
Parallel Algorithms for Encoding and Decoding
Blob Code

Saverio Caminiti and Rossella Petreschi

Computer Science Department, Sapienza University of Rome
Via Salaria, 113 - I00198 Rome, Italy

{caminiti,petreschi}@di.uniroma1.it

Abstract. A bijective code is a method for associating labeled n-trees
to (n − 2)-strings of node labels in such a way that different trees yield
different strings and vice versa. For all known bijective codes, optimal
sequential encoding and decoding algorithms are presented in literature,
while parallel algorithms are investigated only for some of these codes. In
this paper we focus our attention on the Blob code: a code particularly
considered in the field of Genetic Algorithms. To the best of our knowl-
edge, here we present the first parallel encoding and decoding algorithms
for this code. The encoding algorithm implementation is optimal on an
EREW PRAM, while the decoding algorithm requires O(log n) time and
O(n) processors on CREW PRAM.

1 Introduction

A labeled n-tree is an unrooted tree on n nodes, each of which has a distinct label
selected in the set [0, n− 1]. An interesting data structure for representing these
trees can be obtained by encoding them by means of strings of node labels. This
data structure is useful in many practical applications: Genetic Algorithms [20,
28], random uniformly distributed trees generation [10], fault dictionary stor-
age [1], and distributed spanning tree maintenance [14].

The näıve method to obtain a string C representing a labeled n-tree T ,
regarded as rooted in a fixed node (e.g., node 0), consists in associating each
node x with its parent p(x): C is a string over the alphabet [0, n− 1] whose i-th
element is p(i). C has cardinality n − 1 since the root has no parent and can
be omitted. It should be noted that an arbitrary string of length n− 1 over the
alphabet [0, n − 1] does not necessarily correspond to a tree (it may represents
a graph which has cycles or is not connected). Here we are interested in those
codes that define a bijection between the set of labeled n-trees and the set of
strings over [0, n− 1]. Since Cayley proved that the number of labeled trees on
n ≥ 2 nodes is nn−2 [8], we know that this kind of one-to-one mapping requires
the length of the string to be equal to n − 2. In his proof of Cayley’s theorem,
Prüfer presented the first bijective string based code for trees [27]. The Prüfer
code proceeds recursively, deleting, at each step, the leaf with smallest label
from the tree; whenever a leaf is deleted, the label of its parent is added to the
codeword. Over the years since then, many codes behaving like the Prüfer one,

i.e., recursively eliminating leaves according to some rules, have been introduced
by Neville [22], Moon [21], and Deo and Micikevičius [11].

Other codes, based on ideas completely different from the recursive leaves
elimination, have been presented along the years. Namely, the ϑn bijection by
Eğecioğlu and Remmel [12]; the code due to Kreweras–Moszkowski [19]; the
Chen code [9]; the Blob code, the Happy code, and the Dandelion code due to
Picciotto [26]; and the MHappy code due to Caminiti and Petreschi [6]. In the
last years, almost all these codes have been reinterpreted in a unified framework
where their behavior is described as a transformation of the tree into a functional
digraph [6]. This reinterpretation allowed researchers to highlight strong simi-
larities among a set of codes, now called Dandelion-like codes [24] (the romantic
name comes from the Dandelion code that transforms a tree into a graph similar
to a dandelion flower).

Encoding and decoding in sequential linear time is possible for all bijective
codes presented in this introduction (see [5] for Prüfer-like codes, see [6] for
Dandelion-like codes and [4] for a survey). Concerning parallel algorithms, stud-
ies have been performed and algorithms are known both for Prüfer-like codes [5]
and for Dandelion-like codes [7]. The interested reader may found a complete
survey on all these codes in [3].

