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Definitions

Let K and L be finite linear orders. By an rigid surjection
t : L→ K we mean a surjection with the additional property that
images of initial segments of the domain are also initial segments
of the range.We call a pair (t, i) a connection between K and L if
t : L→ K , i : K → L such that for all x ∈ L :

t(i(x)) = x and ∀y ≤ i(x)⇒ t(y) ≤ x .
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It is easy to see that if (t, i) is a connection then t is a rigid
surjection and i is an increasing injection. Similarly we define (s, j)
a connection between ω and K , if s : ω → K , j : K → ω such that
for all x ∈ L :

s(j(x)) = x and ∀y ≤ j(x)⇒ s(y) ≤ x .

Once more if (s, j) is a connection then s is a rigid surjection and j
is an increasing injection.
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Fω,ω, Fω,K

Now given A a finite, possibly empty alphabet, we consider the
corresponding spaces

FA
ω,ω = { (r , c) : r : ω → ω ∪ A, c : ω → ω, c is an increasing

injection: r(c(x)) = x and y ≤ c(x)⇒ r(y) ≤ x}
FA
ω,K = { (s, j) : s : ω → K ∪ A, j : K → ω : j is an increasing

injection such that s(j(x)) = x , y ≤ j(x)⇒ s(y) ≤ x }.
Note that A is not in the domain of the increasing injections.
For (r , c) ∈ FA

ω,ω we define

(r , c)ωA = { (r ′, c ′) : (r ′, c ′) ≤ (r , c) : (r ′, c ′) ∈ FA
ω,ω }

For k ∈ ω,
(r , c)KA = { (s, j) ∈ Fω,K : (s, j) ≤ (r ′, c ′), (r ′, c ′) ∈ (r , c)Aω}.
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Let now (r , c)?A = { (t,∅) : (t,∅) � (r ′, c ′), (r ′, c ′) ∈ (r , c)ωA and if
the length of t is M, then r ′(M) = 0, t � M ⊆ A }. By ∅
emphasize that the increasing injections in the second coordinate
do not have A in their domain.

[r , c]LA = { (t, i) : (t, i) � (r ′, c ′) where (r ′, c ′) ∈ (r , c)ωA, the
domain of i is equal to L and r ′(lh(t, i)) = L }

.
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Let (t, i) � (r , c), (t, i) ∈ [r , c]LA, where its length is M and the
domain of i is equal to L i.e. (t, i) ∈ FA

M,L, by (t?, i?) ∈ (r , c)L+1
A

we mean the unique predecessor of (r , c) on which i? has domain
equal to L + 1, i? � L = i � L , t? � M = t � M ⊆ { 0, . . . L− 1 }
t?(M) = L and r(lh(t?, i?)) = L + 1.

(s, j) · (r , c) = (s ◦ r , c ◦ j) so the order of composition in the two
coordinates is not the same.

Dimitris Vlitas AN INFINITE SELF DUAL RAMSEY THEOEREM



Let (t, i) � (r , c), (t, i) ∈ [r , c]LA, where its length is M and the
domain of i is equal to L i.e. (t, i) ∈ FA

M,L, by (t?, i?) ∈ (r , c)L+1
A

we mean the unique predecessor of (r , c) on which i? has domain
equal to L + 1, i? � L = i � L , t? � M = t � M ⊆ { 0, . . . L− 1 }
t?(M) = L and r(lh(t?, i?)) = L + 1.
(s, j) · (r , c) = (s ◦ r , c ◦ j) so the order of composition in the two
coordinates is not the same.

Dimitris Vlitas AN INFINITE SELF DUAL RAMSEY THEOEREM



Ramsey Theorem

Let l ,K be natural numbers. For any l-coloring of all increasing
injections j : K → ω there exists an increasing injection j0 : ω → ω
such that the set { j0 ◦ j : j : K → ω } is monochromatic.

Graham-Rothschild

Let l ,K , L,M be natural numbers. For any l-coloring of all rigid
surjections s : K → L there exists a rigid surjection s0 : K → M
such that the set { t ◦ s0 : t : M → L a rigid surjecton } is
monochromatic
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Carlson-Simpson

Let l a natural number. For any l-coloring of all rigid surjestions
s : ω → K there exists a rigid surjection s0 : ω → ω such that the
set { s ◦ s0 : s : ω → K } is monochromatic.

