
String coding of trees with locality and

heritability

Saverio Caminiti and Rossella Petreschi

Dipartimento di Informatica, Università degli Studi di Roma “La Sapienza”
Via Salaria 113, 00198 Roma, Italy.

{caminiti, petreschi}@di.uniroma1.it

Abstract. We consider the problem of coding labelled trees by means of
strings of vertex labels and we present a general scheme to define bijective
codes based on the transformation of a tree into a functional digraph.
Looking at the fields in which codes for labelled trees are utilized, we
see that the properties of locality and heritability are required and that
codes like the well known Prüfer code do not satisfy these properties. We
present a general scheme for generating codes based on the construction
of functional digraphs. We prove that using this scheme, locality and
heritability are satisfied as a direct function of the similarity between
the topology of the functional digraph and that of the original tree.
Moreover, we also show that the efficiency of our method depends on
the transformation of the tree into a functional digraph. Finally we show
how it is possible to fit three known codes into our scheme, obtaining
maximum efficiency and high locality and heritability.

1 Introduction

Labeled trees are of interest in both practical and theoretical areas of computer
science. To take just two examples: Ethernet has a unique path between terminal
devices, labeling the tree vertices is necessary to identify each device in the
network without ambiguity; trees are used in biology to represent phylogenetic
relationships between species, populations, individuals, or genes represented by
labels.

Coding labeled trees by means of strings of vertex labels is an interesting al-
ternative to the usual representations of tree data structures in computer mem-
ories, since it has many practical applications [3]. Evolutionary algorithms over
trees maintain a population of data structures that represents candidate solu-
tions to a problem. The association between structures and solutions is realized
through a decoder which must exhibit efficiency, locality, and heritability if the
evolutionary search is to be effective [4, 5, 7, 12]. In this context it is possible to
show that representing a tree as a string increases the probability to guarantee
the required properties will be attained.

Furthermore, string base coding makes it possible to generate random uni-
formly distributed trees and random connected graphs [9]. Indeed the generation
of a random string, followed by the use of a fast decoding algorithm, is typically
more efficient than generating a tree by adding edges randomly, where one must
be careful not to introduce cycles.

Finally, tree codes are also used for data compression and in the computation
of forest volumes of graphs [8].

Unless stated otherwise, here we will consider the tree as rooted in vertex 0
and its n vertices labeled from 0 to n− 1.

The näıve method for relating a tree to a string P consists in associating to
each vertex x the value of its parent p(x); P has cardinality n− 1 since the root
node 0 can be omitted, in the following we refer to the näıve string as parent
array. It should be noted that an arbitrary string of length n− 1 over [0, n− 1]
is not necessarily a tree, but it may be either a non-connected or a cyclic graph.

We are interested in those types of coding that define a bijection between the
set of labeled trees of n vertices and a set of strings over [0, n− 1]. Since Cayley
has proved that the number of labeled trees on n vertices is nn−2, we know that
this kind of one-to-one correspondence requires the cardinality of the string to
be equal to n− 2 [1].

In his proof of Cayley’s theorem, Prüfer provided the first bijective string
based coding for trees [11]. Over the years since then many codings behaving
like that of Prüfer have been introduced. In [2] a complete survey on these codes
is presented, and it is shown that coding and decoding in sequential linear time is
possible using each of these codes; efficient parallel algorithms are also presented.

However, even if they are extremely efficient, Prüfer-like codes lack other
desirable properties, such as locality and heritability, as noted in [6]. An experi-
mental analysis [7] shows that these properties are much better satisfied by the
Blob code, defined by Picciotto [10].

In this paper we present a general scheme for defining bijective codes based
on the transformation of a tree into a functional digraph. We also show how
the properties of locality and heritability are related to differences between the
digraph and the original tree. Then we highlight the differences between Prüfer-
like codes and codes derivable from our scheme. Finally, we show how it is
possible to map some known codes, including the Blob code, to our scheme.

2 Preliminaries

In this section, we introduce some definitions that will be needed in the rest of
the paper.

Definition 1. Given a function g from the set [0, n] to the set [0, n], the func-
tional digraph G = (V,E) associated with g is a digraph with V = {0, . . . , n}
and E = {(v, g(v)) for every v ∈ V }.

