
J. Parallel Distrib. Comput. 70 (2010) 1119–1127
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Unified parallel encoding and decoding algorithms for Dandelion-like codesI

Saverio Caminiti ∗, Rossella Petreschi
Computer Science Department, Sapienza University of Rome, Via Salaria, 113 - I00198 Rome, Italy

a r t i c l e i n f o

Article history:
Received 12 June 2009
Received in revised form
9 July 2010
Accepted 10 July 2010
Available online 17 July 2010

Keywords:
Bijective tree encoding
Prüfer code
Dandelion-like codes
PRAM algorithms

a b s t r a c t

The Dandelion-like codes are eight bijections between labeled trees and strings of node labels. The liter-
ature contains optimal sequential algorithms for these bijections, but no parallel algorithms have been
reported. In this paper the first parallel encoding and decoding algorithms for Dandelion-like codes are
presented. Namely, a unique encoding algorithm and a unique decoding algorithm, which when properly
parameterized, can be used for all Dandelion-like codes, are designed. These algorithms are optimal in
the sequential setting. The encoding algorithm implementation on an EREW PRAM is optimal, while the
efficient implementation of the decoding algorithm requires concurrent reading.

© 2010 Elsevier Inc. All rights reserved.
1. Introduction

Trees are one of the most studied class of graphs in computer
science; they are used in a large variety of domains, including com-
puter networks, computational biology, databases, pattern recog-
nition, and web mining. In almost all applications tree nodes and
edges are associated with labels, weights, or costs. Examples range
from XML data to tree-based dictionaries (heaps, AVL, RB-trees),
from phylogenetic trees to spanning trees of communication net-
works, from indexes to tries (used in compression algorithms). In
the literature a range of different representations of tree data struc-
tures can be found.
This paper focuses on those representations based on coding

labeled trees by means of strings of node labels. It is well known
that a naïve method for relating a tree to a string is to associate
each node with its parent. Unfortunately, however, the resulting
code is not bijective, as an arbitrary string can represent a cyclic
and non-connected graph.
At the beginning of the last century, Prüfer [32] showed that it

is possible to obtain a one-to-one association between trees and
strings, thus providing the first bijective code. Since then many
researchers have been fascinated by this topic and have presented
a variety of bijective codes. Only in the last two decades, these
codes have been used in practical applications.

I A preliminary version of the results presented in this paper appeared in [S.
Caminiti, R. Petreschi, Parallel algorithms for Dandelion-like codes, in: Proceedings
of the 9th International Conference on Computational Science, ICCS’09, in: LNCS,
vol. 5544, 2009, pp, 611–620] [9].
∗ Corresponding author.
E-mail addresses: caminiti@di.uniroma1.it (S. Caminiti),

petreschi@di.uniroma1.it (R. Petreschi).

0743-7315/$ – see front matter© 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2010.07.003
Bijective codes make it possible to generate random uniformly
distributed trees and random connected graphs [13]: the genera-
tion of a random string followed by the use of a fast decoding algo-
rithm is typically more efficient than generating a tree by adding
edges randomly, since in the latter case one must be careful not to
introduce cycles. Furthermore, constraints on the number and on
the set of leaves, on the choice of the root, and on the degree of
nodes can be easily imposed during the generation.
In XML databases, documents are nested structures often mod-

eled as labeled trees. It is possible to transform XML data into
sequences of labels using bijective tree codes. During the query
process, search patterns are encoded as sequences as well, thus
reducing the problem to substring matching [33]: this allows the
total amount of data that needs to be searched during the query
process to be reduced.
Genetic algorithms solving problems on trees maintain a pop-

ulation of data structures that represents candidate solutions for a
given problem [34]. The association between structures and solu-
tions is realized through a decoder which must exhibit certain de-
sirable properties (like efficiency, locality, and heritability) in order
for the evolutionary search to be effective [18].
In network tomography, starting from a matrix of Origin–

Destination pair measurements, a researchermaywish to infer the
logical network topology. When the network is a tree, it is possible
to create a correspondence between the matrix and a string-based
representation of the logical network. This leads to a provably
correct algorithm for this problem [36].
Other fields of application in which bijective tree codes are

used include: fault dictionary storage [2], distributed spanning
tree maintenance [20], cryptographic secret sharing [30], and ant-
colony optimization heuristics [1].

http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:caminiti@di.uniroma1.it
mailto:petreschi@di.uniroma1.it
http://dx.doi.org/10.1016/j.jpdc.2010.07.003


1120 S. Caminiti, R. Petreschi / J. Parallel Distrib. Comput. 70 (2010) 1119–1127
Table 1
Costs of known algorithms for bijective string-based codes. Parallel algorithms are all designed for the EREW PRAMmodel, except for the Blob decoding requiring the CREW
model. Costs are expressed as the number of processors multiplied by the maximum time required by a single processor.

Sequential Parallel
Encoding Decoding Encoding Decoding

Prüfer-like


Prüfer [32] O(n) [24] O(n) [17] O(n) [21] O(n log n) [5,38]
2nd Neville [28] O(n) [26] O(n) [5] O(n

√
log n) [5] O(n

√
log n) [5]

3rd Neville [28] O(n) [28] O(n) [28] O(n) [5] O(n
√
log n) [5]

Stack-Queue [14] O(n) [14] O(n) [14] O(n
√
log n) [5] O(n

√
log n) [5]

Chen [11] O(n) [6] O(n) [6] O(n) [6] O(n log n) [6]

Blob [31] O(n) [7] O(n) [7] O(n) [8] O(n log n) [8]
Happy [31] O(n) [31] O(n) [31]
Dandelion [31] O(n) [31] O(n) [31]

ϑn bijection [19] O(n) [31] O(n) [31]