Solecki

For any finite coloring of FK ,L, there exists (s0, j0) ∈ FK ,M such
that the set { (t, i) ◦ (s0, j0) : (t, i) ∈ FM,L } is monochromatic.
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MAIN THEOREM

THEOREM

Let l > 0 be a natural number. Let K be a finite linear order.
For each l−coloring of all connections between ω and K , that is
Borel, there exists a connection (r0, c0) : ω ↔ ω such that the set
{ (s, j) · (r0, c0) : (s, j) : ω ↔ K } is monochromatic.
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Theorem 1

If FA
ω,K = C0,∪ . . . ,∪Cl−1 where each Ci is Borel, then there exists

(r0, c0) ∈ FA
ω,ω such that (r0, c0)KA ⊆ Ck for some k ∈ l .

proof

By induction on K
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Lemma 1, K=0

If (r , c) ∈ FA
ω,ωand(r , c)0A = C0 ∪ · · · ∪Cl−1 where each Ck is Borel,

then there exists (r ′, c ′) ∈ (r , c)ωA such that (r ′, c ′)0A ⊆ Ck for some
k ∈ l .

proof

Note that the coloring does not depend on the second coordinate
so in particular this theorem reduces to the Carlson-Simpson
theorem.
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Let now A be a finite alphabet.

By WA we denote the set of all words over A of finite length i.e.
all finite strings of elements of A.
By WLv the set of all variable words over A, i.e. all finite strings of
elements of A ∪ {v} in which v occurs at least once.
For an infinite sequence X = (xn)n∈ω of elements of WLv , by [X ]A
we denote the partial semigroup of WA generated by X as follows:
[X ]A = { xn0(α0) a · · · a xnk (αk) : n0 < · · · < nk , αi ∈ A(i ≤ k) }.
LVWT, (Todorcevic)

Let A be a finite alphabet, then for any finite coloring of WA there
is an infinite sequence X = (xn)n∈ω of left variable-words and a
variable free word w0 such that the translate w0 _ [X ]A of the
partial semigroup of WA generated by X is monochromatic.
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Lemma 2

If (r , c) ∈ FA
ω,ω and (r , c)?A = C0 ∪ · · · ∪ Cl−1, then there exists

(r ′, c ′) ∈ (r , c)ωA such that (r ′, c ′)?A ⊆ Ck for some k .

proof

Code each element of (r , c)?A by a word in WA and color WA

accordingly.
By LVWT we get an infinite sequence X = (xn)n∈ω of left
variable-words and a variable free word w0 such that the translate
w0 _ [X ]A of the partial semigroup of WA generated by X is
monochromatic.
Consider the infinite word w0 a x0 a · · · a xn a . . . . If at the i-th
and j-th positions of the above infinite word there is a variable,
where i , j ∈ [lh(w0 a · · · a xn), lh(w0 a · · · a xn+1)], then identify
them in the equivalence relation. If in the i-th position there is a
letter α ∈ A then Xr ′(i) = α. The resulting equivalence relation is
such that (Xr ′)

?
A ⊆ Ck for fixed k .

Dimitris Vlitas AN INFINITE SELF DUAL RAMSEY THEOEREM



Lemma 2

If (r , c) ∈ FA
ω,ω and (r , c)?A = C0 ∪ · · · ∪ Cl−1, then there exists

(r ′, c ′) ∈ (r , c)ωA such that (r ′, c ′)?A ⊆ Ck for some k .

proof

Code each element of (r , c)?A by a word in WA and color WA

accordingly.

By LVWT we get an infinite sequence X = (xn)n∈ω of left
variable-words and a variable free word w0 such that the translate
w0 _ [X ]A of the partial semigroup of WA generated by X is
monochromatic.
Consider the infinite word w0 a x0 a · · · a xn a . . . . If at the i-th
and j-th positions of the above infinite word there is a variable,
where i , j ∈ [lh(w0 a · · · a xn), lh(w0 a · · · a xn+1)], then identify
them in the equivalence relation. If in the i-th position there is a
letter α ∈ A then Xr ′(i) = α. The resulting equivalence relation is
such that (Xr ′)

?
A ⊆ Ck for fixed k .

