AN INFINITE SELF DUAL RAMSEY THEOEREM

Dimitris Vlitas

MALOA

May 26, 2011

Dimitris Vlitas AN INFINITE SELF DUAL RAMSEY THEOEREM

Let K and L be finite linear orders. By an rigid surjection $t: L \to K$ we mean a surjection with the additional property that images of initial segments of the domain are also initial segments of the range. We call a pair (t, i) a connection between K and L if $t: L \to K$, $i: K \to L$ such that for all $x \in L$:

$$t(i(x)) = x$$
 and $\forall y \leq i(x) \Rightarrow t(y) \leq x$.

It is easy to see that if (t, i) is a connection then t is a rigid surjection and i is an increasing injection. Similarly we define (s, j) a connection between ω and K, if $s : \omega \to K, j : K \to \omega$ such that for all $x \in L$:

$$s(j(x)) = x$$
 and $\forall y \leq j(x) \Rightarrow s(y) \leq x$.

Once more if (s, j) is a connection then s is a rigid surjection and j is an increasing injection.

∃ ► < ∃ ►</p>

э

 $F^{A}_{\omega,\omega} = \{ (r,c) : r : \omega \to \omega \cup A, c : \omega \to \omega, c \text{ is an increasing injection: } r(c(x)) = x \text{ and } y \le c(x) \Rightarrow r(y) \le x \}$

$$\begin{split} F^{A}_{\omega,\omega} &= \{ (r,c) : r : \omega \to \omega \cup A, \ c : \omega \to \omega, c \text{ is an increasing} \\ \text{injection:} \ r(c(x)) &= x \text{ and } y \leq c(x) \Rightarrow r(y) \leq x \} \\ F^{A}_{\omega,K} &= \{ (s,j) : \ s : \omega \to K \cup A, j : K \to \omega : j \text{ is an increasing} \\ \text{injection such that } s(j(x)) &= x, y \leq j(x) \Rightarrow s(y) \leq x \}. \end{split}$$

$$\begin{split} F^A_{\omega,\omega} &= \{ (r,c) : r : \omega \to \omega \cup A, \ c : \omega \to \omega, c \text{ is an increasing} \\ \text{injection: } r(c(x)) &= x \text{ and } y \leq c(x) \Rightarrow r(y) \leq x \} \\ F^A_{\omega,K} &= \{ (s,j) : s : \omega \to K \cup A, j : K \to \omega : j \text{ is an increasing} \\ \text{injection such that } s(j(x)) &= x, y \leq j(x) \Rightarrow s(y) \leq x \}. \end{split}$$
Note that A is not in the domain of the increasing injections.

$$\begin{split} F^A_{\omega,\omega} &= \{ (r,c) : r : \omega \to \omega \cup A, \ c : \omega \to \omega, c \text{ is an increasing} \\ \text{injection: } r(c(x)) &= x \text{ and } y \leq c(x) \Rightarrow r(y) \leq x \} \\ F^A_{\omega,K} &= \{ (s,j) : s : \omega \to K \cup A, j : K \to \omega : j \text{ is an increasing} \\ \text{injection such that } s(j(x)) &= x, y \leq j(x) \Rightarrow s(y) \leq x \}. \\ \text{Note that } A \text{ is not in the domain of the increasing injections.} \\ \text{For } (r,c) \in F^A_{\omega,\omega} \text{ we define} \\ (r,c)^\omega_A &= \{ (r',c') : (r',c') \leq (r,c) : (r',c') \in F^A_{\omega,\omega} \} \end{split}$$

