r) and vice versa
each first element of a pair in the codeword is an internal node in the original
tree.

Let us now detail how it is possible to reconstruct the tree from its codeword S. S
is a sequence of n−2 pairs, each pair is either (r, ε) or a pair in ([0, n− 1] � {r})×
Σ.

Initially we construct a functional digraph G, whose node set is [0, n − 1],
in the following way: consider all nodes except r and x, in increasing order. Let
vi be the i-th node and let (pi, li) be the i-th pair in S. Add to G the oriented

edges (vi, pi) with label li, for each vi, and the oriented edge (x, r) with label
(r, ε).

The decoding proceeds breaking all cycles (or loops) in G in order to trans-
form G into a tree by correctly reconstructing the path between x and r. Let
{C1, C2, . . . , Cj} be the set of cycles in G and let mi be the node of maximum
label in Ci: each mi is a node whose parent has been swapped with p(x) in the
coding. So it is sufficient to swap back p(x) and p(mi), considering all mi from
the smallest to the largest. Edge labels remain associated to parent nodes.

In the decoding algorithm detailed in Program 2, the graph G is represented
with a vector p keeping, for each node, the endpoint of its outgoing edge (anal-
ogous to parent vector for trees). This can be done because the outdegree of
nodes in G is at most 1.

Program 2 Generalized Dandelion Decoding
1. Construct G from S
2. Identify all cycles in G and their maximal nodes

3. for each maximal node mi in increasing order do
4. swap �(x, p(x)) and �(mi, p(mi))
5. swap p(x) and p(mi)

Program 2 has linear time complexity. Indeed, Line 2 can be implemented
by calling, for each vertex v, the function analyze detailed in Program 3. Each
edge (v, p(v)) is traversed exactly once by function analyze; when the function
identifies a cycle (Line 3) it calls an auxiliary function that compute the maximal
node with a further visit of the cycle.

Program 3 Identify Cycles
function analyze(v)

1. if status(v) �= processed then
2. status(v) = inProgress
3. if status(p(v)) = inProgress then a cycle has been identified

4. else analyze(p(v))
5. status(v) = processed

As mentioned at the end of the previous section, we now exploit the Gener-
alized Dandelion Code to show that |Zn

k | = |Rn
k |. Each tree in Zn

k has n− k + 1
nodes and therefore is represented by a code string of length n − k − 1. Each
element of this string is either (0, ε) or a pair in [1, n − k] × [1, k]. Then there
are exactly k(n− k) + 1 possible pairs. The number of possible strings is (k(n−
k) + 1)n−k−1, and then |Zn

k | = (k(n − k) + 1)n−k−1 = |Rn
k |.

5 A Linear Time Algorithm for Coding k-trees

In this section we present a new bijective code for k-trees and we show that
this code allows linear time coding and decoding algorithms. To the best of our
knowledge, this paper is the first one that explicitly provides efficient algorithms
to bijectively code and decode k-trees. In [16] a bijective code for k-trees was
presented, but it does not seem to allow efficient implementation.

Our algorithm initially transforms a k-tree in a Rényi k-tree: we root the k-
tree Tk at a particular clique Q and we perform a relabeling to obtain a Rényi k-
tree Rk. Exploiting the characteristic tree T (Rk) and the Generalized Dandelion
Code, we bijectively code Rk. The most demanding step of this process is the
computation of T (Rk) starting from Rk. We will show that even this step can
be done in linear time.

Notice that the coding presented in [10], which deals with Rényi k-trees, is
not suitable to be extended to obtain a non redundant code for general k-trees.

As noted at the end of the previous section, using the Generalized Dandelion
Code, we are able to associate elements in Rn

k with strings in:

Bn
k = ({(0, ε)} ∪ ([1, n − k] × [1, k]))n−k−1

Since we want to code all k-trees, rather than just Rényi k-trees, our final
code will consist of a substring of length n− k− 2 of the Generalized Dandelion
Code for T (Rk), together with information describing the relabeling used to
transform Tk into Rk.

Codes for k-trees associate elements in T n
k with elements in:

An
k =

(
[1, n]

k

)
× ({(0, ε)} ∪ ([1, n − k] × [1, k]))n−k−2

The obtained code is bijective: this will be proved by a decoding process that
is able to associate to each code in An,k the corresponding k-tree. Note that
|An

k | = |T n
k |.

