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Abstract. U-shaped learning is a learning behaviour in which the learner first learns

something, then unlearns it and finally relearns it. Such a behaviour, observed by psy-
chologists, for example, in the learning of past-tenses of English verbs, has been widely
discussed among psychologists and cognitive scientists as a fundamental example of the
non-monotonicity of learning. Previous theory literature has studied whether or not U-
shaped learning, in the context of Gold’s formal model of learning languages from positive
data, is necessary for learning some tasks.
It is clear that human learning involves memory limitations. In the present paper we
consider, then, this question of the necessity of U-shaped learning for some learning models
featuring memory limitations. Our results show that the question of the necessity of U-
shaped learning in this memory-limited setting depends on delicate tradeoffs between the
learner’s ability to remember its own previous conjecture, to store some values in its long-
term memory, to make queries about whether or not items occur in previously seen data
and on the learner’s choice of hypothesis space.

1 Introduction and Motivation

In Section 1.1 we explain U-shaped learning and and in Section 1.2 memory-limited learning. In
Section 1.3 we summarize our main results of the present paper with pointers to later sections
where they are treated in more detail.

1.1 U-Shaped Learning

U-shaped learning occurs when the learner first learns a correct behaviour, then abandons that
correct behaviour and finally returns to it once again. This pattern of learning has been observed
by cognitive and developmental psychologists in a variety of child development phenomena, such
as language learning [8, 29, 41], understanding of temperature [41, 42], understanding of weight
conservation [7, 41], object permanence [7, 41] and face recognition [9]. The case of language

? Supported in part by NSF grant number NSF CCR-0208616.
?? Supported in part by NSF grant number NSF CCR-0208616.

? ? ? Supported in part by NUS grant number R252–000–127–112.
† Supported in part by NUS grant number R252–000–212–112.



acquisition is paradigmatic. In the case of the past tense of English verbs, it has been observed
that children learn correct syntactic forms (call/called, go/went), then undergo a period of
overregularization in which they attach regular verb endings such as ‘ed’ to the present tense
forms even in the case of irregular verbs (break/breaked, speak/speaked) and finally reach a
final phase in which they correctly handle both regular and irregular verbs. This example of
U-shaped learning behaviour has figured so prominently in the so-called “Past Tense Debate” in
cognitive science that competing models of human learning are often judged on their capacity for
modeling the U-shaped learning phenomenon [29, 35, 43]. Recent interest in U-shaped learning
is also witnessed by the fact that the Journal of Cognition and Development dedicated its first
issue in the year 2004 to this phenomenon.

While the prior cognitive science literature on U-shaped learning was typically concerned
with modeling how humans achieve U-shaped behaviour, [2, 10] are motivated by the question
of why humans exhibit this seemingly inefficient behaviour. Is it a mere harmless evolutionary
inefficiency or is it necessary for full human learning power? A technically answerable version of
this question is: are there some formal learning tasks for which U-shaped behaviour is logically
necessary? The answer to this latter question requires that we first describe some formal criteria
of successful learning.

A learning machine M reads an infinite sequence consisting of the elements of any language
L in arbitrary order with possibly some pause symbols # in between elements. During this
process the machine outputs a corresponding sequence e0 e1 . . . of hypotheses (grammars) which
may generate the language L to be learned. Sometimes, especially when numerically coded, we
also call these hypotheses indices. A fundamental criterion of successful learning of a language
is called explanatory learning (Ex-learning) and was introduced by Gold in [20]. Explanatory
learning requires that the learner’s output conjectures stabilize in the limit to a single conjecture
(grammar/program, description/explanation) that generates the input language. Behaviourally

correct learning [14, 32] requires, for successful learning, only convergence in the limit to possibly
infinitely many syntactically distinct but correct conjectures. Another interesting class of criteria
features vacillatory learning [12, 21]. This paradigm involves learning criteria which allow the
learner to vacillate in the limit between at most finitely many syntactically distinct but correct
conjectures. For each criterion that we consider above (and below), a non U-shaped learner is
naturally modeled as a learner that never semantically returns to a previously abandoned correct
conjecture on languages it learns according to that criterion.

It is shown in [2] that every Ex-learnable class of languages is Ex-learnable by a non U-shaped
learner, that is, for Ex-learnability, U-shaped learning is not necessary. In [2], it is also noted
that, by contrast, for behaviourally correct learning, U-shaped learning is necessary for full
learning power.1 In [10] it is shown that, for non-trivial vacillatory learning, U-shaped learning
is again necessary (for full learning power).

1.2 Memory-Limited Learning

It is clear that human learning involves memory limitations. In the present paper we consider the
necessity of U-shaped learning in formal memory-limited versions of language learning. In the
prior literature at least the following three types of memory-limited learning have been studied.

A most basic concept of memory-limited learning is iterative learning [46, 27], according to
which the learner reacts to its current data item, can remember its own last conjecture but

1 This latter follows from a slight modification of a proof in [19].
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cannot store any of the strictly previously seen data items. Iterative learning admits of learning
non-trivial classes. For example, the class of finite sets is iteratively learnable as is a class of
self-describing sets, for example, the class of languages with the least element coding a grammar
for the language. Furthermore, for each m ≥ 1, the class of unions of m of Angluin’s [1] pattern
languages is iteratively learnable [13]. n-feedback learning is iterative learning where, in addition,
the learner can make n simultaneous queries asking whether some datum has been seen in the
past [13, 27]. Finally, a learner is called an n-bounded example memory learner [13, 19, 27, 33] if,
besides reacting to its currently seen data item and remembering its own last conjecture, it is
allowed to store in “long term memory” at most n strictly previously seen data items.

For the present paper, our first intention was to study the impact of forbidding U-shaped
learning in each of the above three models of memory-limited learning. So far we have had
success for these problems only for some more restricted variants of the three models. Hence, we
now describe these variants.

Our variants of iterative learning are motivated by two aspects of Gold’s model. The first
aspect is the absolute freedom allowed regarding the semantic relations between successive con-
jectures, and between the conjectures and the input. Many forms of semantic constraints on
the learner’s sequence of hypotheses have been studied in the previous literature (for example,
conservativity [1], consistency [1, 4], monotonicity [23, 47], set-drivenness [12, 18, 45]) and it is
reasonable to explore their interplay with U-shaped learning in the memory-bounded setting of
iterative learning.2 Secondly, it is well-known that the choice of the hypothesis space from which
the learner can pick its conjectures has an impact on the learning power [26, 27]. We accordingly
also consider herein U-shaped iterative learning with restrictions on the hypothesis space.

For the case of feedback learning, we introduce and consider a model called n-memoryless

feedback learning which restricts n-feedback learning so that the learner does not remember
its last conjecture. These criteria form a hierarchy of more and more powerful learning criteria
increasing in n and, for n > 0, are incomparable to iterative learning, see Theorem 33 and Re-
mark 25 each in Section 5. The criterion of 0-memoryless feedback learning is properly contained
in the criterion of iterative learning, see Remark 39 in Section 6 below.

Finally, in Section 6, we introduce a more limited variant of bounded example memory, c-
bounded memory states learning for which the learner does not remember its previous conjecture
but can store any one out of c different values in its long term memory [16, 17, 24]. For example,
when c = 2k, the memory is equivalent to k bits of memory. By Theorem 38, these criteria
form a hierarchy of more and more powerful learning criteria increasing in c. Furthermore,
the comparisons between bounded memory states learning, iterative learning and memoryless
feedback learning are presented in Remark 39.

Our results herein on memory-limited models are presented for Ex-learning. This is, in part,
justified by the following considerations. In Section 3, Propositions 7 and 8 essentially imply that,
for iterative learning, the Ex case is the only interesting case. In Section 6, Theorem 35 implies
that c-bounded memory states behaviourally correct learning can be replaced by (c+1)!-bounded
memory states Ex-learning.

1.3 Brief Summary of Main Results

In Section 3.1 we formally define iterative learning and prove some background facts about it.
In Section 3.2 we state and motivate a major open problem, Problem 9, about non U-Shaped

2 Below we will introduce, when needed, definitions of such semantic relations.
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iterative learning. In Section 3.3 we consider the impact of forbidding U-shaped learning, where
there are constraints on the hypothesis spaces. An indexed family of recursive languages L [1] is
a class of recursive languages L0, L1, L2, . . . such that the predicate x ∈ Li is uniformly recursive
in both i and x. In this context, i is called an index of Li; this i codes how to algorithmically
decide Li and the subscripts of the Li’s are called the indexing of L based on the sequence

L0, L1, L2, . . . of languages. Class-preserving language learning by a learner M [26] of an indexed
family L is Ex-learning, where, for some indexing of L, M outputs only the indices of that
indexing of L. In particular, the main result of Section 3.3, Theorem 12, shows that U-shaped
learning is necessary for the full learning power of class-preserving iterative learning [27].

In Section 4 we study, in the context of iterative learning, the relation of the non U-shapedness
constraint to other well studied constraints on the semantic behaviour of the learner’s conjec-
tures. We consider class-consistent learning [1, 4], according to which the learner’s conjectures, on
the languages it learns, must generate all the data on which they are based. Monotonic learning

by a machine M [47] requires that, on any input language L that M Ex-learns, a new hypothesis
cannot reject an element x ∈ L that a previous hypothesis already included. Theorem 19 shows
that class-consistent iterative learners can be turned into iterative non U-shaped and monotonic
learners.

In Section 5, we formally define n-memoryless feedback learning (discussed near the end of
Section 1.2 above) and consider the impact of forbidding U-shaped learning in this setting. The
main result of Section 5, Theorem 30, shows that U-shaped learning is necessary for the full
learning power of n-memoryless feedback learners.

In Section 6 we formally introduce c-bounded memory states learning (also discussed near
the end of Section 1.2 above). The main result of this section, Theorem 36, shows that U-shaped
behaviour does not enhance the learning power of 2-bounded memory states learners.3

In Section 7 we summarize and briefly discuss our main results, and collect open problems.

2 Notation and Preliminaries

2.1 Recursion Theory Background

Any unexplained recursion theoretic notation is from [36]. For general background on Recursion
Theory we refer the reader to [30, 31, 36, 40]. The symbol N denotes the set of natural numbers,
{0, 1, 2, 3, . . .}. The symbols ∅, ⊆, ⊂, ⊇ and ⊃ denote empty set, subset, proper subset, superset,
and proper superset, respectively. Cardinality of a set S is denoted by card(S). card(S) ≤ ∗
denotes that S is finite. The maximum and minimum of a set are denoted by max(·), min(·),
respectively, where max(∅) = 0 and min(∅) = ∞.

We let 〈·, ·〉 stand for Cantor’s computable, bijective mapping 〈x, y〉 = 1
2
(x+y)(x+y +1)+x

from N×N onto N [36]. Note that 〈·, ·〉 is monotonically increasing in both of its arguments. We
define π1(〈x, y〉) = x and π2(〈x, y〉) = y.

