
T H E N A T I O N A L U N I V E R S I T Y
of S I N G A P O R E

S c h o o l o f C o m p u t i n g
Lower Kent Ridge Road, Singapore 119260

TR11/04

U-shaped leaning may be necessary

Lorenzo CARLUCCI, John CASE,
Sanjay JAIN and Frank STEPHAN

November 2004

T e c h n i c a l R e p o r t

Foreword

This technical report contains a research paper, development or
tutorial article, which has been submitted for publication in a
journal or for consideration by the commissioning organization.
The report represents the ideas of its author, and should not be
taken as the official views of the School or the University. Any
discussion of the content of the report should be sent to the
author, at the address shown on the cover.

JAFFAR, Joxan
Dean of School

U-shaped learning may be necessary 3

Lorenzo Carlucci a,1, John Case b,1, Sanjay Jain c,2,
Frank Stephan d

aDepartment of Computer and Information Sciences, University of Delaware,

Newark, DE 19716-2586,USA and Dipartimento di Matematica, Universitá di

Siena, Pian dei Mantellini 44, Siena, Italy

bDepartment of Computer and Information Sciences, University of Delaware,

Newark, DE 19716-2586,USA

cSchool of Computing, National University of Singapore, 3 Science Drive 2,

Singapore 117543, Republic of Singapore

dSchool of Computing and Department of Mathematics, National University of

Singapore, 3 Science Drive 2, Singapore 117543, Republic of Singapore

Abstract U-shaped learning behaviour in cognitive development involves learning,
unlearning and relearning. It occurs, for example, in learning irregular verbs. The
prior cognitive science literature is occupied with how humans do it, for exam-
ple, general rules versus tables of exceptions. This paper is mostly concerned with
whether U-shaped learning behaviour may be necessary in the abstract mathemat-
ical setting of inductive inference, that is, in the computational learning theory fol-
lowing the framework of Gold. All notions considered are learning from text, that is,
from positive data. Previous work showed that U-shaped learning behaviour is neces-
sary for behaviourally correct learning but not for syntactically convergent, learning
in the limit (= explanatory learning). The present paper establishes the necessity
for the whole hierarchy of classes of vacillatory learning where a behaviourally cor-
rect learner has to satisfy the additional constraint that it vacillates in the limit
between at most k grammars, where k ≥ 1. Non U-shaped vacillatory learning is
shown to be restrictive: Every non U-shaped vacillatorily learnable class is already
learnable in the limit. Furthermore, if vacillatory learning with the parameter k = 2
is possible then non U-shaped behaviourally correct learning is also possible. But
for k = 3, surprisingly, there is a class witnessing that this implication fails.

Email addresses: carlucci5@unisi.it (LorenzoCarlucci), case@cis.udel.edu
(JohnCase), sanjay@comp.nus.edu.sg (Sanjay Jain), fstephan@comp.nus.edu.

sg (FrankStephan).
1 Supported in part by NSF grant number NSF CCR-0208616.
2 Supported in part by NUS grant number R252–000–127–112.
3 Some results of this and related work were presented at the 12th International
Congress of Logic, Methodology, and Philosophy of Science in Oviedo, Spain, 2003
and the 37th Annual Meeting of the Society for Mathematical Psychology in Ann
Arbor, Michigan, 2004.

1

1 Introduction and Motivation

U-shaped learning is a learning behaviour in which the learner first learns the
correct behaviour, then abandons the correct behaviour and finally returns to
the correct behaviour once again. This pattern of learning behaviour has been
observed by cognitive and developmental psychologists in a variety of child de-
velopment phenomena, such as language learning [9,28,40] understanding of
temperature [40,41], understanding of weight conservation [8,40], object per-
manence [8,40] and face recognition [10]. The case of language acquisition is
paradigmatic. In the case of the past tense of english verbs, it has been ob-
served that children learn correct syntactic forms (call/called, go/went), then
undergo a period of overregularization in which they attach regular verb end-
ings such as ‘ed’ to the present tense forms even in the case of irregular verbs
(break/breaked, speak/speaked) and finally reach a final phase in which they
correctly handle both regular and irregular verbs. This example of U-shaped
learning behaviour has figured so prominently in the so-called “Past Tense
Debate” in cognitive science that competing models of human learning are of-
ten judged on their capacity for modeling the U-shaped learning phenomenon
[28,35,42].

The prior literature is typically concerned with modeling how humans achieve
U-shaped behaviour, while, in the present paper, we are mostly interested in
why humans exhibit this seemingly inefficient behaviour. Is it a mere harmless
evolutionary accident or is it necessary for full human learning power? Specif-
ically, are there some learning tasks for which U-shaped behaviour is logically
necessary? In the present paper we present some new theorems in the context
of Gold’s formal model of language learning from positive data [22] of answer-
ing this latter question. To explain our results, we informally review the main
notions of inductive inference, that is Gold-style learning theory, and refer to
the next section for precise mathematical definitions.

A learner M reads an infinite sequence consisting of the elements of any lan-
guage L in arbitrary order with possibly some pause symbols # in between.
During this process the learner outputs a corresponding sequence e0 e1 . . .
of hypotheses (grammars) which may generate the language L to be learned.
Sometimes, especially when numerically coded, we call also call these hypothe-
ses indices. The learning criteria (regarding successful learning of L) considered
herein can each be defined by constraining this sequence of hypotheses. The
main requirement is that the learner is behaviourally correct, i.e., almost all
en generate the language L to be learned. The criterion TxtBc postulates
just this and nothing more, but the further variants require that the learner
M satisfies additional requirements which have to be met by the sequence of
its hypotheses: for b ≥ 1, TxtFexb requires that the en eventually vacillate
between at most b hypotheses. TxtEx requires syntactic convergence to one
hypothesis and thus coincides with TxtFex1. Non U-shaped learning for L
would require that en+1 generates L whenever en does.

Baliga, Case, Merkle, Stephan and Wiehagen [4] initiated the Gold style learn-

2

ing theoretic study of U-shaped learning behaviour and showed that it is cir-
cumventable for TxtEx-learning, see Theorem 2.6. In contrast to this, Fulk,
Jain and Osherson’s proof of [20, Theorem 4] shows that U-shaped learning be-
haviour is necessary for the full learning power of TxtBc-learning. We show in
Theorem 3.1 below that U-shaped learning behaviour is also necessary for full
learning power for the whole hierarchy of the learning criteria TxtFexb strictly
between TxtEx and TxtBc. While Case [11] proved that the TxtFexb crite-
ria form a hierarchy of more and more powerful learning criteria, Theorem 3.1
of the present paper shows that non U-shaped TxtFexb learners are not more
powerful than TxtEx-learners and the hierarchy collapses to TxtFex1 if U-
shaped behaviour is forbidden. In other words, there are classes of languages
that can be TxtFexn-identified, for n > 1, but these learners must be U-
shaped on some texts. What if we consider the more liberal criterion TxtBc?
Our Theorem 5.1 strengthens the collapse result of Theorem 3.1 considerably
by showing that there are classes in TxtFex3 (and therefore in TxtFexn

for all n > 3) that cannot be TxtBc-learned by a non U-shaped learner.
This means that U-shaped learning behaviour cannot be dispensed with for
learning such classes, even if we only require behavioural convergence and
permit convergence to possibly infinitely many syntactically different correct
hypotheses. By contrast, our last main result, Theorem 4.3, shows that every
class of languages that can be TxtFex2-identified can be TxtBc-identified
by a non U-shaped learner. Hence, for only this early stage of the hierar-
chy, the cases in which TxtFex2-identification necessitates U-shaped learning
behaviour can be circumvented by shifting to TxtBc-identification.

In Section 2 we introduce the notation and the basic definitions for the
rest of the paper. We also include the basic results from [4] which are rel-
evant for the present paper. In Section 3 we show that NUShTxtFexb actu-
ally coincides with TxtEx so that on one hand every TxtEx-learner can
be replaced by a non U-shaped one while on the other hand vacillatory
non U-shaped learners do not have more power than non U-shaped TxtEx-
learners; that is, NUShTxtFexb = TxtEx for all b ∈ {1, 2, 3, . . . , ∗}. In
the subsequent sections we investigate the question whether one can obtain
a non U-shaped learner from a TxtFexb learner if one is willing to give up
some constraints on the number of hypotheses considered. The positive result
TxtFex2 ⊆ NUShTxtBc is presented in Section 4 and the negative result
TxtFex3 6⊆ NUShTxtBc is presented in Section 5. Section 6, as well as some
previous sections, provides some results on non U-shaped team learning. In
Section 7 we summarize our main results and provide a brief discussion on
their relevance to U-shaped learning behaviour in cognitive science.

2 Preliminaries

N denotes the set of natural numbers, {0,1,2,. . . }. N
+ denotes the set of pos-

itive natural numbers. Unless otherwise specified the variables a, c, d, e, i, j, k
range over N. D,P, S range over finite sets of natural numbers. The cardinal-

3

ity function is denoted by card(·). card(D) ≤ ∗ means that card(D) is finite.
The symbol ∗ is used to denote the ‘finite with no preassigned bound’. Unless
otherwise stated, b will range over N ∪ {∗}. The symbols ⊆,⊂,⊇,⊃ respec-
tively denote the subset, superset, proper subset and proper superset relation
between sets. The union ∪ and the intersection ∩ are defined as usual; ∈
denotes set-theoretic membership, − denotes set-theoretic difference and ∆
denotes the symmetric difference of sets, that is, A∆B = (A ∪B) − (A ∩B).
The quantifiers ∀∞ and ∃∞ mean ‘for all but finitely many’ and ‘there exists
infinitely many’, respectively.

A pair 〈i, j〉 stands for an arbitrary, computable one-to-one encoding of all
pairs of natural numbers onto N [36]. Similarly we can define 〈·, . . . , ·〉 for
encoding n-tuples of natural numbers, for n > 1, onto N.

ϕ denotes a fixed acceptable programming system for the partial computable
functions [36]. ϕe denotes the partial computable function computed by the
program with code number e in the ϕ-system. We will unambiguously refer to
programs using their code number in the ϕ-system. We let H, I, J, L range over
recursively enumerable sets and L range over classes of recursively enumerable
sets. K denotes the diagonal halting problem which is the standard example
for a nonrecursive r.e. set.