MHappy [7] O(n) [7] O(n) [7]
1.1. String of node labels

Unless stated otherwise, trees are rooted at node 0 and their n
nodes are uniquely labeled from 0 to n− 1.
Cayley’s theorem establishes that the number of labeled trees of

n nodes is nn−2 [10], so we consider bijections between such trees
and strings over [0, n− 1] of length n− 2.
In his proof of Cayley’s theorem, Prüfer presented the first

bijective string-based code for trees [32]. Many codes behaving
like the Prüfer one (i.e., based on recursive leaf elimination) have
been introduced: the Second and Third Neville codes [28] (the First
Neville code is analogous to the Prüfer code); Moon’s variations of
Prüfer’s and Neville’s codes for rooted trees [27]; the Stack-Queue
code due to Deo and Micikevičius [14]. These codes are usually
called Prüfer-like codes. We have recently shown [6] that the Chen
code [11] also falls into this class.
Other bijective codes with behaviors different from the Prüfer

one have also been introduced: the ϑn bijection by Eğecioğlu and
Remmel [19]; the code due to Kreweras and Moszkowski [25];
the Blob code, the Happy code, and the Dandelion code due to
Picciotto [31]; the MHappy code due to Caminiti and Petreschi [7].

1.2. Algorithmic results

Even thought the Prüfer code is dated 1918, to the best of our
knowledge, the first linear-time algorithm for encoding a tree ap-
peared only in the late 70’s and is due to Klingsberg [24]. The same
author also designed an optimal decoding algorithm [17].
A straightforward implementation of the Second Neville code

[28] would involve several calls to a sorting routine: this requires
O(n2) running time using integer sort. Deo and Micikevičius [15]
reduced the running time to O(n log n) with an encoding algo-
rithm that uses a set of sorted lists. Micikevičius presented the
first linear-time algorithm for the Second Neville code [26] while
the first optimal decoding algorithm is due to Caminiti et al. [5].
A straightforward implementation of the Third Neville code [28]
leads to linear-time algorithms. Deo and Micikevičius introduced
the Stack-Queue code [14] with the explicit intent of providing a
bijective code with simple linear-time algorithms. Unified optimal
encoding and decoding algorithms for these Prüfer-like codes are
givenbyCaminiti et al. [5]. Caminiti andPetreschi presented linear-
time algorithms for the Chen code [6].
Among the three codes introduced by Picciotto optimal algo-

rithmswere proposed in [31] for just two of them. The first version
of optimal algorithms for the Blob code was shown in [7], together
with new optimal algorithms for the Happy code and the Dande-
lion code and the newMHappy code. The ϑn bijection is analogous
to the Dandelion code and the reinterpretation of the Blob code
given in [7] leads to the conclusion that it is identical to the Krew-
eras and Moszkowski code (see [29]).
A survey on optimal algorithms for bijective codes can be found
in [4] while for a deeper dissertation we refer to [3].
Greenlaw, Halldórsson, and Petreschi [21] presented an optimal

EREW PRAM algorithm for Prüfer encoding. It improves an earlier
algorithm by Greenlaw and Petreschi [22] and, slightly changed,
also works for the third Neville code [5] and for the Chen code [6].
Efficient, but non-optimal, parallel encoding algorithms for the
Second Neville code and the Stack-Queue code were presented
in [16] and improved in [5]. For the decoding phase, only non-
optimal algorithms are known [5]. Recently, parallel algorithms
for Blob code have been presented [8]: the encoding algorithm
is optimal, while the decoding algorithm requires O(n log n) cost
(number of processors multiplied by the maximum time required
by a single processor) and concurrent read.
To the best of our knowledge no parallel algorithms for other bi-

jective codes have been investigated. Table 1 summarizes the costs
of sequential and parallel algorithms for encoding and decoding bi-
jective codes known previously.
This paper is organized as follows: after a few preliminary def-

initions (Section 2), Section 3 examines a General Scheme defin-
ing bijections between trees and strings. Section 4 describes the
Dandelion code as originally introduced and reinterprets this code
as a transformation of the tree into a functional digraph to map it
into the General Scheme. The rest of the paper introduces encod-
ing algorithm and decoding algorithms that, properly parameter-
ized, can be used for all Dandelion-like codes. In Section 5 the class
of Dandelion-like codes is defined and the encoding and decoding
algorithms are designed. In Section 6 the parallelization of these
algorithms on a PRAM is detailed. Conclusions and open problems
will follow.

2. Preliminary definitions

In this section, some definitions that will be used in the rest of
the paper are reported.

Definition 1. Given a function g from the set [0, n] to the set [0, n],
the functional digraph G = (V , E) associated with g is a directed
graph with V = {0, . . . , n} and E = {(v, g(v)) for every v ∈ V }.

For this class of graphs the following proposition holds:

Proposition 1. A digraph G = (V , E) is a functional digraph if and
only if the outer degree of each node is equal to 1.

Corollary 1. Each connected component of a functional digraph is
composed of several trees, each of which is rooted in a node belonging
to the coreof the component, which is either a cycle or a loop (see Fig. 1
(a)).



S. Caminiti, R. Petreschi / J. Parallel Distrib. Comput. 70 (2010) 1119–1127 1121
a b

Fig. 1. (a) A functional digraph associated with a fully defined function; (b) A
functional digraph associated with a function undefined in 0, 8, and 9.

Functional digraphs are easily generalizable for representing func-
tions which are undefined in some values: if g(x) is not defined,
node x in G does not have outgoing edges. The connected compo-
nent of G containing a node x such that g(x) is not defined is a tree
rooted at x without cycles or loops (see Fig. 1b). In the following
the notation u ; v is used to identify the unique simple path from
node u to node v.

Definition 2. A labeled n-tree is an unrooted tree with n nodes
labeled with distinct values selected in the set [0, n− 1].