By ϕ we denote a fixed acceptable programming system (enumeration/numbering) [36] for
the partial-recursive functions mapping N to N.4 By ϕi we denote the partial-recursive function
computed by the program with number i in the ϕ-system. By Φ we denote an arbitrary fixed

3 The memory in the c = 2 case is 1 bit of memory. It is open as to how Theorem 36 goes for c-bounded memory states
learners, where c > 2.

4 Case in [37] shows that the acceptable systems are characterized as those in which each control structure can be
implemented.
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Blum complexity measure [6] for the ϕ-system. A partial recursive function Φ(·, ·) is said to be
a Blum complexity measure for ϕ, iff the following two conditions are satisfied:

– for all i and x, Φ(i, x)↓ iff ϕi(x)↓ .

– the predicate P (i, x, t) ≡ Φ(i, x) ≤ t is decidable.

By convention we use Φi to denote the partial recursive function x → Φ(i, x). Intuitively, Φi(x)
may be thought as the number of steps it takes to compute ϕi(x).

By Wi we denote the domain of ϕi. That is, Wi is then the recursively enumerable (r.e.)
subset of N accepted by the ϕ-program i. Note that all acceptable numberings are recursively
isomorphic and that one therefore could also define Wi to be the set generated by the i-th
grammar. The symbol E will denote the set of all r.e. languages. The symbol L ranges over E .
By L, we denote the complement of L, that is N − L. The symbol L ranges over subsets of
E . By Wi,s we denote the set {x ≤ s | Φi(x) ≤ s}. Similarly, ϕi,s(x) denotes ϕi(x) if x ≤ s and

Φi(x) ≤ s; otherwise ϕi,s(x) is undefined.

2.2 Explanatory and Non-U-Shaped Learning

We now present concepts from language learning theory [20, 21]. The next definition introduces
the concept of a sequence of data.

Definition 1. (a) A sequence σ is a mapping from an initial segment of N into (N∪ {#}). The
empty sequence is denoted by λ.

(b) The content of a sequence σ, denoted content(σ), is the set of natural numbers in the
range of σ.

(c) The length of σ, denoted by |σ|, is the number of elements in σ. So, |λ| = 0.

(d) For n ≤ |σ|, the initial sequence of σ of length n is denoted by σ[n]. So, σ[0] is λ.

Intuitively, the pause-symbol # represents a pause in the presentation of data. We let σ, τ and
γ range over finite sequences. We denote the sequence formed by the concatenation of τ at the
end of σ by στ . Sometimes we abuse the notation and use σx to denote the concatenation of
sequence σ and the sequence of length 1 which contains the element x. (N ∪ {#})∗ denotes the
set of all finite sequences.

Quite frequently used in this paper is the existence of a one-one recursive function pad(e,X)
with Wpad(e,X) = We, where — according to the context — X might be a number, a finite set or
a finite sequence. In particular, pad is chosen such that e,X can be computed from pad(e,X)
by a recursive function.

Definition 2. [20] (a) A text T for a language L is a mapping from N into (N∪{#}) such that
L is the set of natural numbers in the range of T . T (i) represents the (i + 1)-th element in the
text.

(b) The content of a text T , denoted by content(T ), is the set of natural numbers in the
range of T ; that is, the language which T is a text for.

(c) T [n] denotes the finite initial sequence of T with length n.

We now define the basic paradigm of learning in the limit, explanatory learning.

5



Definition 3. A learner M : (N ∪ {#})∗ → (N ∪ {?}) is a recursive function which assigns
hypotheses to finite strings of data. M Ex-learns a class L (equivalently M is an Ex-learner
for L) in the limit iff for every L ∈ L and every text T for L there is an index n such that
M(T [n]) 6= ?, WM(T [n]) = L and M(T [m]) ∈ {M(T [n]), ?} for all m ≥ n. Ex denotes the
collection of all classes of languages that can be Ex-learned from text in the limit.

Now we define non U-shaped learning. A non U-shaped learner never makes the sequence correct–
incorrect–correct while learning a language that it actually learns. Thus, since such a learner
has eventually to be correct, one can make the definition a bit simpler than the idea behind the
notion suggests.

Definition 4. [2]
(a) We say that M is non U-shaped on text T , if M never makes a mind change from a

conjecture for content(T ) to a conjecture for a different set.
(b) We say that M is non U-shaped on L if M is non U-shaped on each text for L.
(c) We say that M is non U-shaped on L if M is non U-shaped on each L ∈ L.

Definition 5. Let I be a learning criterion. Then NUI denotes the collection of all classes L
such that there exists a machine M that learns L according to I and is non U-shaped on L.

3 Iterative Learning

3.1 Basics of Iterative Learning

The Ex-model makes the assumption that the learner has access to the full history of previous
data. On the other hand it is reasonable to think that humans have more or less severe memory
limitations. This observation motivates, among other criteria discussed in the present paper, the
concept of iterative learning . An iterative learner features a severe memory limitation: it can
remember its own previous conjecture but not its past data items. Moreover, each conjecture of
an iterative learner is determined as an algorithmic function of the previous conjecture and of
the current input data item.

The formal definition of an iterative learner is the following.

Definition 6. [45] An iterative learner is a function M : N × (N ∪ {#}) → N together with
an initial hypothesis e0. M It-learns a class L iff for every L ∈ L and every text T for L the
sequence e0, e1, . . . defined inductively by the rule en+1 = M(en, T (n)) converges syntactically to
an index for L. It denotes the collection of all iteratively learnable classes.

It is well-known that It ⊂ Ex [46]. One might therefore ask whether iterative learning is also
restrictive in the case of behaviourally correct convergence, which allows the learner to converge
in the limit to possibly infinitely many syntactically distinct correct conjectures. That this is not
the case can be easily shown using padding, that is, a one-to-one recursive function pad with
Wpad(e,σ) = We for all strings σ. Given any behaviourally correct learner M for a class L, one can
define a new learner N on input σ implicitly as pad(M(σ), σ). This new learner can explicitly
be defined as an iterative learner by starting with pad(M(∅), λ) and updating via

N(pad(e, σ), x) = pad(M(σx), σx)

6



where it has the full access to the previous data since it codes this information into the index.
Thus it can reconstruct the hypothesis M(σx) from the old hypothesis pad(e, σ) and the new
datum x. This simple argument proves the following Proposition.

Proposition 7. Every behaviourally correct learnable class has an iterative behaviourally correct

learner.

By Proposition 7 it does not make sense to consider behaviourally correct iterative learning.
So one might look at restrictions of behaviourally correct learning like the notion of vacilla-
tory learning [12]. The next result shows that relaxing the convergence requirement of iterative
learning to vacillatory convergence does not increase learnability at all.

Proposition 8. If some iterative learner M eventually vacillates on every text of every language

in L between finitely many correct hypotheses, then L ∈ It.

Proof. Given M as above, one defines N as follows. N will output grammars of form: pad(p, S),
where S is a finite set (not containing p), and pad(p, S) is a padding function such that pad(p, S)
is a grammar for Wp, and p, S can be extracted from pad(p, S). Let the initial hypothesis of N

be pad(M(λ), ∅) and the update rule be

N(pad(p, S), x) =

{

pad(p, S), if M(p, x) ∈ {p} ∪ S;
pad(M(p, x), S ∪ {p}), otherwise.

We claim that N is an iterative learner for L.
In the following, by “last brand new hypothesis output by M on σ”, we mean: let τ ⊆ σ

be such that: M after seeing τ outputs q; M does not output q after seeing any proper initial
segment of τ ; on any γ ⊆ σ, the output of M after seeing γ is same as output of M after seeing
γ′, for some γ ′ ⊆ τ .

For any sequence σ, we will define a derived sequence τσ below satisfying the following four
conditions.

(I) content(τσ) = content(σ).
(II) If σ ⊆ σ′ then τσ ⊆ τσ′.

(III) If the last output of N after seeing σ is pad(p, S), then the last output of M after seeing
τσ is p, and the set of programs output by M on initial segments of τσ is {p} ∪ S.

(IV) The last brand new hypothesis output by M on τσ is p.

The above properties will be inductively seen to be true, based on length of σ.
Base Case: τλ = λ. Clearly, properties (I)—(IV) hold for the base case.
Inductive case: Suppose we have defined τσ. Define τσx as follows. Suppose N after seeing σ

outputs pad(p, S). Thus, M on initial segments of τσ, would have output programs from S∪{p},
with the output after seeing τσ being p (by induction).

If M(p, x) is a program not in S ∪{p}, then let τσx = τσx. Else, let γ be initial segment of τσ

such that M after seeing γ had output M(p, x). Let γ ′ be such that τσ = γγ ′. Then, τσx = τσxγ′.
It is easy to verify that properties (I)–(IV) hold in both cases.

Let T be a text for L ∈ L. Let τT =
⋃

n τT [n]. It is easy to verify using property (I) that
content(τT ) = content(T ). Also, since M eventually vacillates between finitely many correct
hypotheses on τT , by property (IV), N(T ) converges to pad(p, S), where p is the last brand new
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hypothesis output by M on τT , and S is the set of hypothesis output by M on τT , except for the
grammar p. Furthermore, by property (III), p is output by M on τT infinitely often. It follows
that M learns L from T .

Thanks to Propositions 7 and 8 we will, from now on, consider explanatory iterative learners
only. All our notions regarding iterative learning will be modifications of the basic Ex-learning
paradigm.

3.2 Non-U-Shaped Iterative Learning: An Open Problem

In [2] the main question regarding the necessity of U-shaped behaviour in the context of Ex-
learning was answered in the negative. It was shown that Ex = NUEx, meaning that every Ex-
learnable class can be learned by a non U-shaped Ex-learner. However, non U-shaped learning
may become restrictive when we put memory limitations on Ex-learning. Our main motivation
for the results presented in this section is the following problem, which remains open.

Problem 9. Is It = NUIt?

Many results in the present work were obtained in order to approximate an answer to this open
problem.

A negative answer is difficult to obtain since most standard constructions for iterative learners
preserve non U-shapedness. For example, if one starts the construction in Proposition 8 with a
non U-shaped learner, the resulting learner is again non U-shaped. Thus one has the following
corollary.

Corollary 10. If some non U-shaped iterative learner M eventually vacillates on every text of

every language in L between finitely many correct hypotheses then L ∈ NUIt.

We now briefly recall some basic relations of iterative learning with two criteria of learning
that feature, like non U-shaped learning, a semantic constraint on the learner’s sequence of
hypotheses.

The first such notion is set-driven learning [45], where the hypotheses of a learner on inputs
σ, τ are the same whenever content(σ) = content(τ). We denote by SD the collection of all
classes learnable by a set-driven learner. It is shown in [24, Theorem 7.7] that It ⊆ SD. The
inclusion is proper since the class of all finite sets containing 0 plus the set {1, 2, 3, . . .} has a
set-driven but no iterative learner.

A criterion that implies non U-shapedness is conservative learning [1]. A learner is conserva-
tive iff whenever it make a mind change from a hypothesis i to j then it has already seen some
datum x /∈ Wi. Consv denotes the collection of all classes having a conservative learner.