$$\begin{split} F^A_{\omega,\omega} &= \{ (r,c) : r : \omega \to \omega \cup A, \ c : \omega \to \omega, c \text{ is an increasing} \\ \text{injection: } r(c(x)) &= x \text{ and } y \leq c(x) \Rightarrow r(y) \leq x \} \\ F^A_{\omega,K} &= \{ (s,j) : s : \omega \to K \cup A, j : K \to \omega : j \text{ is an increasing} \\ \text{injection such that } s(j(x)) &= x, y \leq j(x) \Rightarrow s(y) \leq x \}. \\ \text{Note that } A \text{ is not in the domain of the increasing injections.} \\ \text{For } (r,c) \in F^A_{\omega,\omega} \text{ we define} \\ (r,c)^A_A &= \{ (r',c') : (r',c') \leq (r,c) : (r',c') \in F^A_{\omega,\omega} \} \\ \text{For } k \in \omega, \\ (r,c)^K_A &= \{ (s,j) \in F_{\omega,K} : (s,j) \leq (r',c'), (r',c') \in (r,c)^A_\omega \}. \end{split}$$

Let now $(r, c)_A^* = \{ (t, \emptyset) : (t, \emptyset) \preceq (r', c'), (r', c') \in (r, c)_A^{\omega} \text{ and if}$ the length of t is M, then $r'(M) = 0, t \upharpoonright M \subseteq A \}$. By \emptyset emphasize that the increasing injections in the second coordinate do not have A in their domain. Let now $(r, c)_A^* = \{ (t, \emptyset) : (t, \emptyset) \preceq (r', c'), (r', c') \in (r, c)_A^\omega \text{ and if}$ the length of t is M, then $r'(M) = 0, t \upharpoonright M \subseteq A \}$. By \emptyset emphasize that the increasing injections in the second coordinate do not have A in their domain. $[r, c]_A^L = \{ (t, i) : (t, i) \preceq (r', c') \text{ where } (r', c') \in (r, c)_A^\omega, \text{ the}$ domain of i is equal to L and $r'(lh(t, i)) = L \}$. Let $(t, i) \leq (r, c), (t, i) \in [r, c]_A^L$, where its length is M and the domain of i is equal to L i.e. $(t, i) \in F_{M,L}^A$, by $(t^*, i^*) \in (r, c)_A^{L+1}$ we mean the unique predecessor of (r, c) on which i^* has domain equal to L + 1, $i^* \upharpoonright L = i \upharpoonright L$, $t^* \upharpoonright M = t \upharpoonright M \subseteq \{0, \ldots L - 1\}$ $t^*(M) = L$ and $r(lh(t^*, i^*)) = L + 1$.

Let $(t, i) \leq (r, c), (t, i) \in [r, c]_A^L$, where its length is M and the domain of i is equal to L i.e. $(t, i) \in F_{M,L}^A$, by $(t^*, i^*) \in (r, c)_A^{L+1}$ we mean the unique predecessor of (r, c) on which i^* has domain equal to L + 1, $i^* \upharpoonright L = i \upharpoonright L$, $t^* \upharpoonright M = t \upharpoonright M \subseteq \{0, \ldots L - 1\}$ $t^*(M) = L$ and $r(lh(t^*, i^*)) = L + 1$.

 $(s,j) \cdot (r,c) = (s \circ r, c \circ j)$ so the order of composition in the two coordinates is not the same.

Dimitris Vlitas AN INFINITE SELF DUAL RAMSEY THEOEREM

◆□ > ◆母 > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

Ramsey Theorem

Let I, K be natural numbers. For any *I*-coloring of all increasing injections $j : K \to \omega$ there exists an increasing injection $j_0 : \omega \to \omega$ such that the set $\{j_0 \circ j : j : K \to \omega\}$ is monochromatic.

Ramsey Theorem

Let I, K be natural numbers. For any *I*-coloring of all increasing injections $j: K \to \omega$ there exists an increasing injection $j_0: \omega \to \omega$ such that the set $\{j_0 \circ j: j: K \to \omega\}$ is monochromatic.

Graham-Rothschild

Let I, K, L, M be natural numbers. For any *I*-coloring of all rigid surjections $s : K \to L$ there exists a rigid surjection $s_0 : K \to M$ such that the set $\{ t \circ s_0 : t : M \to L \text{ a rigid surjecton } \}$ is monochromatic

Dimitris Vlitas AN INFINITE SELF DUAL RAMSEY THEOEREM

◆□ > ◆母 > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

Carlson-Simpson

Let *I* a natural number. For any *I*-coloring of all rigid surjections $s: \omega \to K$ there exists a rigid surjection $s_0: \omega \to \omega$ such that the set $\{ s \circ s_0 : s : \omega \to K \}$ is monochromatic.