In this paper we focus our attention on the Blob code introduced by Pic-
ciotto in her PhD thesis [26]. This code is based on the Orlin’s proof of Cayley’s
theorem and makes explicit a bijection implicitly presented in that proof [23].
In its original description, the Blob code considers all nodes in decreasing la-
bel order, detaches them from their parents and adds them to a macro node
called blob. During this process a string is generated (further details are given in
Section 3). Both the original encoding and decoding algorithms require O(n2)
time. By reinterpreting this code as transformation of the tree into a functional
digraph, Caminiti and Petreschi [6] designed linear time encoding and decoding
sequential algorithms. This reinterpretation also allowed Paulden and Smith to
recognize that the Blob code is indeed equivalent to the Kreweras–Moszkowski
code [24]. Moreover, several experimental analyses have been performed in the
field of Genetic Algorithms to test Blob code performances focusing on certain
desirable properties (namely locality and heritability) [17, 18]. Also theoretical
investigations of the Blob code properties have been made [25].

For the best of our knowledge, here we present the first encoding and de-
coding parallel algorithms for the Blob code. The encoding algorithm can be
parallelized on an EREW PRAM to run in O(log n) time with O(n/ log n) pro-
cessors: the overall cost is linear and the algorithm is optimal. The decoding
algorithm costs O(n log n) on a CREW PRAM since it runs in O(log n) time
with O(n) processors. Our algorithms exhibit asymptotic behavior similar to
that of parallel algorithms known in the literature for other bijective codes (see
Table 1). It remains an open problem to decrease the cost of a decoding algorithm
in order to reach the optimality.

The paper is organized as follows: after a few preliminary definition, in Sec-
tion 3, we recall the Blob code both in its original formulation and as reinter-

2

Encoding Decoding

Prüfer-like

Prüfer O(n) EREW O(n log n) EREW

2nd Neville O(n
√

log n) EREW O(n
√

log n) EREW

3rd Neville O(n) EREW O(n
√

log n) EREW

Stack-Queue O(n
√

log n) EREW O(n
√

log n) EREW

Dandelion-like

Dandelion O(n) EREW O(n log n) CREW

ϑn bijection O(n) EREW O(n log n) CREW

Happy O(n) EREW O(n log n) CREW

MHappy O(n) EREW O(n log n) CREW

Table 1. Costs of known parallel algorithms for bijective codes. Costs are expressed
as the number of processors multiplied by the maximum time required by a single
processor working on a PRAM (EREW or CREW).

preted in [6]. Our main result is given in Section 4 where we present the first
parallel encoding and decoding algorithms for Blob code.

2 Preliminaries

In this section, we introduce some definitions that will be useful in the rest of
the paper.

Definition 1. Given a function g : [0, n] → [0, n], the functional digraph G =
(V, E) associated with g is a directed graph with V = {0, . . . , n} and E =
{(v, g(v)) for each v ∈ V }.
Lemma 1. A digraph G = (V, E) is a functional digraph if and only if the outer
degree of each node is equal to 1.

It is well known that each connected component of a functional digraph is com-
posed of several trees, each of which is rooted in a node belonging to the core of
the component, which is either a cycle or a loop (see Figure 1a).

Functional digraphs are easily generalizable to represent functions undefined
in some values: if g(x) is not defined, the node x in G does not have any outgoing
edge. In this case, the connected component of G containing x is a tree rooted
at x without cycles or loops (see Figure 1b).

In this paper we only deal with labeled n-trees (simply trees), and each
tree T will always be considered as rooted in the fixed node 0 with all edges
oriented upwards from a node v to its parent p(v), i.e., T is the functional
digraph associated with the function p.

The notation PG(u, v) identify the set of nodes in the unique directed path
in G between u and v (both excluded); when no ambiguity arises subscript G is
omitted. As usual in mathematics, we use square brackets to include one or both

3

Fig. 1. a) A functional digraph associated with a fully defined function; b) A functional
digraph associated with a function undefined in 0, 8, and 9.

endpoints. As an example, P (3, 6] represents the set {0, 2, 6, 8} in the digraph of
Figure 1a.

Let us call n-string a string of n elements over the alphabet [0, n + 1].

Definition 2. A code is a method for associating trees to strings in such a way
that different trees yield different strings. A bijective code is a code associating
n-trees to (n− 2)-strings.

3 Blob Code

In this section, we recall the Blob code as described by Piccitto in [26] and then
we reinterpret this code in terms of transformation of a tree into a functional
digraph as done in [6].

