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RTn
<∞,l-encodable

• Let c be a coloring of all finite sets of size n (all subsets of
ω) by finitely many colors, not necessarily computable.

• A set T is l-thin iff c uses at most l colors to color all the sets
of size n from T and T is infinite. So |c([T]n)| ≤ l.
• A set S is RTn

<∞,l-encodable iff there is a coloring c (as above)
such that every l-thin set T computes S, i.e. S ≤T T.

Question
What sets are RTn

<∞,l-encodable? RT2
2,1? RT1

2,1? RT3
5,4? RT4

14,13?



RTn
<∞,l-encodable sets are always hyperarithmetic.

• Assume c witness that S is RTn
<∞,l-encodable.

• Given X there is an infinite thin set H for c such that H ⊆ X.
• A set S is computably encodable if for every infinite set X,

there is an infinite subset H of X such that H computes S.
• By theorems of Jockusch and Soare and Solovay, the

computably encodable sets are exactly the hyperarithmetic
sets.



The RT2
<∞,1-encodable sets includes all

hyperarithmetic sets

• The 1-thin sets are exactly the homogenous sets.
• (Solovay) S is hyperarithmetical iff S has a modulus, i.e. a

function g such that, for all functions h, if g ≤ h then
S ≤T h.
• The interval [x, y] is g-large iff g(x) < y.
• c(x, y) = 1 iff [x, y] is g-large. (An unbalanced coloring.)
• Let H be a homogenous set for c. Fix x ∈ H. Then, for

almost all y ∈ H, [x, y] is g-large. So, for all y ∈ H, [x, y] is
g-large.
• Hence g ≤T pH.

For every hyperarithmetical set S there is a coloring (of the
same Turing degree as S) such that every homogenous set
computes S.



The RTn
<∞,l-encodable sets, for l < 2n−1

Theorem (Dorais, Dzhafarov, Hirst, Mileti, Shafer)
For l < 2n−1, the RTn

<∞,l-encodable sets are exactly the
hyperarithmetic sets.

Again code in a modulus into all thin sets of a coloring.

For 2n−1 ≤ l, the coding does not work. In particular, for n = 3
and l = 4, the coding does not work.



RT1
2,1-encodable

Theorem (Dzhafarov and Jockusch)
Only the computable sets are RT1

2,1-encodable.

Let c : ω → 2. Let A = c−1(1).

Theorem (Dzhafarov and Jockusch)
Given A and a noncomputable X. There an infinite G such that
X �T G and either G ⊆ A or G ⊆ A.

We will work forward the proof of this theorem over next few
slides.

Definition (Strong Cone Avoidance)
Given a problem P and a noncomputable set X, there is a
solution S that X �T S.

Corollary
RT1

2,1 satisfies strong cone avoidance. RT2
2,1 does not.



WKL

Theorem
Let T ⊆ 2<ω be infinite tree. Then T has an infinite path.

Lemma
A tree is finite iff there is an l such that for all σ ∈ 2l, σ /∈ T. This is
ΣT

1 or c.e. in T. Moreover this is uniform.

Given X the characteristic function of X is a tree with a single
path X. So WKL does not satisfy strong cone avoidance.



Cone Avoidance

Definition (Cone Avoidance)
Given a problem P and a set X �T P, there is a solution S that
X �T S.

Theorem (Relativized to I)
WKL satisfy cone avoidance. I.e. for all infinite trees T ≤T I and all
X �T I, there is a path Z such that X �T Z⊕ I.



Forcing – Infinite trees and generic paths

The forcing conditions are the infinite trees T̃ such that T̃ ⊆ T
and T̃ ≤T I. The forcing extension is inclusion. A set of
conditions is dense if every condition can be extended into the
dense set. A object G (here a tree) is sufficiently generic if it is
the limit of conditions meeting enough dense sets.

Lemma
For all k, the set of subtrees such that almost all nodes in the subtree
extend some finite segment of size n ≥ k is dense. So a generic tree is
a path though T.