Furthermore, we fix a uniformly recursive enumeration of all r.e. sets such that

- We is the domain of ϕe and We =
⋃

s We,s;
- We,0 = ∅ and We,s ⊆ We,s+1 ⊆ {0, . . . , s} for all e, s;
- {(e, s, x) : x ∈ We,s} is recursive;
- {(x, s) : x ∈ We,s} is primitive recursive for all e;
- For every primitive-recursive enumeration As of some set A with A0 = ∅
∧ (∀s) [As ⊆ As+1 ⊆ {0, . . . , s}] there is an index e with (∀s) [We,s = As];
furthermore, e can be computed from an index of the enumeration for As.

Of course, We,s can be easily based on a specifically designed Blum complex-
ity measure from [7]. Any unexplained recursion-theoretic notions are from
[30,36].

We now introduce the basic definitions of Gold-style computational learning
theory.

Definition 2.1 A sequence σ is a mapping from an initial segment of N into
N∪{#}. An infinite sequence is a mapping from N into N∪{#}. The content
of a finite or infinite sequence σ is the set of natural numbers occurring in σ
and is denoted by content(σ). The length of a sequence σ is the number of
elements in the domain of σ and is denoted by |σ|. For a subset L of N, seg(L)
denotes the set of sequences σ with content(σ) ⊆ L. An infinite sequence T is
a text for L iff L = content(T).

The symbol # is mainly introduced to uniformly deal with the empty language
and intuitively represents a pause in the presentation of the language to the
learner. Concatenation of two sequences σ and τ is denoted by στ . If x ∈
(N ∪ {#}), then σx means στ where τ is the sequence consisting of exactly

4

one element which is x. σ ⊆ τ means that σ is an initial segment of τ and
σ ⊂ τ means that σ is a proper initial segment of τ .

Intuitively, a text for a language L is an infinite stream or sequential presen-
tation of all the elements of the language L in any order and with the #’s
representing pauses in the presentation of the data. For example, the only text
for the empty language is an infinite sequence of #’s. Technically, a text is a
mapping from N into (N ∪ {#}). We let T , with possible subscripts and su-
perscripts, range over texts. T [n] denotes the finite initial segment of T with
length n. Observe that the domain of T [n] is {x : x < n}. So T (n) is not
a member of the sequence T [n]. σ ⊂ T denotes the fact that σ is an initial
segment of T . Observe that in this case we have σ = T [|σ|].

A learner will map sequences to hypotheses. These are represented by natural
numbers and interpreted as codes for programs in the ϕ-system. M, with pos-
sible superscripts and subscripts, is intended to range over language learning
machines.

Definition 2.2 [4,5,11,14,15,22,33] A language learning machine M is a com-
putable mapping from seg(N) into N. M TxtBc-learns a class L of r.e. lan-
guages iff for every L ∈ L and every text T for L, almost all hypotheses
M(T [n]) are indices for the language L to be learned.

A TxtBc-learner M for L is a TxtFex∗-learner iff for every L ∈ L and every
text T for L the set {T [n] : n ∈ N} is finite.

A TxtFex∗-learner M for L is a TxtFexb-learner for a b ∈ {1, 2, . . .} iff there
are for every L ∈ L and every text T for L at most b indices which M outputs
infinitely often, that is, |{e : (∃∞n) [e = M(T [n])]}| ≤ b.

A TxtBc-learner M for L is a TxtEx-learner iff for every L ∈ L and every
text T for L almost all hypotheses M(T [n]) are the same grammar for L.

A TxtBc-learner M for L is non U-shaped iff for every L ∈ L and every text T
for L there are no three numbers k,m, n such that k < m < n and WM(T [k]) =
L, WM(T [m]) 6= L and WM(T [n]) = L. Furthermore, NUShTxtFexb-learners
and NUShTxtEx-learners (of a class L) are those learners which are non U-
shaped and at the same time a TxtFexb-learner and TxtEx-learner, respec-
tively, (of L).

The criteria TxtBc, TxtFexb, TxtEx, NUShTxtBc, NUShTxtFexb,
NUShTxtEx are the sets consisting of all those classes which are learnable
by a learner satisfying the respective above defined requirements.

The part “Txt” in the acronyms relates to the fact that all notions considered
in the present work are learning from text, that is, from positive data. Intu-
itively, the notion TxtBc captures what could be called learning in the most
general sense. All other notions are restrictions. The historically (from [22])
most important one is TxtEx where the learner has to converge syntactically
to a single index of the language to be learned.

5

Intuitively a class L of r.e. languages is TxtFexb identified by a machine
M iff when M is given as input any listing T of any L ∈ L, it outputs a
sequence of grammars such that, past some point in this sequence, no more
than b syntactically different grammars occur and each of them is a grammar
for L. The acronym TxtFex stands for ‘finite explanatory identification from
text’. TxtFex1 is equivalent to Gold’s original notion of identification, also
denoted by TxtEx and called ‘explanatory identification from text’. Osherson
and Weinstein [31] first studied the case with b = ∗, later Case [11] studied
the whole hierarchy with b ∈ N

+.

We say σ is a stabilizing sequence [19] for a learner M on a set L iff σ ∈
seg(L) and M(στ) = M(σ) for all τ ∈ seg(L). Furthermore, σ is called a
locking sequence [6] for M on L iff WM(σ) = L. Note that stabilizing and
locking sequence definitions can be generalized to other learning criteria such
as TxtFex and TxtBc.

Smith [38] studied learning by teams of machines, and, we can show vacillatory
learning can be characterized by teams as follows.

Theorem 2.3 A class L has a TxtFexb-learner iff there is a team of b ma-
chines N1, . . . ,Nb such that for every L ∈ L and for every text T for L, each
machine Na converges to a single index ea and at least one of these indices ea

is an index for L.

Proof. If L is TxtFexb learnable by M and L ∈ L and T is a text for L,
then one can define b new machines N1, . . . ,Nb such that at every input σ
one computes a list e1, . . . , eb of the most recent conjectures of M ordered by
size and each machine Na outputs ea; in the case that there are less than b
hypotheses in total, the list is made to have size b by using arbitrary constants.
Since M outputs only finitely many hypotheses on T at all, the considered list
e1, . . . , eb stabilizes after finite time and from then on all machines Na output
the same hypothesis. Since M vacillates eventually between b or fewer correct
indices, some machine Na converges to a correct hypothesis.

For the other way round, consider that N1, . . . ,Nb is a list of machines such
that each converges on every text T for any language L ∈ L to some index
and one of these indices is correct. Then M can be defined such that M(T [n])
takes one of those hypotheses Na(T [n]) for which the quality of the hypothesis
measured as

qT [n],a = max({x ≤ n : (∀y < x) [y ∈ WNa(T [n]),n ⇔ y ∈ content(T [n])]})

is maximal. Since all b machines converge to an index, the learner M clearly
vacillates between at most b hypotheses. Furthermore, if Na converges on T
to an index ea of L then qT [n],a converges to ∞; if Na converges on T to an
index ea of a set different from L then qT [n],a converges to a finite number in
N. Thus, from some time on, M will only consider correct indices and thus M
TxtFexb-learns L.

Case [11] showed that the criteria TxtFexb, b = 1, 2, 3, . . . , ∗, form a hierarchy

6

of more and more powerful learning criteria, that is, TxtFex1 ⊂ TxtFex2 ⊂
. . . ⊂ TxtFex∗, as stated in the following Theorem.

Theorem 2.4 [11] For each b ∈ N
+, the separation TxtFexb+1 6⊆ TxtFexb

is witnessed by the self-referential class

{We : e ∈ We ∧ |We ∩ {0, . . . , e}| ≤ b + 1}

consisting of all nonempty sets which have an index among its smallest b + 1
elements. Furthermore consider the class

{We : We 6= ∅ ∧ e ≤ min(We)}

consisting of all nonempty sets where the smallest index is bounded by their
smallest element. This class witnesses that TxtFex∗ 6⊆ TxtFexb for any b ∈
N

+.

Proposition 2.5 NUShTxtBc 6⊆ TxtFex∗.

Proof. Let K = {e : e ∈ We} and K = {K ∪ E : E is finite}. We will show
that K ∈ NUShTxtBc − TxtFex∗. The NUShTxtBc-learner is given by
a machine which outputs an hypothesis for K ∪ content(σ) for every input
σ. It is easy to see that for every finite set E and every text T for K ∪ E,
after the learner has seen all the elements of E, it outputs hypotheses for
K ∪ E. Furthermore, the learner is strongly monotone, that is, WM(σ) = K ∪
content(σ) ⊆ K ∪ content(στ) = WM(στ) for all σ, τ ∈ seg(N). Thus, M
NUShTxtBc-identifies K.

On the other hand, suppose by way of contradiction that M TxtFex∗-
identifies K. Then there is a locking sequence σ for M on K in the sense
that σ ∈ seg(K) and for some finite set F of indices of K, M(στ) ∈ F for all
τ ∈ seg(K). Here is why. If such σ, F would not exist, then one could construct
a text for K on which M outputs either infinitely many indices or infinitely
often an index for a language different from K — on this text, M would not
TxtFex∗-learn K.

Now, if x /∈ K, then there is a sequence τ ∈ seg(K) such that M(σxτ) /∈ F
since no index in F is an index for K ∪ {x}. Thus, having F and σ, the
following Π0

1-predicate defines the set K:

x ∈ K ⇔ (∀τ ∈ seg(K)) [M(σxτ) ∈ F].

But, then, K would be recursive. By this contradiction, K is not TxtFex∗-
learnable.

The next theorem is from [4] and states that being non U-shaped is not re-
strictive for TxtEx-learning. Its proof can also be obtained by letting b = 1
in Theorem 3.6 below. Its fundamental equality will be extended to all classes
NUShTxtFexb in Theorem 3.1.

Theorem 2.6 [4] NUShTxtFex1 = TxtEx.

7

Hence, for TxtEx, U-shaped behaviour is not necessary for full learning power.
By contrast, by an easy adaptation of the proof of Theorem 4 in [20], we have
the following.

Theorem 2.7 [4,20] NUShTxtBc ⊂ TxtBc.

Hence, for TxtBc, U-shaped behaviour is necessary for full learning power.

3 U-shaped vacillatory learning

We first show, by a simple counting argument, that the hierarchy TxtFex1 ⊂
TxtFex2 ⊂ . . . ⊂ TxtFex∗ of vacillatory learning criteria collapses to
TxtFex1 if U-shaped behaviour is forbidden.