Remark 1. Let T be a rooted labeled tree and p(v) be the parent of
v for each v in T . T is the functional digraph associated with the
function p.

Definition 3. A code associate trees with strings in such a way
that different trees yield different strings. A bijective code is a code
associating n-trees to (n− 2)-strings, where an n-string is a string
of n elements over the alphabet [0, n+ 1].

A naïve method for relating a labeled tree (rooted at node 0) to a
string C associates each node x with its parent p(x): C is a string
over the alphabet [0, n − 1] whose i-th element is p(i). C has
cardinality n − 1 since node 0 (the root) has no parent and can
be omitted. This code is not bijective. Indeed, an arbitrary string
of length n− 1 over the alphabet [0, n− 1] can represent a cyclic
and non-connected graph and consequently does not necessarily
correspond to a labeled tree.
This paper deals with bijective codes for labeled trees (simply

trees). From now on, all tree edges will be considered as oriented
upward from a node to its parent.
Below, when no confusion arises, wewill identify a tree with its

associated string, and vice versa. We will also consider vectors as
functions and vice versa.

3. General scheme

Caminiti and Petreschi [7] defined a General Scheme for bijec-
tions between the set of labeled n-trees and the set of (n − 2)-
strings. Here this General Scheme is briefly recalled underlining
that the main idea is to modify the naïve method to reduce the
length of the string that it yields.
In order to build an (n − 2)-string, the tree is rooted at a fixed

node x, and its topology is manipulated in such a way that there
exists another fixed node y having x as parent. When these condi-
tions hold, the information related to both x and y can be omitted
from the parent vector, thus obtaining an (n− 2)-string.
While it is easy to root a given unrooted tree at a fixed node x,

it is not clear how to guarantee the existence of edge (y, x).
To this purpose, a function ϕ that manipulates the tree in order

to ensure the existence of (y, x) is required. This function must
transform T into a functional digraph G associated with a function
g . The value of g in xmust be undefined and g(y)must be equal to
x. Given ϕ, x, and y the encoding scheme is as follows:
For the coding to be bijective, the function ϕ must be invert-
ible. Indeed, only under this hypothesis, it is possible to define the
decoding scheme:

For each node from 0 to n− 1 this scheme considers the node’s
outgoing edge, so the topology of graph G directly identifies the
codeword C that represents G. The computational complexities of
encoding and decoding schemes strictly depend on the computa-
tions of ϕ and ϕ−1.
The idea of transforming a tree into a functional digraph was

also used in [19,31]. The General Scheme provide a uniform frame-
work that we exploit to design sequential and parallel algorithms
for the class of Dandelion-like codes (see Section 5). This class
contains the Dandelion code and other known codes, namely,
the Happy code, the MHappy code, and the ϑn bijection. Since
Dandelion-like codes are defined by modifying the behavior of the
Dandelion code, next section is devoted to a detailed description of
this code.

4. The Dandelion code

This section examines the Dandelion code as introduced by
Picciotto, and reinterprets this code as a transformation of the
tree into a functional digraph, in order to map it into the General
Scheme.
The poetic nameDandelion derives from the fact that during the

encoding all the nodes are connected to node 1 and the resulting
tree looks like a dandelion flower (see example in Fig. 2(b)). During
this process, labels on edges are introduced; these labels will be
used to create the code. The original encoding algorithm for the
Dandelion code is as follows:

Analyzing the algorithm, we see that the complexity of the
Dandelion Encoding Algorithm is not linear, because it requires
testing whether a cycle has been introduced at each iteration.
Moreover, for each node v the corresponding value in C is p(v)
unless v satisfies the test in Line 7. For this reason we will focus
on those nodes that satisfy this test and call them flying nodes.



1122 S. Caminiti, R. Petreschi / J. Parallel Distrib. Comput. 70 (2010) 1119–1127
a b c

Fig. 2. (a) A sample tree T rooted in 0; (b) T after the execution of the Dandelion
Encoding Algorithm. (c) The digraph G = ϕd(T ), flying nodes are depicted in grey.

Lemma 1. Flying nodes are all nodes v such that:

1. v ∈ 1 ; 0 (excluding 1 and 0 ) and
2. v = max{w ∈ v ; 0}.

Proof. Condition 1 trivially holds, otherwise test of Line 7 cannot
be true.
Given v ∈ 1 ; 0 (except 1 and 0), let µ = max{w ∈ v ; 0}.

Obviously,µ is not smaller than v since v belongs to v ; 0. Assume
that v is a flying node but µ > v. µ is processed before v since
nodes are considered by the algorithm in decreasing order. Node
µ is connected to 1, therefore it introduces a cycle containing v.
When the cycle is broken (Lines 8 and 9), all the nodes in the cycle
are excluded by the resulting path 1 ; 0. This implies that in the
following steps v cannot be a flying node: a contradiction. So if v is
a flying node then µ = v.
On the other hand, if v = µ, v will be in 1 ; 0 when it is

processed by the algorithm and thus v introduces a cycle. �

When a cycle is broken (Line 8), node 1 is connected to h, the
former parent of the flying node v inducing the cycle, and the label
of edge (v, 1) becomes k (the former parent of 1). In string C , the
element corresponding to v will contain the value k. In order to
map the Dandelion code into the General Scheme, it is possible to
avoid edge labels and to generate C directly fromvector p assigning
p(v) = k for each flying nodes v.
Let us define a function ϕd which, given a tree T , constructs a

graph G. ϕd considers flying nodes of T in decreasing order and
swaps p(v) and p(1) for each flying node v. We defer an example
of the transformation induced by ϕd to the end of this section.

Theorem 1. The Dandelion code fits into the General Scheme when
x = 0, y = 1, and ϕ = ϕd.

