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Abstract. We propose a general categorical setting for modeling pro-
gram composition in which the call-by-value and call-by-name disciplines
fit as special cases. Other notions of composition arising in denotational
semantics are captured in the same framework: our leading examples are
nondeterministic call-by-need programs and nonstrict functions with side
effects. Composition of such functions is treated in our framework with
the same degree of abstraction that Moggi’s categorical approach based
on monads allows in the treatment of call-by-value programs. By virtue
of such abstraction, interesting program equivalences can be validated
axiomatically in mathematical models obtained by means of modular
constructions.

1 Introduction

In denotational semantics programs are interpreted in domains with suitable
computational structure. For example, a domain for interpreting integer pro-
grams with exceptions must include (besides integers) denotations for exceptions
and allow case analysis. In the categorical semantics proposed in [Mog91], the
concrete structure of such domains is hidden behind the structure of a strong
monad 7', where T X is the domain of programs of type X. The advantage of
describing program denotations in terms of the abstract structure of a monad
is that a language can be extended with new computational features (e.g. a
mechanism for exceptions or side-effects) and reinterpreted by just adopting a
“more powerful” monad, without rewriting the old semantic equations. The com-
putational lambda calculus (or computational metalanguage), the formal system
associated in [Mog91] with this semantics, features a type constructor 7' and an
operator letT to compose programs of the form A — T'B, parametric in A, with
programs of type A, which live in the domain T A.

The notion of composition implemented by letr corresponds to a call-by-
value parameter evaluation in that programs are modelled by morphisms of the
form A — T B, indexed by values in A, and they satisfy only a restricted form of
substitution. On the other hand, call-by-name programs, which accept uneval-
uated expressions as inputs, are modelled by morphisms TA — T'B, indexed
by “computations” in T'A. In the metalanguage composition of such programs
works according to [-reduction. Categorically, call-by-value programs compose
in the Kleisli category of a monad T, while call-by-name programs compose in
the base category.



Other notions of composition arise in computer science. For nondeterminis-
tic partial functions, for example, the call-by-need discipline differs from call-by-
value in that it is nonstrict, and from call-by-name in that different occurrences of
a parameter are always assigned the same value. How do call-by-need programs
compose? In the computational metalanguage one has no choice but treating
nondeterministic call-by-need programs as a special kind of call-by-name pro-
grams (the “additive” ones) and interpret them as morphism PA — PB, for
some power construction P. However, a more finely grained semantics can be
obtained by interpreting programs as morphisms of the form A, — PB and
exploiting the relation between P and the lifting construction (-); to get an
operation let%; for composing such morphisms just like let» composes strict pro-
grams A — PB. Similar operations let£ are available for monads R and T when
the structure of T' extends, in a suitable sense to be explained below, the struc-
ture of R. Such operations and the categorical setting in which they arise are
studied in this paper.

We propose a general categorical framework for modeling program composi-
tion in which the call-by-value and call-by-name disciplines fit as special cases. In
view of the relation between monads and algebraic theories, different notions of
composition are obtained by distinguishing the algebraic structure with respect
to which programs behave as homomorphisms. This approach gives a uniform
account of different strategies of parameter evaluation capturing notions of com-
position which do not accommodate naturally in the monadic setting of [Mog91].
Common programming constructs such as exception handlers, pipes etc. can be
interpreted in the proposed framework without exposing the concrete structure
of the semantic domains. The benefits are twofold: On the one hand our frame-
work allows an axiomatic approach to validation of program equivalences in large
classes of models. On the other hand it allows property-preserving reinterpreta-
tion of program constructs under model extensions, thus supporting a modular
approach to denotational semantics in the spirit of [Mog90a,Cen95].

Synopsis. Section 2 discusses a motivating example. Section 3 gives a general
categorical explanation of the constructions of Section 2 and presents a semantic
framework which gives a uniform account of different disciplines of program
composition in terms of the algebraic notion of homomorphism. The setting of
Section 3 is further generalised in Section 4, where a weak theory of program
composition is proposed; the theory features two operations, similar to the unit
and lifting of Kleisli triples, of which simple equational properties are proven.
Applications are described in Section 5 where these operations are used to define
the semantics of common program constructs. Then properties of such constracts
are derived axiomatically and shown to be preserved when models are suitably
extended with new computational features.

2 A motivating example

The viewpoint proposed in this paper is that different strategies of parameter
evaluation can be described in terms of how programs preserve computational



structure. In this section we discuss an example where semantic domains are
provided by a composite monad T' = @ R. In such cases, an operation of pro-
gram composition let% is available, where only the structure of @ is preserved.
Using such an operation for defining the denotational semantics of programs
with side-effects (modeled by Q) and failure (modeled by R) we are able to val-
idate program equivalences axiomatically. Observing that similar operations are
available, with the same benefits, for monads which are not of the form Q- R,
we look for the general semantic setting, subsuming monad composition, where
such operations arise. This is done in the next section.