Given an n-tree rooted in 0, the encoding algorithm for the Blob code con-
siders all nodes but 0 in decreasing label order. Each node is detached from its
parent and added to a macro node called blob. This macro node has a parent in
the tree (a normal node) but it contains many other nodes; each node included
in the blob preserves its own subtree, if any, even though this subtree is not
necessarily included in the blob. Some nodes force the blob to change its parent,
others do not. The formers add the parent of blob to the codeword, while the
others simply add their own parents.

Formally the encoding algorithm can be described as follows and an example
of its execution is given in Figure 2.

Algorithm: Blob Encoding
Input: a n-tree T rooted in 0 with edges oriented upward
Output: an (n− 2)-string C

1. Initialize C as an empty vector indexed form 1 to n− 1
2. blob = {n− 1}
3. add edge (blob, p(n− 1)) and delete edge (n− 1, p(n− 1))

4

Fig. 2. a) A sample tree T rooted in 0; b) An intermediate step of the execution of the
Blob Encoding algorithm. The grey area identifies the blob, question marks in the
code correspond to unassigned values; c) The resulting blob (and the codeword) at the
end of the execution.

4. for v = n− 2 to 1 do
5. if (P (v, 0) ∩ blob) 6= ∅) then
6. C[v] = p(v)
7. delete edge (v, p(v))
8. insert v in blob
9. else
10. C[v] = p(blob)
11. delete edge (blob, p(blob)) and add edge (blob, p(v))
12. delete (v, p(v))
13. insert v in blob

Let us now reinterpret the Blob code as done in [6]. For the sake of clearness, we
explicitly report some lemmas (and proofs) in order to better clarify concepts
that will be useful in Section 4. We will call stable (unstable) all nodes that
affirmatively (negatively) satisfy the test of Line 5. Each stable node v let the
blob parent unchanged and its value in the codeword C is simply p(v). Moreover,
it is possible to see that the condition in Line 5 is not strictly connected with
the incremental construction of the blob, but it can be computed a priori as the
following lemma asserts:

Lemma 2. Stable nodes are all nodes v such that v < max(P (v, 0)).

Proof. When node v is considered by the Blob Encoding algorithm set blob
contains all the nodes from v +1 to n. Then the condition of Line 5 holds if and
only if at least a node greater than v occurs in P (v, 0). ut
As a consequence of Lemma 2, we are able to characterize the value written in
the codeword by each unstable node:

Lemma 3. In the codeword, the value corresponding to each unstable node v is
p(z), where z is the smallest unstable node greater than v.

5

Fig. 3. a) A sample tree T rooted in 0; b) Stable nodes of T marked in grey; c) G =
ϕb(T) and the Blob code representing T .

Proof. In Line 10 of Blob Encoding algorithm the current parent of blob defines
the code value corresponding to an unstable node v. In subsequent lines the blob
becomes child of p(v). It implies p(blob) equal to the parent of the smallest
unstable node greater than v, i.e., p(z). ut
Lemma 3 allows us to define a function ϕb that constructs a functional digraph G
from a tree T in the following way: for each unstable node v > 0, remove the edge
(v, p(v)) and add the edge (v, p(z)), where z = min{u |u > v and u is unstable}.
If z does not exist (it must be v = n− 1), edge (n− 1, 0) is added. In Figure 3a
and 3c a tree T and its corresponding graph G = ϕb(T) are depicted. Figure 3b
shows all stable nodes of T .

Lemmas 2 and 3 guarantee that the codeword computed by Blob Encoding
Algorithm is equal to the string C = [g(1), g(2), . . . , g(n− 2)], where g is the
function associated with the functional digraph G = ϕb(T).

Let us now describe how it is possible to reconstruct the original tree T
starting from its codeword C, i.e., the decoding algorithm. Obtaining G from
C is straightforward, indeed g(0) is always undefined and g(n − 1) is always
0. Thus, we will focus on proving that ϕb is invertible so that the tree can be
obtained as T = ϕ−1

b (G). We need the following lemma:

Lemma 4. Each path in T from a stable node v to m = max(P (v, 0)) is pre-
served in G = ϕb(T).