Theorem 3.1 NUShTxtFex∗ ⊆ TxtFex1.

Proof. Let L ∈ NUShTxtFex∗ and let M be a learner witnessing this fact.
We define a new learner N witnessing that L ∈ TxtFex1 as follows.

On a text T , N keeps a list of all of M’s conjectures in order of appearance
and without repetitions and outputs the most recent entry in the list.

If T is a text for a language L ∈ L, then M outputs on T only finitely
many different hypotheses and at least one of them, say e, infinitely often,
and We = L. Furthermore, N converges to that hypothesis e′ which goes into
the list last. If e = e′ then N is correct on T . If e 6= e′ then M has output
e′ the first time after having already output e at least once. Since M is not
U-shaped and e is correct, so is e′. Thus N is correct on T again.

Theorems 2.6 and 3.1 give NUShTxtFex1 = TxtFex1 and NUShTxtFex∗

⊆ NUShTxtFex1. Furthermore, the definition of NUShTxtFexb immedi-
ately gives NUShTxtFex1 ⊆ NUShTxtFexb ⊆ NUShTxtFex∗. Thus all
these criteria coincide.

Corollary 3.2 (∀b ∈ {1, 2, . . . , ∗}) [NUShTxtFexb = TxtFex1].

The result NUShTxtFex1 = TxtFex1 stands in contrast to the fact that
TxtFex1 ⊂ TxtFex2 ⊂ . . . ⊂ TxtFex∗. Thus we have that the following
inclusions are proper.

Corollary 3.3 (∀b ∈ {2, 3, . . . , ∗}) [NUShTxtFexb ⊂ TxtFexb].

Corollaries 3.2 and 3.3 show that U-shaped learning behaviour is necessary
for the full learning power of TxtFexb-identification for b > 1 in a strong
sense: if U-shaped learning behaviour is forbidden, the hierarchy collapses
to TxtFex1. Hence, for b > 1, the TxtFexb-learnability of any class in
(TxtFexb−TxtFex1) requires U-shaped learning behaviour. Recall from The-
orem 2.4 that for any b ∈ N

+ the class

Lb+1 = {We : e ∈ We ∧ |We ∩ {0, . . . , e}| ≤ b + 1}

8

is in TxtFexb+1 − TxtFexb. This class is then the example in the following
corollary which is an easy consequence of Theorem 2.4 and Corollary 3.2.

Corollary 3.4 Let b ∈ {2, 3, . . .}. Then any M witnessing Lb ∈ TxtFexb

necessarily employs U-shaped learning behaviour on Lb.

A non U-shaped learner does not make a mind change from a correct to an
incorrect hypothesis since it cannot learn the set otherwise. This property is
enforced on all machines for the case of team learning.

Definition 3.5 A team learning a class L is non U-shaped iff no machine in
the team on any text for any language L ∈ L ever makes a mind change from
an index for L to an index for a different language. In particular, the class L
is in [a, b]NUShTxtEx iff there are b machines such that on any text for any
language in L at least a machines converge to an index for that language and
no machine makes a mind change from a correct to an incorrect hypothesis.
For any learning criterion I, [a, b]I is the corresponding team variant of this
criterion.

The next result shows that Theorem 2.3 can be extended such that every
class in TxtFexb is learnable from a non U-shaped team. So the restriction
NUShTxtFexb = TxtFex1 is caused by the fact that the hypothesis of the
learner have to be brought into an ordering and cannot be done in parallel
as in the case of the team below. Actually Theorem 3.6 enables us to achieve
more properties of the team than that it is just non U-shaped.

Theorem 3.6 Let b ∈ N
+ and L ∈ TxtFexb. Then there is a team of b

learners M1, . . . ,Mb such that for all L ∈ L and all texts T for L there is an
n ∈ N such that,

(1) T [n] is a stabilizing sequence of all members of the team on L, in partic-
ular Ma(T [m]) = Ma(T [n]) for all m ≥ n;

(2) there is an a ∈ {1, . . . , b} such that Ma(T [n]) is an index for L;
(3) if a ∈ {1, . . . , b} and Ma(T [m]) is an index for L then m ≥ n.

In particular, M1, . . . ,Mb [1, b]NUShTxtEx-learns L.

Proof. By Theorem 2.3 there is a team N1, . . . ,Nb of TxtEx-learners for L
such that for every L ∈ L and every text T for L, every machine converges on
T to some hypothesis and at least one of the hypotheses is an index for L. The
basic idea of the proof is to apply the locking-sequence hunting construction
[23, Proposition 5.29] to a team.

If N is not in L then let E = N. Otherwise let E be an infinite and coinfinite
superset of the content of some TxtFexb-locking sequence on N for some
TxtFexb-learner of L. Note that E ∪ Ẽ /∈ L for any finite set Ẽ.

Let σ v τ denote that content(σ) ⊆ content(τ) and |σ| ≤ |τ |. Furthermore,
let Te be the canonical text for We.

As long as the content of the input is ∅ or no σ is found in the below algorithm,
all machines M1, . . . ,Mb output the least index of ∅.

9

The σ searched for on input T [t] has to satisfy the following conditions:

(a) σ v T [t] and content(σ) 6= ∅;
(b) Na(ση) = Na(σ) for all a ∈ {1, . . . , b} and η v T [t].

Once having σ, this is only replaced by a σ′ on a future input T [t′] iff σ′ but
not σ satisfies (a) and (b) with respect to T [t′]. If there are several choices to
replace σ, the first one with respect to some fixed recursive enumeration of
seg(N) is taken. Having σ, define D as follows.

(c) D = {a ∈ {1, ..., b} : (∀η v TNa(σ)[t]) (∀c ∈ {1, ..., b}) [Nc(ση) = Nc(σ)]}.

Having σ and D, Ma(τ) = F (σ,D, a) where WF (σ,D,a) is the set of all x for
which there is an s such that the conditions (d) and either (e) or (f) below
hold.

(d) a ∈ D and σ v content(TNa(σ)[s]);
(e) x ∈ content(TNa(σ)[s]) and Nc(ση) = Nc(σ) for all c ∈ {1, . . . , b}, d ∈ D

and η v TNd(σ)[s];
(f) x ∈ E and Nc(ση) 6= Nc(σ) for some c ∈ {1, . . . , b}, d ∈ D and η v

TNd(σ)[s].

It is easy to see that the sets WF (σ,D,a) are uniformly recursively enumerable
and thus the specified function F can be taken to be recursive. Thus also the
learners M1, . . . ,Mb are recursive.

Now the properties (1), (2) and (3) are verified. If L = ∅ then all machines
output on every prefix of every text for L the least index of ∅ and thus all four
conditions are satisfied with the parameter n = 0. So let L ∈ L − {∅} and T
be a text for L.

(1) Since all machines converge on every text for L, using locking sequence ar-
gument, one can construct by induction sequences η1, η2, . . . , ηb ∈ seg(L)
such that η1 ⊆ η2 ⊆ . . . ⊆ ηb and Nc(ηa) = Nc(ηaϑ) for all a ∈ {1, . . . , b},
c ∈ {1, . . . , a} and ϑ ∈ seg(L). Since ηb satisfies (a) and (b) with respect
to input T [t] for all sufficiently long t, one can verify that the parameter
σ is eventually a stabilizing sequence on L and that the team then never
changes this parameter again. Furthermore, there is a least number t such
that the parameters σ and D for T have their final values σfl and Dfl on
input T [t]; let n be this number t.

(2) Since σ is a stabilizing sequence on L of the learners N1, . . . ,Nb of L,
there is an index a with Na(σ) = L. It follows from (c) that a ∈ D.
Furthermore, σ v TNa(σ) since σ v T and T, TNa(σ) are both texts for
the same language L. So (d) is satisfied for all sufficiently large s. If (f)
would hold for some sufficiently large s and d ∈ Dfl then d would be out
of D at all sufficiently large inputs T [t] in contradiction to Dfl being the
final value which D takes. So one can conclude that for every x ∈ L the
condition (e) is satisfied for all sufficiently large s and thus WMa(T [n]) = L.

(3) Assume that Na′(T [m]) = L. Let σ,D be the corresponding parameters
on input T [m]. Since L is not empty, a′ ∈ D. Note that WF (σ,D,a′) is
different from L if the case (f) in the definition of WF (σ,D,a′) is satisfied

10

for any x ∈ E and d ∈ D: then WF (σ,D,a′) is the union of E and a finite
set and not in L by the choice of E. So, σ is a stabilizing sequence on any
WNd(σ) with d ∈ D for N1, . . . ,Nb. Since L is among these WNd(σ), one
can conclude that σ is never replaced by another parameter and σ = σfl.
Furthermore, all members of D satisfy the selection condition (c) for all
t and D ⊆ Dfl. Since Dfl is the final value and D can only loose but not
gain members while the parameter σ does not change, D = Dfl. Since n
is the first number where the parameters (σ,D) are equal to (σfl, Dfl),
m ≥ n.

So one has that every class in TxtFexb is learnable by a team of b machines
which abstains from any further mind changes whenever one of the team
members outputs a correct hypothesis. In particular the team M1, . . . ,Mb is
non U-shaped.

Theorem 3.7 TxtFexb ⊆ [2, b + 1]NUShTxtEx for all b ∈ N
+.

Proof. For a TxtFexb-learnable class, construct the learners M1, . . . ,Mb and
the set E as in the proof of Theorem 3.6. A further learner Mb+1 is added
which combines the hypotheses of the other learners. Let T be the text for
some language L fed into the team. On input T [m], Mb+1 does the following
where Cm denotes content(T [m]).

- Check whether there is an x ≤ m such that exactly one a ∈ {1, . . . , b}
satisfies WMa(T [m]),m ∩ {0, . . . , x} = Cm ∩ {0, . . . , x}.

- If not, output an index for E and halt.
- If so, let am be this unique a and xm be the least such x.
- Compute from am, xm an index km such that

Wkm
=











WMam (T [m]) if WMc(T [m]),m(y) = WMc(T [m])(y)
for all y ≤ xm and all c ∈ {1, . . . , b};

E ∪ Ẽ for some finite Ẽ, otherwise.

- Output the hypothesis km and halt.

It is easy to see that Mb+1 is recursive. Now fix L as a member of L; as before
T is a text for L.