In a language with side effects and a mechanism for aborting computation, for
example, a construct handle (M, N) runs the program M and, if a failure occurs,
makes a second attempt to produce a value by running N. Such a language may
be interpreted in a cartesian closed category by mapping terms of type 7 to
elements of (([7] + 1) x )%, where S is some object of states. In particular:

[handle(M,N)] = Xs: S. case mo([M]s) of inl(v). (inl(v), 71 ([M]s))
inr (). [N](m([M]s)).

By using lambda abstraction and projections, this equation exposes the
concrete structure of the domains of interpretation. Hence, it works fine for
a toy language but not for more realistic ones where domains of the form
(X +1) x §)° may be inadequate to host programs. A more general presenta-
tion of the semantics of failure handling can be given by using the computational
lambda calculus as metalanguage. In any model where programs are interpreted
in domains of the form QRX, where @ is an arbitrary monad and RX = X +1
we define:

[handle(M,N)] = letg z < [M] in case z of inl(v). valg(inl(v))
inr(u). [N]. (1)

The case above is obtained when QX = (X x S)°. Adopting interpretation
(1), one can work formally in a suitable theory of the computational lambda
calculus and validate program equivalences for any model of the above class.
The following equation, for example, can be easily derived from the axioms of
the calculus.

handle (handle (L, M), N) = handle (L, handle (M, N)). (2)

Unfortunately, there are perfecly reasonable models for exceptions where no
valg and let g operations are available to implement the handling of an excep-
tion. The monad TX = ((X x S) 4 1)°, for example, models a “dramatic” form
of failure, in which the state is lost upon occurrence of an exception. Equation
(2) should also hold for programs of this form, but we have no formal (i.e. ax-
iomatic) means of proving this equivalence without exposing again the concrete
structure of T.



However, the monads R and T are related by two operations wl% :R—>T
and letZ, the latter feeding programs of the form RA — TB with arguments
of type T'A, which do for T" what valg and letg do for the monad QR. Given
L:RA, M:TAand N : RA — TB, define:

val (L) = Xs : S. case L of inl(v). inl{v, s)
inr(u). inr (u)

leth & < M in N(z) = \s: S. case M(s) of inl{v,s"). N(inl(v))s’
inr(u).  N(inr(u))so,

where sg is some recovery state from which computation is resumed if a dramatic
failure occurs. We can now define the semantics of dramatic exception handlers
by just replacing valg with vallt and let g with letf in (1), and the given proof
of (2) goes through unchanged (see application 51). This approach is shown in
Section 5 to yield a uniform interpretation of handle in a large class of models
obtained by modular constructions: let H be an arbitrary monad and let FH
be the monad (FH)X = (H(X x S))°; assuming that suitable operations val %
and letf are given for interpreting failure in the computational setting of H,
one obtains operations val%t; and let%,, for reinterpreting failure in the more
elaborate setting of FH.

For which monads R and T can we find suitable operations val %t and let f lift-
ing R-computation to T-computation? What equations should one expect such
operations to satisfy? Associativity seems a reasonable assumption. Moreover, in
the above example, val? is a left unit for let%7 that is: let?(val?) = 4d. On the
other hand, it is not a right unit, that is, let Z(f) o val % = f does not hold. If letf
is to model a nonstrict form of program composition and the view is adopted
that programs should form a category, this is a rather odd state of affairs. In
the next section we look for a categorical picture to give us a convincing set of
axioms for a general theory of program composition.

3 An algebraic view of program composition

In this section we propose an abstract categorical setting, called extension set-
ting, for interpreting program composition. The underlying algebraic intuition is
explained by discussing the example of non-deterministic call-by-need programs.

In the functional programming language Haskell programs are said to eval-
uate their parameters “by-need.” Call-by-need differs from call-by-value in that
application is nonstrict: A typical Haskell implementation of the Ackermann
function, for example, would include a clause ack 0 n =1. Then, for a nonter-
minating program loop, the term ack(0,loop) evaluates to 1, while it would
fail to produce a result in Standard ML, where parameters are called by-value.

Call-by-need also differs from call-by-name in the presence of nondetermin-
ism. A sequential program may exhibit nondeterministic behaviour when inter-
acting with the operating system. For example, many programming languages,



including Haskell, feature a library function GetTime which returns nondeter-
ministically the current value of the system clock. Let the call ack(2,GetTime)
match the clause ack n m = ack (ack (n-1) m) (m-1). With a call-by-name
discipline, as in the Algol-like language of [Ten91], this call would result in evalu-
ating the second argument at different times, thus producing nonsensical results.
Conversely, arguments that are called by-need are evaluated only once, if ever.
The discriminating notion here is additivity. Let p and q be programs and let
p or q be the program which runs either p or q, nondeterministically. A pro-
gram f is called additive when f(p or q)=£f(p) or £(q). Then, call-by-need
and call-by-value programs are additive while call-by-name are not.

The above discussion suggests an “algebraic” explanation of these three call-
ing mechanisms. Consider an interpretation in the category Set of small sets
of a simple nondeterministic language, where programs producing values in X
are interpreted as elements of the finite powerset PX of X. