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This is joint work with Rod Downey, Noam Greenberg, and Kevin
Milans in:

“Binary subtrees with few labeled paths,” to appear in Combinatorica

The original motivation was to solve a problem in computability theory.
This led to work in Ramseyan combinatorics, which I will describe first
in this talk. Then I will describe the application to computability theory.



TERMINOLOGY

DEFINITION

Let T be a finite rooted tree.
1 The depth of a vertex of T is its distance from the root.
2 T is complete if all of its leaves have the same depth, and this

common depth is called the depth of the tree.
3 T is binary if each vertex which is not a leaf has exactly 2 children.
4 T is ternary if each vertex which is not a leaf has exactly 3

children.

All trees we consider are both rooted and complete.



A USEFUL PRELIMINARY RESULT

LEMMA

Monochromatic Subtree Lemma. (Goldblatt) Suppose that T is a
ternary tree of depth n, and each leaf of T is colored red or blue. Then
T has a binary subtree S of depth n with all leaves of the same color.



LABELED EDGES

From now on, each tree is assumed to come equipped with a {0,1}
labeling of its edges.

A path in a tree is a path from the root to a leaf. In a tree of depth n,
each path contains n labeled edges. The label of the path is obtained
by reading the labels of its edges, starting from the root. This label is
an n-bit binary word.

If S is a tree of depth n, let L(S) be the set of labels of paths of S, so
L(S) ⊆ {0,1}n.



OBJECT OF THE GAME

Given a ternary tree T , find a binary subtree S of the same depth with
as few path labels as possible, i.e. |L(S)| as small as possible.

EXAMPLE

If T has depth 2, there exists a binary subtree S with |L(S)| ≤ 2. This
is best possible for depth 2.



DEFINITION

Let T a ternary tree of depth n. If S is a binary subtree of T of the
same depth n, we write S < T .

DEFINITION

Let T be a ternary tree. Then the weight of T (denoted w(T )) is the
least value of |L(S)|, over all S < T .

Then we look at the worst case for each depth:

DEFINITION

Let n be a positive integer. Then f (n) is the greatest weight of a
ternary tree of depth n.



Thus, f (n) is the least number b such that every ternary tree of depth n
has a binary subtree S of depth n with at most b path labels.

EXAMPLES

f (1) = 1

f (2) = 2

f (3) = 3

f (4) = 4

Don’t worry – it gets more interesting!



The following gives recursive upper and lower bounds on f .

PROPOSITION

Let m and n be positive integers.
f (n + 1) ≤ 2f (n).
f (m + n) ≥ f (m) · f (n)

COROLLARY

6 ≤ f (5) ≤ 8.

THEOREM

f (5) = 8.



COROLLARY

For all n ≥ 4,
2bn/2c ≤ f (n) ≤ 2n−2

PROPOSITION

limn(f (n))1/n exists and is the supremum of the values of f (n)1/n for
n ∈ N. This limit is ≤ 2.

DEFINITION

limn(f (n)1/n is denoted L.

Since f (5) = 8, we get the following lower bound on L.

COROLLARY

L ≥ 5
√

8 ≥ 1.515.

The above lower bound can be improved, as we shall see.



QUESTION

What is the value of L? Is L = 2?

This can be compared with the situation for Ramsey numbers R(n,n).
It is not known whether limn R(n,n)1/n exists, but it is known that

√
2 ≤ lim inf

n
R(n,n)1/n ≤ lim sup

n
R(n,n)1/n ≤ 4



A LOWER BOUND

THEOREM

For all n ∈ N ,
f (n) ≥ 2

n−2
log2 3 ≥ (0.269) · (1.548)n

COROLLARY

L ≥ 2
1

log2 3 ≥ 1.548

(This slightly improves the previous result L ≥ 5
√

8 ≥ 1.515.)



AN UPPER BOUND ON f
THEOREM

There is a constant γ such that, for all n ∈ N,

f (n) ≤ γ2n−0.6
√

n

The proof uses probabilistic methods, the monochromatic subtree
lemma from the beginning of this talk, and the pigeonhole principle.