Proof. Let v be a stable node and let assume by contradiction that the path
from v to m = max(P (v, 0)) is in T but not in G = ϕb(T). This means that in
the transformation from T to G at least one node w in P (v, m) has changed its
parent. Since ϕb changes only edges outgoing from unstable nodes, w should be
unstable and then w > max(P (w, 0)). w ∈ P (v, m) implies m ∈ P (w, 0), then w
should be greater than m contradicting m = max(P (v, 0)). ut
In order to invert the transformation operated by ϕb, all cycles in G have to
be broken, and stable and unstable nodes have to be recomputed. Each cycle Γ

6

(loops as regarded as cycles of length 1) is broken deleting the edge outgoing
from γ, the maximum node in Γ . Lemma 4 implies that γ is unstable in T ,
otherwise a node greater than γ would appear in Γ . Notice that γ becomes the
root of its own connected component, while 0 is the root of the only connected
component not containing cycles. We call stable in G each node v such that
v < max(P (v, γv]), where γv is the root of the connected component containing
v. Lemma 4 guarantees that if a node is stable in T it is also stable in G. As
proved in [6] vice versa is also true. Once stable nodes have been identified, the
original tree T can be easily recomputed inverting the changes operated during
the encoding.

The computational complexity of the original Blob Encoding algorithm
is quadratic in the number of nodes of the tree, due to the test in Line 5;
the original decoding algorithm (not reported in this paper) is also quadratic.
Our characterization of stable nodes (Lemma 2) decreases the complexity of
the Blob Encoding algorithm to O(n). Linear complexity for both encoding
and decoding algorithms can be achieved exploiting the transformation of the
tree into a functional digraph. Indeed both ϕb and ϕ−1

b can be implemented in
O(n) sequential time: the computation of maximum nodes in the upper path
(coding) and the cycles identification (decoding) can both be implemented by
simple search techniques [6].

4 Parallel Algorithms

Following the ideas introduced in the previous section, here we present parallel
encoding and decoding algorithms for the Blob code.

4.1 Model of Computation

A wide range of parallel machines have been constructed in the past few years for
executing instructions in parallel. Parallel processors may communicate either
via shared memory or via fixed connections, in synchronous or asynchronous
ways. The machine may be SIMD (all the processors execute the same instruc-
tions at the same time) or MIMD (the processors may execute different instruc-
tions simultaneously). It is possible to have concurrent or exclusive reading and
writing operations. Consequently, each time a parallel algorithm is designed, it
is necessary to specify the underling parallel machine. In this presentation we
choose not to address a specific parallel architecture, but we describe our algo-
rithms referring to the classical synchronous SIMD, shared memory, Exclusive
Write PRAM model. Even though many researchers consider this model too ab-
stract, we are convinced that PRAM is a robust theoretical framework suitable
to describe high level parallel algorithms.

Our choice is supported by the fact that this model is well studied both from a
theoretical and a from practical point of view. Indeed, a great effort in designing
a general purpose computer architecture to implement PRAM algorithms has
been made in the last years, within the project PRAM-On-Chip at the University

7

Fig. 4. a) Transformation of a tree into a regular binary tree (dummy nodes are marked
in grey); b) Nodes involved in Rake and Unrake operations.

of Maryland (see [31]). Moreover, a SIMD multi-thread extension of C language
for providing an easy programming tool to implement PRAM algorithms has
been developed. The results obtained so far seem to confirm the simplicity and
the efficiency of the PRAM model. For more information we refer to [30].

Due to the lack of space, we cannot detail the basic parallel techniques used
in this section (Prefix sum, Pointer Jumping and Parallel Tree Contraction), so
we refer the reader to the classical book by Jájá [16]. Here we only recall Brent’s
theorem:

Brent’s scheduling theorem [2]: let n ∈ N represent the input size and
p(n) be a processor bound function. Let A be an EREW PRAM algorithm
that requires w(n) computational operations and t(n) time. If each of the p(n)
processors can determine in time O(t(n)) which steps of A it needs to simulate,
then parallel algorithm A can be simulated using O(w(n)/p(n) + t(n)) time and
p(n) processors on an EREW PRAM.

In the following costs are expressed as the number of processors multiplied by
the maximum time required by a single processor.