Proof. G = ϕd(T ) is a functional digraph corresponding to a func-
tion g undefined in 0 and such that g(1) = 0. Lemma 1 guarantees
that the code generated using ϕd is the same code generated using
Dandelion Encoding Algorithm.
Now it is to prove that ϕd is invertible, i.e., it is to show how to

rebuild T from G. Flying nodes must be recomputed and all cycles
(and loops) in Gmust be broken.
Each cycle Γ is identified together with its maximum node γ .

Clearly γ was a flying node in T , otherwise a node greater than γ
would appear in Γ .
To invert ϕd the outgoing edge of each flying node must be re-

verted to its original value in T . In order to correctly rebuild the
path from 1 to 0, cycles of G must be considered in increasing or-
der of their maximum node. �

From now on, vector p represents both the parent vector of the
input tree and the function associatedwith the output digraph. The
implementation of ϕd is as follows:
Compute ϕd requires linear time since Line 1 is a simple back-
wards scan of the path 1 ; 0. So the computation of the Dandelion
code, when fitted into the General Scheme, is linear.
The decoding process is more difficult, but still can be done in

linear time. Each node v in G belongs to a connected component
that either contains a cycle or is a simple tree. Let us call γv
the maximum node in the cycle of v’s connected component or
the root if the connected component is a tree. The hardest part
in the decoding process is the computation of ϕ−1d : it consists
in identifying the flying nodes. To this purpose the maximum
node that can be reached from v must be computed, i.e., µ(v) =
max{p(v) ; γv}. This can be donewithout explicitly identifying γv
and without breaking cycles. In order to avoid the risk of infinite
recursion on cycles we will associate to each node a variable
status to distinguish whether a node is still being processed or not.
Initially status(v) = unprocessed for each node v. The computation
of µ(v), for all nodes v, is detailed in the algorithm Compute ϕ−1d
given in Box I.
Let us explain the condition of Line 6 in function ComputeMu.

Since the status of a node v is inProgress only during a recursive
call on the ascending path of v, when the condition of Line 6 is
true a cycle has been identified: following outgoing edges Com-
puteMu moved from v back to v itself. At this point, again, infinite
recursions must be avoided: an auxiliary function to compute the
maximum in the cycle is called and the recursion terminates. The
auxiliary function MaxInCycle simply scans outgoing edges start-
ing from v until it reaches v and returns the maximum label.
Line 17 requires a simple integer sorting; this ensures the linearity
of the algorithm for computing ϕ−1d .
An example of ϕd and ϕ−1d concludes this section. Applying

Compute ϕd to the tree T in Fig. 2(a) the following flying nodes are
identified in the path 1 ; 0 : f1 = 10 and f2 = 5. The first iteration
of the loop swaps p(1)with p(10) obtaining p(1) = 2 and p(10) =
3, the second one swaps p(1) with p(5) obtaining p(1) = 0 and
p(5) = 2. The resulting functional digraph G is shown in Fig. 2(c).
The codeword produced by the General Encoding Scheme from G
(with x = 0 and y = 1) is C = (5, 6, 10, 2, 4, 2, 1, 0, 3, 9), i.e., the
Dandelion code corresponding to T .
When the General Decoding Scheme is used on C = (5, 6, 10,

2, 4, 2, 1, 0, 3, 9) (with x = 0 and y = 1) a functional digraph
equal to G in Fig. 2(c) is obtained. The procedure Compute ϕ−1d
applied to G computes the following values: µ(0) = 0, µ(1) =
0, µ(2) = 5, µ(3) = 10, µ(4) = 10, µ(5) = 5, µ(6) =
10, µ(7) = 5, µ(8) = 1, µ(9) = 0, µ(10) = 10, µ(11) = 9.
This implies f1 = 10 and f2 = 5. Finally the swaps of p values
performed in the encoding are reverted. Then the resulting vector
p describes the original T as shown in Fig. 2(a).

5. Dandelion-like codes

The class of Dandelion-like codes containing eight bijective
codeswas introduced in a paper on Genetic Algorithms [29]. In this
paper the authors, analyzing the decoding phase of the Dandelion
code, underlined that it is possible to introduce four changes into
the procedure that builds a tree from a string. Among the sixteen
potential codes induced by these four changes, only eight are bi-
jective: the Dandelion-like codes.
In Table 2 these eight codes are described introducing just three

changes into the encoding phase, in order to avoid discarding
any code. This is a more natural way of describing the class of
Dandelion-like codes and the three changes are as follows:



S. Caminiti, R. Petreschi / J. Parallel Distrib. Comput. 70 (2010) 1119–1127 1123
Box I.
Table 2
The 8 bijective Dandelion-like codes.

Code Max/min Up/down Edge orientation

C1 Max Up Preserve
C2 Max Down Invert
C3 Max Down Preserve
C4 Max Up Invert
C5 Min Up Preserve
C6 Min Down Invert
C7 Min Down Preserve
C8 Min Up Invert

1. use minimum instead of maximum to compute flying nodes
among those nodes in the path 1 ; 0;

2. search downward in the path from a node v to the node 1
instead of searching upward in the path v ; 0;

3. invert the orientation of all edges in cycles.

As Paulden and Smith observed, C1 is the Dandelion code, C2 is
the Happy code, C3 is the MHappy code, and C5 is the ϑn bijection.
The following sections introduce parameterized encoding and

decoding algorithms suitable for all Dandelion-like codes. We
later introduce parallel algorithms for these codes, but sequential
versions appear first, in forms that are easy to parallelize though
they may appear more complex than necessary.