The coding algorithm is summarized in the following 4 steps:

Coding Algorithm
Input: a k-tree Tk with n nodes
Output: a code in An,k

1. Identify Q, the k-clique adjacent to the maximum labeled leaf lM of Tk. By
a relabeling process φ, transform Tk into a Rényi k-tree Rk;

2. Generate the characteristic tree T for Rk;
3. Compute the Generalized Dandelion Code for T with r = 0 and x = φ(q),

where q = min{v /∈ Q}. Remove from the obtained code string S the pair
corresponding to φ(lM);

4. Return the code (Q, S).

Assuming that the input k-tree is represented by adjacency lists adj, we detail
how to implement the first three steps of our algorithm in linear time.

Step 1. Compute the degree d(v) of each node v and find lM , i.e. the maximum
v such that d(v) = k, then the node set Q is adj(lM). In order to obtain a Rényi
k-tree, nodes in Q have to be associated with values in {n−k+1, n−k+2, . . . , n}.
This relabeling can be described by a permutation φ defined in the following way:

1. if qi is the i-th smallest node in Q, assign φ(qi) = n − k + i;
2. for each q /∈ Q ∪ {n − k + 1, . . . , n}, assign φ(q) = q;
3. unassigned values are used to close permutation cycles, formally: for each

q ∈ {n− k + 1, . . . , n}−Q, φ(q) = i such that φj(i) = q and j is maximized.

Figure 4 provides a graphical representation of the permutation φ corresponding
to the 3-tree in Figure 1(a), where Q = {2, 3, 9}, obtained as the neighborhood
of lM = 10. Forward arrows correspond to values assigned by rule 1, small loops
are those derived from rule 2, while backward arrows closing cycles are due to
rule 3.

Fig. 4. Graphical representation of φ for 3-tree in Figure 1(a).

The Rényi k-tree Rk is Tk relabeled by φ. The final operation of Step 1
consists in ordering the adjacency lists of Rk. The reason for this operation will
be clear in the next step.

Figure 2(a) gives the Rényi 3-tree R3 obtained by relabeling the T3 of Fig-
ure 1(a) by φ represented in Figure 4. The root of R3 is {9, 10, 11}.

Let us now prove that the overall time complexity of Step 1 is O(nk). The
computation of d(v) for each node v can be implemented by scanning all adja-
cency lists of Tk. Since a k-tree with n nodes has

(
k
2

)
+k(n−k) edges, it requires

O(nk) time, which is linear with respect to the input size.
The procedure to compute φ in O(n) time is given in Program 4.

Program 4 Compute φ

1. for qi ∈ Q in increasing order do
2. φ(qi) = n − k + i
3. for i = 1 to n − k do
4. j = i
5. while φ(j) is assigned do
6. j = φ(j)
7. φ(j) = i

Let us show the correspondence between rules in the definition of the function
φ and lines of Program 4: assignments of rule 1 are made by the loop in Line 1,
in which it is assumed that elements in Q appear in increasing order. The loop in

Line 3 implements rules 2 and 3 in linear time. Indeed the while loop condition of
Line 5 is always false for all those values not belonging to Q∪{n−k+1, . . . , n}.
For all other nodes, the inner while loop scans each permutation cycle only once,
according to rule 3 of the definition of φ.

Relabeling all nodes of Tk to obtain Rk requires O(nk) operations, as well as
the procedure in Program 5 used to order its adjacency lists.

Program 5 Order Adjacency Lists
1. for i = 1 to n do
2. for each j ∈ adj(i) do
3. append i to newadj(j)
4. return newadj

Step 2. The goal of this step is to build the characteristic tree T of Rk. In
order to guarantee linear time complexity we avoid the explicit construction of
the skeleton S(Rk). We build the node set and the edge set of T separately.

The node set is computed identifying all maximal cliques in Rk; this can
be done by pruning Rk from k-leaves. The pruning proceeds by scanning the
adjacency lists in increasing order: whenever it finds a node v with degree k, a
node in T labeled by v, representing the maximal clique with node set v∪adj(v),
is created. Then v is removed from Rk and consequently the degree of each of
its adjacent nodes is decreased by one.

In a real implementation of the pruning process, in order to limit time com-
plexity, the explicit removal of each node should be avoided, keeping this informa-
tion by marking removed nodes and decreasing node degrees. When v becomes a
k-leaf, the node set identifying its maximal clique is given by v union the nodes
in the adjacency list of v that have not been marked as removed yet. We will
store this subset of the adjacency list of v as Kv: a list of exactly k integers.