It is shown in [24] that SD ⊆ Consv, thus, It ⊂ Consv. By definition, every hypothesis
abandoned by a conservative learner is incorrect and thus Consv ⊆ NUEx follows. It is well
known that the latter inclusion is proper. The easiest way to establish it is to use Angluin’s
proper inclusion Consv ⊂ Ex [1] and the equality from Ex = NUEx [2].

3.3 Iterative Learning and Hypothesis Spaces

Normally, in Gold-style language learning, a learner outputs as hypotheses just indices from a
fixed acceptable enumeration of all r.e. languages, since all types of output (programs, grammars
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and so on) can be translated into these indices. But there have also been investigations [1, 26, 27]
where the hypothesis space is fixed in the sense that the learner has to choose its hypotheses either
from this fixed space (exact learning) or from a space containing exactly the same languages
(class-preserving learning).

Such a restriction can be severe. For example, the class of all finite sets is iteratively learnable
and so also is the class L of all finite sets of even cardinality. But if one requires the hypotheses
to be from some one-one enumeration of L, then one forces the learner to output indices which
do not uniquely encode information on which data has been seen so far. This imposes some
forgetting which can be used to show that the class L is not exactly iteratively learnable when
the underlying hypothesis space is one-one.

In this section we investigate ways in which the hypothesis space interferes with non U-shaped
iterative learnability.

To explain our first result we need to recall some notions of computations relative to oracles
[36]. Let A be a set. A partial function f is called computable relative to A if there is an algorithm
for f that is allowed to use answers to questions of the form x ∈ A? A is then called an oracle.
A total function which is computable relative to A is also referred to as an A-recursive function;
a set B is called A-recursive if the characteristic function of B is A-recursive. We say that B is
Turing reducible to A, written B ≤T A, in this case.

There exists an acceptable enumeration of all partial functions computable relative to A. Let
ϕA

0 , ϕA
1 , . . . be such an enumeration. W A

e denotes the domain of ϕA
e . A Blum complexity measure

ΦA(·, ·) can be defined for ϕA as a partial function computable in A, see [28, 38]. The function
x 7→ ΦA(i, x) is partial computable relative to A and can be intuitively seen as the number
of steps needed to compute ϕA

i (x). The predicate ΦA(i, x) ≤ t will be no longer recursive but
total computable in A instead. We use ΦA

i (x) to denote ΦA(i, x). Let K be the diagonal halting
problem {x ∈ N | x ∈ Wx}. Recall that K is an r.e. set which is not recursive. Given a set
A, one can consider the diagonal halting problem for the partial functions that are computable
with oracle A. Then A′ denotes this diagonal halting problem relativized to A, that is, the set
{x ∈ N | x ∈ WA

x }. A′ is called the jump of A. Note that A <T A′ for all sets A. The jump
operation can be iterated and so K ′′ denotes the double jump of the halting problem K.

Instead of considering computable learners, one can consider learners that are computable
relative to some oracle. Our learning models so far feature a symmetry between the complexity
of the learner and of the hypothesis space: the learner is a partial computable function and
the hypotheses are indices for partial computable functions. One would accordingly allow an A-
recursive learner to pick its hypotheses from an acceptable enumeration of the partial functions
computable in A. What instead if we consider a learner that can access an oracle A but is asked
to choose its conjectures from an enumeration of the partial computable functions? Relative to
the complexity of the learner, the latter requirement can be seen as a limitation on the hypothesis
space.

Our first result is a bit atypical, but fits the just described scenario. We consider a learner that
is computable relative to an oracle for K ′ but is asked to use as hypothesis space an acceptable
enumeration of programs not using any oracle. Theorem 11 below shows that the equivalence
Ex = NUEx from [2] does not relativize to learners that are computable in K ′ but output codes
for partial computable functions, and one can strengthen the separation to iterative learning.
In the following result It[K ′] (respectively, NUEx[K ′]) denotes the collection of all classes of
r.e. languages that are iteratively (respectively, non U-shapedly explanatory) learnable by some
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machine M that has access to the oracle K ′. Such a machine (as in the definition of Ex and It)
outputs indices of partial computable functions and not of functions computed relative to K ′.

Theorem 11. It[K ′] 6⊆ NUEx[K ′].

Proof. For every e, let Le = {〈e, x〉 | x ∈ N} and Hi = {〈e, x〉 | x ≤ ΦK′

e (e)}. Note that ΦK′

e (e)
is finite iff e ∈ K ′′. Now let

L = {Le : e ∈ N} ∪ {He : e ∈ K ′′}.

The class L is It[K ′]-learnable. The learner outputs a hypothesis for the set given at the first
case which applies:

– ∅ if no data of the form 〈e, x〉 has been seen so far;
– Le if x < ΦK′

e (e) for all data of the form 〈e, x〉 seen so far;
– He if x ≤ ΦK′

e (e) for all data of the form 〈e, x〉 seen so far and x = ΦK′

e (e) for some datum;
– Le if x > ΦK′

e (e) for some datum of the form 〈e, x〉 seen so far.

It can easily be verified that the learner can keep track of the finitely many cases and update
its hypothesis accordingly; within this process it uses two different indices for Le in order to
memorize whether a datum 〈e, x〉 with x > ΦK′

e (e) has been seen so far or not.
Suppose by way of contradiction that M witnesses L ∈ NUEx[K ′]. For every e, one can

compute a number f(e) such that M(〈e, 0〉〈e, 1〉 . . . 〈e, f(e)〉) outputs an index for Le; this f(e)
must exist since M learns L and the number f(e) can be found using the oracle K ′. Since, M is
not U-shaped, it implies that M does not change its mind on any text for a subset of Le starting
with 〈e, 0〉〈e, 1〉 . . . 〈e, f(e)〉. Thus f(e) > ΦK′

e (e) whenever e ∈ K ′′, so K ′′ = {e : ΦK′

e,f(e)(e) is

defined} in contradiction to the fact that K ′′ is not K ′-recursive.

In the following, the above example is modified in order to carry over the separation to class-
preserving learning (informally defined in Section 1.3). Class-preserving learning was introduced
in [26] to study the dependency of learnability on the hypothesis space. We will introduce a bit
of terminology (from [1]) to explain the notion. An infinite sequence L0, L1, L2, . . . of recursive
languages is called uniformly recursive if the set {〈i, x〉 | x ∈ Li} is recursive. A class L of
recursive languages is said to be an indexed family of recursive languages if L = {Li | i ∈ N} for
some uniformly recursive sequence L0, L1, L2, . . .; the latter is called a recursive indexing of L.

Let L be an indexed family of recursive sets, and let L0, L1, L2, . . . be a recursive indexing
of it. We say that a machine M explanatorily identifies L with respect to a recursive indexing

L0, L1, L2, . . . of L iff M Ex-learns L and, for every i and for every text for Li, M converges
to some j such that Li = Lj. A machine M is class-preserving if each language learned by M

is learned with respect to some recursive indexing of it. In what follows, for a learning criterion
I, Icp stands for class-preserving I-learning, the collection of all classes of languages that can be
I-learned by some class-preserving machine.

Theorem 12. There exists an indexed family in Itcp − NUExcp.

The positive side can be done using an indexed (recursive) family as hypothesis space, whereas
the diagonalization against negative side can be done for any r.e. class preserving hypothesis
space.
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Proof. Fix an algorithmic enumeration M0,M1, . . . of learners [21]. Let Le = {〈e, x〉 | x ∈ N}
and let Ln

e = {〈e, x〉 | x < 2n or x is odd}. Let Te denote a recursive text such that Te(x) = 〈e, x〉.
Let Se = {〈n, t〉 | (∃ x ≥ n)[〈e, 2x〉 ∈ WMe(Te[2n]),t]}. Now consider the class

L = {Le | e ∈ N} ∪ {Ln
e | Se 6= ∅ ∧ 〈n, t〉 = min(Se)}.

The proof is now completed by showing the following two claims.

Claim 13. L 6∈ NUExcp.

For proving Claim 13, suppose Me witnesses L ∈ NUExcp. Then, as Me learns Le, Se is not
empty. Let 〈n, t〉 be least element of Se. Now WM(Te[2n]) must be a grammar for Le (as no other
language in L contains an element of form 〈e, 2x〉 for x ≥ n). Let T be a text for Ln

e extending
Te[2n]. Now since Me is non U-shaped on L, Me, on T , does not abandon the hypothesis Le since
it is consistent with all upcoming data and is a language in L. Thus Me does not output any
grammar for Ln

e beyond Te[2n]. Thus, Me does not learn Ln
e although Ln

e ∈ L. This completes
the proof of Claim 13.

Claim 14. L ∈ Itcp.

For proving Claim 14, let p be a 1–1 recursive function such that p(e, 0) and p(e, 1) are gram-
mars/decision procedures for Le, and p(e, 2) is a grammar/decision procedure for Ln

e , if Se is not
empty and min(Se) = 〈n, t〉 for some t.

Now let M be an iterative learner which has the initial hypothesis ?, which keeps every
hypothesis, including ?, on the datum # and which follows the following update procedure on a
datum 〈e, x〉 where a ∈ {?, p(e, 0), p(e, 1), p(e, 2)}.

M(a, 〈e, x〉) =























p(e, 0), if a = ? or a = p(e, 0) and
Se does not intersect {0, 1, . . . , x};

p(e, 2), if a = p(e, 0) and Se intersects {0, 1, . . . , x};
p(e, 2), if a = p(e, 2), min(Se) = 〈n, t〉 and 〈e, x〉 ∈ Ln

e ;
p(e, 1), otherwise.

It is easy to verify that if Se is empty, then M on any text for Le outputs only p(e, 0) as its
conjecture (besides initial ?). If Se is non-empty and min(Se) = 〈n, t〉, then for any text for Le

or Ln
e , M initially outputs ?, then outputs p(e, 0), and eventually outputs p(e, 2) (after seeing

an input 〈e, x〉 such that x ≥ 〈n, t〉). Beyond the first time p(e, 2) is output, M changes its mind
to p(e, 1) iff it sees an input not contained in Ln

e . It follows that M learns L. This completes the
proof of Claim 14 and Theorem 12.

4 Consistent and Monotonic Iterative Learning

Forbidding U-shapes is a semantic constraint on a learner’s sequence of conjectures. In this
section we study the interplay of this constraint with other well-studied semantic constraints,
but in the memory-limited setting of iterative learning.

We now describe and then formally define the relevant variants of semantic constraints on
the sequence of conjectures. Consistent learning was introduced in [4] (in the context of function
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learning) and essentially requires that the learner’s conjectures do not contradict known data,
strong monotonic learning was introduced in [23] and requires that semantically the learner’s
conjectures on every text for any language (even the ones that the learner does not learn) are
set-theoretically nondecreasing. Monotonic learning, as introduced in [47], relaxes the condition
of strong-monotonicity by requiring that, for each language L that the learner actually learns,
the intersection of L with the language generated by a learner’s conjecture is a superset of the
intersection of L with the language generated by any of the learner’s previous conjectures.