4.2 Encoding Algorithm

Given a tree T , the first step in implementing the encoding phase, according
with the discussion in Section 3, consists in identifying all stable nodes. To this
purpose we compute, for each node v, the maximum value in the ascending path
from v to 0: we call this information µ(v). Stable nodes are those nodes v such
that v < µ(v) (see Lemma 2). In order to efficiently perform µ computation we
use the Rake operation to obtain Parallel Tree Contraction and Decontraction.

Initially T is transformed into a regular binary tree TR, i.e., a tree such that
each internal node has exactly 2 children: for each node v ∈ T with d ≥ 1
children u1, u2, . . . , ud, TR has d + 1 nodes v1, v2, . . . , vd+1 where v1 corresponds
to v while the other nodes are new dummy nodes. Each vi has vi+1 as right child
and ui as left child. Figure 4a show an example of this transformation.

During this process at most O(n) dummy nodes are introduced, thus the
size of the tree does not asymptotically change. Dummy nodes are labeled with
values that do not affect the computation of µ (e.g., negative values). Since TR

is a regular binary tree the Parallel Tree Contraction can be performed using

8

exclusively Rake operations. For the sake of clearness, from now on we will call TC

the tree that undergoes contraction even though the algorithm does not actually
need to maintain two copies of the regular binary tree. Initially TC = TR and
each node v set µ(v) equal to p(v) in TC (for the root node we set µ(0) = 0).
When a Rake operation is performed to remove a node v and its leaf child f (see
Figure 4b), the value of the other child u is updated as µ(u) = max(µ(u), µ(v)).
As a consequence of this update, the following invariant is preserved at each step
of the contraction process:

(1) For each node v in TC it holds µ(u) = max(PTR
(u, x]).

Notice that the path from u to x is considered with respect to the uncontracted
tree TR. Once the contraction is done and the tree is reduced to exactly 3 nodes
(the root 0 and two leaves) the decontraction phase begins. All nodes removed
during rake operations are reinserted backward into the tree by means of Unrake
operations. When an Unrake operation is performed to reinsert node v and its
leaf child f in between nodes x and u (see Figure 4b), the following updates are
performed: µ(v) = max(µ(v), µ(x)) and µ(f) = max(µ(f), µ(v)). So, along the
uncontraction process the following invariant is preserved:

(2) For each node v in TC it holds µ(v) = max(PTR(v, 0]).

We underline that, at the beginning of the uncontraction process, Invariant (2)
holds for all the 3 nodes as a consequence of Invariant (1). To see that Invari-
ant (2) holds for each other node v, let’s consider that, when v is reinserted
by an Unrake operation, the following facts hold: by Invariant (1), value µ(v),
computed during the contraction phase, is equal to max(PTR(u, x]); by Invari-
ant (2), µ(x) = max(PTR

(x, 0]); then the new value µ(v) = max(µ(v), µ(x)) =
max(PTR

(v, 0]). A similar argument holds for node f reinserted together with v
by the Unrake.

Once µ(v) is known for each node v ∈ T , a vector U containing all unstable
nodes in increasing order can be computed. In order to avoid expensive sorting
algorithms we enumerate unstable nodes by means of Prefix Sum [13] compu-
tation. Finally, in order to obtain the functional digraph G = ϕb(T), we simply
replace the parent of the i-th unstable node in U with the parent of the (i+1)-th
unstable node in parallel. Notice that the last element in U is always node n−1,
and node 0 appears in U (even though we don’t use it).

Algorithm: Blob Parallel Encoding
Input: a n-tree T rooted in 0 represented by its parent vector p
Output: an (n− 2)-string C indexed from 1 to n− 1
1. Compute µ(v) for each v ∈ T

Create U containing all unstable nodes in increasing order
2. for v = 0 to n− 1 in parallel do
3. if v ≥ µ(v) then A[v] = 1 else A[v] = 0
4. Execute Prefix Sum on A
5. for v = 0 to n− 1 in parallel do
6. if v ≥ µ(v) then U [A[v]] = v

9

Exchange parents
7. for v = 1 to |U | − 2 in parallel do
8. p[U [v]] = p[U [v + 1]]

Generate the codeword
9. for v = 1 to n− 2 in parallel do
10. C[v] = p[v]

The computational complexity of this algorithm is optimal, indeed, Parallel Tree
contraction can be implemented in O(log n) time with O(n/ log n) processors on
an EREW PRAM (for a detailed description see [29]). Details on efficient trans-
formation of a tree into a regular binary tree can be found in [15]. The same
bounds hold for Prefix Sum computation. The four parallel cycles appearing in
the algorithm require O(1) time with n processors and do not imply concurrent
reading or writing. Applying Brent’s theorem all these operations can be sched-
uled on O(n/ log n) processors in O(log n) time. The overall cost is linear and
thus the algorithm is optimal.

