From Ramsey to Ehrenfeucht: a reduction between games

Oleg Verbitsky

Humboldt UniversitätIAPMMBerlin, GermanyandLviv, Ukraine

Bertinoro, October 2009

Joint work with Frank Harary and Wolfgang Slany.

Definition. $G \to F$ if, for any coloring of E(G) in red and blue, G contains a monochromatic copy of F.

Ramsey theorem. There is a function N = N(n) such that $K_N \to K_n$ (and hence $K_N \to F$ for any F on n vertices).

Burr (Garey and Johnson GT6): Deciding if $G \rightarrow K_3$ is coNP-complete.

Ramsey games on (G, F)

 \mathcal{A} and \mathcal{B} color E(G)

alternately, one edge per move \mathcal{A} in red, \mathcal{B} in blue \mathcal{A} moves first

Player's objective in

ACHIEVE(G, F): create a monochromatic F

```
AVOID(G, F): avoid such an F
```

Strong version: \mathcal{A} and \mathcal{B} have the same objective.

Observation: If $G \rightarrow F$, then the game never ends in a draw!

Weak version: A has the objective, B plays against (most studied but out the scope of this talk).

$AVOID(K_6, K_3) = SIM$

Mead, Rosa, Huang 74: SIM is won by \mathcal{B}

Open question (József Beck 08). Who wins $AVOID(K_{18}, K_4)$?

Symmetry breaking-preserving game

Rules of SYM(G):

A round: \mathcal{A} ' move + \mathcal{B} 's move Objective of \mathcal{B} : to keep the red and the blue subgraphs of Gisomorphic after each round

Observation: If \mathcal{B} wins SYM(G), then he does not lose AVOID(G, F) for any F.

 \mathcal{B} wins SYM(G) whenever G has a good automorphism. An automorphism is *good* if it

is involutory and leaves no edge fixed.

 $\mathcal{C}_{\rm auto}$ denotes the class of graphs with a good automorphism. $\mathcal{C}_{\rm auto}$ includes

- Paths and cycles of even length.
- Platonic graphs except the tetrahedron.
- Cubes.
- $K_{s,t}$ if st is even.

Mirror strategy in SYM(G)

 \mathcal{B} wins SYM(G) whenever G has a good automorphism. An automorphism is *good* if it

is involutory and leaves no edge fixed.

 $\mathcal{C}_{\mathrm{auto}}$ denotes the class of graphs with a good automorphism.

 \mathcal{C}_{auto} is closed with respect to the

- sum
- Cartesian, lexicographic, categorical products

 \mathcal{C}_{auto} is NP-complete.

Length of the game

 $L_{\text{sym}}(G) = \max k \text{ s.t. } \mathcal{B} \text{ wins the } k\text{-round } \text{SYM}(G).$

Known:

- $L_{\text{sym}}(K_n) \leq 6$
- $L_{\text{sym}}(G) = |E(G)|/2$ if $G \in \mathcal{C}_{\text{auto}}$. In particular,
 - $L_{sym}(P_n) = L_{sym}(C_n) = n/2$ if n is even, where P_n (resp. C_n) denotes the path (resp. cycle) of length n.
 - $L_{\text{sym}}(K_{n,n}) = n^2/2$ if n is even
- $\frac{n-1}{2} \leq L_{\text{sym}}(K_{n,n}) \leq 2n+38$ if n is odd (Pikhurko 03)

Length of the game

 $L_{\text{sym}}(G) = \max k \text{ s.t. } \mathcal{B} \text{ wins the } k\text{-round } SYM(G).$

Theorem. If n is odd, then

1. $L_{\text{sym}}(P_n) = \Omega(\log n)$ and $L_{\text{sym}}(C_n) = \Omega(\log n)$,

2. $L_{sym}(P_n) = O(\log^2 n)$ and $L_{sym}(C_n) = O(\log^2 n)$.

Lower bound: a connection to the Ehrenfeucht game

Rules of $EF(G_0, G_1)$, the Ehrenfeucht-Fraïssé game on graphs G_0 and G_1

Players: Spoiler Duplicator

i-th round: Spoiler selects $u_i \in V(G_a)$ Duplicator selects $v_i \in V(G_{1-a})$

Duplicator's objective: to keep the correspondence ' $u_i \leftrightarrow v_i$ ' being a partial isomorphism between G_0 and G_1 .