Definition 15. [4, 23, 47] A learner M is consistent on a class L iff for all L ∈ L and all σ with
content(σ) ⊆ L, M(σ) it defined and an index of a set containing content(σ). Cons denotes
the collection of all classes which have a Ex-learner which is consistent on the class of all sets.
ClassCons denotes the collection of all classes L which have a Ex-learner which is consistent
on L.

A learner M is strong monotonic iff Wi ⊆ Wj whenever M outputs on any text for any
language at some time i and later j. SMon denotes the collection of all classes having a strong
monotonic Ex-learner.

A learner M for L is monotonic iff L∩Wi ⊆ L∩Wj whenever M outputs on a text for some
language L ∈ L at some time i and later j. Mon denotes the criterion of all classes having a
monotonic Ex-learner.

Note that there are classes L ∈ ClassCons such that only partial learners witness this fact. Cri-
teria can be combined. For example, ItCons is the criterion consisting of all classes which have an
iterative and consistent learner. The indication of an oracle as in the criterion ItConsSMon[K]
below denotes that a learner for the given class must on the one hand be iterative, consistent and
strong-monotonic while on the other hand the constraint of being recursive is weakened to the
permission to access a halting-problem oracle for the inference process. Oracles can support the
inference process, but there is no oracle permitting the learning of all classes (of r.e. languages)
[22, 33]. The next result gives some basic connections between iterative, strongly monotonic and
consistent learning.

Theorem 16. (a) ItCons ⊆ ItConsSMon.

(b) ConsSMon ⊆ ItConsSMon.

(c) ItSMon ⊆ NUIt.

(d) SMon ⊆ ItConsSMon[K].

Proof. (a) Given an iterative consistent learner M for L, let — as in the case of normal learners
— M(σ) denote the hypothesis which M makes after having seen the sequence σ. Now define
a recursive one-one function f such that, for every index e, Wf(e) =

⋃

σ|M(σ)=e content(σ). Since

M is consistent, content(σ) ⊆ WM(σ) for all σ and so Wf(e) ⊆ We. The new learner N is the
modification of M which outputs f(e) instead of e; N is consistent since whenever one can reach
a hypothesis e through a string containing a datum x then x ∈ Wf(e). Since f is one-one, N is
also iterative and follows the update rule N(f(e), x) = f(M(e, x)).

It is easy to see that N is strongly monotonic: Assume that M(e, y) = e′ and x is any element
of Wf(e). Then there is a σ with M(σ) = e and x ∈ content(σ). It follows that M(σy) = e′,
x ∈ content(σy) and x ∈ Wf(e′). So Wf(e) ⊆ Wf(e′) and the transitiveness of the inclusion gives
the strong monotonicity of N.

It remains to show that N learns L. Let L ∈ L and T be a text for L and e be the index
to which M converges on T . The learner N converges on T to f(e). Since We = L it holds that
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Wf(e) ⊆ L. Furthermore, for every n there is m > n with M(T [m]) = e, thus T (n) ∈ Wf(e) and
L ⊆ Wf(e). This completes the proof of part (a).

(b) A consistent learner never outputs ?. Now, given a strong monotonic and consistent learner
M for some class L, one defines a recursive one-one function f : (N ∪ {#})∗ → N such that

Wf(σ) = WM(σ) ∪ content(σ)

and initializes a new iterative learner N with the hypothesis f(λ) and the following update rule
for the hypothesis f(σ) and observed datum x:

– If M(σx) = M(σ) then N(f(σ), x) = f(σ);
– If M(σx) 6= M(σ) then one takes the length-lexicographic first extension τ of σx such that

WM(η),|σ| ⊆ content(τ) for all η � σ and defines N(f(σ), x) = f(τ).

Note that in the second case, content(τ) = content(σx) ∪ (
⋃

η�σ WM(η),|σ|) and that the length-
lexicographic ordering is just taken to single out the first string with this property with respect
to some ordering. The new iterative learner is strongly monotonic since whenever it changes
the hypothesis then it does so from f(σ) to f(τ) for some τ extending σ and thus Wf(σ) =
content(σ) ∪ WM(σ) ⊆ content(τ) ∪ WM(τ) = Wf(τ) as M is strong monotonic. Furthermore, N

is also consistent: whenever it sees a number x outside Wf(σ) then x is also outside WM(σ) and
M(σx) 6= M(σ) by the consistency of M. Then the new τ constructed contains x explicitly and
therefore x ∈ WN(f(σ),x). By the strong monotonicity of N, an element once incorporated into
a hypothesis is also contained in all future hypotheses. So it remains so show that N actually
learns L.

Given L ∈ L and a text T for L, there is a sequence of strings σ0, σ1, . . . such that σ0 = λ and
N(f(σn), T (n)) = f(σn+1). By induction one can show that σn ∈ (L ∪ {#})∗ and WM(σn) ⊆ L
for all n. There are two cases.

First, there is an n such that σm = σn for all m ≥ n. Then L ⊆ Wf(σn) since N is a consistent
learner and eventually converges to this hypothesis on the text L. Furthermore, Wf(σn) ⊆ L as
mentioned above, so N learns L.

Second, for every n there is an m > n such that σm is a proper extension of σn. Let T ′ be the
limit of all σn. One can easily see that T ′ contains data from two sources, some items taken over
from T and some elements taken from sets WM(η) with η � σn for some n; since M is strong
monotonic these elements are all contained in L and so content(T ′) ⊆ L. Furthermore, for every
n the element T (n) is contained in Wf(σn+1) and thus there is an extension σk of σn+1 which is
so long that

T (n) ∈ WM(σn+1),|σk| ∪ content(σn+1).

If then for some m ≥ k the string σm+1 is a proper extension of σm, then T (n) ∈ content(σm+1).
As a consequence, T ′ is a text for L on which M converges to a hypothesis e. Then, one has that
for all sufficiently large m, where σm+1 is a proper extension of σm, σm+1 is actually an extension
of σmT (m) and M(σmT (m)) = M(σm), which would by construction enforce that N does not
update its hypothesis and σm+1 = σm. By this contradiction, the second case does not hold and
the first applies, thus M learns L. This completes the proof of part (b).

(c) This follows from the definition.

(d) This case is parallel to (b), but here the learner M is not consistent. Therefore one uses the
oracle K to check for consistency and has the following modified update algorithm for N; this
test cannot be done without an oracle.
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– If M(σx) = M(σ) and x ∈ Wf(σ) then N(f(σ), x) = f(σ);
– If M(σx) 6= M(σ) or x /∈ Wf(σ) then one takes the length-lexicographic first extension τ of

σx such that WM(η),|σ| ⊆ content(τ) for all η � σ and defines N(f(σ), x) = f(τ).

The verification is the same as part (b), except that the consistency of N follows now directly
from the explicit test and the strong monotonicity of N. So part (d) follows.

One might ask whether the halting problem oracle is necessary in inclusion (d). The following
example gives an affirmative answer where K is again the diagonal halting problem.

Example 17. SMon ⊆ It[A] only if K ≤T A.

Proof. Let H be an infinite r.e. set disjoint to K. Such a set exists since K is not simple [30].
Now define the class L to consist of the set K and all sets of the form K ∪D where D is finite,
nonempty and has a maximum in H.

A strongly monotonic learner for L with input T [n] first computes En as being the content
of T [n], then computes Sn = {x ∈ En : ∃y ≥ x (y ∈ En ∩H)} and finally conjectures K ∪Sn. To
achieve syntactic convergence, a hypothesis is only updated when n = 0 or n > 0 ∧ Sn 6= Sn−1.

Note that whenever L ∈ L then the set S = {x ∈ L : ∃y ≥ x (y ∈ L ∩ H)} is finite
and equal to Sn for almost all n. Thus the learner converges to an index for K ∪ S and this
convergence is syntactic as Sn = Sn−1 = S for almost all n. So the given learner is a Ex-learner.
Since S0 ⊆ S1 ⊆ S2 ⊆ . . ., the learner is also strongly monotonic. This completes the proof for
L ∈ SMon.

Now consider an iterative learner M for L with oracle A. This learner M has a locking
sequence for K and converges on this locking sequence to a hypothesis e. For all x ∈ K it holds
that M(e, x) = e by the locking sequence property. For all x /∈ K it holds that M(e, x) 6= e
since otherwise M cannot distinguish a text for K ∪ {y} from a text for K ∪ {x, y} whenever
y > x ∧ y ∈ H; such an y exists since H is infinite. It follows that K = {x : M(e, x) = e} and
thus K ≤T A. This completes the proof.

Note that the proof of Theorem 16 (a) needs that the learner is an ItCons-learner and not
just an ItClassCons-learner. In the latter case, the inference process cannot be enforced to be
strong-monotonic as the following example shows.

Example 18. The class L containing the set {0, 2, 4, 6, 8, . . .} of even numbers and all sets

{0, 2, 4, . . . , 2n} ∪ {2n + 1} with n ∈ N is in ItClassCons − SMon.

Proof. On one hand, the learner which conjectures the set of even numbers until an element of
the form 2n + 1 is seen and then changes to the unique possible hypothesis {0, 2, 4, . . . , 2n} ∪
{2n + 1} is easily seen to be class-consistent and iterative. So L ∈ ItClassCons.

On the other hand, a given learner for L has eventually to conjecture an index for {0, 2, 4, . . .}
after having seen enough even numbers. Let n be larger than any number seen by the learner
before the conjecture is made as above. Then, the input text might actually be for the language
{0, 2, 4, . . . , 2n} ∪ {2n + 1}: in which case the learner would be forced to change its mind non-
strong monotonically. Hence, L /∈ SMon.

So class-consistent, iterative learners cannot be made strong monotonic, even with an oracle.
However, the next result shows that they can still be made monotonic, and, simultaneously, non
U-shaped.
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Theorem 19. ItClassCons ⊆ NUItMon.

Proof. Suppose M ItClassCons-identifies L. We write M(x1, x2, . . . , xr) for the hypothesis
obtained by feeding x1, x2, . . . , xr one after the other into the learner; this notion has the initial
hypothesis for r = 0. We say (x1, x2, . . . , xr) (here r maybe 0) is valid if for all i < r (including
i = 0), M(x1, . . . , xi) 6= M(x1, . . . , xi, xi+1). For valid (x1, x2, . . . , xr), and k ≤ r, we define the
set

WF (k,x1,x2,...,xr) = {xi | 1 ≤ i ≤ k} ∪ {x | (∃s ≤ k)[M(x1, . . . , xs, x) = M(x1, . . . , xs) and
(∀w | s ≤ w ≤ r)[x ∈ WM(x0,...,xw)]]}

and point out that the next two claims follow immediately from the definition of F :

Claim 20. Suppose (x1, . . . , xr+1) is valid and k ≤ r. Then, WF (k,x1,x2,...,xr) ⊇ WF (k,x1,x2,...,xr ,xr+1).