4.3 Decoding Algorithm

Let us now focus on the decoding phase. Graph G can be easily obtained from the
codeword, then the most demanding step is the identification of stable and unsta-
ble nodes. We recall that a node v is stable in G if and only if v < max(P (v, γv]),
where γv is the maximum node in the core of the connected component contain-
ing v. In other words we have to compute the maximum value in the ascending
path of each node v, let us call this value η(v).

Differently from the encoding phase, here we cannot use Parallel Tree Con-
traction since the graph is not a tree: the ascending path of a node leads to the
core of its connected component that may be a cycle or a loop. This computation
can be obtained in a Pointer Jumping like fashion: for each node v we follow the
outgoing edge (v, g[v]) searching for the maximum value in the ascending path.
After each step we set g[v] = g[g[v]] and we stop after dlog ne steps to avoid
infinite recursion inside cycles. The procedure details are as follows:

Algorithm: Compute η
Input: a functional digraph G represented by g
Output: η(v) for each node v

1. g[0] = 0
2. for v = 0 to n− 1 in parallel do
3. η(v) = 0
4. for step = 1 to dlog ne do
5. for v = 0 to n− 1 in parallel do
6. η(v) = max(η(v), g[v], η(g[v]))
7. g[v] = g[g[v]]

Once η has been computed, a vector U containing all unstable nodes in in-
creasing order can be generated as done in the Blob Parallel Encoding

10

algorithm. The last step consists in inverting the parent exchanges performed in
the encoding.

Algorithm: Blob Parallel Decoding
Input: an (n− 2)-string C indexed from 1 to n− 1
Output: a n-tree T represented by its parent vector p

1. p[0] = g[0] = undefined
2. for v = 1 to n− 2 in parallel do
3. p[v] = g[v] = C[v]
4. p[n− 1] = g[n− 1] = 0
5. Compute η(v) for each node v on vector g

Create U containing all unstable nodes in increasing order
6. for v = 0 to n− 1 in parallel do
7. if v ≥ µ(v) then A[v] = 1 else A[v] = 0
8. Execute Prefix Sum on A
9. for v = 0 to n− 1 in parallel do
10. if v ≥ µ(v) then U [A[v]] = v

Exchange parents backward
11. for v = 2 to |U | − 1 in parallel do
12. p[U [v]] = p[U [v − 1]]
13. p[U [1]] = 0

The more demanding step of Blob Parallel Decoding is the computation
of η realized by algorithm Compute η. It requires O(log n) sequential iterations,
each of which uses O(n) processors. Moreover, for this algorithm the concurrent
read model is required, indeed, in Line 6, several nodes may access the same g[v]
and η(g[v]) concurrently. Once η is known, the computation of vector U , as well
as all the parallel cycles, can be implemented in O(log n) time with O(n/ log n)
processors on a EREW PRAM. The overall cost of Blob Parallel Decoding
is O(n log n) on a CREW PRAM.

References

1. V. Boppana, I. Hartanto, and W.K. Fuchs. Full Fault Dictionary Storage Based
on Labeled Tree Encoding. In Proc. of IEEE VTS, pages 174–179, 1996.

2. R.P. Brent. The Parallel Evaluation of General Arithmetic Expressions. J. of
ACM, 21(2):201–206, 1974.

3. S. Caminiti. On Coding Labeled Trees. PhD thesis, Sapienza University of Rome,
December 2007.

4. S. Caminiti, N. Deo, and P. Micikevičius. Linear-time Algorithms for Encoding
Trees as Sequences of Node Labels. Congr. Num., 183:65–75, 2006.