COROLLARY

limn
f (n)
2n = 0.

A generalized version of the corollary is what is needed for our
application to logic. It can be proved using the monochromatic subtree
lemma and the pigeonhole principle (without using probabilistic
methods).



INFINITE TREES

We now consider infinite rooted trees which have no leaves. As
before, every edge is labeled 0 or 1. Define ternary and binary ,and
S < T as before.

If T is an infinite tree, then every path through T is labeled by an
infinite binary word. Let L(T ) be the set of labels of paths through T .

PROPOSITION

There is an infinite ternary tree T such that, for every S < T ,
|L(S)| = 2ℵ0 .

Hence, it no longer makes sense to try to minimize |L(S)|.



MEASURE OF PATH LABELS

Let µ be the usual coin-toss measure on 2ω.

THEOREM

(Measure 0 path label theorem) Let T be an infinite ternary tree. Then
there exists S < T such that µ(L(S)) = 0.

REMARKS

The proof is effective. Hence, if T is computable, then S may be
chosen to be computable.
Let U be an infinite set of natural numbers. If we label only edges
with depth in U, the result still holds, indeed effectively.



APPLICATION TO COMPUTABILITY THEORY

Goal. Compare the complexity of diagonalization using specified
values with the complexity of constructing a random set, e.g. a
1-random set.

The problems of diagonalization and constructing a 1-random set are
framed as mass problems.



MASS PROBLEMS

A mass problem is a set of total functions from ω to ω

We identify sets A ⊆ ω with their characteristic functions.

A,B, . . . are variables for mass problems.

The “solutions” to a mass problem A are simply the elements of A.



DIAGONALIZATION MASS PROBLEMS

DNR = {f : (∀e)[f (e) 6= ϕe(e)]}.

Note that no function in DNR is computable. Sometimes we restrict the
values used to diagonalize:

DEFINITION

For k ∈ ω,
DNRk = {f : (∀e)[f (e) < k & f (e) 6= ϕe(e)]} = DNR ∩ kω



STRONG REDUCIBILITY OF MASS PROBLEMS

DEFINITION

Let A and B be mass problems. A is strongly reducible to B (denoted
A ≤s B) if there is a fixed oracle Turing machine M such that M f ∈ A
for all f ∈ B.

This definition is due to Medvedev, and the reducibility is also known
as Medvedev reducibility.

The idea is that given any “solution” to B, one can, in a uniform way
compute a “solution” to A.



DEFINITION

Let A and B be mass problems. Then A >s B means that B ≤s A and
A 6≤s B.

The following old result of mine follows from a version of the
monochromatic subtree lemma.

THEOREM

DNR2 >s DNR3 >s DNR4 >s . . .

Let 1-RAND be the class of all (characteristic functions of) 1-random
sets. The following result is well-known:

THEOREM

DNR2 >s 1-RAND
For all k, DNRk 6≤s 1-RAND



QUESTION

(Joe Miller) Is 1-RAND strongly reducible to DNR3?

We obtain a negative answer.

THEOREM

(DGJM) 1-RAND 6≤s DNR3. Thus, there is no Turing machine which,
given any function in DNR3 as an oracle, computes the characteristic
function of a 1-random set.

Recall: This fails for DNR2 in place of DNR3.



APPLYING THE MEASURE 0 PATH THEOREM

To show: 1-RAND 6≤s DNR3

Let M be an oracle Turing machine. WLOG, M f is total for all f ∈ 3ω.
Let T = 3<ω, labeled so that, for all f ∈ 3ω, M f is the path label of f .
Extract a computable S < T such that µ(L(S)) = 0. Let f be a DNR
path through S. Argue that Φf

e is not 1-random because it is in L(S), a
Π0

1 class of measure 0. So f ∈DNR3 and M f /∈ 1-RAND.



COROLLARY

There is a Π0
1 class P ⊆ 2ω of positive measure which is not strongly

reducible to DNR3.

PROOF.
The class 1-RAND has a Π0

1 subclass P of positive measure, and then
P 6≤s DNR3.

This corollary answers a question raised by Steve Simpson, and this
question led to all work presented here.


