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Motivated by the work of CJS,
we want to analyze and cali-
brate the strength of various
consequences of RT (pairs).
All orders (chains) are count-
ably infinite.

CAC (Dilworth): Every par-
tial order has a chain or an
antichain.

ADS (Erdos-Szekeres): Every
linear order. has an ascending
(w) or descending (w*) subor-
der.

As for RT, decompose 1nto

stable and cohesive versions.
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The stable linear orders are
those of type w, w* or w + w*.

SADS: Every l.o. of type w+w?*
has a suborder type w or w*.

CADS: Every l.o. has a subor-
der type w, w*, or w + w*.

Def.: a p.o. P 1s stable 1f

Vil(a.e.j)(i <p j) V (a.e.j)(ilpj)]
or Vi[(a.e.j)(i >p j) V (a.e.j)(i|pj)].
SCAC: Every stable p.o. has
an chain or antichain.

CCAC: Every p.o. has a stable
suborder.



We measure the strength of
such principles either proof
theoretically (reverse math-
ematics) or computational
(Turing machines with ora-
cles). The second, captures
the intuition that problem A
1s easier than B 1f we can
solve any instance of B by
combining computable proce-
dures with the ability to solve
any instance of A that we can
construct and then use the so-
lutions as oracles.



If C 1s closed under Turing
reducibility and join, C com-
putably satisfies ¥ 1f ¥ 1s true
in the standard model of arith-
metic with set quantification
over C. ¥ computably entails
d, U k. @, 1if (for closed C),
CE. UV —CE.d. Uand ¢ are
computably equivalent, UV =, @,
1fUE.dand ¢ . V.

Expresses the relations among
mathematical theorems di-
rectly. Nonimplications are
stronger than for r. m. as we
consider only standard models.
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Combinatorial Arguments

Prop 1: RT-CAC; SRT-SCAC.
Prop. 2: ADSFCOH.

Given (R;) apply ADS to
the lex order on (R;(z)|i < x).
Prop 3: - CCAC — ADS.

— by def. «—: Let £ be a lin-
earization of P. Apply ADS to
get S = (s;). If S 1s ascending,
(Vi)(Vj > i)(si <p sj V s; |p sj)
Apply COH to S and the se-
quence R; = {s; | s; <p s;}.
Any R-cohesive subset of S is
a stable suborder of P. Simi-
larly 1f S 1s descending.
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Prop 4: SCAC + SADS.
Proof: Given <; of type w + w*,
color (m,n) blue if m <; n A
m < n; otherwise, red. This 1s
stable. A blue homogeneous
set has order type w. A red one
has order type w*.

Prop: COH +~ CADS.

Proof: Given <;, let R, =
{m | m <; n}. If Sis R-
cohesive then every element of
(S, <) has either finitely many
predecessors or finitely many
SUCCESSOTS.



Classical degree theoretic ar-
guments (Lerman, Tennen-
baum, Denisov): none of these
principles are computably
true. More elaborate ones
(Manaster, Hermann, DHLS,
HS): they are not entailed by
WKL; most of these implica-
tions cannot be reversed even
in the sense of ¥..

Also show that the split-
tings are true ones, 1.e. CAC
(ADS) 1s not entailed by ei1-
ther SCAC or CCAC=COH
(SADS, CADS).
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Forcing arguments give more.
COH + WKL . SADS.

Iterate both Mathias and
binary tree forcings.

ADS ¥, WKL.

Iterate Mathias forcing and
a special one adding solu-
tions for ADS without a path

through a specific instance of
WKL. (Conditions are A,.)

CAC #. WKL.

Add a forcing with ex-
tension also A, to get SCAC
without adding a solution to
WKL. Iterate to get CAC.
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A careful analysis of the forc-
ings that avoids WKL shows
we can get more.

Def: f 1s diagonally non-
recursive relative to A 1f

Ve (f(e) # d4(e)), where @,

is the /" Turing functional.

(DNR) For every set A
there 1s a function f that 1s
diagonally noncomputable
relative to A.

Immediate that WKL +
DNR. Converse falils.

10



Thm: CAC . DNR

On the other hand, Hirschfeldt,
Jockusch, Kjos-Hanssen,
Lempp & Slaman had already
proven:

Thm: SRT - DNR

Cor: CAC #. RT,
Indeed, CAC . SRT.

HS show FADS—BX5. Chong,
Slaman and Yang have re-
cently shown that CAC 1s
conservative over BY,. So all
three principles have the same
first order consequences.
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An analysis of the proofs
leads to conditions on the
colorings associated with CAC
and ADS that make them
work. Transitivity 1s the key.
Def: An n-coloring of [X)?,
(C; | i < n), 18 transitive 1f
each C; 1s transitive: Cj(x,y) A
Ci(y,2) — Ci(x,2). It 1s semi-
transitive 1f each C; but one
1s transitive. If the C; are
not disjoint we call 1t an n-
multicoloring. An infinite A 1s
homogeneous for (C;) 1f (i <
n)(Ve,y € H)lz <y — Cy(z,y)].
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Let TrRT?, STrRT?, TrMRT?
and STTMRT? be the asser-
tions that colorings of the
indicated type always have
homogeneous sets.

vn > 2, FSTTIMRT? —STrRT?2.

vn > 2, FSTrMRT?, «—STrMRTS3;
~STrRT% —CAC; FCAC—STrRT3.

Only the last implication 1s
not trivial. Still, we have the
interesting equivalences:

(vn > 2) FCAC+«+ every semi-
transitive n-multicoloring has
a homogeneous set.
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For transitive partitions, the
implication from multicolor-
ings to colorings remains obvi-
ous but not the other direction.
However,

-TrRT%2 —ADS—TrMRT?3.
so these three are equivalent.

Question: What are the re-

lations among the TrRT? and

TrMRT? as n varies over N and

with STrRT3.

Question: In particular, does

ADS 1mply or entail CAC?
Remember they have the

same first order consequences.
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We have similar results and

questions for the stable ver-
sions, SADS and SCAC.

More general open questions
concern the possible gener-
alizations of TrRT?, TrMRT?
and STrRT? to k-tuples for
k > 2. Here, while we have
some results, we do not even
know what the “right” gen-
eralizations should be even
for k = 3. There are many
possibilities.
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Some are related to canoni-
cal Ramsey theorems, some to
regressive ones. Some corre-
spond to the view that 1n the
n = 2 case, we required that 1f
the “first two™ sides of a tri-
angle have the same color so
does the third. Other choices
of the ordering of the sides are
possible even for n = 2. Should
we somehow consider the four
sides of a pyramid for £ = 3 or
some other principle?

What generalizations make
sense or might be useful?
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