Carlson-Simpson

Let *I* a natural number. For any *I*-coloring of all rigid surjections $s: \omega \to K$ there exists a rigid surjection $s_0: \omega \to \omega$ such that the set $\{ s \circ s_0 : s : \omega \to K \}$ is monochromatic.

Solecki

For any finite coloring of $F_{K,L}$, there exists $(s_0, j_0) \in F_{K,M}$ such that the set $\{(t, i) \circ (s_0, j_0) : (t, i) \in F_{M,L}\}$ is monochromatic.

THEOREM

Let l > 0 be a natural number. Let K be a finite linear order. For each l-coloring of all connections between ω and K, that is Borel, there exists a connection $(r_0, c_0) : \omega \leftrightarrow \omega$ such that the set $\{(s,j) \cdot (r_0, c_0) : (s,j) : \omega \leftrightarrow K\}$ is monochromatic.

Theorem 1

If $F_{\omega,K}^A = C_0, \cup \ldots, \cup C_{l-1}$ where each C_i is Borel, then there exists $(r_0, c_0) \in F_{\omega,\omega}^A$ such that $(r_0, c_0)_A^K \subseteq C_k$ for some $k \in I$.

Theorem 1

If $F_{\omega,K}^A = C_0, \cup \ldots, \cup C_{l-1}$ where each C_i is Borel, then there exists $(r_0, c_0) \in F_{\omega,\omega}^A$ such that $(r_0, c_0)_A^K \subseteq C_k$ for some $k \in I$.

proof

By induction on K

Lemma 1, K=0

If $(r, c) \in F_{\omega,\omega}^A$ and $(r, c)_A^0 = C_0 \cup \cdots \cup C_{l-1}$ where each C_k is Borel, then there exists $(r', c') \in (r, c)_A^\omega$ such that $(r', c')_A^0 \subseteq C_k$ for some $k \in I$.

3

Lemma 1, K=0

If $(r, c) \in F_{\omega,\omega}^A$ and $(r, c)_A^0 = C_0 \cup \cdots \cup C_{l-1}$ where each C_k is Borel, then there exists $(r', c') \in (r, c)_A^\omega$ such that $(r', c')_A^0 \subseteq C_k$ for some $k \in I$.

proof

Note that the coloring does not depend on the second coordinate so in particular this theorem reduces to the Carlson-Simpson theorem.

Dimitris Vlitas AN INFINITE SELF DUAL RAMSEY THEOEREM

э

By W_A we denote the set of all words over A of finite length i.e. all finite strings of elements of A.

By W_A we denote the set of all words over A of finite length i.e. all finite strings of elements of A.

By W_{Lv} the set of all variable words over A, i.e. all finite strings of elements of $A \cup \{v\}$ in which v occurs at least once.

By W_A we denote the set of all words over A of finite length i.e. all finite strings of elements of A.

By W_{Lv} the set of all variable words over A, i.e. all finite strings of elements of $A \cup \{v\}$ in which v occurs at least once.

For an infinite sequence $X = (x_n)_{n \in \omega}$ of elements of W_{Lv} , by $[X]_A$ we denote the partial semigroup of W_A generated by X as follows: $[X]_A = \{ x_{n_0}(\alpha_0) \cap \cdots \cap x_{n_k}(\alpha_k) : n_0 < \cdots < n_k, \alpha_i \in A(i \le k) \}.$

By W_A we denote the set of all words over A of finite length i.e. all finite strings of elements of A.

By W_{Lv} the set of all variable words over A, i.e. all finite strings of elements of $A \cup \{v\}$ in which v occurs at least once.