For this class of graphs the following lemma holds:

Lemma 1. A digraph G = (V,E) is functional if and only if |E| = n and the
outer degree of each vertex is equal to 1.

Corollary 1. Each connected component of a functional digraph is composed
of several trees, each of which is rooted in a vertex belonging to the core of the
component, which is either a cycle or a loop (see Figure 1a).

Functional digraphs are easily generalizable for the representation of functions
which are undefined in some values: if g(x) is not defined, the vertex x in G does
not have any outgoing edge. The connected component of G containing an x,
such that g(x) is not defined, is a tree rooted in x without cycles or loops (see
Figure 1b).

Fig. 1. a) A functional digraph associated with a fully defined function; b) A functional
digraph associated with a function undefined in 0, 8, and 9; c) A tree T , and the
corresponding näıve and Prüfer codes (notice that this tree is not rooted at 0 and then
the näıve code has cardinality n); d) T ′ = T − (1, 0) + (1, 5) and the corresponding
näıve and Prüfer codes.

Definition 2. A labeled n-tree is an unrooted tree with n vertices, each with a
distinct label selected in the set [0, n− 1].

Definition 3. In a labeled n-tree, the set of vertices between a vertex v to a
vertex u is called the path from v to u; u and v do not belong to the path.

Since in this paper we deal only with labeled trees, we will refer to them simply
as trees. In the following, when it is necessary to root a tree in one of its vertices,
we will consider its edges oriented upwards from leaves to root.

Remark 1. Let T be a rooted tree and p(v) be the parent of v for each v in T .
T is the functional digraph associated with the function p.

Let us call n-string a string of n elements in the set [0, n+ 1].

Definition 4. A code is a method for associating trees to strings in such a way
that different trees yield different strings. A bijective code is a code associating
n-trees to (n− 2)-strings.

Below, when there is no risk of confusion, we will identify a tree with its associ-
ated string, and vice versa.

A code satisfies the Locality Property if small changes in the tree correspond
to small changes in the associated string, and vice versa.

In evolutionary algorithms, where sometimes a new string is generated by
mixing two existing strings, another desirable property is the Heritability Prop-
erty: edges of the tree corresponding to the mixed string belong to one of the
two existing trees.

Let us look at the näıve code representing a tree with the parent vector. Since
each edge of a tree corresponds to an element of the string, this code exhibits
maximal locality: a single change in the tree corresponds to a single change in
the associated string, and vice versa (see Figure 1c and 1d). Näıve code also
maximally satisfies heritability: in each string the i-th element corresponds to
the edge (i, p(i)) of the tree, it implies that a tree obtained by mixing two existing
strings has only edges coming from the two existing trees. Unfortunately, this
code is not bijective, so a string obtained by modifying one or more strings is

not necessarily a tree: more precisely, the probability of obtaining a tree is 1

n
.

This is a serious shortcoming of näıve code.
The Prüfer code proceeds recursively, deleting the leaf with smallest label

from the tree; when a leaf is deleted, the label of its parent is added to the code.
This code is bijective, but exhibits extremely poor locality [6] (see Figure 1c and
1d).

3 General method

In this section we present a general method for defining bijections between the
set of labeled n-trees and (n−2)-strings. Our idea is to modify the näıve method
so as to reduce the dimension of the string that it yields.

In order to build an (n− 2)-string, we conjecture that the tree is rooted at a
fixed vertex x, and that there exists another fixed vertex y having x as parent.
Under these assumptions, in the parent array representation we may omit the
information related to both x and y. It is easy to root a given unrooted tree at
a fixed vertex x, however it is not so clear how to guarantee the existence of
edge (x, y). A function ϕ manipulates the tree in order to ensure the existence of
(x, y) and this is what characterizes each specific instance of our general method.
The function ϕ has to transform T into a functional digraph G, with n−1 edges
associated with a function g, such that g(x) is undefined and g(y) = x. Below
we see the coding scheme when ϕ, x, and y are known:

General Coding Scheme
Input: Input: an n-tree T
Output: Output: an (n− 2)-string C

1. Root T in x
2. Construct G = ϕ(T)
3. for v = 0 to n− 1 do
4. if (v 6= x and v 6= y) then add g(v) to C

To guarantee the bijectivity of the coding obtained, the function ϕ must be
invertible; only under this hypothesis is it possible to define the decoding scheme:

General Decoding Scheme
Input: Input: an (n− 2)-string C
Output: Output: an n-tree T

1. Reconstruct the graph G starting from code C
2. Add the fixed edge (x, y)
3. Compute T = ϕ−1(G)

In our method, the topology of graph G directly identifies the string C, since
for each vertex from 0 to n− 1 its outgoing edge is considered. The obtained C
is similar to the näıve code of the tree to precisely the same extent as the tree
topology is similar to the graph topology. Since the näıve code has naturally
maximal locality and heritability, if we are interested in obtaining high locality
and heritability codes we have to look for those ϕ functions that minimize the
variations introduced into the tree. Consequently the efficiency of our coding
and decoding schemes is strictly dependent on the computation of ϕ.

It should be noted that in all Prüfer-like codes the tree topology determines
the elimination order of vertices, so a small change in the tree may cause a
variation of this order and thus a big change in the string (see Figure 1c and
1d). This is the reason why Prüfer and Prüfer-like codes exhibit low locality and
heritability [6].

In the following, we show that several codes introduced in the literature [10]
can be mapped into our general scheme, and we provide optimal computation
for their ϕ functions.

4 Blob code

The Blob code was introduced by Picciotto [10] in her Ph.D. Thesis. The algo-
rithm used to obtain a string starting from a tree is:

Blob Coding Algorithm
Input: Input: an n-tree T
Output: Output: an (n− 2)-string C

1. Initialize blob = {n}, C = ()
2. Root T in 0
3. for v = n− 1 to 1 do
4. if ((path(v, 0)

⋂
blob) 6= ∅) then C[v − 1] = p(v)

5. delete (v, p(v)) and insert v in blob
6. else C[v − 1] = p(blob)
7. delete (blob, p(blob)) and add (blob, p(v))
8. delete (v, p(v)) and insert v in blob

In this algorithm blob is a macro-vertex, i.e. it has a parent but it contains many
other vertices. Each vertex included in blob maintains its own subtree, if any,
but this subtree is not necessarily included in the blob.

We will call stable all vertices satisfying the test in line 4; their corresponding
value in the code is their original parent.

Analyzing this algorithm we can see that the line 4 condition is not tied to
the incremental construction of the blob, but it can be globally computed in the
initialization phase as the Lemma 2 asserts:

Lemma 2. Stable vertices are all vertices v such that v < max(path(v, 0)).

Proof. At step v of main cycle the set blob contains all the vertices from v + 1
to n. Then the condition of line 4 holds if and only if at least a vertex greater
than v occurs in path(v, 0).

Note that path(v, 0) is a set as stated in Definition 3.

Lemma 3. For each unstable vertex v, p(z) is the corresponding value in the
code, where z is min{u|u > v and u unstable}.

Proof. In line 6 the current parent of blob defines the code value corresponding
to an unstable vertex v and in line 7 the blob becomes child of p(v). It implies
that when line 6 is executed for vertex v, p(blob) is equal to the parent of the
smaller unstable vertex greater than v, i.e. p(z).

Fig. 2. a) A sample tree T rooted in 0; b) GB = ϕb(T), stable vertices are repre-
sented in gray; c) GH computed from T by the original Happy Coding Algorithm;
d) GM = ϕm(T), maximal vertices are represented in gray; e) D computed from T by
the Dandelion Coding Algorithm; f) GD = ϕd(T), flying vertices are represented in
gray.

Let us define a function ϕb constructing a graph G starting from a tree T in the
following way: for each unstable vertex v, removes edge (v, p(v)) and add edge
(v, p(z)) where z = min{u|u > v and u unstable}. If z does not exist, i.e. when
v = n, add the edge (v, 0).

In Figure 2a and 2b a tree T and a graph G = ϕb(T) are depicted.

Remark 2. Each path in T from a stable vertex v to m = max(path(v, 0)) is
preserved in G = ϕb(T).

Theorem 1. It is possible to fit Blob code into our general scheme when x = 0,
y = n, and ϕ = ϕb.

Proof. It is trivial to see that graph G = ϕb(T) is a functional digraph, since:
a) each vertex has outdegree equal to 1; b) the function g associated with G is
undefined in 0; c) g(n) = 0.

Lemmas 2 and 3 guarantee that the generated string C is equal to the code
computed by Blob Coding Algorithm.