Now it is shown that the machine Mb+1 and thus the whole team is non U-
shaped on T . That is, Mb+1 does not make a mind change from a correct to an
incorrect hypothesis. Let m be given and assume that Mb+1(T [m]) is correct,
that is, L = WMb+1(T [m]). Then WMb+1(T [m]) 6= E ∪ Ẽ for all finite Ẽ by the
choice of E in the proof of Theorem 3.6. Thus WMb+1(T [m]) = WMam (T [m]) and
m ≥ n for the n from Theorem 3.6. Furthermore, the following conditions
hold for all o ≥ m.

- WMc(T [m]),m(y) = WMc(T [m])(y) for all y ≤ xm and all c ∈ {1, . . . , b};
- L ∩ {0, . . . , xm} = Cm ∩ {0, . . . , xm} = Co ∩ {0, . . . , xm};
- For all c ∈ {1, . . . , b} − {am} there is y ≤ xm such that WMam ,o(y) =
WMam (T [m]),m(y) 6= WMc(T [m]),m(y) = WMc(T [m]),o(y);

- xo, ao exist and xo = xm, ao = am, ko = km.

11

So Mb+1(T [o]) = Mb+1(T [m]) for all o ≥ m and M does not make a mind
change from a correct to an incorrect hypothesis.

It remains to show that the team [2, b+1]TxtEx-learns L. From Theorem 3.6,
one learner Ma with a ∈ {1, . . . , b} learns L. Assume now that Ma is the only
one to do so; otherwise nothing has to be shown. Let m be so large that

- m ≥ n for the n from Theorem 3.6 and the machines M1, . . . ,Mb have
already reached their final hypotheses;

- x ≤ m for the least x such that for all c ∈ {1, . . . , b} − {a} there is an
y ≤ x with L(y) 6= WMc(T [m])(y);

- for all c ∈ {1, . . . , b} and y ≤ x, WMc(T [m]),m(y) = WMc(T [m])(y).

Then xm, am exist and xm = x and am = a. In particular, km is an index for
WMa(T [m]) which is L. This index is only computed from xm, am which are for
all sufficiently large m the same, thus both Ma and Mb+1 converge on T to
an index for L.

Note that this proof covers the case where b = 1, although one can solve this
case much easier by taking M2 = M1. Furthermore, for b = 2 the following
noninclusion is witnessed.

Corollary 3.8 [2, 3]NUShTxtEx 6⊆ NUShTxtEx.

4 Vacillatory Learning with 2 Indices

As every NUShTxtFexb-learner can be turned into a NUShTxtEx-learner
identifying the same class, the restriction to non U-shaped learning with-
out loss of learning power is only possible in the least class TxtFex1 of the
TxtFexb hierarchy. But, the next, quite surprising result shows that in the
case of TxtFex2 one can avoid U-shaped learning behaviour if one gives up
the constraint that the learner has to vacillate between finitely many indices.
That is, TxtFex2 ⊆ NUShTxtBc. In Theorem 4.2 it is shown that there is a
uniform learner U which is given a set E of up to 2 indices and NUShTxtBc-
identifies every {We : e ∈ E} such that every hypothesis is a subset of an We

with e ∈ E. Then this result is combined with Theorem 3.6 to show the in-
clusion TxtFex2 ⊆ NUShTxtBc. But before turning to Theorem 4.2, the
following auxiliary proposition gives a method to enforce that the two sets
traced are represented by approximations which are different at all relevant
stages of the enumeration.

Proposition 4.1 Given a set F = {i′, j′} one can compute a set G(F) =
{i, j} such that

- For all s, either Wi,s ∪ Wj,s = ∅ or Wi,s 6= Wj,s;
- Wi ⊆ Wi′ and if Wi′ is infinite then Wi = Wi′;
- Wj ⊆ Wj′ and if Wj′ is infinite then Wj = Wj′;
- {Wi′ ,Wj′} ⊆ {Wi,Wj}.

12

This also holds with j ′ = i′ for the case that F = {i′}.

Proof. We let Wi =
⋃

s Wi,s and Wj =
⋃

s Wj,s for the approximations ob-
tained by the following inductive construction: Wi,0 = ∅ and Wj,0 = ∅. From
stage s to s + 1, the approximations are updated as follows:

Wi,s+1 =



















Wi′,s+1 if Wi′,s+1 6= Wj′,s+1;
Wi′,s if Wi′,s 6= Wi′,s+1 = Wj′,s+1;
Wi′,s if Wi′,s = Wi′,s+1 = Wj′,s+1 6= Wj′,s;
Wi,s if Wi′,s = Wi′,s+1 = Wj′,s = Wj′,s+1;

Wj,s+1 =



















Wj′,s+1 if Wi′,s+1 6= Wj′,s+1;
Wj′,s+1 if Wi′,s 6= Wi′,s+1 = Wj′,s+1;
Wj′,s if Wi′,s = Wi′,s+1 = Wj′,s+1 6= Wj′,s;
Wj,s if Wi′,s = Wi′,s+1 = Wj′,s = Wj′,s+1.

For the verification, note the following: If Wi,s 6= Wj,s or Wi,s′+1 6= Wj′,s+1

then Wi,s+1 6= Wj,s+1. If at stage s+1 either Wi′ or Wj′ receives new elements
then Wi,s+1 6= Wj,s+1, Wi,s+1 ∈ {Wi′,s,Wi′,s+1} and Wj,s+1 ∈ {Wj′,s,Wj′,s+1}.
By induction, Wi,s+1 6= Wj,s+1 whenever at least one of them is different from
∅. Furthermore, Wi = Wi′ and Wj = Wj′ whenever one of these sets is infinite
or these two sets are different. Only if Wi′ = Wj′ and both sets are finite, one
of the sets Wi,Wj will be a proper subset of its counterpart which also cannot
be avoided due to the goal that Wi,s+1 6= Wj,s+1 whenever at least one of these
sets is not empty.

Theorem 4.2 There is a learner U such that for every r.e. sets L,H and
every set F of indices for L,H with |F | ≤ 2, U NUShTxtBc-identifies
{L,H} using the additional information F . Furthermore, for every σ ∈ seg(N),

(1) WU(F,σ) ⊆ L or WU(F,σ) ⊆ H;
(2) if L = H and L is infinite then WU(F,σ) ∈ {∅, L}.

Note that L = H is explicitly permitted.

Proof. Given F , let G(F) as in Proposition 4.1. For a finite string σ, U(F, σ)
outputs an index k for a set Wk enumerated by the algorithm given in Figure 1.
Note the following: If the length of σ is 0 then its content is ∅ and the algorithm
goes to (Empty). Thus |σ| > 0 when defining τ = σ[|σ| − 1]. Furthermore,
the goal of the condition (Min) in (Enum) is just to guarantee that the search
always terminates and that t ≥ s in order to get that the set Wk,u is really a
recursively enumerable set and that no elements once enumerated are thrown
out later.

We first show that the algorithm TxtBc-learns {∅, L,H}. The learning of ∅ is
clear since the algorithm goes to the label (Empty) and conjectures ∅ whenever
the content of the input is empty set.

The role of L,H is symmetric, so assume that L 6= ∅ and T being a text for
L. For input T [n], let kn, Cn, in, jn, xn be the corresponding parameters of the

13

Uniform non U-shaped Behaviourally Correct Learner U
Parameter: F . Input: σ. Output: k, specified implicitly.
Algorithm to enumerate Wk =

⋃

u Wk,u.
(Start) Let u = |σ|, C = content(σ) and s = 0.

Let Wk,t = ∅ for all t < |σ|.
If C = ∅ or We,u = ∅ for all e ∈ G(F) Then go to (Empty).
Let τ = σ[|σ| − 1].
Select i, j, x such that

(a) {i, j} = G(F);
(b) x = min(Wi,u∆Wj,u);
(c) x ∈ Wi,u ⇔ x ∈ C.

Go to (Branch).
(Branch) If C ∪Wi,s ⊆ WU(F,τ),u and y ∈ (Wi,u −Wi,|σ|)∪ (Wj,u −Wj,|σ|) for

some y ≤ x Then go to (Copy) Else go to (Enum).
(Enum) Let t be the maximal element of {s, . . . , u} such that one of the

following conditions holds:
(Min) t = s;
(Inf) C ⊆ Wi,t ⊂ Wi,u ∧∀y ≤ x (y /∈ (Wi,u −Wi,|σ|)∪ (Wj,u −Wj,|σ|));
(Diff) C ⊆ Wi,t ⊂ Wi,u and Wj,u = Wi,s;
(Equal) C ⊆ Wi,t ∪ Wj,t ⊂ Wi,u ∩ Wj,u;
(Sub) C ⊆ Wi,t ⊆ WU(F,τ),u;
(Exact) C = Wi,t and t = |σ|.

Let Wk,u = Wi,t, update s = t, u = u + 1 and go to (Branch).
(Copy) Let Wk,u = WU(F,τ),u, update u = u + 1 and go to (Copy).
(Empty) Let Wk,u = ∅, update u = u + 1 and go to (Empty).

Figure 1. Algorithm to enumerate WU(F,σ) from Theorem 4.2.

variables in the algorithm where in, jn, xn are only defined if the algorithm
does not go to (Empty). One of the following two Cases 1.1, 1.2 applies.

(Case 1.1) L = H and L is infinite.
Let n be the first step such that the algorithm does not go to the label
(Empty). Note that n > 0; T [n−1] exists and WU(F,T [n−1]) = ∅. Thus the
algorithm does not reach the label (Copy) and the indices in, jn satisfy
Win = Wjn

= L. For every t and all sufficiently large u the condition
(Equal) in (Enum) is satisfied and thus Win,t ⊆ Wkn

. In particular Win =
Wkn

. For m = n, n+1, . . . one can see that either Wkm+1
= Wkm

since the
algorithm goes infinitely often through (Copy) or Wkm+1

= Wkm
since the

algorithm goes infinitely often through (Enum) and the condition (Sub) is
eventually satisfied for every t. In particular, U TxtBc-learns L from T .

(Case 1.2) L 6= H or L is finite.
The two sets L′, H ′ enumerated by the indices in G(F) satisfy L′ 6= H ′

and L ∈ {L′, H ′}. Let x = min(L′∆H ′). Assume that n is so large such
that all e ∈ G(F) and all y satisfy the following:

- if L is finite and y ∈ L then y ∈ Cn and We,n(y) = We(y);
- if y ≤ x then Cn(y) = L(y) and We,n(y) = We(y).