Note that, when v is removed, at most one of its adjacent nodes becomes a
k-leaf (see Remark 1). If this happens, the pruning process selects the minimum
between the new k-leaf and the next k-leaf in the adjacency list scan.

At the end of this process, the original Rényi k-tree is reduced to its root
R = {n − k + 1, . . . , n}. To represent this k-clique the node labeled 0 is added
to T (the algorithm also assigns K0 = R).

This procedure is detailed in Program 6, its overall time complexity is O(nk).
Indeed, it removes n − k nodes and each removal requires O(k) time.

In order to build the edge set, let us consider for each node v the set of its
eligible parents, i.e. all w in Kv. Since all eligible parents must occur in the
ascending path from v to root 0 (see Remark 3), the correct parent is the one at
maximum distance from the root; so we proceed following the reversed pruning
order.

The edge set is represented by a vector p identifying the parent of each node.
0 is the parent of all those nodes s.t. Kv = R. The level of these nodes is 1.

Program 6 Prune Rk

function remove(x)

1. let Kx be adj(x) without all marked elements

2. create a new node in T with label x
3. mark x as removed

4. for each unmarked y ∈ adj(x) do
5. d(y) = d(y) − 1

main

1. for v = 1 to n − k do
2. w = v
3. if d(w) = k then
4. remove(w)
5. while ∃ an unmarked u ∈ adj(w) such that u < v and d(u) = k do
6. w = u
7. remove(w)

To keep track of the pruning order, nodes can be pushed into a stack during
the pruning process. Now, following the reversed pruning order, as soon as a
node v is popped from the stack, it is attached to the node in Kv at maximum
level. We assume that the level of nodes in R (which do not belong to T) is 0.

The pseudo-code of this part of Step 2 is shown in Program 7.

Program 7 Add edges
1. for each v ∈ [1, n − k] in reversed pruning order do
2. if Kv = R then
3. p(v) = 0
4. level(v) = 1
5. else
6. choose w ∈ Kv s.t. level(w) is maximum

7. p(v) = w
8. level(v) = level(w) + 1

The algorithm of Program 7 requires O(nk) time. In fact, it assigns the parent
of n−k nodes, each assignment involves the computation of a maximum (Line 6)
and requires k comparisons.

To complete Step 2, it remains to label each edge (v, p(v)). When p(v) = 0,
the label is ε; in general, the label l(v, p(v)) must receive the index of the only
element in Kp(v) that does not belong to Kv. All labels can be computed in
O(nk) time by scanning lists Kv, as Program 5 ensures that elements in all Kv

appear in increasing order.
Figure 2(c) shows the characteristic tree computed for the Rényi 3-tree of

Figure 2(a).

Step 3. Applying the Generalized Dandelion Code with parameters r = 0
and x = φ(q), where q = min{v /∈ Q}, we obtain a code S consisting in a list of
n−k−1 pairs. For each v ∈ {1, 2, . . . , n−k}�{x} there is a pair (p(v), l(v, p(v)))
taken from the set {(0, ε)} ∪ ([1, n− k] × [1, k]). As it is, the obtained code is
redundant because we already know, from the relabeling process performed in
Step 1, that the largest leaf lM of Tk corresponds to a child of the root in T .
Therefore the pair associated to φ(lM) must be (0, ε) and can be omitted. The
Generalized Dandelion Code already omits the information (0, ε) associated with
the node x, so, in order to reduce the code length, we need to guarantee that
φ(lM) �= x.

Lemma 1. Given a k-tree Tk with n nodes, let lM be the maximum leaf of
Tk and φ the permutation computed by Program 4. Then, if x is chosen as
φ(min{v /∈ Q}), it holds φ(lM) �= x.

Proof. From Remark 1, we already know that a k-tree on n ≥ k + 2 nodes has
at least 2 k-leaves. Q cannot contain a k-leaf, since it is chosen as the adjacent
k-clique of the maximum leaf lM . So there exists at least a k-leaf smaller than
lM that does not belong to Q; q = min{v /∈ Q} will be less than or equal to this
k-leaf. Consequently lM �= q and, since φ is a permutation, φ(lM) �= φ(q).

The removal of the redundant pair from the code S completes Step 3. Since
the Generalized Dandelion Code can be computed in linear time, the overall
time complexity of the coding algorithm is O(nk).