Now we have to prove that ϕb is invertible, i.e. we have to show how to
rebuild T from G.

First we eliminate cycles from G, then we recompute stable and unstable
vertices of original T to identify, according to Remark 2, those vertices that
must recompute their parents in G.

Fig. 3. Vertices involved in the proof of Theorem 1 both in G and in T . Stable vertices
are represented in gray.

Each cycle Γ is broken deleting the edge outgoing from γ, the maximum label
vertex in Γ . Remark 2 implies that γ was unstable in T , indeed if γ was stable
in T the path from γ to max(path(γ, 0)) must appear in G, but this implies a
vertex greater than γ in Γ . Notice that γ becomes the root of its own connected
component, while 0 is the root of the only connected component not containing
cycles. The identification of γ is a step towards the recomputation of stable and
unstable vertices.

We call stable in G each vertex v such that max(path(v, γv)
⋃
{γv}) > v,

where γv is the root of the connected component containing v.
The path preservation stated in Remark 2 guarantees that each vertex v,

stable in T , is stable in G. Let us now prove that the vice versa is also true.
Let us assume, by contradiction, that there exists a vertex v stable in G but
unstable in T . And let us call m = max(path(v, γv)

⋃
{γv}) in G. It holds v < m

and m unstable both in G and in T . In G m is unstable because there are not
vertices greater than m in path(v, γv)

⋃
{γv}; in T m can not be stable because,

as noted before, each stable vertex in T remains stable in G.
W.l.o.g. we assume that all vertices between v and m are stable both in G

and in T . Let w be the parent of v in G. By definition of ϕb there exists a vertex
u > v unstable in T such that p(u) = w in T . In Figure 3 v, m, u, and w are
depicted both in G and in T .

Since m is in the path from u to 0 in T , m must be smaller than u. Then
v < m < u and m is unstable in T contradicting the assertion that there are no
unstable vertices in T between v and u (by definition of ϕb).

The computational complexity of original Blob coding and decoding algorithms
are quadratic, due to the computation of paths at each iteration. Our charac-
terization of stable vertices (cfr. Lemma 2) decreases the complexity of coding
algorithm to O(n). Linear complexity for both coding and decoding can be ob-
tained by fitting Blob code into our general scheme. Indeed both ϕb and ϕ−1

b

can be implemented in O(n) sequential time: computation of the maximum ver-
tex in the upper path (coding) and cycles identification (decoding) can both be
implemented by simple search techniques.

In [7], an experimental analysis shows that locality and heritability are satis-
fied by the Blob code much better than by the Prüfer code. The reasons behind
the experimental results become clear when Blob code is analyzed according to
our method, which is quite different from Picciotto’s original idea. The functional
digraph generated by ϕb preserves an edge of the original tree for each stable
vertex, and for these vertices g(v) = p(v): this partial similarity with näıve code
is the reason for the soundness of locality and heritability.

In the next two sections we discuss two codes that better exploit similarities
with näıve code.

5 Happy code

Happy code was introduced in [10], and it appears with a structure completely
different from the Blob code:

Happy Coding Algorithm
Input: Input: an n-tree T
Output: Output: an (n− 2)-string C
1. Root T in 0 and initialize J = p(1)
2. while p(1) 6= 0 do
3. j = p(1), delete (1, j), delete (j, p(j)), and add (1, p(j))
4. if j > J then J = j and add (J, J)
5. else add (j, p(J)), delete (J, p(J)), and add (J, j)
6. for v = 2 to n do C[v − 2] = p(v)

This algorithm focuses on the path from 1 to 0. Since the aim of the algorithm
is to ensure the existence of edge (1, 0), all the vertices on the original path from
1 to 0 are sequentially moved in order to form cycles. Let us call maximal each
vertex v in path(1, 0) such that v > max(path(1, v)). The first cycle is initialized
with p(1) and each time a maximal vertex is analyzed a new cycle is initialized
(see Figure 2c).

Notice that the algorithm inserts a vertex j in a cycle immediately after J ,
the maximal vertex in the cycle. This implies that in the resulting graph the
vertices in a cycle will be in reverse order with respect to their position in the
original tree (see Figure 2c). Since we are interested in keeping the graph as close
as possible to the original tree, we will consider a slightly modified version of
this code which avoids this inversion: j is attached immediately before J instead
of immediately after. Let us call this modified version of happy code MHappy
code (see Figure 2d).