This implies that We,n 6= ∅ for some e ∈ G(F) and the algorithm does not

14

go to label (Empty). Thus xn, in, jn are defined and in is the unique index
in G(F) with Win = L. Since Win,n,Wjn,n coincide with Win ,Wjn

up to
xn, the algorithm will never reach the label (Copy) and only enumerate
elements of Win into L, thus Wkn

⊆ Win . If L is finite then L = Cn and
the elements of L go into Wkn

due to the condition (Exact) in (Enum). If
L is infinite then the algorithm will eventually enumerate all elements in
any set Win,t since for every t there is a u with Win,t ⊂ Win,u by condition
(Inf). So in both cases, U TxtBc-learns L.

Additional property (2) has already been shown in Case 1.1. Now additional
property (1) is verified inductively. For n = 0 the hypothesis is ∅ and the
property is true. Having the property for n, consider the hypothesis Wkn+1

.
If the algorithm for Wkn+1

goes to label (Empty) then Wkn+1
= ∅ and the

property holds for n + 1. If the algorithm for Wkn+1
reaches the label (Copy)

then Wkn+1
= Wkn

and the property is true by induction. Otherwise Wkn+1
⊆

Win+1
and Win+1

is a subset of either L or H, so additional property (1) holds
also in this case.

Now it is shown that the learner is non U-shaped. Let n be the first index
with Wkn

= L. Below let Pn denote the property:

Win ∩ {0, . . . , xn} = Win,n ∩ {0, . . . , xn} and Wjn
∩ {0, . . . , xn} =

Wjn,n ∩ {0, . . . , xn}.

One of the following Cases 2.1, 2.2, 2.3, 2.4 applies.

(Case 2.1) L = Win and L ⊂ WU(F,T [n−1]).
In this case clearly, Win 6= Wjn

via the additional property (1) proved
above. Note that the algorithm on input T [n] never reaches the label
(Copy) in this case, since otherwise Wkn

= WU(F,T [n−1]) 6= L. We now
claim that Pn holds. To see this, note that if L = Win is finite, then
Pn holds (otherwise the procedure would eventually go to (Copy) via
(Branch)). If L = Win is infinite, then since Win 6= Wjn

, (Diff), (Equal),
(Exact) cannot act infinitely often. Furthermore if (Inf) acts infinitely
often, then clearly Pn holds. If (Sub) acts infinitely often, then Pn holds
(otherwise the procedure would eventually go to (Copy) via (Branch)).
Furthermore WU(F,T [n−1]) ⊆ Wjn

and thus xn ∈ Wjn
− Win. Thus, for all

m ≥ n, xm = xn, xn ∈ Wjm,m − Wim,m and im = in.
Now one shows by induction that Wim = L for all m ≥ n. It clearly holds
for m = n. Assume now as inductive hypothesis for m ≥ n that Wkm

= L.
If the algorithm for input T [m+1] reaches (Copy) then Wkm+1

= Wkm
. If it

goes through (Enum) infinitely often then on one hand Wkm+1
⊆ Wim+1

=
L and on the other hand Wkm+1

⊇ Wim+1,t for all t with Cm ⊆ Wim,t since
for sufficiently large u the condition (Sub) is satisfied. Again Wkm+1

= L.

(Case 2.2) L = Win and L 6⊆ WU(F,T [n−1]) and L is finite.
There is a first u where Wkn,u = L. This cannot happen in (Copy), so
the algorithm on input T [n] goes to (Enum) infinitely often. In (Enum),
Wkn

can become equal to Win only due to the condition (Exact) since the
conditions (Inf), (Diff), (Equal) give only proper subsets of L and (Sub)

15

does not apply by L 6⊆ WU(F,T [n−1]). Thus Cn = L = Win,n = Win . Thus,
for all m ≥ n, Cm = L = Win,m = Win, and hence im = in. Then one can
show by induction as in the last paragraph of Case 2.1 that Wim = L for
all m ≥ n.

(Case 2.3) L = Win and L 6⊆ WU(F,T [n−1]) and L is infinite.
If Win = Wjn

then the condition (Sub) in (Enum) and (Copy) guarantee
that Wim+1 = Wim for all m ≥ n. If Win 6= Wjn

then Wkn
being infinite

means that for every t with Cn ⊆ Wi,t there is an u ≥ t such that one
of the conditions (Inf), (Diff), (Equal), (Sub) and (Exact) are satisfied.
Due to Win 6= Wjn

, Win 6⊆ WU(F,T [n−1]) the conditions (Diff), (Equal) and
(Sub) are satisfied only for finitely many t. Similarly (Exact) is satisfied
only for t = n if at all. Thus for almost all t, Wi,t is enumerated into Wkn,u

by satisfying condition (Inf). Thus all y ∈ (Win−Win,n)∪(Wjn
−Wjn,n) are

strictly larger than xn. So xm = xn for all m ≥ n. Since Win 6= Wjn
and

the learner identifies L, im = in for almost all m. Considering sufficiently
large m gives xn ∈ L iff xn ∈ Cm iff xn ∈ Win,m iff xn ∈ Win,n iff xn ∈ Cn

and thus im = in for all m ≥ n. Now one can prove inductively for all
m ≥ n that Wkm

= L as in the last paragraph of Case 2.1.

(Case 2.4) L ⊂ Win .
Then L is finite since L = Win,s for some s. Furthermore L = Wjn

since
L 6= Win. Since Wkn−1

6= Wkn
, the algorithm on input T [n] never goes to

the label (Copy) and thus goes through (Enum) infinitely often. If u is so
large that Win,s ⊂ Win,u and Wjn,u = L then there cannot be any t with
Win,s ⊂ Win,t ⊂ Win,u since otherwise the set Wkn

would be increased
according to the condition (Diff) in (Enum). It follows that for all t ≥ s,
either Win,t = L or Win,t = Win . Now one can show by induction that
Wkm

= L for all m ≥ n. Having this for Wkm
, consider the following cases

for Wkm+1
: if the algorithm reaches label (Copy) then Wkm+1

= Wkm
. If

it ends up going through (Enum) infinitely often and im+1 = jn then
Wkm+1

= Wjn
= L due to condition (Sub) in (Enum). If it ends up going

through (Enum) infinitely often and im+1 = in then Wkm+1
⊇ Win,s by

the condition (Sub). But no condition permits to get Wkm+1
⊇ Wim+1,t

for some t with Wim+1,t ⊃ Wim+1,s since for this t there is no u with
Wim+1,t ⊂ Wim+1,u as required in the conditions (Inf), (Diff) and (Equal).
Furthermore, (Exact) and (Sub) do not enforce Wim+1,t ⊆ Wkm+1

since
Wim+1,t is neither a subset of Cm+1 nor of Wkm

. So again Wkm+1
= L.

This completes the proof.

Theorem 4.3 Every TxtFex2-learnable class is NUShTxtBc-learnable.

Proof. Given a TxtFex2-learnable class L, there is by Theorem 2.3 a
pair of two learners N1,N2 which converge on every language from L and
[1, 2]TxtEx-identify L. Obtain from these two learners the team M1,M2 as
done in the proof of Theorem 3.6. Note that one can, for each input σ, check in
the limit whether one of the learners M1,M2 outputs an index which enumer-
ates some elements using part (f) of the algorithm in the proof of Theorem 3.6.

16

Now one builds the following new learner U′:

WU′(τ) = WU({e1,e2},τ) where, for a = 1, 2,

Wea
=

{

WMa(τ) if (f) is not used for WM1(τ) or WM2(τ);
WM1(τ) ∪ WM2(τ) if (f) is used for WM1(τ) or WM2(τ).

Let L ∈ L and T be a text for L. Let n be the first number where one of
the sets WM1(T [n]),WM2(T [n]) is L. Then, for any m ≥ n and any a ∈ {1, 2},

WMa(T [m]) = WMa(T [n]) and WMa(T [m]) is not of the form E ∪ Ẽ where Ẽ is
finite. Then U is fed with the same parameter set {e1, e2} for all m ≥ n and
one of the e1, e2 enumerates L. Thus U′ TxtBc-learns L on T .

It remains to show that U′ is non U-shaped on T . This is clearly true if L is the
empty set. So assume L 6= ∅. Consider any m with WU′(T [m]) = L. If case (f)
of the algorithm for M1(T [m]) and M2(T [m]) applies, then We1

and We2
are

the same infinite set E ∪ Ẽ for some finite set Ẽ. It follows by the additional
property (2) of U in Theorem 4.2 that U′(T [m]) either outputs an index for
the empty set or for E ∪ Ẽ; both sets are different from L, thus case (f) does
not apply. Hence, T [m] is a stabilizing sequence for both M1,M2 on those sets
WM1(T [m]),WM2(T [m]) which are not empty. Since one of these is a superset of L
by the additional property (1) of U in Theorem 4.2, it follows that M1,M2 do
not change mind on T beyond T [m]. For a = 1, 2 the parameter ea is defined
as above for τ = T [m] and it holds that Wea

= WMa(T [m]). Thus U′(T [o])
coincides with U({e1, e2}, T [o]) for all o ≥ m and U with the parameter set
{e1, e2} is non U-shaped on the text T for L. The same holds for U′. Thus U′

NUShTxtBc-learns L.

5 Vacillatory Learning with 3 Indices

From Theorem 3.1 it is already known that U-shaped learning behaviour is nec-
essary for TxtFexb (b > 1) identification of any class in TxtFexb −TxtFex1

for all b > 1. Theorem 5.1 strengthens this result by showing that, for some
classes of languages in TxtFexb for b > 2, the necessity of U-shaped behaviour
cannot be circumvented by allowing infinitely many correct grammars in the
limit, that is, by shifting to the more liberal criterion of TxtBc-identification.
This is one of the rare cases in inductive inference where the containment in a
class defined without numerical parameters holds for level 2 but not for level
3 and above of a hierarchy. The proof is a diagonalization proof reminiscent
of the proof of Theorem 4 in [20].

Theorem 5.1 TxtFex3 6⊆ NUShTxtBc.

Proof. Let Li,j = {〈i, j, k〉 : k ∈ N}, Ii,j = Wi ∩ Li,j and Ji,j = Wj ∩ Li,j for
i, j ∈ N. The class

L = {Li,j : i, j ∈ N} ∪ {Ii,j, Ji,j : i, j ∈ N ∧ Ii,j ⊂ Ji,j ∧ |Ii,j| < ∞}

17

witnesses the separation.