5.1. Encoding algorithm

We formalize the three parameters required to characterize
Dandelion-like codes as follows:
1. µ ∈ {min,max} specifies whether to search for minimum or
maximum values;

2. ê∈ {up, down} establishes if the µ values should be searched
upward or downward;

3. invertEdges is a boolean value that discriminates whether the
orientation of cycle edges should be inverted or not;

For each v in 1 ; 0, the value µê(v) represents the maximum/
minimum value above/below node v and pred(v) represents the
predecessor of v in the path 1 ; 0. Thus, depending on the param-
eters µ and ê, the function µê(v) can be one of the followings:
max
up
(v) = max{w ∈ v ; 0} max

down
(v) = max{w ∈ 1 ; v}

min
up
(v) = min{w ∈ v ; 0} min

down
(v) = min{w ∈ 1 ; v}.

The encoding algorithm is as follows:

All values µê(v) can be computed in O(n) time with simple
forward/backwards scans of the path from 1 to 0; at the same time
all fi are identified. In Line 6, if ê= down, the highest node below
fi+1 is identified, i.e., pred(fi+1). Indeed, in this case, fi should form a
cycle with all nodes above it and below fi+1. This operation can be
performed in linear time traversing the path once again. Lines 7–8
intend to rearrange nodes in 1 ; 0 into cycles. The overall time
complexity is linear since all operations can be accomplished
traversing the path 1 ; 0 a limited number of times.
We conclude this section by showing the encoding of the tree

in Fig. 3 with all Dandelion-like codes. The various codes identify
the following nodes in Line 2:

C1, C4 : f1 = 8, f2 = 3 C2, C3 : f1 = 4, f2 = 6, f3 = 8
C5, C8 : f1 = 3 C6, C7 : f1 = 4, f2 = 3

thus introducing the following cycles in the functional digraph:

C1, C4 : (4, 6, 8), (3) C2, C3 : (4), (6), (8, 3)
C5, C8 : (4, 6, 8, 3) C6, C7 : (3, 6, 8), (4).

The resulting codewords are:



1124 S. Caminiti, R. Petreschi / J. Parallel Distrib. Comput. 70 (2010) 1119–1127
Fig. 3. A tree T of eleven nodes labeled from 0 to 10 and the 8 functional digraphs corresponding to the encoding of T with all Dandelion-like codes. Edges in the path 1; 0
in T (and the corresponding edges in all functional digraphs) are highlighted. Flying nodes are depicted in grey.
C1 : (6, 3, 6, 1, 8, 8, 4, 1, 9) C2 : (6, 8, 4, 1, 6, 8, 3, 1, 9)
C3 : (6, 8, 4, 1, 6, 8, 3, 1, 9) C4 : (6, 3, 8, 1, 4, 8, 6, 1, 9)
C5 : (6, 4, 6, 1, 8, 8, 3, 1, 9) C6 : (6, 8, 4, 1, 3, 8, 6, 1, 9)
C7 : (6, 6, 4, 1, 8, 8, 3, 1, 9) C8 : (6, 8, 3, 1, 4, 8, 6, 1, 9).
Notice that the 8 codes are all different from each other, even

though, on this small example, different codes produce the same
codeword.

5.2. Decoding algorithm

The decoding algorithm identifies all cycles in a given functional
digraph and computes, for each cycle Ci, the flying node fi according
with the function specified by the parameter µ. Afterwards, all
cycles are broken and their nodes are placed in between 1 and 0
in such a way that the original path 1 ; 0 of the encoded tree
is rebuilt. It is to underline that, before breaking cycles, the edge
orientation should be reestablished if invertEdges is true.
To reconstruct the correct order among the flying nodes, the

algorithm considers the values ofµ andê. Ifµ = max andê = up
then the greater fi must be below any other flying node, thus the
fi values must be ordered in decreasing order: f1 > f2 > · · · > fk.
On the other hand, if ê = down the greater fi must be placed
above any other flying node, thus implying an increasing order:
f1 < f2 < · · · < fk. If µ = min, the orders are reversed. So, the
original path 1 ; 0 must be rebuilt according with the ordering of
the fi values:
1 ; f1 ; f2 ; . . . ; fk ; 0.
Notice that all nodes in fi’s cycle must be placed right above

or right below fi depending on the value of ê (down or up,
respectively). The computation of the reverse function is detailed
in the Dandelion-Like Decoding Algorithm.
Line 1 can be implemented in linear time as done for Compute
ϕ−1d . It is to underline that Line 11 (if required) identifies the only
node vi in the cycle of fi such that p(vi) = fi: this node becomes
the new flying node fi. Since the computations of all vi can be done
inO(n) time, the overall decoding procedure running time remains
linear.

6. Parallel implementation

In this section the parallel implementation of the encoding
and decoding algorithms proposed in Section 5 is detailed for the
theoretical PRAMmodel.
We choose the classical PRAM model because we do not need

to address any specific hardware. In the last decade, PRAM model
has been deemed useless by many researchers because it is con-
sidered too abstract compared with actual parallel architectures.
Due to the recent technological advances this trend is changing:
Wen andVishkin reported about the advancements achieved at the
University ofMarylandwithin the project PRAM-On-Chip [39]. The
XMT (eXplicit Multi-Threading) general-purpose computer archi-
tecture is a promising parallel algorithmic architecture to imple-
ment PRAM algorithms. They also developed a single-instruction
multiple-data (SIMD) multi-thread extension of C language (with
primitives like: Prefix-Sum, Join, Fetch and Increment, etc.) with
the intent of providing an easy programming tool for implement-
ing PRAM algorithms. Thus we think that PRAM is robust, reason-
able, and well studied theoretical framework for describing high
level parallel algorithms. For more information we refer to [37].
In the following some basic parallel techniques used in the par-

allelization of Dandelion-like encoding and decoding algorithms
are listed. Details, proofs, and prerequisites can be found in the
literature [12,23,35]. PRAM with Exclusive Write (EW) and both
Exclusive Read (ER) and Concurrent Read (CR) are considered.