5. S. Caminiti, I. Finocchi, and R. Petreschi. On Coding Labeled Trees. TCS,
382(2):97–108, 2007.

6. S. Caminiti and R. Petreschi. String Coding of Trees with Locality and Heritability.
In Proc. of COCOON, LNCS 3595, pages 251–262, 2005.

11

7. S. Caminiti and R. Petreschi. Parallel Algorithms for Dandelion-Like Codes. In
Proc. of ICCS, LNCS 5544, pages 611–620, 2009.

8. A. Cayley. A Theorem on Trees. Quart. J. of Math., 23:376–378, 1889.
9. W.Y.C. Chen. A General Bijective Algorithm for Trees. Proc. of NAS, 87:9635–

9639, 1990.
10. N. Deo, N. Kumar, and V. Kumar. Parallel Generation of Random Trees and

Connected Graphs. Congr. Num., 130:7–18, 1998.
11. N. Deo and P. Micikevičius. A New Encoding for Labeled Trees Employing a Stack

and a Queue. Bull. of ICA, 34:77–85, 2002.
12. Ö. Eğecioğlu and J.B. Remmel. Bijections for Cayley Trees, Spanning Trees, and

Their q-Analogues. J. of Comb. Th., 42A(1):15–30, 1986.
13. M.J. Fischer and R.E. Ladner. Parallel Prefix Computation. J. of ACM, 27(4):831–

838, 1980.
14. V.K. Garg and A. Agarwal. Distributed Maintenance of a Spanning Tree Using

Labeled Tree Encoding. In Proc. Euro-Par, pages 606–616, 2005.
15. R. Greenlaw and R. Petreschi. Computing Prüfer Codes Efficiently in Parallel.

DAM, 102(3):205–222, 2000.
16. J. Jájá. An Introduction to Parallel Algorithms. Addison-Wesley, 1992.
17. B.A. Julstrom. The Blob Code: A Better String Coding of Spanning Trees for

Evolutionary Search. In Proc. of ROPNET, pages 256–261, 2001.
18. B.A. Julstrom. The Blob Code is Competitive with Edge-Sets in Genetic Al-

gorithms for the Minimum Routing Cost Spanning Tree Problem. In Proc. of
GECCO, pages 585–590, 2005.

19. G. Kreweras and P. Moszkowski. Tree Codes that Preserve Increases and Degree
Sequences. J. of Disc. Math., 87(3):291–296, 1991.

20. M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, 1996.
21. J.W. Moon. Counting Labeled Trees. William Clowes and Sons, London, 1970.
22. E.H. Neville. The Codifying of Tree-Structure. Proc. of Cambridge Phil. Soc.,

49:381–385, 1953.
23. J.B. Orlin. Line-Digraphs, Arborescences, and Theorems of Tutte and Knuth. J.

of Comb. Th., 25:187–198, 1978.
24. T. Paulden and D.K. Smith. Recent Advances in the Study of the Dandelion Code,

Happy Code, and Blob Code Spanning Tree Representations. In Proc. of CEC,
pages 2111–2118, 2006.

25. T. Paulden and D.K. Smith. Some Novel Locality Results for the Blob Code
Spanning Tree Representation. In Proc. of GECCO, pages 1320–1327, 2007.

26. S. Picciotto. How to Encode a Tree. PhD thesis, University of California, San
Diego, 1999.

27. H. Prüfer. Neuer Beweis eines Satzes über Permutationen. Archiv der Mathematik
und Physik, 27:142–144, 1918.

28. C.R. Reeves and J.E. Rowe. Genetic Algorithms: A Guide to GA Theory. Springer,
2003.

29. J.H. Reif. Synthesis of Parallel Algorithms. Morgan Kaufmann, 1993.
30. U. Vishkin, G.C. Caragea, and B. Lee. Models for Advancing PRAM and other

Algorithms into Parallel Programs for a PRAM-On-Chip Platform. In Handbook of
Parallel Computing: Models, Algorithms and Applications, chapter 5. CRC Press,
2008.

31. X. Wen and U. Vishkin. PRAM-on-Chip: First Commitment to Silicon. In Proc.
of SPAA, pages 301–302, 2007.

12