To see that L is in TxtFex3, consider the following machines NI ,NJ ,NL

which initially output indices of the empty set. Each of them waits for the
first tuple of the form 〈i, j, k〉 for some k to come up in the input. From then
on, NI outputs an index for Ii,j forever, NJ an index for Ii,j forever and NL an
index for Li,j forever. So, for every i, j ∈ N, NI learns the set Ii,j , NJ the set
Ii,j and NL the set Li,j. The class L is learnable by a team of three machines
which converge on every text for every language in L to some index. It follows
from Theorem 2.3 that L is in TxtFex3.

So it remains to show that L is not in NUShTxtBc, that is, to show that any
given TxtBc-learner for L is U-shaped on some text for some language in L.
Given the learner M, one defines the following function F by an approximation
from below:

Fs(i, j) =







































Fs−1(i, j) if s > 0 and
WM(〈i,j,0〉 〈i,j,1〉 ... 〈i,j,Fs−1(i,j)〉),s ⊆ Li,j;

k otherwise where k is the first number
found with k > Fs−1(i + j) + s and
{〈i, j, 0〉, 〈i, j, 1〉, . . . , 〈i, j, k〉} ⊂

WM(〈i,j,0〉 〈i,j,1〉 ... 〈i,j,k〉).

Since 〈i, j, 0〉, 〈i, j, 1〉, . . . is a text for Li,j and M TxtBc-learns Li,j, al-
most all hypotheses M(〈i, j, 0〉 〈i, j, 1〉 . . . 〈i, j, k〉) are indices for Li,j. Thus
the k is always found in the second part of the definition of Fs and Fs

is well-defined. Furthermore, if Fs−1(i, j) is sufficiently large, the condition
WM(〈i,j,0〉 〈i,j,1〉 ... 〈i,j,Fs−1(i,j)〉),s ⊆ Li,j holds for all s and thus Fs(i, j) = Fs−1(i, j).
So the limit F (i, j) of all Fs(i, j) exists and is approximated from below. By
considering the first s where F (i, j) = Fs(i, j) and the fact that it is then no
longer updated, one has

{〈i, j, 0〉, 〈i, j, 1〉, . . . , 〈i, j, F (i, j)〉} ⊂ WM(〈i,j,0〉 〈i,j,1〉 ... 〈i,j,F (i,j)〉) ⊆ Li,j.

Now there are r.e. sets Wa,Wb such that

Wa = {〈i, j, l〉 : i, j ∈ N ∧ l ∈ {0, 1, . . . , F (i, j)} },

Wb = {〈i, j, l〉 : i, j ∈ N ∧ ∃t > l (〈i, j, l〉 ∈ WM(〈i,j,0〉 〈i,j,1〉 ... 〈i,j,Ft(i,j)〉),t)}.

Now fix the parameters i, j such that i = a and j = b; the cases where i 6= a
or j 6= b are not important in the below considerations.

Assume that 〈i, j, l〉 ∈ Wj using a parameter t with Ft(i, j) 6= F (i, j). Let s be
the first stage with Fs(i, j) = F (i, j); note that s > t. Then by the definition
of Fs, F (i, j) = Fs(i, j) > s > t and {〈i, j, 0〉, 〈i, j, 1〉, . . . , 〈i, j, Fs(i, j)〉} ⊂
WM(〈i,j,0〉 〈i,j,1〉 ... 〈i,j,Fs(i,j)〉). So 〈i, j, l〉 is in WM(〈i,j,0〉 〈i,j,1〉 ... 〈i,j,F (i,j)〉) as well.

Thus {〈i, j, 0〉, 〈i, j, 1〉, . . . , 〈i, j, F (i, j)〉} = Wi∩Li,j = Ii,j ⊂ Ji,j = Wj∩Li,j =
WM(〈i,j,0〉 〈i,j,1〉 ... 〈i,j,F (i,j)〉) and Ii,j is finite. Hence Ii,j , Ji,j ∈ L.

18

There is a text T for Ji,j which starts with 〈i, j, 0〉 〈i, j, 1〉 . . . 〈i, j, F (i, j)〉 and
after which M outputs an index for Ji,j . Then a lot of pause symbols follow
until M outputs an index for Ii,j . After that the remaining elements of Ji,j fol-
low and M has to return to the index Ji,j. So M is not a NUShTxtBc-learner
for L. Since M was chosen arbitrarily, L is not NUShTxtBc-learnable.

Intriguingly, the proof of Theorem 5.1 above features the contrast between
learning a finite table and learning a general rule. This contrast is often invoked
in accounts of U-shaped learning behaviour in children [9]. In our proof the
finite table is embodied by the set Ii,j , while the (possibly) infinite set, only
specified / learnable by a general rule is the sets Ji,j, Li,j. The presence of
both these types of sets is the key for the impossibility of learning (even in the
TxtBc sense) the class L with a non U-shaped learner. Observe that the proof
does not feature the learning of an incorrect general rule followed by a correct
general rule augmented by a finite table, as in most psychological accounts of
U-shaped learning behaviour. Actually the proof shows that any learner of L
when confronted with the task of learning Ji,j is forced to overgeneralize when
fed the finite table Ii,j = {〈i, j, 0〉, . . . , 〈i, j, F (i, j)〉} ⊂ Ji,j which it also has
to learn – M conjectures Ji,j although the data is from the proper subset Ii,j.
After that and seeing long enough only elements from Ii,j, M correctly learns
this finite table. But then, it eventually returns to the general rule representing
the set Ji,j when more examples from this set come up.

Since TxtFex3 ⊂ TxtFex4 ⊂ . . . ⊂ TxtFex∗, one immediately gets the
following corollary.

Corollary 5.2 (∀b ∈ {3, 4, . . . , ∗}) [TxtFexb 6⊆ NUShTxtBc].

A further corollary is that the counterpart of Theorem 4.2 does not hold for
sets of three indices. Indeed, if such an algorithm would exist, then one could
NUShTxtBc-learn L from Theorem 5.1 by conjecturing ∅ until the first triple
〈i, j, k〉 comes up and then simulating the uniform learner with a set of three
indices for the sets Ii,j , Ji,j, Li,j from then on without changing this parameter
set anymore. But Theorem 5.1 clearly showed that such a learner does not
exist.

Corollary 5.3 No machine uniformly NUShTxtBc-learns {We : e ∈ F}
with F as additional information where F is a set of 3 indices.

6 Teams Revisited

Classes in TxtFex2 are in TxtBc and in [1, 2]NUShTxtEx. The next propo-
sition shows that one cannot weaken the condition of being in TxtFex2 to the
combination of the two consequences in Theorem 4.3. Furthermore the con-
dition that the team members converge on every text for a language in L is
essential in Theorem 2.3.

19

Proposition 6.1 The class L from Theorem 5.1 is [1, 2]NUShTxtEx-learn-
able and TxtFex3-learnable but it is not NUShTxtBc-learnable.

Proof. By Theorem 5.1, L is TxtFex3-learnable but not NUShTxtBc-
learnable. So it remains to show that L is [1, 2]NUShTxtEx-learnable.

Let L be a language and T be a text for L. The behaviour of the team on T
is explained as follows where Cn = content(T [n]). As long as Cn = ∅, both
learners output a fixed index for ∅. If Cn 6= ∅ then determine the components
i, j of the first data item 〈i, j, k〉 in T [n] which is not #. The first learner
outputs a fixed index for Li,j. The second learner considers an index e of Ii,j

computed from i, j. On input T [n], the learner computes the least m satisfying
the following:

- We,m = We,n;
- Cm 6= ∅;
- Cm ⊆ We,m ⇔ Cn ⊆ We,n.

Then the second learner outputs an hypothesis em which is given as

Wem
=











Li,j ∪ Li+1,j+1 if We,m ⊂ We;
Ii,j if Cm ⊆ We,m and We,m = We;
Ji,j if Cm 6⊆ We,m and We,m = We.

Note that this hypothesis depends only on m and Cm but not on n and Cn.
Now it is shown that the team correctly [1, 2]NUShTxtEx-learns L from T .
There are five cases, in the last four cases it is assumed that L ∈ L.

L /∈ L: Then one only has to verify that the algorithm for both learners is
recursive which can be done easily. By the way, this is also satisfied for
all below cases.

L = ∅: Then it is easy to see that both members of the team always output
the same index for ∅.

L = Ii,j and L 6= ∅: Then Ii,j ⊂ Ji,j and Ii,j is finite. The first learner never
outputs an hypothesis for Ii,j and is thus non U-shaped. The second
learner outputs incorrect hypotheses which are either ∅ or Li,j ∪ Li+1,j+1

until n is so large that We,n = Ii,j and Cn 6= ∅. From then on the second
learner outputs the index em for the first m such that Cm 6= ∅ and We,m =
We,n; this index em indeed enumerates Ii,j and is never replaced by another
one.

L = Ji,j and L ⊂ Li,j: Then Ii,j ⊂ Ji,j and Ii,j is finite. The first learner never
outputs an hypothesis for Ji,j and is thus non U-shaped. The second
learner outputs incorrect hypotheses which are either ∅ or Li,j ∪ Li+1,j+1

or Ii,j until n is so large that We,n = Ii,j and Cn 6⊆ Ii,j . From then on the
second learner outputs the index em for the first m such that Cm 6⊆ We,n

and We,m = We,n; this index em indeed enumerates Ji,j and is never
replaced by another one.

L = Li,j: Then the first learner outputs finitely often an index for ∅ and then
makes exactly one mind change to an index for Li,j. If Ii,j is infinite then

20

the second learner always outputs an hypothesis for Li,j ∪ Li+1,j+1 which
is incorrect. If Ii,j is finite then the second learner outputs finitely often
incorrect hypotheses until it makes a final mind change to an hypothesis
for Ji,j, which can be verified as in the previous case. Thus the team is
non U-shaped in both subcases, the one where Ji,j = Li,j and the one
where Ji,j 6= Li,j .

So the team witnesses that L is indeed [1, 2]NUShTxtEx-learnable.

A corollary of the result is that TxtFex2 ⊂ [1, 2]NUShTxtEx. This can also
be shown in general for all b > 1.

Proposition 6.2 TxtFexb ⊂ [1, b]NUShTxtEx for all b ∈ {2, 3, . . .}.