6.1. Basic parallel techniques

Scheduling principle: If a PRAM algorithm A′ runs in time t
using p′ processors, then for any p′′ < p′, there is an algorithm
A′′ for the same problem and the same PRAM model that runs in
time O(tp′/p′′)with p′′ processors.

Broadcast: On an EREW PRAM it is possible to broadcast a value x,
held by a single processor, to all processors in O(log n) time using
O(n/ log n) processors.

Euler tour: An Euler tour is a cycle in a directed graph that traverses
each edge exactly once. A free tree is converted into a directed



S. Caminiti, R. Petreschi / J. Parallel Distrib. Comput. 70 (2010) 1119–1127 1125
graph by replacing each undirected edge {u, v} by two directed
edges (u, v) and (v, u). An Euler tour of a tree with n nodes can
be computed in O(log n) time using O(n/ log n) processors on an
EREW PRAM. The Euler tour can be used to root an unrooted tree
and to optimally compute the level of each node.
Let ∗ be an associative binary operation over domainD that can

be evaluated in O(1) time using a single EREW PRAM processor.

Parallel Prefix-Sum: The Parallel Prefix-Sum Problem consists in
computing, for all j ∈ [1, n], the prefix sums Σj = x1 ∗ · · · ∗ xj
where xi ∈ D for 1 ≤ i ≤ n. The Parallel Prefix-Sum Problem can
be solved inO(log n) time usingO(n/ log n) processors on an EREW
PRAM.

Parallel tree contraction: Let TR be a regular binary tree with n
nodes (i.e., a tree in which every internal node has exactly two
children). Let its leaves be labeled by operands over domainD and
its internal nodes be labeled by ∗. All the algebraic expressions
associated with the internal nodes (one per node) of TR can be
evaluated inO(log n) timeusingO(n/ log n)processors on anEREW
PRAM.

6.2. Parallel encoding

The implementation on an EREW PRAM of the encoding algo-
rithm is the following:

Initially, theminimumvalue in the subtree rooted at v, min(Tv),
is computed for each node v. If min(Tv) = 1 then v is in the
path 1 ; 0. This operation requires O(log n) time with O(n/ log n)
processors by using the Parallel Tree Contraction technique since
min is a binary associative operation. It is to remark that it is always
possible to convert a rooted tree T into a regular binary tree TR.
The construction replaces every node u in T having d children,
v1, v2, . . . , vd, by d+1 nodes u1, u2, . . . ud+1. In TR, ui+1 is the right
child of ui. If node vi is the i-th child of u in T , then v1i is the left
child of ui in TR (see Fig. 4). This transformation can be obtained in
O(log n) time usingO(n/ log n) processors on an EREWPRAM [21].
With the same bounds we can compute the top-down level of

each node (with the Euler Tour technique): exploiting this infor-
mation we are able to create a vector P containing the sequence of
all nodes in the path 1 ; 0.
The function µê(v) can be computed for all nodes in P (with

the same time and processors bounds of the above operations)
regarding this path as a tree TP and computing the max/min value
in the subtree of each node. If ê = down then TP must be rooted
in 0, otherwise it must be rooted in 1. To order the fi values it is
sufficient to enumerate them within vector P. This enumeration
can be achieved with Prefix-Sum computation on an auxiliary
Fig. 4. A general tree T can be converted into a regular binary tree TR replacing each
node uwith d children by d+ 1 nodes.

vector P ′ whose i-th element is equal to 1 if µê(P(i)) = P(i) and 0
otherwise.
The three loops in Lines 7, 9, and 13 require O(1) time with n

processors and do not imply concurrent reading or writing. The
value pred(v) (the predecessor of v in the path 1 ; 0) can be com-
puted in the followingway: for eachnode inv ∈ P set pred(p(v)) =
v. Applying the scheduling principle all these operations can be
executed on O(n/ log n) processors in O(log n) time. The overall
cost (i.e., time multiplied number of processors) is linear on an
EREW PRAM and thus the parallel algorithm is optimal since its
cost matches the optimal sequential time.

6.3. Parallel decoding

The most demanding step in the parallel decoding algorithm
is the computation of flying nodes. These nodes can be identified
in O(log n) time with O(n) processors on a CREW PRAM in a
Pointer Jumping like fashion: for each node the outgoing edge is
followed searching for the max/min value in the ascending path
(the parameter µ discriminates whether to search for maximum
or minimum values). After each step we set p(v) = p(p(v)), thus
obtaining a single Pointer Jump. The procedure is as follows:

The value asc(v) is the min/max value in the ascending path of
v. At each step asc(v) is compared with asc(p(v)) and updated,
if it is the case. Notice that the algorithm explicitly flag whether
the value asc(v) comes from v itself or has been encountered
in the proper ascending path. At the end of the log n iterations if
asc(v) = v and self(v) is false, v is the min/max node in its cycle.
Indeed, a value equal to v has been found in the proper ascending
path of v, this means that there exists a path v ; v, i.e., a cycle.
Moreover, no node smaller/greater that v has been encountered
in this cycle. All these nodes can be enumerated with Prefix-Sum
to generate the (increasing or decreasing) ordered sequence of
the flying nodes f1, f2, . . . , fk. A copy of p should be used in the
Parallel Identification of Flying Nodes, since the original vector
pwill be required latter in the decoding.
Once flying nodes have been identified, a Broadcast operation

can be used to propagate a flag in their ascending paths, thus iden-
tifying all nodes belonging to any cycle. The decoding algorithm
proceeds as follows:



1126 S. Caminiti, R. Petreschi / J. Parallel Distrib. Comput. 70 (2010) 1119–1127
Table 3
Costs of known and new algorithms for bijective string-based codes. Costs of parallel algorithms are expressed as the number of processors multiplied by the maximum
time required by a single processor. Algorithms marked with CR require concurrent read, while all other algorithms work on an EREW PRAM.