For an infinite sequence $X = (x_n)_{n \in \omega}$ of elements of W_{Lv} , by $[X]_A$ we denote the partial semigroup of W_A generated by X as follows: $[X]_A = \{ x_{n_0}(\alpha_0) \cap \cdots \cap x_{n_k}(\alpha_k) : n_0 < \cdots < n_k, \alpha_i \in A(i \le k) \}.$

LVWT, (Todorcevic)

Let A be a finite alphabet, then for any finite coloring of W_A there is an infinite sequence $X = (x_n)_{n \in \omega}$ of left variable-words and a variable free word w_0 such that the translate $w_0 \frown [X]_A$ of the partial semigroup of W_A generated by X is monochromatic.

If $(r,c) \in F_{\omega,\omega}^A$ and $(r,c)_A^* = C_0 \cup \cdots \cup C_{l-1}$, then there exists $(r',c') \in (r,c)_A^\omega$ such that $(r',c')_A^* \subseteq C_k$ for some k.

If $(r,c) \in F_{\omega,\omega}^A$ and $(r,c)_A^{\star} = C_0 \cup \cdots \cup C_{l-1}$, then there exists $(r',c') \in (r,c)_A^{\omega}$ such that $(r',c')_A^{\star} \subseteq C_k$ for some k.

proof

Code each element of $(r, c)^*_A$ by a word in W_A and color W_A accordingly.

If $(r,c) \in F_{\omega,\omega}^A$ and $(r,c)_A^{\star} = C_0 \cup \cdots \cup C_{l-1}$, then there exists $(r',c') \in (r,c)_A^{\omega}$ such that $(r',c')_A^{\star} \subseteq C_k$ for some k.

proof

Code each element of $(r, c)^*_A$ by a word in W_A and color W_A accordingly.

By LVWT we get an infinite sequence $X = (x_n)_{n \in \omega}$ of left variable-words and a variable free word w_0 such that the translate $w_0 \frown [X]_A$ of the partial semigroup of W_A generated by X is monochromatic.

If $(r,c) \in F_{\omega,\omega}^A$ and $(r,c)_A^{\star} = C_0 \cup \cdots \cup C_{l-1}$, then there exists $(r',c') \in (r,c)_A^{\omega}$ such that $(r',c')_A^{\star} \subseteq C_k$ for some k.

proof

Code each element of $(r, c)^*_A$ by a word in W_A and color W_A accordingly.

By LVWT we get an infinite sequence $X = (x_n)_{n \in \omega}$ of left variable-words and a variable free word w_0 such that the translate $w_0 \frown [X]_A$ of the partial semigroup of W_A generated by X is monochromatic.

Consider the infinite word $w_0 \cap x_0 \cap \cdots \cap x_n \cap \cdots$. If at the *i*-th and *j*-th positions of the above infinite word there is a variable, where $i, j \in [lh(w_0 \cap \cdots \cap x_n), lh(w_0 \cap \cdots \cap x_{n+1})]$, then identify them in the equivalence relation. If in the *i*-th position there is a letter $\alpha \in A$ then $X_{r'}(i) = \alpha$. The resulting equivalence relation is such that $(X_{r'})_A^* \subseteq C_k$ for fixed k.

Assuming theorem 2 holds for $F_{\omega,K}^{A+1}$, where A+1 denotes a finite alphabet of cardinality |A|+1. Then Main Theorem holds for $F_{\omega,K+1}^{A}$.

Assuming theorem 2 holds for $F_{\omega,K}^{A+1}$, where A+1 denotes a finite alphabet of cardinality |A|+1. Then Main Theorem holds for $F_{\omega,K+1}^{A}$.

proof

Let $F_{\omega,K+1}^A = C_0 \cup \cdots \cup C_{l-1}$ be a Borel coloring. There exists a canonical homeomorphism between $[(t^*, i^*), (r', c')]_A^{K+1}$ and $F_{\omega,K}^{A+1}$.