Proof. The inclusion is from Theorem 3.6. Its properness is witnessed by the
class L of all sets N − F where 1 ≤ |F | ≤ b. The learner Ma determines for
input σ the least a numbers x1, . . . , xa /∈ content(σ) and conjectures the set
N − {x1, . . . , xa}. If |F | = a then Ma NUShTxtEx-learns N − F . If |F | 6= a
then Ma never outputs an hypothesis for N− F . Thus, the team M1, . . . ,Mb

is [1, b]NUShTxtEx-learning the class L. It is well-known that L is not in
TxtBc and thus also not in TxtFexb whenever b ≥ 2.

Remark 6.3 TxtFex∗ 6⊆ [1, b]TxtEx for all b ∈ N
+. This is witnessed by the

class {We : e ∈ N ∧ {0, 1, . . . , e} ⊆ We ⊂ N}. Note that by Proposition 6.1 it
can be that a class in TxtFexb+1−TxtFexb is already [1, b]TxtEx-learnable.

A further interesting question is whether one can at least obtain non U-shaped
team learning for arbitrary team learnable classes. This is true for [1, 1]TxtEx
by Theorem 3.6 but it fails for [1, 2]TxtEx-learning.

Theorem 6.4 For all b ∈ {2, 3, . . .}, [1, b]NUShTxtEx ⊂ [1, b]TxtEx.

Proof. Let b ∈ {2, 3, . . .}. Since the inclusion is obvious from the defini-
tion, one only has to show that it is a proper inclusion. Consider a list
team0, team1, . . . of all teams of b TxtEx-learners. Let D0, D1, . . . be an enu-
meration of all sets of b − 1 elements such that m < n whenever max(Dm) <
max(Dn). We say that teamm qualifies at n iff there is an ordering M1, . . . ,Mb

of the machines in teamm and a string σm,n ∈ seg(N) such that

(1) m ≤ n and |σm,n| ≥ zb−1 and Dn = {z1, . . . , zb−1} where zk it the k-th
nonelement of content(σm,n);

(2) σm,n[2zb−1] ∈ seg({0, . . . , zb−1});
(3) for a = 1, . . . , b − 1 and La = N − {zc : 1 ≤ c < a}, σm,n[2zb−1] is a

stabilizing sequence for Ma on La;
(4) content(σm,n) ∪ {zb, zb+1, . . . , z2b} ⊆ WMb(σm,n).

One can determine with oracle K whether teamm qualifies at n; note that
while searching for σm,n one can test for all orderings of the b team members
and for all τ ∈ seg({0, . . . , zb−1}) of length 2zb−1 whether they are stabilizing
sequences for Ma on La for a = 1, . . . , b− 1. For those orderings of the teams
and τ which satisfy one can then check for whether there is an extension σm,n

21

such that also the other conditions are satisfied. If teamm does not qualify at
n then let Gm,n = {0, . . . , max(Dn)} − Dn. Otherwise fix the first string σm,n

found, let Hm,n = WMb(σm,n) and let Gm,n be the set content(σm,n) ∪ {zk} for
the first k ≥ b where

content(σm,n) ∪ {zk} /∈ {WM1(σm,n), . . . ,WMb(σm,n)}.

Note that there are only b machines and thus k ≤ 2b. So Gm,n ⊂ WMb(σm,n).

The class L to be learned is constructed using an inductively defined sequence
u0, u1, . . . of auxiliary numbers.

(1) Put all subsets of N into L which miss at most b − 2 elements of N;
(2) For every n, put G0,n, G1,n, . . . , Gn,n into L;
(3) For each n search for the least m satisfying the following conditions.

- 2m ≤ min(Dn);
- there is a value h(m,n), with m ≤ h(m,n) ≤ n, such that teamm

qualifies at h(m,n) and (∀x ≤ max(Dn)) [x ∈ Hm,h(m,n) ⇔ x /∈ Dn];
- un′ 6= m for all n′ < n.

If such an m is found and hence h(m,n) defined,
Then let un = m and put Hm,h(m,n) into L
Else let un = ∞ and put N − Dn into L.

The symbol ∞ is just used to have a value different from all natural numbers
for u0, u1, . . . if needed.

To see that L is in [1, b]TxtEx, consider the following learners N1, . . . ,Nb. For
a = 1, . . . , b − 1, the learner Na always computes the set E of the least a − 1
numbers which have not yet shown up in the input and outputs a canonical
index for N − E. It is easy to see that all sets which miss at most b − 1
elements of N are learned by a member of this team. In particular, N1 always
conjectures N. The last learner Nb deals with all sets L ∈ L having at least
b − 1 nonelements. Let un,s, Gm,n,s, hs(m,n) be recursive approximations to
un, Gm,n and h(m,n), respectively. Note that these exist as the construction
above is recursive in K. The algorithm of Nb on input τ is the following:

(1) Let n be the number for which Dn is the set of the least b−1 nonelements
of content(τ);

(2) If content(τ) = Gm,n,|τ | for some m ∈ {0, . . . , n}
Then output a canonical index for content(τ)
Else if un,|τ | = ∞ then output a canonical index for N − Dn

Else compute the |τ |-th approximation for the index of Hun,|τ |,h|τ |(un,|τ |,n).

If τ is long enough and L = Gm,n then Nb clearly learns the set. If L 6= Gm,n

for the finitely many sets of this form in L, then Nb will converge to an index
of Hm,h(m,n) (for the case that un = m) or to an index of N−Dn (for the case
that un = ∞). So L is in [1, b]TxtEx.

It remains the show that L is not in [1, b]NUShTxtEx. Suppose by way of
contradiction that teamm [1, b]NUShTxtEx-infers L. We claim that there
is an n such that teamm qualifies at n and Gm,n, Hm,n are both in L. So

22

assume by way of contradiction that such an n does not exist. Then there
is in particular no n with un = m since otherwise Gm,h(m,n), Hm,h(m,n) both
exist and are in L. The following arguments are now used to get the desired
contradiction.

Let τ0 = 0 1 . . . m and z0 = m in order to get that z1 > m below. Do the
following for a = 1, . . . , b − 1:

(1) Choose a machine Ma from teamm which has a locking sequence extend-
ing τa−1 on N − {zk : 0 < k < a};

(2) Choose such an extension τa of τa−1 satisfying the following additional
constraints:

- z1, . . . , za−1 are the least a − 1 nonelements of content(τa);
- There is ca such that content(τa) = {0, . . . , ca} − {zk : 0 < k < a}

and za−1 < ca and 2ca = |τa|;
- τa is a locking sequence for Ma on N − {zk : 0 < k < a};
- If a = b − 1 then the n with Dn = {z1, . . . , zb−1} satisfies un = ∞

and n > n′ for all n′ with un′ < m.

Note that the fourth condition in (2) can be satisfied in the case that a = b−1
since there is, for each m′, at most one n′ with un′ = m′ and furthermore there
are less than 1+ log(z1) many n with min(Dn) ≤ z1 ∧un < ∞. Since un = ∞,
N − Dn is a member of L. Let Mn be the unique machine in teamm different
from M1, . . . ,Mn−1. Since Mn has to infer N−Dn on every text extending τb−1

for that language, there is an extension τb of τb−1 which is a locking sequence
for Mn on N − Dn.

It is easy to see that τb would be a possible choice for σm,n, thus teamm

qualifies at n and Gm,n, Hm,n exist. Gm,n is in L. If Hm,n /∈ L then Hm,n

must miss out at least b − 1 elements of N. Let n′ be such that Dn′ is the
set of the least b − 1 nonelements of Hm,n. Since Gm,n ⊆ Hm,n and Dn is
the set of the least b − 1 nonelements of Gm,n, either Dn = Dn′ ∧ n = n′

or max(Dn) < max(Dn′) ∧ n < n′. But then un′ > m although m would
qualify as a value of un′ , since Hm,n exists and n would be a possible value for
h(m,n′) — that is h(m,n′) would be defined and Gm,h(m,n′), Hm,h(m,n′) ∈ L in
contradiction to the assumption on the nonexistance of these sets in L.

So for the teamm there is an n such that teamm qualifies at n and Hm,n is
in L. Let T be a text for Gm,n extending σm,n. Since Gm,n ⊆ N − Dn, σm,n is
a stabilizing sequence for the first b − 1 machines on Gm,n. Furthermore, all
machines output a set different from Gm,n on input σm,n. Finally Gm,n ⊂ Hm,n

and the last machine Mb conjectures Hm,n on σm,n. Either it is giving up a
hypothesis on a set from L on data consistent with this set or teamm does
not learn Gm,n from the text T . This contradicts the assumption that teamm

[1, b]NUShTxtEx-learns L and completes the proof.

Note that in the case that b = 1 the class L − {N} is TxtEx-learnable but
not decisively TxtEx-learnable. Indeed the construction of L from the pre-
vious theorem is a generalization of the construction of Baliga, Case, Merkle,

23

Stephan and Wiehagen [4] of a class which separates explanatory learning
from its decisive variant.

Proposition 6.5 [a, b]TxtEx ⊆ [a, a + b]NUShTxtEx.

Proof. Angluin [1] defined that a learner is conservative iff every mind change
from an hypothesis e to a new hypothesis e′ is justified in the sense that some
data already seen are not contained in We at the time of the mind change. So
every conservative learner is non U-shaped since it never abandons a correct
hypothesis. The new team will consist of conservative learners and thus be
non U-shaped.

Given now a team M1, . . . ,Mb which [a, b]TxtEx-identifies some class L, there
is for every c ∈ {1, . . . , b} a machine Nc which is conservative and TxtEx-
learns every infinite language TxtEx-learned by Mc [24,32]. So every infinite
language in L is learned by at least a of the conservative machines N1, . . . ,Nb.
Furthermore, one assigns to the machines Nb+1, . . . ,Nb+a the algorithm which
outputs on every input σ a canonical index for content(σ). These machines
are conservative as well and each of them learns every finite set. Thus the new
team N1, . . . ,Na+b [a, a + b]NUShTxtEx-learns L.

7 Summary and Final Discussion

The following results were obtained.

- TxtFexb ⊂ [1, b]NUShTxtEx for all b ∈ {2, 3, . . .}.
- TxtFex1 = TxtEx = NUShTxtEx = [1, 1]NUShTxtEx, see also [4].
- [1, b]NUShTxtEx ⊂ [1, b]TxtEx, for all b ∈ {2, 3, . . .}.
- NUShTxtFexb = NUShTxtEx for all b ∈ {1, 2, . . . , ∗}.
- TxtFex2 ⊆ NUShTxtBc.
- TxtFex3 6⊆ NUShTxtBc.