Claim 21. Suppose (x1, . . . , xr) is valid and k ≤ k′ ≤ r. Then, WF (k,x1,...,xr) ⊆ WF (k′,x1,...,xr).

Furthermore, in the next claim, (a), (b) follow from definition of F and consistency of M on L
and (c) follows from (b) and definition of F .

Claim 22. Suppose (x1, . . . , xr+1) is valid and k ≤ r. Further suppose {x1, . . . , xr+1} ⊆ L and

L ∈ L. Then,

(a) WF (k,x1,...,xr) ⊆ WM(x1,...,xr);

(b) WF (k,x1,...,xr) ∩ L ⊆ WM(x1,...,xr ,xr+1);

(c) WF (k,x1,...,xr) ∩ L ⊆ WF (k,x1,...,xr ,xr+1).

Claim 23. Suppose (x1, . . . , xr′) is valid and k ≤ k′ and r ≤ r′. Further suppose {x1, . . . , xr′} ⊆
L and L ∈ L. Then, WF (k,x1,...,xr) ∩ L ⊆ WF (k′,x1,...,x

r′ )
.

This claim needs a short proof: WF (k,x1,...,xr) ∩ L ⊆ WF (k,x1,...,x
r′ )

, follows from Claim 22 (c),
WF (k,x1,...,x

r′ )
⊆ WF (k′,x1,...,x

r′ )
, follows from Claim 21. Thus Claim follows.

Now we continue with the proof of the main result and define N as follows. Suppose on input
text seen so far, M has made mind changes on x1, . . . , xr, and k is the smallest number such that,
for all x seen in input so far, there exists s ≤ k, such that M(x1, . . . , xs) = M(x1, . . . , xs, x)
(note that, by induction, such k can be iteratively found and will be ≤ r). N then outputs
F (k, x1, . . . , xr).

Claim 23 implies N is monotonic for the class L.
Now consider any text T for L ∈ L. N converges on T as M converges on T . Suppose N on T

converges to F (k, x1, . . . , xr). Then, by Claim 22(a) and L ∈ Ex(M), we immediately have that
WF (k,x1,...,xr) ⊆ L. Furthermore, L ⊆ WF (k,x1,...,xr), as M is iterative, and for every x ∈ content(T )
there exists a s ≤ k such that M(x1, . . . , xs, x) = M(x1, . . . , xs). Thus, N learns L in the limit.

To see non U-shaped learning of N, consider L ∈ L and suppose on text T , at some point
N outputs, F (k, x1, . . . , xr) and this enumerates exactly L. This implies by definition of F
that, for all x ∈ L, either x equals x1, . . . , xk or there exists an s ≤ k such that M(x1, . . . , xs) =
M(x1, . . . , xs, x). It follows by definition of N that from then on N only outputs grammars of form
F (k, x1, . . . , xr, . . . , xr′). But then Claim 20 and Claim 22(c) imply that F (k, x1, . . . , xr, . . . , xr′)
is also a grammar for L.
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5 Memoryless Feedback Learning

An iterative learner has a severe memory limitation: it can store no previously seen data. On
the other hand, crucially, an iterative learner remembers its previous conjecture. In this section
we introduce a model of learning in which the learner does not remember its last conjecture
and can store no previous input data. The learner is instead allowed to make, at each stage of
its learning process, n feedback queries asking whether some n data items have been previously
seen. We call such learners n-memoryless feedback learners, and the main result of the present
section (Theorem 30) shows that U-shaped behaviour is necessary for the full learning power of
n-memoryless feedback learning. At the end of the present section (Theorem 33) we prove that,
as might be expected, being able to do n + 1 feedback queries gives more learning power than
being able to do only n.

We now proceed with the formal definition of n-memoryless feedback learning.

Definition 24. Suppose n ≥ 0. An n-memoryless feedback learner M has as input one datum
from a text. It then can make n-queries which are calculated from its input datum. These
queries are as to whether some n data items were already seen previously in the text. From its
input and the answers to these queries, it either outputs a conjecture or the ? symbol. That
is, given a language L and a text T for L, M(T (k)) is determined as follows: First, n-values
qi(T (k)), i = 1, . . . , n, are computed. Second, n bits bi, i = 1, . . . , n are determined and passed
on to M, where each bi is 1 if qi(T (k)) ∈ content(T [k]) and 0 otherwise. Third, an hypothesis ek

is computed from T (k) and the bi’s. M MLFn-learns L if, for all T for L, for M on T , there is
an k such that Wek

= L and em ∈ {?, ek} for all m > k. MLFn denotes the class of all classes
learnable by a n-memoryless feedback learner.

In what follows Di is the finite set with canonical index i [36]: i algorithmically codes both the
cardinality of Di and how to decide membership in Di.

Remark 25. One can generalize MLFn to MLF∗. Each MLF∗-learner employs a recursive
function F mapping N to finite subsets of N such that, for every x, the learner asks whether
any of the y ∈ DF (x) have been seen before. Depending on the answers, the learner outputs a
hypothesis or ?. Clearly, by Theorem 33, MLF∗ is a proper superset of MLFn.

On one hand, It 6⊆ MLF∗ since the class of all sets with two elements is not learnable by
an MLF∗ learner. For y = 0 or 1, if the learner makes a conjecture on input y, where all the
questions are answered no, then it is wrong on input xy∞ for some x 6∈ DF (y). On the other
hand, if the learner does not make a conjecture on both the inputs 0 and 1 where all questions
are answered “no”, then it clearly does not identify one of the sets {0, x} or {1, x} for some
x /∈ DF (0) ∪ DF (1).

On the other hand, let E = {2x | x ∈ N}, Ap = E ∪{pi | i ∈ N} and Bp = E ∪{pi | i ∈ N}−
{2p}. Then, L = {E} ∪ {Ap | p is odd prime} ∪ {Bp | p is odd prime}, can be easily seen to be
in MLF1 − It. So MLF1 and It are incomparable.

The next result shows that non U-shaped 1-memoryless feedback learners are strictly less pow-
erful than unrestricted 1-memoryless feedback learners: There exists a class of languages that
can be learned by a 1-memoryless feedback learner only if the learner is allowed to make some
U-shapes on some text for some language in the class. The basic idea for the proof is to include
in the class two types of sets that start differing after a non-computable point. After this proof
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we indicate how to adapt it to show that U-shaped learning is necessary at each level of the
MLFn-hierarchy (see Theorem 30 below).

Theorem 26. NUMLF1 ⊂ MLF1.

Proof. The idea is to use, for every e, two sets Le, He such that the learner can easily figure out
that it has to learn one of these sets but is nevertheless forced to oscillate between these two
hypotheses and is therefore U-shaped. These two sets are equal up to some value F (e), where

F (e) = max({1 + ϕi(e) | i ≤ e and ϕi(e)↓ } ∪ {0}).

Note that F grows faster than any partial or total recursive function. Based on this function F
one now defines the family L = {L0, L1, L2, . . .} ∪ {H0, H1, H2, . . .} where

Le = {〈e, x〉 | x < F (e) or x is even};

He = {〈e, x〉 | x < F (e) or x is odd}.

We first show that L ∈ MLF1. Note that the learning algorithm cannot store the last guess
due to its memory limitation but might output a ‘?’ in order to repeat that hypothesis. The
parameter e is visible from each current input except ‘#’. The algorithm is the following:

If the new input is # or if the input is 〈e, x〉 and the Feedback says that 〈e, x + 1〉 has already
appeared in the input earlier, then output ?. Otherwise, if input is 〈e, x〉 and 〈e, x + 1〉 has not
yet appeared in input, then output a canonical grammar for Le (He) if x is even (odd).

Consider any text T for Le. Let n be such that content(T [n]) ⊇ Le ∩ {〈e, x〉 | x ≤ F (e) + 1}.
Then, it is easy to verify that, the learner will either output ? or a conjecture for Le beyond
T [n]. On the other hand, for any even x > F (e), if T (m) = 〈e, x〉, then the learner outputs a
conjecture for Le after having seen T [m + 1] (this happens infinitely often, by definition of Le).
Thus, the learner MLF1-identifies Le. Similar argument applies for He.

We now show that L 6∈ NUMLF1. So suppose by way of contradiction that the learner M

NUMLF1-identifies L. We now do the following analysis.
We assume without loss of generality that M’s query on input 〈e, x〉 is of form 〈e, x′〉 for

some x′. If M(〈e, x〉) makes the query 〈e, x′〉, then we let Q(〈e, x〉) = x′.

Claim 27. (a) There do not exist infinitely many e such that for some x, M(〈e, x〉) outputs a

hypothesis on yes answer to feedback query.

(b) There do not exist infinitely many e such that for some x, M(〈e, x〉) does not pose a

query, but outputs an hypothesis.

Of this claim, we show part (a). Part (b) can be shown similarly. Suppose by way of contradiction
otherwise. Define partial function η to be η(e) = max({xe, Q(〈e, xe〉)}), where xe is the first
number found, if any, such that M(〈e, xe〉) on answer yes to query, outputs a hypothesis. Now
F (e) > η(e) (if η(e) is defined), for all but finitely many e. Thus, we have that for infinitely
many e, xe < F (e), Q(〈e, x〉) < F (e), and on answer yes, M(〈e, xe〉) outputs a hypothesis. Pick
any such e. Without loss of generality assume that M(〈e, xe〉) is not a grammar for Le (case
of He is similar). Consider the text T for Le which starts with 〈e,Q(〈e, xe〉)〉 and has 〈e, xe〉 in
every alternate position of the input. Now M on T infinitely often outputs a hypothesis which
is not for Le (whenever it sees 〈e, xe〉 in the input), and thus M does not Ex-identify Le. This
completes the proof of the claim.
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Now we continue with the main proof. As finitely many Le/He can easily be learned, for the
following analysis, we may assume without loss of generality that for any input, M outputs an
hypothesis only when making a query and getting a no answer. We further assume without loss
of generality that if M does not output a hypothesis on no-query, then it does not make the
query at all (since the query in this case is not used). Thus, all and only the no-answer queries
lead to hypothesis output by M.

Claim 28. For any e, if {〈e, x〉, 〈e, x′〉} ⊆ Le, and M(〈e, x〉) on no answer to query, outputs a

grammar for Le, and M(〈e, x′〉) on no answer to query, outputs a grammar which is not for Le,

then Q(〈e, x′〉) = x. Similar result holds when Le above is replaced by He.

For a proof of this claim, assume that it is wrong and consider the text T for Le starting with
〈e, x〉〈e, x′〉. M is non U-shaped on T .

Claim 29. (a) There exist only finitely many e such that card({Q(〈e, x〉) | x ∈ N}) ≥ 3.
(b) There exist only finitely many e such that card({Q(〈e, x〉) | x ∈ N}) = 1.
(c) There exist only finitely many e such that card({Q(〈e, x〉) | x ∈ N}) = 2.

The main result is now obtained by proving this claim.