For MHappy code we define a function ϕm which, given a tree T , constructs
a graph G in the following way: for each maximal vertex v in path(1, 0) remove
the edge incoming at v in this path, and add an edge (z, v) where z is the child
of the next maximal vertex. If z does not exist, use the child of 0; finally remove
the edge incoming at 0 in the path and add the edge (1, 0).

Theorem 2. It is possible to fit MHappy code into our general scheme when
x = 0, y = 1, and ϕ = ϕm.

Proof. It is trivial to see that the MHappy coding transforms T into the same
functional digraph generated by ϕm: this corresponds to a function g undefined
in 0 (the root) and is such that g(1) = 0 (edge (1, 0)).

To show that ϕm is invertible, first sort all cycles in G into increasing order
with respect to their maximum vertex γ, then breack each cycle removing the
edge incoming at γ. Since the order of cycles obtained is the same as that in
which they where originally created, we rebuild the original tree inserting all the
vertices of each cycle in the path from 1 to 0 in accordance with the order of the
cycles.

ϕm and ϕ−1

m
can be implemented in O(n) sequential time because coding requires

the computation of maximal vertices in the path from 1 to 0 and decoding
requires cycle identification and integer sorting. Therefore coding and decoding
require linear time both for Happy and MHappy algorithms. ϕm modifies only
edges on the path between 1 and 0, so it preserves the topology of T better than
ϕb: this improves the level of locality and heritability of this code.

6 Dandelion code

In the following we present the Dandelion code as introduced in [10] with labels
on edges:

Dandelion Coding Algorithm
Input: Input: an n-tree T
Output: Output: an (n− 2)-string C

1. Root T in 0
2. for v = n to 2 do
3. h = p(v), k = p(1), delete (v, h), and add (v, 1) with label h
4. if a cycle has been created then delete (1, k), add (1, h), label(v, 1) = k
5. for v = 2 to n do C[v − 2] = label(v, 1)

The name of dandelion for this code derives from the fact that connecting all
the vertices to vertex 1, a tree which looks like a dandelion flower is created (see
Figure 2e). Analyzing the algorithm, we can see that the only vertices having
the outgoing edge labeled with a value different from their original parent are
those verifying the test of line 4, let us call them flying vertices.
In code C, a position corresponding to a non-flying vertex v merely displays
p(v), showing that the algorithm does not add new information if it considers
all the vertices. Hence let us restrict our attention to flying vertices.

Lemma 4. Flying vertices are all vertices v such that v ∈ path(1, 0) and v >
max(path(v, 0)).

Proof. The first condition trivially holds, otherwise cycles cannot be created.
Given v ∈ path(1, 0), let m = max(path(v, 0)). If m > v then m is processed

before v by the algorithm, m is directly connected to 1 and it introduces a cycle
containing v. When the cycle is broken (line 4), all the vertices in the cycle are
excluded from path(1, 0). This implies that in successive steps v can not be a
flying vertex.

On the other hand, if v > m it will be in path(1, 0) when it is processed by
the algorithm and so it obviously introduces a cycle.

When a cycle is broken (line 4) in a flying vertex v, 1 will be connected to h
(the old parent of v) and the label of edge (v, 1) becomes k (the old parent of 1).
In code C, the position corresponding to v displays the value k. Thus, assigning
p(v) = k, it is possible to avoid edge labels and to generate C directly from p.

Let us define a function ϕd which, given a tree T , constructs a graph G that
considers flying vertices of T in decreasing order. For each flying vertex v, ϕd

exchange p(v) and p(1) (see Figure 2f).

Theorem 3. It is possible to fit Dandelion code into our general scheme when
x = 0, y = 1, and ϕ = ϕd.

Proof. G = ϕd(T) is a functional digraph corresponding to a function g unde-
fined in 0 (the root) and such that g(1) = 0 (edge (1, 0)). It is also easy to see
that the code generated using ϕd is the same as that using Dandelion Coding
Algorithm. Considerations similar to those presented in Theorem 2 for ϕm can
be used to prove that ϕd is invertible; note that cycles of G must be considered
in increasing order of their maximum vertex.

The complexity of the original Dandelion algorithms for coding and decoding is
non linear, while it becomes linear when fitted into our general scheme, in view
of the fact that ϕd requires the same operations as ϕm.