These results and the facts known from previous work [4,11] are summarized
in Figure 2. Single-headed arrows in the diagram denote proper inclusions.
Double-headed arrows denote equality. All transitive closures of the inclusions
displayed are valid and no other inclusions hold between language learning
criteria in the diagram.

Some of the results obtained herein and mentioned just above are suggestive
for what may be true for the case of human cognition. For example, per-
haps the class of tasks humans must learn to be competitive in the genetic
marketplace like, say, our class L ∈ (TxtFex3 − NUShTxtBc), necessitates
U-shaped learning behaviour. In the human context, U-shaped learning may
be necessary.

We note that our proof that TxtFex3 6⊆ NUShTxtBc intriguingly features
learning finite tables versus general rules, but does not, as might be expected
from some models of the human case of U-shaped learning, feature, among
other things, learning an incorrect general rule followed by learning a general

24

NUShTxtFexb ↔ TxtFex1 ↔ [1, 1]NUShTxtEx ↔ [1, 1]TxtEx

6 6 6 6@I

NUShTxtBc � TxtFex2 → [1, 2]NUShTxtEx → [1, 2]TxtEx

6

6 6 6@I

TxtFex3 → [1, 3]NUShTxtEx → [1, 3]TxtEx

6 6 6@I

TxtFex4 → [1, 4]NUShTxtEx → [1, 4]TxtEx

6 6 6@I

TxtFex5 → [1, 5]NUShTxtEx → [1, 5]TxtEx

6
...

...
...

TxtBc � TxtFex∗

Figure 2. Summary of the results for b ∈ {1, 2, 3, 4, 5, ∗}.

rule augmented by a correcting finite table. This difference may be significant
or, more likely, nothing more than an artifact of our particular proof.

Not explored herein, but very interesting to investigate in the future, is the
possible necessity of U-shaped learning in complexity-bounded learning con-
texts such as those explored in [12,13,16,39,46].

References

[1] Dana Angluin. Inductive inference of formal languages from positive data.
Information and Control, 45:117–135, 1980.

[2] Ganesh Baliga, John Case and Sanjay Jain. Language learning with
some negative information. Journal of Computer and System Sciences,
51:273–285, 1995.

[3] Ganesh Baliga, John Case, Wolfgang Merkle and Frank Stephan.
Unlearning helps. In U. Montanari, J. Rolim, and E. Welzl,
editors, Proceedings of the 27th International Colloquium on Automata,
Languages and Programming, Lecture Notes in Computer Science 1853,
pages 844–855. Springer-Verlag, 2000.

[4] Ganesh Baliga, John Case, Wolfgang Merkle, Frank Stephan and Rolf
Wiehagen. Unlearning helps. Long version of [3], in preparation.

[5] Janis Bārzdiņš. Two theorems on the limiting synthesis of functions. In
Theory of Algorithms and Programs, vol. 1, pages 82–88. Latvian State
University, 1974. In Russian.

25

[6] Lenore Blum and Manuel Blum. Towards a mathematical theory of
inductive inference. Information and Control, 28:125–155, 1975.

[7] Manuel Blum. A machine independent theory of the complexity of the
recursive functions. Journal of the ACM, 14:322–336, 1967.

[8] T. G. R. Bower. Concepts of development. In Proceedings of the 21st
International Congress of Psychology. Presses Universitaires de France,
pages 79–97, 1978.

[9] Melissa Bowerman. Starting to talk worse: Clues to language acquisition
from children’s late speech errors. In S. Strauss and R. Stavy, editors,
U-Shaped Behavioral Growth. Academic Press, New York, 1982.

[10] S. Caray. An analysis of a learning paradigm. In S. Strauss and R. Stavy,
editors, U-Shaped Behavioral Growth, Developmental Psychology Series.
Academic Press, 1982.

[11] John Case. The power of vacillation in language learning. SIAM Journal
on Computing, 28(6):1941–1969, 1999.

[12] John Case, Sanjay Jain, Steffen Lange, and Thomas Zeugmann.
Incremental concept learning for bounded data mining. Information and
Computation, 152:74–110, 1999.

[13] John Case, Sanjay Jain, and Arun Sharma. Complexity issues for
vacillatory function identification. Information and Computation,
116(2):174–192, February 1995.

[14] John Case and Chris Lynes. Machine inductive inference and language
identification. In M. Nielsen and E. M. Schmidt, editors, Proceedings
of the 9th International Colloquium on Automata, Languages and
Programming, Lecture Notes in Computer Science 140, pages 107–115.
Springer-Verlag, 1982.

[15] John Case and Carl H. Smith. Comparison of identification criteria for
machine inductive inference. Theoretical Computer Science, 25:193–220,
1983.

[16] C. C. Florencio. Consistent identification in the limit of some Penn
and Buszkowski’s classes is NP-hard. In Proceedings of the International
Conference on Computational Linguistics, 1999.

[17] Rusins Freivalds, Efim Kinber and Rolf Wiehagen. On the power of
inductive inference from good examples. Theoretical Computer Science,
110:131–144, 1993.

[18] Rūsiņš Freivalds and Carl H. Smith On the Role of procrastination for
machine learning. Information and Computation, 107:237–271, 1993.

[19] Mark Fulk. Prudence and other conditions on formal language learning.
Information and Computation, 85:1–11, 1990.

26

[20] Mark Fulk, Sanjay Jain and Daniel Osherson. Open problems in “Systems
That Learn”. Journal of Computer and System Sciences, 49:589–604,
1994.

[21] William Gasarch and Carl H. Smith Learning via queries. Journal of the
Association of Computing Machinery 39(3):649–676, 1992.

[22] E. Mark Gold. Language identification in the limit. Information and
Control, 10:447–474, 1967.

[23] Sanjay Jain, Daniel Osherson, James Royer and Arun Sharma. Systems
that Learn: An Introduction to Learning Theory. MIT Press, 1999. Second
Edition of Reference [32].

[24] Sanjay Jain and Arun Sharma. Generalization and specialization
strategies for learning r.e. languages. Annals of Mathematics and
Artificial Intelligence, 23:1–26, 1998.

[25] Efim Kinber and Frank Stephan. Language learning from texts:
mind changes, limited memory and monotonicity. Information and
Computation, 123:224–241, 1995.

[26] David Kirsh. PDP learnability and innate knowledge of language. In
S. Davis, editor, Connectionism: Theory and Practice, pages 297–322.
Oxford University Press, 1992.

[27] Steffen Lange and Thomas Zeugmann. Monotonic versus non-monotonic
language learning. In Proceedings of the Second International Workshop
on Nonmonotonic and Inductive Logic, Lecture Notes in Artificial
Intelligence 659, pages 256–269. Springer-Verlag, 1993.

[28] Gary Marcus, Steven Pinker, Michael Ullman, Michelle Hollander,
T. John Rosen and Fei Xu. Overregularization in Language Acquisition.
Monographs of the Society for Research in Child Development, vol. 57,
no. 4. University of Chicago Press, 1992. Includes commentary by Harold
Clahsen.

[29] David McNeill. Developmental psycholinguistics. In F. Smith and G. A.
Miller, editors, The Genesis of Language, pages 15–84. MIT Press, 1966.

[30] Piergiorgio Odifreddi. Classical Recursion Theory. North Holland,
Amsterdam, 1989.

[31] Daniel Osherson and Scott Weinstein. A note on formal learning theory.
Cognition, 11:77–88, 1982.

[32] Daniel Osherson, Michael Stob and Scott Weinstein. Systems that
Learn: An Introduction to Learning Theory for Cognitive and Computer
Scientists. MIT Press, 1986.

[33] Daniel Osherson and Scott Weinstein. Criteria of language learning.
Information and Control, 52:123–138, 1982.

27

[34] Steven Pinker. Formal models of language learning. Cognition, 7:217–283,
1979.

[35] Kim Plunkett and Virginia Marchman. U-shaped learning and frequency
effects in a multi-layered perceptron: implications for child language
acquisition. Cognition, 86(1):43–102, 1991.

[36] Hartley Rogers. Theory of Recursive Functions and Effective
Computability. McGraw-Hill, New York, 1967. Reprinted, MIT Press,
1987.

[37] Gisela Schäfer-Richter. Über Eingabeabhängigkeit und Komplexität
von Inferenzstrategien. Ph.D. Thesis, Rheinisch-Westfälische Technische
Hochschule Aachen, Germany, 1984.

[38] Carl H. Smith. Three Decades of Team Learning. In Setsuo Arikawa
and Klaus P. Jantke (editors), Algorithmic Learning Theory, 4th
International Workshop on Analogical and Inductive Inference, AII 1994,
5th International Workshop on Algorithmic Learning Theory, ALT 1994,
Reinhardsbrunn Castle, Germany, October 10-15, 1994, Proceedings,
Lecture Notes in Computer Science, 872:211-228, 1994.

[39] Werner Stein. Consistent polynomial identification in the limit. In
M. M. Richter, C. H. Smith, R. Wiehagen, and T. Zeugmann, editors,
Algorithmic Learning Theory: Ninth International Conference (ALT’ 98),
volume 1501 of Lecture Notes in Artificial Intelligence, pages 424–438.
Springer-Verlag, 1998.

[40] Sidney Strauss and Ruth Stavy, editors. U-Shaped Behavioral Growth.
Developmental Psychology Series. Academic Press, 1982.

[41] Sidney Strauss, Ruth Stavy and N. Orpaz. The child’s development of
the concept of temperature, 1977. Manuscript, Tel-Aviv University.

[42] N.A. Taatgen and J.R. Anderson. Why do children learn to say broke? A
model of learning the past tense without feedback. Cognition, 86(2):123–
155, 2002.

[43] Kenneth Wexler. On extensional learnability. Cognition, 11:89–95, 1982.

[44] Kenneth Wexler and Peter W. Culicover. Formal Principles of Language
Acquisition. MIT Press, 1980.

[45] Rolf Wiehagen. Characterization problems in the theory of inductive
inference. In G. Ausiello and C. Böhm, editors, Proceedings of the Fifth
International Colloquium on Automata, Languages and Programming,
Lecture Notes in Computer Science 62, pages 494–508. Springer-Verlag,
1978.

[46] Rolf Wiehagen and Thomas Zeugmann. Ignoring data may be the only
way to learn efficiently. Journal of Experimental and Theoretical Artificial
Intelligence, 6:131–144, 1994.

28