 $L_{\text{EF}}(G_0, G_1) = \max k \text{ s.t. } \mathcal{B} \text{ wins the } k \text{-round } \text{EF}(G_0, G_1).$

Lower bound: a connection to the Ehrenfeucht game

Ehrenfeucht's theorem. No first order sentence of quantifier depth $L_{\text{EF}}(G_0, G_1)$ distinguishes between non-isomorphic G_0 and G_1 . On the other hand, depth $L_{\text{EF}}(G_0, G_1) + 1$ suffices.

Theorem (textbooks in Finite Model Theory). For every n,

- 1. $\log n 2 < L_{\rm EF}(P_n, P_{n+1}) < \log n + 2.$
- **2**. $\log n 1 < L_{\rm EF}(C_n, C_{n+1}) < \log n + 1$.

Proof of the lower bound

$$L_{\text{sym}}(C_n) \ge \frac{1}{4} \log n - \frac{1}{4} \text{ for odd } n.$$

" $L_{sym}(G) \ge k$ " is expressible by a first order sentence Φ_k with 4k quantifiers.

Let $k = \frac{\lceil \log n - 1 \rceil}{4}$. Since $C_{n+1} \in C_{auto}$, we have $C_{n+1} \models \Phi_k$. Since $L_{EF}(C_n, C_{n+1}) > \log n - 1$, we have $C_n \models \Phi_k$ too.

Constructivization?

Question: We know a strategy for \mathcal{B} in $SYM(C_{n+1})$. Can we know it in $SYM(C_n)$?

Answer: Yes, because we know Duplicator's strategy in $EF(C_n, C_{n+1})!$

 $\mathcal{L}(H)$ denotes the line graph of a graph H:

 $V(\mathcal{L}(H)) = E(H),$ e_1 and e_2 are adjacent in $\mathcal{L}(H)$ if they have a common vertex in H.

Example: $\mathcal{L}(C_n) = C_n$, $\mathcal{L}(P_n) = P_{n-1}$

Clearly, $H_1 \cong H_2 \Rightarrow \mathcal{L}(H_1) \cong \mathcal{L}(H_2)$.

The Whitney theorem. $\mathcal{L}(H_1) \cong \mathcal{L}(H_2) \Rightarrow H_1 \cong H_2$ for all connected H_1 and H_2 unless $\{H_1, H_2\} = \{K_3, K_{1,3}\}.$

Constructivization!

Our former approach generalizes to

$$L_{\text{sym}}(G_1) \ge \min\left\{L_{\text{sym}}(G_0), \frac{1}{4}L_{\text{EF}}(G_0, G_1)\right\}$$

Now we prove: If G_1 is triangle-free, then

$$L_{\text{sym}}(G_1) \ge \min\left\{L_{\text{sym}}(G_0), \frac{1}{2}L_{\text{EF}}(\mathcal{L}(G_0), \mathcal{L}(G_1))\right\}$$

In particular,

$$L_{\text{sym}}(C_n) \ge \frac{1}{2}\log n - \frac{1}{2}.$$

Reduction

Let S_0 denote a strategy of \mathcal{B} in $SYM(G_0)$. Let D denote a strategy of Duplicator in $EF(\mathcal{L}(G_0), \mathcal{L}(G_1))$.

We describe $S_1 = S_1(S_0, D)$, a strategy for \mathcal{B} in $SYM(G_1)$, such that

if S_0 succeeds in k rounds of $SYM(G_0)$ and D in 2k rounds of $EF(\mathcal{L}(G_0), \mathcal{L}(G_1))$, then S_1 succeeds in k rounds of $SYM(G_1)$.

Fix a strategy of \mathcal{A} in SYM (G_1) . Denote A_i - red edges of G_i colored up to the k-th round, B_i - blue edges of G_i colored up to the k-th round. Note that A_0 is constructed from A_1 and B_1 from B_0 .

Thank you!