It is now clear that we have chosen Dandelion Code because it allows us to
easily identify an information (the pair (0, ε) associated to φ(lM)) that can be
removed in order to reduce the code length from n − k − 1 to n − k − 2: this
is crucial to obtain a bijective code for all k-trees. Indeed, many other known
codes for Cayley’s trees, such as Prüfer-like codes [5], can be generalized to code
edge labeled trees, obtaining bijection between Rényi k-trees and strings in Bn,k.
However these codes do not make it possible to identify a removable redundant
pair. This means that not any code for Rényi k-trees can be exploited to obtain
a code for k-trees.

The returned pair (Q, S) belongs to An,k, since Q ∈
(
[1,n]

k

)
, and S is a string

obtained by removing a pair from a string in Bn,k.
The Generalized Dandelion Code obtained from the characteristic tree in

Figure 2(c), using as parameters r = 0 and x = 1, is:
[(0, ε), (0, ε), (2, 1), (8, 3), (8, 2), (1, 3), (5, 3)] ∈ B11

3 ; this is a code for the Rényi
3-tree in Figure 2(a). The 3-tree T3 in Figure 1(a) is coded as:
({2, 3, 9}, [(0, ε), (2, 1), (8, 3), (8, 2), (1, 3), (5, 3)]) ∈ A11

3 . We recall that in this
example Q = {2, 3, 9}, lM = 10, q = 1, φ(lM) = 3, and φ(q) = 1.

6 A Linear Time Algorithm for Decoding k-trees

Any pair (Q, S) ∈ An,k can be decoded to obtain a k-tree whose code is (Q, S).
This process can be performed with the following algorithm:

Decoding Algorithm
Input: a code (Q, S) in An,k

Output: a k-tree Tk

1. Compute φ starting from Q and find lM and q;
2. Insert the pair (0, ε) corresponding to φ(lM) in S and decode it to obtain T ;
3. Rebuild the Rényi k-tree Rk by visiting T ;
4. Apply φ−1 to Rk to obtain Tk.

Let us detail the decoding algorithm. Once Q is known, it is possible to
compute q = min{v ∈ [1, n] : v /∈ Q} and φ as described in Step 1 of coding
algorithm (Program 4). Since all internal nodes of T explicitly appear in S (see
Remark 4), it is easy to derive the set L of all leaves of T by a simple scan of S.
Note that leaves in T coincide with k-leaves in Rk. Applying φ−1 to all elements
in L we can reconstruct the set of all k-leaves of the original Tk, and therefore
find lM , the maximum leaf in Tk.

In order to decode S, a pair (0, ε) corresponding to φ(lM) needs to be added,
and then the decoding phase of the Generalized Dandelion Code with parameters
0 and φ(q) has to be applied. The obtained tree T is represented by its parent
vector.

The reconstruction of the Rényi k-tree Rk is detailed in Program 8. We
assume that each Kv is a list of k integers, in increasing order.

Program 8 Rebuild Rk

1. initialize Rk as the k-clique R on {n − k + 1, n − k + 2, . . . , n}
2. for each v in T in breadth first order do
3. if p(v) = 0 then
4. Kv = R
5. else
6. let w be the element of index l(v, p(v)) in Kp(v)

7. Kv = Kp(v) � {w} ∪ {p(v)}
8. add v to Rk

9. add to Rk all edges (u, v) s.t. u ∈ Kv

The last step of the decoding process consists in applying φ−1 to Rk in order
to obtain Tk. The overall complexity of the decoding algorithm is O(nk). In
fact the only step of the algorithm that requires some explanation is Line 7 of
Program 8. Assuming that Kp(v) is ordered, to create Kv in increasing order, it
is enough to scan Kp(v) omitting w and inserting p(v) in the correct position.
Since all Kv = R = {n − k + 1, . . . , n} are trivially ordered, our assumption is
always verified.

7 Compact Representation

In order to consider every aspect of the problem of efficiently code and decode
k-trees, we decide to conclude the paper with some considerations about the
physical representation of codewords in computer memories.

The main motivation for this section comes from applications like Random
k-tree Generation and Evolutionary Algorithms [14]. In these context codewords
are generated and manipulated directly by means of operations like mutation and
crossover: for such operations, the possibility of representing values not in An,k

is a drawback, as it can require to perform checks in order to determine if values
generated are valid codewords.

Moreover, minimizing the memory occupation of a coded k-tree is important
for applications storing many such data in a limited amount of memory.

In the following we discuss how codewords can be efficiently represented in
roughly log(|An,k|) bits.