Concerning locality and heritability, Dandelion code has a behavior which is
identical to MHappy code, in spite of the fact that in [10] it was introduced as “a
mélange of the methods for Happy code and Blob code”. Indeed, both ϕd and ϕm

work only on edges in the path between 1 and 0. On this path vertices that modify
their parent are maximal (i.e. all vertices v such that v > max(path(1, v))) for
MHappy code and flying (i.e. all vertices v such that v > max(path(v, 0))) for
Dandelion code.

7 Conclusion and open problems

In the introduction, we stated that we where looking for codes satisfying prop-
erties like efficiency, locality and heritability. Code that is built by associating
to each vertex its parent (näıve code), naturally satisfies these properties, but it
does not define a bijection between trees and strings.

In this paper we have presented a general scheme for defining bijective codes
based on the transformation of a tree into a functional digraph through a function
ϕ. We have emphasized that the required properties are satisfied by our general
scheme to the extent that function ϕ preserves the tree.

The value of our approach is that it returns the characteristics of näıve code
as much as is possible: the degree to which function ϕ preserves the topology
of the tree is precisely the same as the degree of similarity between the string
obtained using function ϕ and the string obtained using näıve code. Hence, the
required properties are satisfied to this same degree.

We have defined three functions ϕb, ϕm, and ϕd that allow us to fit into our
general scheme three known codes: Blob, Happy, and Dandelion codes.

For each of these codes we have shown that it is possible to code and decode
in linear time, achieving maximum efficiency. Regarding locality and heritability,
we have shown that Happy and Dandelion codes have a performance which is
better than Blob code, since they generate functional digraphs with a topology
that is very similar to original trees.

Since these codes seem to be suitable candidates for use in evolutionary
algorithms, it will be interesting to verify their performance experimentally in
tests similar to those reported in [6, 7].

Another interesting view point on these algorithms could be their implemen-
tation in a parallel setting: does an efficient parallel way to code and decode
trees with high locality and heritability exists?

References

1. Cayley, A.: A theorem on trees. Quarterly Journal of Mathematics, 23, pp.
376–378, 1889.

2. Caminiti, S., Finocchi, I., and Petreschi, R.: A unified approach to coding
labeled trees. Proceedings of the 6th Latin American Symposium on Theoretical In-
formatics, LNCS 2976, pp. 339–348, 2004. Accepted for publication on Theoretical
Computer Science LATIN 2004 Special Issue.

3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., and Stein, C.: Introduction to
algorithms. McGraw-Hill, 2001.

4. Deo, N. and Micikevicius, P.: Parallel algorithms for computing Prüfer-like
codes of labeled trees. Computer Science Technical Report, CS-TR-01-06, 2001.

5. Edelson, W. and Gargano, M.L.: Feasible encodings for GA solutions of con-
strained minimal spanning tree problems. Proceedings of the Genetic and Evolu-
tionary Computation Conference (GECCO 2000), Morgan Kaufmann Publishers,
pp. 754, 2000.

6. Gottlieb, J., Raidl, G., Julstrom, B.A., and Rothlauf F.: Prüfer Numbers:
A Poor Representation of Spanning Trees for Evolutionary Search. In Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO-2001), pp. 343-
350, 2001.

7. Julstrom, B.A.: The Blob Code: A Better String Coding of Spanning Trees for
Evolutionary Search. In 2001 Genetic and Evolutionary Computation Conference
Workshop Program, pp. 256–261, 2001.

8. Kelmans, A., Pak, I., and Postnikov, A.: Tree and forest volumes of graphs.
DIMACS Technical Report 2000-03, 2000.

9. Kumar, V., Deo, N., and Kumar, N.: Parallel generation of random trees and
connected graphs. Congressus Numerantium, 130, pp. 7–18, 1998.

10. Picciotto, S.: How to encode a tree. Ph.D. Thesis, University of California, San
Diego, 1999.

11. Prüfer, H.: Neuer Beweis eines Satzes über Permutationen. Archiv für Mathe-
matik und Physik, 27, pp. 142–144, 1918.

12. Zhou, G. and Gen, M.: A note on genetic algorithms for degree-constrained
spanning tree problems. Networks, 30(2), pp. 91–95, 1997.