Sequential Parallel
Encoding Decoding Encoding Decoding

Prüfer-like


Prüfer O(n) O(n) O(n) O(n log n)
2nd Neville O(n) O(n) O(n

√
log n) O(n

√
log n)

3rd Neville O(n) O(n) O(n) O(n
√
log n)

Stack-Queue O(n) O(n) O(n
√
log n) O(n

√
log n)

Chen O(n) O(n) O(n) O(n log n)

Dandelion-like


Dandelion O(n) O(n) O(n) O(n log n) CR
ϑn bijection O(n) O(n) O(n) O(n log n) CR
Happy O(n) O(n) O(n) O(n log n) CR
MHappy O(n) O(n) O(n) O(n log n) CR

Blob O(n) O(n) O(n) O(n log n) CR
All the three loops in Lines 3, 7, and 9 require O(1) time
with O(n) processors on an EREW PRAM, provided that the pred
values are computed for all nodes belonging to any cycle (as
described in the parallel encoding for nodes in P). The overall
cost of Dandelion-Like Parallel Decoding Algorithm on a CREW
PRAM is O(n log n), due to the bottleneck of this algorithm that is
the Parallel Identification of Flying Nodes.

7. Conclusions and open problems

This paper presents what, to the best of our knowledge, are the
first encoding and decoding parallel algorithms for the Dandelion-
like codes. A unique encoding algorithm and a unique decoding
algorithm have been designed which, properly parameterized,
can be used for all eight codes. These algorithms, optimal in the
sequential setting, have been implemented on the classical PRAM
model.
The encoding algorithm has been parallelized using an EREW

PRAM with O(n/ log n) processors and requires O(log n) time: the
overall cost is consequently linear and the algorithm is optimal.
Concerning Prüfer-like codes, we remark that for the Second
Neville code and for the Stack-Queue code parallel encoding is
not optimal: a bottleneck arises from the use of an integer sorting
algorithm. This bottleneck is avoided for Dandelion-like codes
since all the sorting requirements are accomplished with simple
Prefix-Sum computations.
The decoding algorithm can be efficiently parallelized on a

CREW PRAM to run in O(log n) time with O(n) processors: the
overall cost is O(n log n). The only non-optimal step of the parallel
implementation is the computation of characteristic nodes in
cycles realized in a Pointer Jumping like fashion. It does not
seem possible to avoid this step, but it remains an open problem
to understand if this computation can be achieved with linear
cost. Table 3 completes Table 1 with the results presented in
this paper. Observing these results it is clear that the problem
of designing optimal parallel algorithms is still open for several
codes. In particular no optimal decoding algorithm is known: the
best decoding algorithms cost O(n
√
log n) on an EREW PRAM. It

remains an interesting open problem to design a bijective code
that admits an optimal parallel decoding algorithm, or to show that
such a result cannot be achieved by providing a lower bound to the
parallel cost of decoding.

References

[1] Y.T. Bau, C.K. Ho, H.T. Ewe, Ant colony optimization approaches to the degree-
constrained minimum spanning tree problem, Journal of Information Science
and Engineering 24 (2008) 1081–1094.

[2] V. Boppana, I. Hartanto, W.K. Fuchs, Full fault dictionary storage based on
labeled tree encoding, in: Proceedings of the 14th IEEE VLSI Test Symposium,
VTS’96, 1996, pp. 174–179.

[3] S. Caminiti, On Coding Labeled Trees, Ph.D. Thesis, Sapienza University of
Rome, 2007.

[4] S. Caminiti, N. Deo, P. Micikevičius, Linear-time algorithms for encoding trees
as sequences of node labels, Congressus Numerantium 183 (2006) 65–75.

[5] S. Caminiti, I. Finocchi, R. Petreschi, On coding labeled trees, Theoretical
Computer Science 382 (2) (2007) 97–108 (Special issue devoted to the best
papers of LATIN’04).

[6] S. Caminiti, R. Petreschi, Optimal algorithms for Chen code, Technical Report
TR-02-2009, Department of Computer Science, Sapienza University of Rome,
March 2009.

[7] S. Caminiti, R. Petreschi, String coding of trees with locality and heritability,
in: Proceedings of the 11th International Conference on Computing and
Combinatorics, COCOON’05, in: LNCS, vol. 3595, 2005, pp. 251–262.

[8] S. Caminiti, R. Petreschi, Parallel algorithms for Blob code, in: Proceedings of
the 3rd Workshop on Algorithms and Computation, WALCOM’2010, in: LNCS,
vol. 5942, 2010, pp. 167–178.

[9] S. Caminiti, R. Petreschi, Parallel algorithms for Dandelion-Like codes, in:
Proceedings of the 9th International Conference on Computational Science,
ICCS’09, in: LNCS, vol. 5544, 2009, pp. 611–620.

[10] A. Cayley, A theorem on trees, Quarterly Journal of Mathematics 23 (1889)
376–378.

[11] W.Y.C. Chen, A general bijective algorithm for trees, in: Proceeding of the
National Academy of Science, vol. 87, 1990, pp. 9635–9639.

[12] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms,
McGraw-Hill, 2001.

[13] N. Deo, N. Kumar, V. Kumar, Parallel generation of random trees and connected
graphs, Congressus Numerantium 130 (1998) 7–18.

[14] N. Deo, P.Micikevičius, A newencoding for labeled trees employing a stack and
a queue, Bulletin of the Institute of Combinatorics and its Applications (ICA) 34
(2002) 77–85.

[15] N. Deo, P. Micikevičius, Prüfer-like codes for labeled trees, Congressus
Numerantium 151 (2001) 65–73.