First we detail how to represent S, the sequence of pairs. Each pair (p, �) ∈
[1, n−k]×[1, k] can be easily represented in �log(n−k)	+�log k	 bits. In order to
optimize the space requirement of a single pair, we can represent it as the single
integer (p − 1) · k + (� − 1), thus using �log((n − k)k)	 bits. When ((n − k)k) is
not a power of two, we can represent the special pair (0, ε) with any bit sequence
not representing a pair in [1, n − k] × [1, k]. Otherwise one more bit is needed.
Hence (n − k − 2)�log((n − k)k + 1)	 bits are required to represent the whole
sequence S. Applying the same reasoning we exploited on pairs we can represent
S as a single integer, thus the total number of bits can be further reduced to
�(n − k − 2) log((n − k)k + 1)	.

We now discuss several ways to represent Q ∈
(
[1,n]

k

)
.

The easiest way to represent Q consists in a list of k values in [1, n]. This
requires k�logn	 bits. Even though nk has the same asymptotical order of

(
n
k

)
,

the possibility to represent lists with repetitions is a drawback.
If k = Θ(n) we can consider to represent Q with its characteristic vector.

This requires exactly n bits but still allow us to represent values not in
(
[1,n]

k

)
.

A non redundant representation of Q is given by its index in the lexicograph-
ically ordered list L of all X ∈

(
[1,n]

k

)
. In order to efficiently compute this index

id(Q) notice that the first
(
n−1
k−1

)
elements in L contain 1, while the remaining(

n−1
k

)
elements do not contain it. Exploiting this observation we can compute

id(Q) with the following recursive function as id(Q) = ρ(Q, 1, k, n), where:

ρ(Q, i, k, n) =

⎧⎨
⎩

0 if k = 0,
ρ(Q � i, i + 1, k − 1, n− 1) if i ∈ Q,(
n−1
k−1

)
+ ρ(Q, i + 1, k, n− 1) otherwise.

This computation requires O(nk) time since all binomial coefficients can
be precomputed with dynamic programming (or with more sophisticate ap-
proaches [29]) and each sum between

(
n−1
k−1

)
and ρ(Q, i + 1, k, n − 1) can be

done in O(k) (these numbers are bigger that log n bits, then we cannot assume
basic operations on them to require constant time).

Exploiting the consideration made on the representation of S and Q we derive
that a each k-tree of n nodes can be univocally represented in log(|Tn,k|) bits.

8 Conclusions

In this paper we introduced a new bijective code for labeled k-trees, moreover
we provided coding and decoding algorithms whose running time is linear with
respect to the input size.

In order to develop our bijective code for k-trees we exploited a transfor-
mation of a k-tree in a Rényi k-tree and developed a new coding for Rényi
k-trees based on a generalization of the Dandelion code. The choose of Dande-
lion code, among all codes known for Cayley’s trees, is motivated by the necessity
to identify and discard some redundant information. This is crucial to ensure the
resulting code for k-trees to be bijective.

It is worth to notice that our code can be exploited, with minor modifications,
to bijectively code Rényi k-trees and arbitrarily rooted k-trees as well.

For Rényi k-trees, it is enough to omit Step 1 of the coding process, and return
the string S produced by the Generalized Dandelion Code without removing any
redundant pair. The resulting codewords belong to the set Bn

k .
In the case of arbitrarily rooted k-trees, we can assign Q = R in Step 1,

without computing lM . This will have no drawback as we do not need to remove
any redundant pair from S in Step 3. The resulting codewords belong to the set(
[1,n]

k

)
× ({(0, ε)} ∪ ([1, n− k] × [1, k]))n−k−1.

We think that our paper completely closes the problem of efficiently coding
and decoding k-trees since we presented linear time algorithms and compact
codeword representations. As a future direction for research in this topic, we
propose to work on bijective codes for partial k-trees.

References

1. L.W. Beineke and R.E. Pippert. On the Number of k-Dimensional Trees. Journal
of Combinatorial Theory, 6:200–205, 1969.

2. H.L. Bodlaender. A Tourist Guide Through Treewidth. Acta Cybernetica, 11:1–21,
1993.

3. H.L. Bodlaender. A Partial k-Arboretum of Graphs with Bounded Treewidth.
Theoretical Computer Science, 209:1–45, 1998.

4. S. Caminiti, I. Finocchi, and R. Petreschi. A Unified Approach to Coding La-
beled Trees. In Proceedings of the 6th Latin American Symposium on Theoretical
Informatics (LATIN ’04), LNCS 2976, pages 339–348, 2004.

