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Motivated by the work of CJS,
we want to analyze and cali-
brate the strength of various
consequences of RT (pairs).
All orders (chains) are count-
ably in�nite.
CAC (Dilworth): Every par-
tial order has a chain or an
antichain.
ADS (Erdös-Szekeres): Every
linear order. has an ascending
(!) or descending (!�) subor-
der.
As for RT, decompose into
stable and cohesive versions.
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The stable linear orders are
those of type !, !� or ! + !�.
SADS: Every l.o. of type !+!�
has a suborder type ! or !�.
CADS: Every l.o. has a subor-
der type !, !�, or ! + !�.
Def.: a p.o. P is stable if
8i[(a:e:j)(i <P j) _ (a:e:j)(ijPj)]

or 8i[(a:e:j)(i >P j) _ (a:e:j)(ijPj)]:
SCAC: Every stable p.o. has
an chain or antichain.
CCAC: Every p.o. has a stable
suborder.
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We measure the strength of
such principles either proof
theoretically (reverse math-
ematics) or computational
(Turing machines with ora-
cles). The second, captures
the intuition that problem A

is easier than B if we can
solve any instance of B by
combining computable proce-
dures with the ability to solve
any instance of A that we can
construct and then use the so-
lutions as oracles.
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If C is closed under Turing
reducibility and join, C com-
putably satis�es 	 if 	 is true
in the standard model of arith-
metic with set quanti�cation
over C. 	 computably entails
�, 	 �c �, if (for closed C),
C �c 	 ! C �c �. 	 and � are
computably equivalent, 	 �c �,
if 	 �c � and � �c 	.
Expresses the relations among
mathematical theorems di-
rectly. Nonimplications are
stronger than for r. m. as we
consider only standard models.

5



Combinatorial Arguments
Prop 1: RT`CAC; SRT`SCAC.
Prop. 2: ADS`COH.
Given hRii apply ADS to

the lex order on hRi(x)ji � xi.
Prop 3: ` CCAC $ ADS.
! by def.  : Let L be a lin-

earization of P. Apply ADS to
get S = hsii. If S is ascending,
(8i)(8j > i)(si <P sj _ si jP sj).
Apply COH to S and the se-
quence Ri = fsj j si <P sjg.
Any ~R-cohesive subset of S is
a stable suborder of P. Simi-
larly if S is descending.
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Prop 4: SCAC ` SADS.
Proof: Given �L of type !+!�,
color (m;n) blue if m �L n ^
m � n; otherwise, red. This is
stable. A blue homogeneous
set has order type !. A red one
has order type !�.
Prop: COH ` CADS.
Proof: Given �L, let Rn =
fm j m �L ng. If S is ~R-
cohesive then every element of
(S;�L) has either �nitely many
predecessors or �nitely many
successors.
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Classical degree theoretic ar-
guments (Lerman, Tennen-
baum, Denisov): none of these
principles are computably
true. More elaborate ones
(Manaster, Hermann, DHLS,
HS): they are not entailed by
WKL; most of these implica-
tions cannot be reversed even
in the sense of 2c.
Also show that the split-
tings are true ones, i.e. CAC
(ADS) is not entailed by ei-
ther SCAC or CCAC=COH
(SADS, CADS).
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Forcing arguments give more.
COH + WKL 2c SADS.
Iterate both Mathias and

binary tree forcings.
ADS 2cWKL.
Iterate Mathias forcing and

a special one adding solu-
tions for ADS without a path
through a speci�c instance of
WKL. (Conditions are �2.)
CAC 2cWKL.
Add a forcing with ex-

tension also �2 to get SCAC
without adding a solution to
WKL. Iterate to get CAC.
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A careful analysis of the forc-
ings that avoids WKL shows
we can get more.
Def: f is diagonally non-
recursive relative to A if
8e (f (e) 6= �Ae (e)), where �e
is the eth Turing functional.
(DNR) For every set A

there is a function f that is
diagonally noncomputable
relative to A.
Immediate that WKL `

DNR. Converse fails.
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Thm: CAC 2c DNR
On the other hand, Hirschfeldt,
Jockusch, Kjos-Hanssen,
Lempp & Slaman had already
proven:
Thm: SRT ` DNR
Cor: CAC 2c RT,
Indeed, CAC 2c SRT.

HS show `ADS!B�2. Chong,
Slaman and Yang have re-
cently shown that CAC is
conservative over B�2. So all
three principles have the same
�rst order consequences.
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An analysis of the proofs
leads to conditions on the
colorings associated with CAC
and ADS that make them
work. Transitivity is the key.
Def: An n-coloring of [X ]2,
hCi j i < ni, is transitive if
each Ci is transitive: Ci(x; y) ^
Ci(y; z) ! Ci(x; z). It is semi-
transitive if each Ci but one
is transitive. If the Ci are
not disjoint we call it an n-
multicoloring. An in�nite H is
homogeneous for hCii if (9i <
n)(8x; y 2 H)[x < y ! Ci(x; y)].
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Let TrRT2n, STrRT2n, TrMRT2n
and STrMRT2n be the asser-
tions that colorings of the
indicated type always have
homogeneous sets.
8n � 2, `STrMRT2n!STrRT2n.
8n � 2, `STrMRT2n$STrMRT22;
`STrRT23!CAC; `CAC!STrRT22.
Only the last implication is
not trivial. Still, we have the
interesting equivalences:
(8n � 2) `CAC$ every semi-
transitive n-multicoloring has
a homogeneous set.

13



For transitive partitions, the
implication from multicolor-
ings to colorings remains obvi-
ous but not the other direction.
However,
`TrRT22!ADS!TrMRT22.
so these three are equivalent.
Question: What are the re-
lations among the TrRT2n and
TrMRT2n as n varies over N and
with STrRT22.
Question: In particular, does
ADS imply or entail CAC?
Remember they have the

same �rst order consequences.
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We have similar results and
questions for the stable ver-
sions, SADS and SCAC.
More general open questions
concern the possible gener-
alizations of TrRT2n, TrMRT2n
and STrRT2n to k-tuples for
k > 2. Here, while we have
some results, we do not even
know what the �right� gen-
eralizations should be even
for k = 3. There are many
possibilities.

15



Some are related to canoni-
cal Ramsey theorems, some to
regressive ones. Some corre-
spond to the view that in the
n = 2 case, we required that if
the ��rst two� sides of a tri-
angle have the same color so
does the third. Other choices
of the ordering of the sides are
possible even for n = 2. Should
we somehow consider the four
sides of a pyramid for k = 3 or
some other principle?
What generalizations make

sense or might be useful?
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