Dimitris Vlitas AN INFINITE SELF DUAL RAMSEY THEOEREM



Lemma 2

If (r , c) ∈ FA
ω,ω and (r , c)?A = C0 ∪ · · · ∪ Cl−1, then there exists

(r ′, c ′) ∈ (r , c)ωA such that (r ′, c ′)?A ⊆ Ck for some k .

proof

Code each element of (r , c)?A by a word in WA and color WA

accordingly.
By LVWT we get an infinite sequence X = (xn)n∈ω of left
variable-words and a variable free word w0 such that the translate
w0 _ [X ]A of the partial semigroup of WA generated by X is
monochromatic.

Consider the infinite word w0 a x0 a · · · a xn a . . . . If at the i-th
and j-th positions of the above infinite word there is a variable,
where i , j ∈ [lh(w0 a · · · a xn), lh(w0 a · · · a xn+1)], then identify
them in the equivalence relation. If in the i-th position there is a
letter α ∈ A then Xr ′(i) = α. The resulting equivalence relation is
such that (Xr ′)

?
A ⊆ Ck for fixed k .

Dimitris Vlitas AN INFINITE SELF DUAL RAMSEY THEOEREM



Lemma 2

If (r , c) ∈ FA
ω,ω and (r , c)?A = C0 ∪ · · · ∪ Cl−1, then there exists

(r ′, c ′) ∈ (r , c)ωA such that (r ′, c ′)?A ⊆ Ck for some k .

proof

Code each element of (r , c)?A by a word in WA and color WA

accordingly.
By LVWT we get an infinite sequence X = (xn)n∈ω of left
variable-words and a variable free word w0 such that the translate
w0 _ [X ]A of the partial semigroup of WA generated by X is
monochromatic.
Consider the infinite word w0 a x0 a · · · a xn a . . . . If at the i-th
and j-th positions of the above infinite word there is a variable,
where i , j ∈ [lh(w0 a · · · a xn), lh(w0 a · · · a xn+1)], then identify
them in the equivalence relation. If in the i-th position there is a
letter α ∈ A then Xr ′(i) = α. The resulting equivalence relation is
such that (Xr ′)

?
A ⊆ Ck for fixed k .

Dimitris Vlitas AN INFINITE SELF DUAL RAMSEY THEOEREM



Induction step

Assuming theorem 2 holds for FA+1
ω,K , where A+1 denotes a finite al-

phabet of cardinality |A|+1. Then Main Theorem holds for FA
ω,K+1.

proof

Let FA
ω,K+1 = C0 ∪ · · · ∪ Cl−1 be a Borel coloring. There exists a

canonical homeomorphism between [(t?, i?), (r ′, c ′)]K+1
A and FA+1

ω,K .
We can construct by recursion (r , c) ∈ Fω,ω such that for all
(t, i) ∈ (r , c)?A, [(t?, i?), (r , c)]K+1

A ⊆ Ch for some h ∈ l depending
on (t, i).
Then the last Lemma implies that we get an (r ′, c ′) ∈ (r , c)ωA such
that (r ′, c ′)?A ⊆ C ′h for some fixed h′ and therefore (r ′, c ′) is the
desired one.
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Then the last Lemma implies that we get an (r ′, c ′) ∈ (r , c)ωA such
that (r ′, c ′)?A ⊆ C ′h for some fixed h′ and therefore (r ′, c ′) is the
desired one.
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Fω,ω

Theorem

〈Fω,ω, u,≤〉, where u : Fω,ω × ω → AFω,ω =
⋃

N≤M FM,N by
uN((r , c)) = (t, i), (t, i) ∈ FM,N , (t, i) � (r , c).
is a topological Ramsey space

Theorem

Let Fω,ω = C0∪ · · ·∪Cl−1 be a Baire or Suslin measurable coloring.
There exists (r , c) ∈ Fω,ω such that (r , c)ω is monochromatic.
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Fω,K

1 Fω,K does not form a topological Ramsey space

2 Main Theorem holds for Suslin measurable colorings

3 [(t, i)] = { (s, j) ∈ Fω,K : (t, i) � (s, j) and domain of i is
equal to K }.

Theorem

c : Fω,K → h is a finite coloring that is Baire measurable relative to
the topology defined just above. Then there exists an (r , c) ∈ Fω,ω
such that the family Fω,K |(r , c) = { (s, j) ∈ Fω,K : (s, j) ≤ (r , c) }
is c-monochromatic.
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Conclusion

Our Infinite Self Dual Ramsey Theorems hold in the realm of Baire
measurable colorings.
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