[16] N. Deo, P. Micikevičius, Parallel algorithms for computing Prüfer-Like codes
of labeled trees, Technical Report CS-TR-01-06, Department of Computer
Science, University of Central Florida, Orlando, 2001.

[17] L. Devroye, Non-Uniform Random Variate Generation, Springer-Verlag, New
York, 1986.

[18] W. Edelson, M.L. Gargano, Feasible encodings For GA solutions of constrained
minimal spanning tree problems, in: Proceedings of the 5th Genetic and
Evolutionary Computation Conference, GECCO’00, Las Vegas, NV, USA, 2000,
pp. 82–89.

[19] Ö. Eğecioğlu, J.B. Remmel, Bijections for Cayley trees, spanning trees, and their
q-analogues, Journal of Combinatorial Theory 42A (1) (1986) 15–30.

[20] V.K. Garg, A. Agarwal, Distributed maintenance of a spanning tree using
labeled tree encoding, in: Proceedings of 11th International Euro-Par
Conference, Euro-Par’05, in: LNCS, vol. 3648, 2005, pp. 606–616.

[21] R. Greenlaw, M.M. Halldórsson, R. Petreschi, On computing Prüfer codes and
their corresponding trees optimally in parallel, in: Proceedings of Journées de
l’Informatique Messine, JIM’00, Metz, France, 2000.



S. Caminiti, R. Petreschi / J. Parallel Distrib. Comput. 70 (2010) 1119–1127 1127
[22] R. Greenlaw, R. Petreschi, Computing Prüfer codes efficiently in parallel,
Discrete Applied Mathematics 102 (3) (2000) 205–222.

[23] J. JáJá, An Introduction to Parallel Algorithms, Addison-Wesley, 1992.
[24] P. Klingsberg, Doctoral Dissertation, Ph.D. Thesis, University of Washington,

Seattle, Washington, 1977.
[25] G. Kreweras, P. Moszkowski, Tree codes that preserve increases and degree

sequences, Journal of Discrete Mathematics 87 (3) (1991) 291–296.
[26] P. Micikevičius, Parallel graph algorithms formolecular conformation and tree

codes, Ph.D. Thesis, University of Central Florida, 2002.
[27] J.W. Moon, Counting Labeled Trees, William Clowes and Sons, London, 1970.
[28] E.H. Neville, The codifying of tree-structure, in: Proceedings of Cambridge

Philosophical Society, vol. 49, 1953, pp. 381–385.
[29] T. Paulden, D.K. Smith, Recent advances in the study of the Dandelion Code,

happy code, and blob code spanning tree representations, in: Proceedings of
the IEEE Congress on Evolutionary Computation, CEC’06, 2006, pp. 2111–2118.

[30] Y.A. Phoulady, M. Behzadi, H. Taheri, Sharing a labeled tree, in: Proceedings
of the 4th BeneluxWorkshop on Information and System Security, WISSec’09,
2009.

[31] S. Picciotto, How to Encode a Tree, Ph.D. Thesis, University of California, San
Diego, 1999.

[32] H. Prüfer, Neuer Beweis eines Satzes über Permutationen, Archiv der
Mathematik und Physik 27 (1918) 142–144.

[33] P. Rao, B. Moon, Prix: indexing and querying xml using prufer sequences, in:
Proceedings of the International Conference on Data Engineering, ICDE’04,
2004, pp. 288–300.

[34] C.R. Reeves, J.E. Rowe, Genetic Algorithms: A Guide to GA Theory, Springer,
2003.

[35] J.H. Reif, Synthesis of Parallel Algorithms, Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1993.

[36] C. Vanniarajan, K. Krithivasan, Network (tree) topology inference based
on Prüfer sequence, in: Proceedings of the 16th National Conference on
Communications, NCC’10, 2010.

[37] U. Vishkin, G.C. Caragea, B. Lee, Models for advancing PRAM and other algo-
rithms into parallel programs for a PRAM-On-Chip platform, in: S. Rajasekaran,
J. Reif (Eds.), Handbook of Parallel Computing: Models, Algorithms and Appli-
cations, CRC Press, 2008 (Chapter 5).
[38] Yue-Li Wang, Hon-Chan Chen, Wei-Kai Liu, A parallel algorithm for
constructing a labeled tree, IEEE Transactions on Parallel and Distributed
Systems 8 (1997) 1236–1240.

[39] X. Wen, U. Vishkin, PRAM-on-chip: first commitment to silicon, in:
Proceedings of the 19th ACM Symposium on Parallel Algorithms and
Architectures, SPAA’07, 2007, pp. 301–302.

Saverio Caminiti graduated in computer science in 2003
and obtained his Ph.D. degree in computer science in 2008,
from Sapienza University of Rome, Italy. He currently has
a post-doctoral position. His research interests include
graph algorithms, combinatorial mappings, layout of net-
work topologies.

Rossella Petreschi graduated in mathematics in 1972.
From 1973 to 1988 she was, first, with the Italian National
Research Council, thenwith theDepartment ofMathemat-
ics at University of L’Aquila, Italy, and finally with the De-
partment of Mathematics at Sapienza University of Rome.
Since its constitution in 1989, she has been with the De-
partment of Computer Science at Sapienza University of
Rome, where she is currently a full professor in computer
science. Her current research interests include the design
of sequential and parallel algorithms to solve problems,
arising from the project of computer science systems, that

find natural description in terms of graph theory.


	Unified parallel encoding and decoding algorithms for Dandelion-like codes
	Introduction
	String of node labels
	Algorithmic results

	Preliminary definitions
	General scheme
	The Dandelion code
	Dandelion-like codes
	Encoding algorithm
	Decoding algorithm

	Parallel implementation
	Basic parallel techniques
	Parallel encoding
	Parallel decoding

	Conclusions and open problems
	References