Cone Avoidance

Let Φ be a Turing functional. Enough to extend a condition T̃ to
force ΦG⊕I 6= X.
• Non commitment: For some n, the subtree
{σ ∈ T̃ | Φσ⊕I(n)↑} is infinite. Then, by finite use
principle, ΦG⊕I(n)↑. This tree is computable in I.
• Commitment: There is a n and σ ∈ T̃ such that

Φσ⊕I(n) 6= X(n) and the subtree {τ ∈ T̃ | τ � σ or σ � τ}
is infinite.
• Otherwise. Then, for all n, there is an l such that, for all

σ ∈ T̃ ∩ 2l, Φσ⊕I(n)↓= X(n). Therefore X ≤T I.
Contradiction.



Back to RT1
2,1

Theorem
Given A and noncomputable X. There a G such that either
X �T G∩A and G∩A is infinite or X �T G∩A and G∩A is
infinite.
Use conditions (F, I) where F is finite, I is infinite,
max F < min I, and X �T I. (F̃, Ĩ) extends (F, I) if F ⊆ F̃ ⊆ F∪ I
and Ĩ ⊆ I. WLOG I ∩A and I ∩A are both infinite. With enough
genericity, both G∩A and G∩A are infinite.



Strong Cone Avoidance of RT1
2,1

Must extend (F, I) to show either ΦG∩A 6= X or ΨG∩A 6= X.

Definition
Let Pn,k be the tree of Z ⊆ I such that there is no E ⊆ Z with
Φ(F∩A)∪E(n)↓= k and no E ⊆ (I− Z) with Ψ(F∩A)∪E(n)↓= k.

Lemma
These trees are uniformly computable in (F, I). So Pn,k ≤T I.

Commitment: For some n and k 6= X(n), Pn,k is finite. So
I ∩A /∈ Pn,k. Extend.



Non commitment

Let S = {(n, k) | Pn,k is finite}. S is c.e. in (F, I). For all n,
(n, 1−X(n)) not in S. If, for all n, (n, X(n)) in S, then X is
computable from (F, I) or just I. Since X �T I, there must be an
(n, X(n)) not in S.

Fix such an n. Pn,X(n) is infinite. Use cone avoidance of WKL to
find a Z ∈ Pn,X(n) such that X �T Z⊕ I. If Z is infinite extend to
(F, Z). Otherwise use (F, I− Z).

This is called thinning the reservoir.



The RTn
<∞,l-encodable sets, for large l

Theorem (Wang)
For big l (in terms of n), the RTn

<∞,l-encodable sets are exactly the
computable sets. For n = 2, l = 2 and, for n = 3, l = 5.

Use the strong cone avoiding of RTn
<∞,l, for big l.

This is an inductive forcing proof and relies on (strong) cone
avoiding of earlier and other principles, like COH, WKL,
RT1

<∞,1, RT2
3,1, etc. Use Mathias like conditions like we used

above.



A recap for n = 1, 2, 3

Only the computable sets are RT1
<∞,1-encodable. Same for

RT2
<∞,2-encodable and RT3

<∞,5-encodable.

The hyperarithmetic sets are RT2
<∞,1-encodable and same for

RT3
<∞,3-encodable.

What about RT3
5,4?



Strong Nonarithmetical Cone Avoidance

Definition (Strong Nonarithmetical Cone Avoidance)
Given a problem P and a set X not arithmetical, there is a
solution S that X �T S.

Theorem
RT3

5,4 satisfies strong nonarithmetical cone avoidance. So does
RTn

<∞,2n−1 .

Very carefully choose the reservoir.



RT3
5,4-encodable

Corollary
At best only the arithmetic sets are RT3

5,4-encodable.

Another coding is needed to code the arithmetic sets. By
necessity this coding will also provide a counterexample to
strong cone avoiding.

Theorem
There is a ∆0

2 coloring c : [ω]3 → 5 such that every 4-thin set for c
computes 0′.



Our first attempt

Let g be a modulus of 0′.
• Recall [a, b] is g-large iff g(a) ≤ b. Otherwise it is g-small.
• Let i(x, y) = 1 if [x, y] is g-large and 0 otherwise.
• Let c(x, y, z) = 〈i(x, y), i(y, z), i(x, z)〉. This is a 5 coloring,

some colors are missing.
• Apply RT3

5,4 to c to get a thin set T.
• If any color but 〈0, 0, 1〉 is missed, T or a reduction of T has

all g-large intervals and hence computes 0′. The principal
function dominates the modulus for 0′.
• Need to learn more about missing the color 〈0, 0, 1〉.