(a) Suppose by way of contradiction otherwise. Let η be a partial function such that, η(e) =
max({xe

1, x
e
2, x

e
3}), where Q(〈e, xe

1〉), Q(〈e, xe
2〉) and Q(〈e, xe

3〉), are all different (if there are no such
xe

1, x
e
2, x

e
3, then η(e) is undefined). Now by definition of F , for all but finitely many e, F (e) > η(e),

if it is defined. Pick any e in domain of η such that F (e) > η(e). Note that 〈e, xe
1〉, 〈e, x

e
2〉, 〈e, x

e
3〉

are in both Le and He. Let xe
L, xe

H be such that 〈e, xe
L〉 ∈ Le and 〈e, xe

H〉 ∈ He and M(〈e, xe
L〉)

outputs a grammar for Le on answer no to query and M(〈e, xe
H〉) outputs a grammar for He on

answer no to query (note that there exist such xe
L, xe

H , since otherwise M does not Ex-identify
Le, He). Let xj

e, j ∈ {1, 2, 3} be such that Q(〈e, xj
e〉) 6∈ {xe

L, xe
H}. Without loss of generality

suppose that M(〈e, xj
e〉) is not a grammar for Le (case of He is similar). Then, on any text T for

Le starting with 〈e, xe
L〉〈e, x

j
e〉, M is not U-shaped.

(b) Suppose by way of contradiction otherwise. Let η be a partial function such that η(e) =
Q(〈e, x〉), for the first x found such that M(〈e, x〉) asks a query (and outputs an hypothesis
on no-answer). Pick an e such that card({Q(〈e, x〉) | x ∈ N}) = 1 and η(e) ↓< F (e) (all but
finitely many e such that card({Q(〈e, x〉) | x ∈ N}) = 1, satisfy this condition). Let qe be the
only member of {Q(〈e, x〉) | x ∈ N}. Note that qe belongs to both Le and He. But then, for any
text for Le or He which starts with qe, M does not make any further hypothesis beyond T [1].
Thus, M cannot Ex-identify both Le and He.

(c) Similar to part (b), by using η to bound the two potential queries, and starting the text with
both these queries. This completes the proof of the claim.

Now, parts (a)—(c) of Claim 29 immediately lead to a contradiction.

It is not difficult to see that the proof of the just previous Theorem can be adapted to show
there is a class in MLFn that is not MLFn-learnable without U-shapes. This can be achieved
by adding n − 1 special elements, s1, s2, . . . , sn−1, to the languages used in Theorem 26. Then,
the machine from the proof of the positive part of Theorem 26 can be modified as follows. If it
sees these special elements, the learner outputs ?. If the learner sees any other element x, then
the learner queries whether s1, . . . , sn−1 are in the input besides the main query and outputs
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conjectures as before, with the special elements answered yes being added to the conjecture.
The negative direction of the proof can proceed essentially as before, as the last conjectures of
the learner needs to correctly determine whether the special elements are in the input or not.
We omit the details. This gives us the following Theorem, showing that U-shaped learning is

necessary for full learning power of n-memoryless feedback learners, for all n > 0.5

Theorem 30. For all n > 0, NUMLFn ⊂ MLFn.

It is reasonable to ask, as we do in the Conclusion (Section 7), whether the need for U-shaped
learning in Theorem 26 can be removed by allowing more queries. That is, can we show that
there are MLF1-learnable classes that, for n > 1, are not MLFn-learnable without U-shapes.

We now observe that one can use the class L from Theorem 26 to get further related results.
For memoryless learning without feedback, one can have only one conjecture per language to be
learned in order to enforce syntactic convergence. In order to get a more interesting setting, one
could consider restricting to one-one texts only. For memoryless learning from such texts, the
class L has a learner which conjectures Le for a datum 〈e, x〉 with even x and He for a datum
〈e, x〉 with odd x. Then this learner makes finitely many errors and later converges to the correct
hypothesis. But one can show that such a learner cannot be made non U-shaped.

For iterative learning, one can obtain a non U-shaped learner for L. The idea is not to use
the given family L but a larger one L′ containing sets Le,x, He,x where Le,x = Le, He,x = He

if F (e) < x and the sets Le,x, He,x are finite subsets of Le, He if F (e) ≥ x. Then, the iterative
learner updates on datum x from conjectures for Le,x′ , He,x′ , respectively, to conjectures for Le,x

or He,x, respectively – depending on whether x is even or odd – in the case that the condition
Fx(e) ≥ x′ is satisfied. Here F0, F1, . . . is a recursive approximation from below to F . We can
then have the following Proposition.

Proposition 31. NUIt 6⊆ NUMLF1.

The learner in the just above proposition can even be made conservative, that is, updating its
hypothesis only if the current datum is not contained in the language defined by this hypothesis.
Observe that this learner is also total.

Finally, an iterative total learner that can store one selected previous datum is called a Bem1-
learner (1-bounded example memory learner) in [13, 33]. One can also consider a “memoryless”
version of this concept, where a learner does not memorize its previous hypothesis, but, instead,
memorizes one selected previous datum. Under both these criteria, L is also non U-shaped
learnable since in the above sketched algorithm, remembering 〈e, x′〉 replaces remembering an
index for Le,x′ or He,x′ , respectively. We can then have the following Proposition.

Proposition 32. NUBem1 6⊆ NUMLF1.

To conclude this section we show that the n-memoryless feedback criteria form a hierarchy of
more and more powerful learning criteria increasing in the number n of feedback queries allowed.

Theorem 33. For all n > 0, NUMLFn+1Ex 6⊆ MLFnEx.

5 For n = 0, NUMLF0 = MLF0, see Remark 39 in Section 6 below.
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Proof. Fix an algorithmic enumeration M0,M1, . . . of learners [21]. We diagonalize against this
enumeration. Let Li = {〈0, x〉 | x ≤ n}∪{〈i + 1, x〉 | x ∈ N}. Let LS

i = S ∪{〈i + 1, 2x〉 | x ∈ N}.
L will contain Li, and maybe LSi

i , for some i, where Si is defined just below.

Si is defined as follows (using some standard search): search for y ∈ Li − {〈0, x〉 : x ∈ N}
such that Mi(y) queries q1, ..., qn and outputs a grammar which contains at least n + 2 elements
outside {〈i + 1, 2x〉 | x ∈ N}, where the answers given to q1, . . . , qn are ‘yes’ if and only if they
belong to Li. Then, Si = {y, q1, . . . , qn}∩Li, where Si is defined based on the first success found
in the above search in some standard method of searching.

Claim: L is not in MLFnEx. Suppose by way of contradiction that some learner MLFnEx-
learns L. Take i so large that Mi is equivalent to the given learner and Li is not among the sets
conjectured by the learner on any σ with content(σ) ⊆ {〈0, x〉 : x ≤ n} and |σ| ≤ n + 1.

Now, if the search for Si does not succeed then Mi does not MLFnEx-identify Li. Otherwise,
Mi does not MLFnEx-identify LSi

i .

Claim: L is in NUMLFn+1Ex. On inputs of form 〈i + 1, 2x〉 query elements 〈0, x〉 such that
x ≤ n. If all are present, then conjecture Li. Otherwise search for Si as above for x steps. If
found, then conjecture, LSi

i . Otherwise conjecture ?. It is easy to verify the claim.

6 Bounded Memory States Learning

Memoryless feedback learners store no information about the past. Bounded memory states
learners, introduced in this section, have no memory of previous conjectures but can store a
bounded number of values in their long term memory. This model allows one to separate the
issue of a learner’s ability to remember its previous conjecture from the issue of a learner’s ability
to store information about the previously seen input. Similar models of machines with bounded
long term memory are studied in [24]. We now proceed with the formal definition.

Definition 34. [24] For c > 0, a c-bounded memory states learner is a function

M : {0, 1, . . . , c − 1} × (N ∪ #) → (N ∪ {?}) × {0, 1, . . . , c − 1}

which maps the old long term memory content plus a datum to the current hypothesis plus the
new long term memory content. The long term memory has the initial value 0. There is no initial
hypothesis.

M learns a class L iff for every L ∈ L and every text T for L there is a sequence a0, a1, . . .
of long term memory contents and e0, e1, . . . of hypotheses and a number n such that, for all m,
a0 = 0, Wen

= L, M(am, T (m)) = (em, am+1) and m ≥ n ⇒ em ∈ {?, en}. We denote by BMSc

the collection of classes learnable by a c-bounded memory states learner.

The next result shows that for bounded memory states learning, the concepts of explanatory
and behaviourally correct learning essentially coincide.

Theorem 35. If M has a constant bound c > 0 on its long term memory and identifies a class

L in behaviourally correct way, then there is a further learner with memory bound (c+1)! which

identifies L with at most 2 · c mind changes.
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Proof. The proof follows ideas outlined in [24]. The idea is to build a new learner N which
simulates M but which assumes certain old data-items to be (virtually) repeated while processing
the text in order to undo certain changes of state or hypotheses. The learner N cannot access
these data-items explicitly but reconstruct from the data seen so far whether it should copy a
hypothesis of M or replace it by the symbol ? and whether it should go into a new state or not.
In order to do this, the long term memory of N stores the following pieces of information:

– A sequence q1, q2, . . . , qn of long term memory contents visited so far by M;
– The index n of the last element qn;
– The index m of the last qm such that N has output some hypothesis when going from qm

either to itself or to qm+1; m = 0 if N has not output any hypothesis.

Note that n can take values from 1 to c, m can take values from 0 to c and that the sequence
q1, q2, . . . , qn is the initial part of some permutation of the c elements in the set {0, 1, . . . , c}.
So one can extend this to a full permutation by assigning arbitrary values to the remaining
elements. Furthermore, q1 = 0 and qk > 0 for k > 1, thus there are (c− 1)! many possible values
for the sequence q1, q2, . . . , qn. In addition one has c many possible values for n and c + 1 many
possible values for m, giving in total (c + 1)! possible values for the long term memory.

Now the new learner N starts with the long term memory content such that n = 1, q1 =
0,m = 0. The update rule is the following for a data-item x, where e ∈ N (that is, e 6= ?) in the
case distinction:

(1) if M(qn, x) = (?, r) for some r ∈ {q1, . . . , qn} then N does not change its long term
memory and conjectures ?;

(2) if M(qn, x) = (?, r) for some r /∈ {q1, . . . , qn} then N defines qn+1 = r, updates n = n + 1
and conjectures ?;

(3) if M(qn, x) = (e, qk) for some k ∈ {1, . . . ,m} then N does not change its long term
memory and conjectures ?;

(4) if M(qn, x) = (e, qk) for some k ∈ {m+1, . . . , n} then N updates m = n and conjectures e;
(5) if M(qn, x) = (e, r) for some r /∈ {q1, . . . , qn} then N defines qn+1 = r, updates m = n,

updates n = n + 1 and conjectures e.