Assuming theorem 2 holds for $F_{\omega,K}^{A+1}$, where A+1 denotes a finite alphabet of cardinality |A|+1. Then Main Theorem holds for $F_{\omega,K+1}^{A}$.

proof

Let $F_{\omega,K+1}^A = C_0 \cup \cdots \cup C_{I-1}$ be a Borel coloring. There exists a canonical homeomorphism between $[(t^*, i^*), (r', c')]_A^{K+1}$ and $F_{\omega,K}^{A+1}$. We can construct by recursion $(r, c) \in F_{\omega,\omega}$ such that for all $(t, i) \in (r, c)_A^*$, $[(t^*, i^*), (r, c)]_A^{K+1} \subseteq C_h$ for some $h \in I$ depending on (t, i).

Assuming theorem 2 holds for $F_{\omega,K}^{A+1}$, where A+1 denotes a finite alphabet of cardinality |A|+1. Then Main Theorem holds for $F_{\omega,K+1}^{A}$.

proof

Let $F_{\omega,K+1}^A = C_0 \cup \cdots \cup C_{I-1}$ be a Borel coloring. There exists a canonical homeomorphism between $[(t^*, i^*), (r', c')]_A^{K+1}$ and $F_{\omega,K}^{A+1}$. We can construct by recursion $(r, c) \in F_{\omega,\omega}$ such that for all $(t, i) \in (r, c)_A^*$, $[(t^*, i^*), (r, c)]_A^{K+1} \subseteq C_h$ for some $h \in I$ depending on (t, i). Then the last Lemma implies that we get an $(r', c') \in (r, c)_A^\omega$ such

that $(r', c')_A^* \subseteq C'_h$ for some fixed h' and therefore (r', c') is the desired one.

Theorem

$$\langle F_{\omega,\omega}, u, \leq \rangle$$
, where $u : F_{\omega,\omega} \times \omega \to \mathcal{A}F_{\omega,\omega} = \bigcup_{N \leq M} F_{M,N}$ by $u_N((r,c)) = (t,i), (t,i) \in F_{M,N}, (t,i) \leq (r,c)$.
is a topological Ramsey space

・ロ・・ 日本・ ・ 日本・ ・ 日本

æ

Theorem

$$\langle F_{\omega,\omega}, u, \leq \rangle$$
, where $u : F_{\omega,\omega} \times \omega \to \mathcal{A}F_{\omega,\omega} = \bigcup_{N \leq M} F_{M,N}$ by $u_N((r,c)) = (t,i), (t,i) \in F_{M,N}, (t,i) \leq (r,c)$.
is a topological Ramsey space

Theorem

Let $F_{\omega,\omega} = C_0 \cup \cdots \cup C_{l-1}$ be a Baire or Suslin measurable coloring. There exists $(r, c) \in F_{\omega,\omega}$ such that $(r, c)^{\omega}$ is monochromatic.

・ロト・「聞・ 《聞・ 《聞・ 《日・

• $F_{\omega,K}$ does not form a topological Ramsey space

3

*F*_{ω,K} does not form a topological Ramsey space
Main Theorem holds for Suslin measurable colorings

∃ → < ∃ →</p>

- $F_{\omega,K}$ does not form a topological Ramsey space
- Ø Main Theorem holds for Suslin measurable colorings
- ◎ $[(t,i)] = \{ (s,j) \in F_{\omega,K} : (t,i) \preceq (s,j) \text{ and domain of } i \text{ is equal to } K \}.$

4 B K 4 B K

$F_{\omega,K}$

- $F_{\omega,K}$ does not form a topological Ramsey space
- Ø Main Theorem holds for Suslin measurable colorings
- ③ $[(t,i)] = \{ (s,j) \in F_{\omega,K} : (t,i) \preceq (s,j) \text{ and domain of } i \text{ is equal to } K \}.$

Theorem

 $c: F_{\omega,K} \to h$ is a finite coloring that is Baire measurable relative to the topology defined just above. Then there exists an $(r, c) \in F_{\omega,\omega}$ such that the family $F_{\omega,K}|(r,c) = \{(s,j) \in F_{\omega,K} : (s,j) \leq (r,c)\}$ is *c*-monochromatic.

Our Infinite Self Dual Ramsey Theorems hold in the realm of Baire measurable colorings.