GAP

A set H is g-transitive iff, for all x < y < z in H, if [x, y] and [y, z]
are g-small so is [x, z]. GAP is the statement that, for all g, an
infinite g-transitive set exists. So the existence of a 4-thin set
(when colored as above) without the color 〈0, 0, 1〉.

Theorem
GAP satisfies strong cone avoidance. Hence the above coloring does
not show the arithmetic sets are RT3

5,4-encodable. Also GAP follows
from RT2

2,1.
Perhaps should known this coding would fail since all
hyperarithmetic sets have a modulus not just arithmetic sets.
Needed to use some fact about non hyperarithmetic arithmetic
sets.



Back to RT3
5,4 and coding

left c.e. increasing functions

Refine the above coloring c. We need to make it harder to avoid
the color 〈0, 0, 1〉. So we have to color more triples with color
〈0, 0, 1〉 and less with color 〈0, 0, 0〉.

The modulus g of 0′ is a left c.e. increasing function with
approximations g0, g1, . . . (the approximations are increasing).
• Define j(x, y, z) is 1 iff [x, z] is g-large or [x, y] is gz-large.
• Let c(x, y, z) = 〈i(x, y), i(y, z), j(x, y, z)〉. A 5 coloring.
• Apply RT3

5,4 to c to get a thin set T.
• For all possible missed colors, a reduction of T has all

g-large intervals and hence computes 0′.

Theorem
c is ∆0

2 and every 4-thin set for c computes 0′.



Bounds for n > 3, Part I

Theorem (Dorais, Dzhafarov, Hirst, Mileti, Shafer)
For l < 2n−1, the RTn

<∞,l-encodable sets are exactly the
hyperarithmetic sets.

Theorem
RTn

<∞,2n−1 satisfies strong nonarithmetical cone avoidance.

Theorem (Wang)
For big l (in terms of n), RTn

<∞,l satisfies strong cone avoidance.

What is the definition of “big”?



Bounds for n > 3, Part II

Definition
Let l1 = 1 and
ln+1 = ln + ∑i∈{1,...n−1} ln−i · li + ∑i<j∈{1,...n−1} ln−j · li · 2j−i−1..

Theorem
RTn

<∞,ln+1
satisfies strong cone avoidance.

Definition
Let d0 = 1 and dn+1 = dn + ∑n

i=1 dn−i · 2i−1.

Theorem
For all n, there is a ∆0

2 coloring of [ω]n such that every dn − 1-thin set
computes 0′.



Remaining Questions

• l5 = 14 > d4 = 13.
• What sets are RT4

14,13 encodable? At best the arithmetic
sets. At worst the computable sets.
• Is there a ∆0

2 coloring of [ω]4 such that every 13-thin set
computes 0′?
• For n > 4, ln+1 > dn.



Computable Coding via a Modulus

Question
How necessary is it to code via the use of a modulus?

Theorem
Fix a function g. Let f be a computable instance of RTn

k+1,k such that
every infinite k-thin set computes a function dominating g. Then for
every infinite f -thin set H, pH is a modulus for g.
Our coding examples are not computable but arithmetic. Using
the Limit Lemma they can be reflected into computable
colorings with the same properties.



Arbitrary Coding via a Modulus

Theorem (Liu and Patey)
Fix a function g. Let f be an instance of RTn

k+1,k such that every
infinite k-thin set computes a function dominating g via some fixed
Turing functional. Then for every infinite f -thin set H, pH is a
uniform modulus for g.
For l = 1, our coding examples for RTn

<∞,l are uniform. But for
larger l they are uniform in the missed color. Can hypothesis of
the above theorem be weaken to reflect this uniformity?

Lemma (Liu and Patey)
There is an instance for RT2

2,1 all of those homogenous sets compute 0′

but by not computing a function dominating a modulus for 0′.