For the verification let a language L ∈ L and a text T for L be given. The underlying idea is
the following: the learner N always assumes that it “virtually inserts” so many data that the
simulated machine M has after seeing the real datum x and the virtually repeated data the long
term memory qn. In Case (1), M assumes that the data which let M go from r to qn is repeated
such that either only ? are output or the last hypothesis e′ of N shows up as the last hypothesis
generated by this sequence. In Case (3), N knows that it goes to a long term memory qk from
which one can go with some data through qm to a point where N’s last hypothesis e′ was output
and then go to qn with M only outputting no-conjecture-symbols. Thus N virtually inserts these
data and omits the hypothesis e as it would be overwritten by e′. In Cases (4) and (5), N copies
the hypothesis e as it would overwrite the last hypothesis e′. Note that if m = 0 the learner
goes automatically through one of these two cases whenever M(qn, x) causes a hypothesis. The
remaining part of the verification is that the ideas of virtually inserting data would transform a
given text T to a text T ′ such that either M does not make a hypothesis on T ′ at all and only
outputs no-conjecture-symbols or that M outputs finitely many hypotheses with the last one
being the same as the last hypothesis of N or that M outputs infinitely many hypotheses with
the last one of N occurring infinitely often in the sequence. Since M has also to learn L from
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T ′, one can conclude that N outputs some hypotheses and that its last hypothesis e is correct
since it is either also the last hypothesis of M on T ′ or M outputs e infinitely often on T ′.

To see the mind change bound, one has only to look at how many hypotheses are output
while n has a fixed value k. These are at most two hypotheses, at the first, m is updated from
some value below k to k, at the second, a new element is added to the list and n is updated from
k to k + 1. This completes the proof.

We now state and prove the main result of the present section, showing that every 2-bounded
memory states learner can be simulated by a non U-shaped one.6

Theorem 36. BMS2 ⊆ NUBMS2.

Proof. We assume without loss of generality that M does not change its memory on input #,
as otherwise we could easily modify M to work without any memory.

In the following, “∗” stands for the case that the value does not matter and in all (legal)
cases the same is done.

Define a function P such that P (?) =? and, for e ∈ N, P (e) is an index of the set WP (e) =
⋃

s∈S(e) We,s where S(e) is the set of all s satisfying either (a) or ((b) and (c) and (d)) below:

(a) There exists an x ∈ We,s, M(1, x) = (∗, 0);
(b) For all x ∈ We,s, [M(0, x) = (∗, 1) ⇒ M(1, x) = (?, 1)];
(c) There exists an x ∈ We,s, M(0, x) = (?, 1) or for all x ∈ We,s, M(0, x) = (∗, 0);
(d) For all x ∈ We,s ∪ {#}, [M(0, x) = (j, ∗) ⇒ We,s ⊆ Wj ∧ Wj,s ⊆ We].

Now we define for all m ∈ {0, 1}, j ∈ N ∪ {?} and x ∈ N ∪ {#},

N(m,x) =















(P (j), 0), if m = 0 and M(0, x) = (j, 0);
(j, 1), if m = 0 and M(0, x) = (∗, 1) and M(1, x) = (j, 1) and j 6=?;
(j, 1), if m = 0 and M(0, x) = (j, 1) and M(1, x) = (?, 1);
(j, 1), if m = 1 and M(1, x) = (j, ∗).

Now fix an L ∈ L and text T for L. Note that M identifies L. We show below that N will also
identify L from text T .

Case (1): For all x ∈ L, M(0, x) = (∗, 0).
Then N behaves exactly like M with the only difference that every hypothesis e is translated

to P (e). As M converges syntactically to a hypothesis e, N converges syntactically to the hy-
pothesis P (e). One can now verify that every s goes into S(e) by satisfying the conditions (b),
(c) and (d) and thus WP (e) = We: (b) and (c) are clearly satisfied; for condition (d) note that
all hypotheses output by M are e since otherwise M would diverge on fat texts for L, that is,
on texts where every datum of L ∪ {#} appears infinitely often.

Case (2): Not Case (1) and there exists an x ∈ L, M(1, x) = (∗, 0).
First we show that the learner N outputs at least one conjecture on T . Assume by way of

contradiction that N on T for L does not output any hypothesis. We then show that there is
a text T ′ for L on which M does not output any hypothesis. Let m be the first number such
that after seeing T [m], M has memory 1. Then N and M both do not output any hypothesis
on this initial portion T [m]. T ′ will be a modification of T by inserting appropriate elements in

6
NUBMS1 = BMS1, see Remark 39 below in this section.
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order to force M back to memory 1 without outputting a hypothesis. Let T ′ be the limit of σn

defined as follows. One starts with σ0 = T [m] and now defines σn+1 inductively from σn: if M after
σnT (m+n) has the memory 1 we just set σn+1 = σnT (m+n) else we set σn+1 = σnT (m+n)T [m]
in order to transfer M back into memory 1 without outputting a conjecture. Now T ′ is the limit
of all σn and M does not output any hypothesis on T ′. But T ′ is just T with T [m] inserted at
some places and therefore T ′ is a text for L. Hence M does not identify L, a contradiction. So
N does output a conjecture on T .

Similarly, we can show that M outputs only one hypothesis e on data coming from L since
otherwise one could create a text T ′ on which M outputs infinitely often two different hypotheses.
So N makes at most one mind change, potentially from P (e) to e, and thus N is non U-shaped.
For correctness, note that WP (e) = We since (a) holds.

Case (3): Not Cases (1) and (2) and there exists an x ∈ L such that M(0, x) = (∗, 1) and
M(1, x) 6= (?, 1).

In this case, all conjectures of N before getting memory 1 are wrong. This is because, for
any e, WP (e) either contains an x such that M(1, x) = (∗, 0) (due to condition (a)), or it does
not contain any x such that M(0, x) = (∗, 1) and M(1, x) 6= (?, 1) (due to condition (b)). Also,
once N has memory content 1, it will only output correct grammars, since M outputs only
correct grammars after having memory 1 — otherwise M would output infinitely often wrong
grammars on a fat text for L. The output during transition from memory 0 to 1 thus does not
effect U-shapedness. N does Ex-identify L, as it will output a correct grammar for L once it
sees the input x.

Furthermore, N converges on T since M converges on T (0)T (0)T (1)T (1)T (2)T (2) . . . which
is obviously also a text for L.

Case (4): Not Cases (1), (2), (3) and for all x ∈ L, M(0, x) 6= (?, 1).
In this case, N does change memory, outputs a grammar at the point of changing memory

and then follows M. Thus it Ex-identifies L. We now claim that every grammar output by N

before it changes memory to 1 is incorrect. Suppose by way of contradiction that P (e) output
by N before it changes memory to 1 is a grammar for L. By hypothesis of current case, there is
an x ∈ L such that M(0, x) = (∗, 1). Fix one such x. Now, for all s with We,s ⊆ L, if x ∈ We,s,
the conditions (a) and (c) do not hold and s /∈ S(e). Thus, either WP (e) is not a subset of L or
WP (e) does not contain x, a contradiction. Hence N is non U-shaped.

Case (5): Not Cases (1), (2), (3), (4). That is, the following three conditions hold:

– for all x ∈ L, M(1, x) = (∗, 1);
– for all x ∈ L, if M(0, x) = (∗, 1) then M(1, x) = (?, 1);
– there exists an x ∈ L such that M(0, x) = (?, 1).

Note that M necessarily outputs correct hypotheses after it achieves memory 1 (since otherwise
M would output infinitely often wrong grammars on a fat text for L).

Subcase (5–I): L contains only finitely many elements x such that M(1, x) = (j, 1), j 6=?.
We first claim that for all j 6=?, such that M(0, x) = (j, ∗), Wj = L. Suppose otherwise. Let

y be such that M(0, y) outputs a wrong hypothesis. Let X = {x ∈ L | M(1, x) = (j, 1), j 6=?}.
Note that, for all x ∈ X, we must have M(0, x) = (j, 0) for some j ∈ N∪ {?}, by the hypothesis
of the current case. Let z ∈ L be such that M(0, z) = (?, 1) (there exists such a z by hypothesis
of current case). Let σ be such that content(σ) = X. let T ′′ be a text for L−X. Now consider the
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text T ′ = σyT ′′ if M(0, y) = (∗, 1) and T ′ = σyzT ′′ otherwise. Then, M on T ′ never outputs a
conjecture beyond σy, and thus it converges on T ′ to a wrong hypothesis for L, a contradiction.
It follows that M always outputs correct hypothesis (or ?) on input from L ∪ {#} (for any
memory value). Thus, all hypothesis output by N are also correct (since conditions (b), (c),
(d) hold for large enough s, in the definition of S(e), for any e such that We = L). Hence, N

NUEx-identifies L.

Subcase (5–II): L contains infinitely many elements x such that M(1, x) = (j, 1), j 6=?.
In this case N clearly outputs a conjecture after achieving memory 1 and thus N converges

on T to the same hypothesis as M on T . So N Ex-identifies L from T .
Now, if for all x ∈ L∪{#}, M(∗, x) output a correct hypothesis, if any, then WP (e) = We = L

for all hypothesis e output by M on input x (for any memory value), since conditions (b), (c) and
(d) hold for large enough s in the definition of S(e). Thus, N only outputs correct hypotheses
and N is non U-shaped.

On the other hand, if there exists an x ∈ L ∪ {#} such that M(0, x) outputs a wrong
hypothesis. Then all grammars output by N before changing memory to 1 are not for L. This
holds as for any e, if We 6= L, then WP (e) is either finite or equal to We, and hence not equal to
L. On the other hand if We = L, then in the computation of WP (e), (a) does not hold, and (d)
can hold only for finitely many s, and hence WP (e) 6= L. Hence N is non U-shaped on L.

In the just previous proof, the modification of We to WP (e) is essential. If this were not be
permitted and we considered class-preserving learners only, the result changes, as the following
remark shows.

Remark 37. The proof of Theorem 12 above provides a class L ∈ (Itcp −NUExcp), where the
superscript cp stands for class-preserving learning.

This same L is also in BMS
cp
2 as the learner M from the proof of Claim 14 can be modified

to obtain the machine M′ witnessing this fact. Recall that

L = {Le | e ∈ N} ∪ {Ln
e | Se 6= ∅ ∧ 〈n, t〉 = min(Se)},

where Se was a certain set defined in dependence of the e-th learner from an enumeration of all
learners. Furthermore, recall that p(e, 0) generates Le and p(e, 2) generates Ln

e , where p is from
the proof of Claim 14. M′ starts with long term memory 0 and works on input 〈e, x〉 as follows:

M′(a, 〈e, x〉) =























(p(e, 0), 0) if a = 0 and Se does not contain any 〈n, t〉 ≤ x;
(p(e, 2), 1) if a = 0 and Se contains an element 〈n, t〉 ≤ x;
(p(e, 0), 1) if a = 1 and Se contains the

(least) element 〈n, t〉 ≤ x, and 〈e, x〉 /∈ Le
n;

(?, 1) otherwise.

It is easy to verify that M′ Ex-identifies the class L — employing long term memory {0, 1}.