5. S. Caminiti, I. Finocchi, and R. Petreschi. On Coding Labeled Trees. To appear
on Theoretical Computer Science, 2007.

6. S. Caminiti, E.G. Fusco, and R. Petreschi. A Bijective Code for k-Trees with
Linear Time Encoding and Decoding. In Proceedings of the IntErnational Sympo-
sium on Combinatorics, Algorithms, Probabilistic and Experimental Methodologies
(ESCAPE’07), LNCS 4614, pages 408–420, 2007.

7. S. Caminiti and R. Petreschi. String Coding of Trees with Locality and Heri-
tability. In Proceedings of the 11th International Conference on Computing and
Combinatorics (COCOON ’05), LNCS 3595, pages 251–262, 2005.

8. A. Cayley. A Theorem on Trees. Quarterly Journal of Mathematics, 23:376–378,
1889.

9. W.Y.C. Chen. A general bijective algorithm for trees. Proceedings of the National
Academy of Science, USA, 87:9635–9639, 1990.

10. W.Y.C. Chen. A Coding Algorithm for Rényi Trees. Journal of Combinatorial
Theory, 63A:11–25, 1993.

11. Maxime Crochemore and Wojciech Rytter. Jewels of Stringology. World Scientific,
2002.

12. N. Deo, N. Kumar, and V. Kumar. Parallel Generation of Random Trees and
Connected Graphs. Congressus Numerantium, 130:7–18, 1998.

13. N. Deo and P. Micikevičius. A New Encoding for Labeled Trees Employing a
Stack and a Queue. Bulletin of the Institute of Combinatorics and its Applications
(ICA), 34:77–85, 2002.

14. W. Edelson and M.L. Gargano. Feasible Encodings For GA Solutions of Con-
strained Minimal Spanning Tree Problems. In Proceedings of the Genetic and Evo-
lutionary Computation Conference (GECCO ’00), page 754, Las Vegas, Nevada,
USA, 2000.

15. Ö. Eğecioğlu and J.B. Remmel. Bijections for Cayley Trees, Spanning Trees, and
Their q-Analogues. Journal of Combinatorial Theory, 42A(1):15–30, 1986.

16. Ö. Eğecioğlu and L.P. Shen. A Bijective Proof for the Number of Labeled q-Trees.
Ars Combinatoria, 25B:3–30, 1988.

17. D. Foata. Enumerating k-Trees. Discrete Mathematics, 1(2):181–186, 1971.
18. C. Greene and G.A. Iba. Cayley’s Formula for Multidimensional Trees. Discrete

Mathematics, 13:1–11, 1975.
19. F. Harary and E.M. Palmer. On Acyclic Simplicial Complexes. Mathematika,

15:115–122, 1968.
20. A. Kelmans, I. Pak, and A. Postnikov. Tree and Forest Volumes of Graphs. Tech-

nical report, DIMACS 2000-03, 2000.
21. L. Markenzon, P.R. Costa Pereira, and O. Vernet. The Reduced Prüfer Code for

Rooted Labelled k-Trees. In Proceedings of 7th International Colloquium on Graph
Theory, Electronic Notes in Discrete Mathematics, volume 22, pages 135–139, 2005.

22. J.W. Moon. The Number of Labeled k-Trees. Journal of Combinatorial Theory,
6:196–199, 1969.

23. J.W. Moon. Counting Labeled Trees. William Clowes and Sons, London, 1970.
24. E.H. Neville. The Codifying of Tree-Structure. In Proceedings of Cambridge Philo-

sophical Society, volume 49, pages 381–385, 1953.
25. S. Picciotto. How to Encode a Tree. PhD thesis, University of California, San

Diego, 1999.
26. H. Prüfer. Neuer Beweis eines Satzes über Permutationen. Archiv der Mathematik

und Physik, 27:142–144, 1918.
27. A. Rényi and C. Rényi. The Prüfer Code for k-Trees. In P. Erdös at al., ed-

itor, Combinatorial Theory and its Applications, pages 945–971, North-Holland,
Amsterdam, 1970.

28. D.J. Rose. On Simple Characterizations of k-Trees. Discrete Mathematics, 7:317–
322, 1974.

29. I. Vardi. Computational Recreations in Mathematica, chapter Computing Binomial
Coefficients. Redwood City, CA, 1991.