To conclude the present section we state the following Theorem that the c-bounded memory
state criteria form a hierarchy of more and more powerful learning criteria increasing in the
number c of states allowed. Note that 1-bounded memory state learners can identify singleton
classes consisting of one set. The class

Lc = {{0, 1, 2}, {0, 1, 2, 3}, {0, 1, 2, 3, 4}, . . . , {0, 1, 2, . . . , 2c}}
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from [24, discussion after Theorem 7.6] witnesses the properness of the following inclusion. The
discussion there can be easily extended to show Lc is not in BMSc−1. We give the proof for
completeness.

Theorem 38. For all c > 1, BMSc−1 ⊂ BMSc.

Proof. Consider the class

Lc = {{0, 1, 2}, {0, 1, 2, 3}, {0, 1, 2, 3, 4}, . . . , {0, 1, 2, . . . , 2c}}

as in [24, Discussion after Theorem 7.6]. In [24] it is shown that this class is learnable with c
long term memory states but not learnable with less than 2c− 2 mind changes. Suppose by way
of contradiction that M BMSc−1-learns Lc. Define σi, for i ≤ 2c − 2, such that content(σi) =
{x | x ≤ i + 2}, and σi ⊆ σi+1, and M(σi) is a grammar for {x | x ≤ i + 2}. Let the states of M

after receiving σi be ai. We claim that a2j, j ≤ c− 1 must all be pairwise distinct, and hence M

uses at least c memory values. If not, then suppose aj = aj+k, where j +k ≤ c−1. Let τ be such
that σjτ = σj+k. Note that τ is non-empty, and M makes at least 2 distinct conjectures between
σj (exclusive) and σj+k (inclusive). Thus, M on σjτ

∞ makes infinitely many mind changes, even
though content(σjτ) ∈ Lc. Theorem follows.

Remark 39. One can generalize BMSc to ClassBMS and BMS. The learners for these criteria
use natural numbers as long term memory. For ClassBMS we have the additional constraint
that for every text of a language inside the learnt class, there is a constant c depending on the
text such that the value of the long term memory is never a number larger than c. For BMS

the corresponding constraint applies to all texts for all sets, even those outside the class.
One can extend methods used above for BMSc and results from [24] to prove that

ClassBMS = It. Furthermore, a class is in BMS iff it has a confident iterative learner, that
is, an iterative learner which converges on every text, whether this text is for a language in the
class to be learned or not.

It is easy to see that
⋃

c BMSc ⊂ BMS ⊂ ClassBMS. Furthermore, one has by Remark 25
that there is a class in MLF1 − ClassBMS. The bottom levels of the hierarchies coincide:
BMS1 = MLF0. These levels are nontrivial as they already contain every uniformly recursive
class of disjoint languages.7 It is easy to argue that MLF0 = NUMLF0.

Furthermore, there is a class in BMS2 −MLF∗. To see this let Li = {〈i + 1, x〉 | x ∈ N} and
Li,x = Li ∪ {〈0, 〈i, x〉〉}. Let the class be {Li | i ∈ N} ∪ {Li,x | i, x ∈ N}.

7 Conclusions and Open Problems

Numerous results related to non U-shaped learning for machines with severe memory limitations
were obtained. In particular, it was shown that

– there are class-preservingly iteratively learnable classes that cannot be learned without U-
shapes by any iterative class-preserving learner (Theorem 12),

– class-consistent iterative learners for a class can be turned into iterative non U-shaped and

monotonic learners for that class (Theorem 19),

7 The disjointness is important, since, for a 6= b, an MLF0-learner cannot learn the class of languages {{a}, {b}, {a, b}}.
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– for all n > 0, there are n-memoryless feedback learnable classes that cannot be learned
without U-shapes by any n-memoryless feedback learner (Theorem 30) and, by contrast,

– every class learnable by a 2-bounded memory states learner can be learned by a 2-bounded
memory states learner without U-shapes (Theorem 36).

The above results are, in our opinion, interesting in that they show how the impact of forbidding
U-shaped learning in the context of severely memory-limited models of learning is far from
trivial. In particular, the tradeoffs that our results reveal between remembering one’s previous
conjecture, having a long-term memory, and being able to make feedback queries are delicate
and perhaps surprising. Many fascinating problems remain open.

The following open problem is the main question related to iterative learning. It appeared,
in Section 3.2 above, as Problem 9.

Problem 40. Is NUIt ⊂ It?

As for memoryless feedback learning, it is open whether the following strengthening of Theo-
rem 30 is true.

Problem 41. Is MLF1 ⊆ NUMLFn, for n > 1?

Finally, for state bounded memory learning, it is open whether our Theorem 36 generalizes to
the case of learners that are allowed to store one among c values for c > 2.

Problem 42. Is BMSc ⊆ NUBMSc, for c > 2?

Also, the question of the necessity of U-shaped behaviour with respect to the stronger memory-
limited variants of Ex-learning (bounded example memory and feedback learning) from the
previous literature [27, 13] remains wide open. Humans can remember much more than one bit
and likely retain something of their prior hypotheses; furthermore, they have some access to
knowledge of whether they’ve seen something before. Hence, the open problems of this section
may prove interesting for cognitive science.
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4. Janis Bārzdiņš. Inductive Inference of automata, functions and programs. International

Mathematical Congress, Vancouver, pages 771–776, 1974.
5. Lenore Blum and Manuel Blum. Towards a mathematical theory of inductive inference.

Information and Control, 28:125–155, 1975.
6. Manuel Blum. A machine independent theory of the complexity of the recursive functions.

Journal of the Association for Computing Machinery 14:322–336, 1967.

26



7. T. G. R. Bower. Concepts of development. In Proceedings of the 21st International Congress

of Psychology. Presses Universitaires de France, pages 79–97, 1978.
8. Melissa Bowerman. Starting to talk worse: Clues to language acquisition from children’s late

speech errors. In S. Strauss and R. Stavy, editors, U-Shaped Behavioral Growth. Academic
Press, New York, 1982.

9. Susan Carey. Face perception: Anomalies of development. In S. Strauss and R. Stavy,
editors, U-Shaped Behavioral Growth, Developmental Psychology Series. Academic Press,
pages 169–190, 1982.

10. Lorenzo Carlucci, John Case, Sanjay Jain and Frank Stephan. U-shaped learning may be
necessary, Journal of Computer and Systems Sciences, to appear.

11. Lorenzo Carlucci, Sanjay Jain, Efim Kinber and Frank Stephan. Variations on U-shaped
learning. Eighteenth Annual Conference on Learning Theory, Colt 2005, Bertinoro, Italy,
June 27–30, 2005, Proceedings. Lecture Notes in Computer Science, 3559:382–397, 2005.

12. John Case. The power of vacillation in language learning. SIAM Journal on Computing,
28(6):1941–1969, 1999.

13. John Case, Sanjay Jain, Steffen Lange and Thomas Zeugmann. Incremental Concept Learn-
ing for Bounded Data Mining. Information and Computation, 152(1):74–110, 1999.

14. John Case and Chris Lynes. Machine inductive inference and language identification. In
M. Nielsen and E. M. Schmidt, editors, Proceedings of the 9th International Colloquium on

Automata, Languages and Programming, Lecture Notes in Computer Science, 140:107–115,
1982.

15. John Case and Carl H. Smith. Comparison of identification criteria for machine inductive
inference. Theoretical Computer Science, 25:193–220, 1983.

16. Rusins Freivalds, Efim B. Kinber and Carl H. Smith. On the impact of forgetting on learning
machines. Journal of the ACM, 42:1146–1168, 1995.

17. Rusins Freivalds, Efim B. Kinber and Carl H. Smith. Probabilistic versus Deterministic
Memory Limited Learning. Algorithmic Learning for Knowledge-Based Systems, GOSLER

Final Report, Lecture Notes in Computer Science, 961:155–161, 1995.
18. Mark Fulk. Prudence and other conditions on formal language learning. Information and

Computation, 85:1–11, 1990.
19. Mark Fulk, Sanjay Jain and Daniel Osherson. Open problems in “Systems That Learn”.

Journal of Computer and System Sciences, 49:589–604, 1994.
20. E. Mark Gold. Language identification in the limit. Information and Control, 10:447–474,

1967.
21. S. Jain, D. Osherson, J. Royer, and A. Sharma. Systems that Learn: An Introduction to

Learning Theory. MIT Press, Cambridge, Mass., second edition, 1999.
22. Sanjay Jain and Arun Sharma. On the non-existence of maximal inference degrees for

language identification. Information Processing Letters, 47:81–88, 1993.
23. Klaus-Peter Jantke. Monotonic and non-monotonic Inductive Inference, New Generation

Computing, 8:349–360, 1991.
24. Efim Kinber and Frank Stephan. Language learning from texts: mind changes, limited

memory and monotonicity. Information and Computation, 123:224–241, 1995.
25. David Kirsh. PDP learnability and innate knowledge of language. In S. Davis, editor,

Connectionism: Theory and Practice, pages 297–322. Oxford University Press, 1992.
26. Steffen Lange and Thomas Zeugmann. The learnability of recursive languages in depen-

dence on the space of hypotheses. GOSLER-Report, 20/93. Fachbereich Mathematik und
Informatik, TH Leipzig, 1993.

27



27. Steffen Lange and Thomas Zeugmann. Incremental Learning from Positive Data. Journal

of Computer and System Sciences, 53:88–103, 1996.
28. Nancy Ann Lynch, Albert R. Meyer and Michael J. Fischer. Relativization of the Theory of

Computational Complexity. Transactions of the American Mathematical Society, 220:243–
287, 1976.

29. Gary Marcus, Steven Pinker, Michael Ullman, Michelle Hollander, T. John Rosen and
Fei Xu. Overregularization in Language Acquisition. Monographs of the Society for Re-
search in Child Development, volume 57, no. 4. University of Chicago Press, 1992. Includes
commentary by Harold Clahsen.

30. Piergiorgio Odifreddi. Classical Recursion Theory. North Holland, Amsterdam, 1989.
31. Piergiorgio Odifreddi. Classical Recursion Theory, volume II. Elsevier, Amsterdam, 1999.
32. Daniel Osherson and Scott Weinstein. Criteria of language learning. Information and

Control, 52:123–138, 1982.
33. Daniel Osherson, Michael Stob and Scott Weinstein. Systems that Learn: An Introduction

to Learning Theory for Cognitive and Computer Scientists. MIT Press, 1986.
34. Steven Pinker. Formal models of language learning. Cognition, 7:217–283, 1979.
35. Kim Plunkett and Virginia Marchman. U-shaped learning and frequency effects in a multi-

layered perceptron: implications for child language acquisition. Cognition, 38(1):43–102,
1991.

36. Hartley Rogers. Theory of Recursive Functions and Effective Computability. McGraw-Hill,
New York, 1967. Reprinted, MIT Press, 1987.

37. James Royer. A Connotational Theory of Program Structure. Lecture Notes in Computer
Science, 273. Springer, 1987.

38. James Royer and John Case. Subrecursive Programming Systems: Complexity and Succinct-

ness. Research monograph in Progress in Theoretical Computer Science. Birkhäuser Boston,
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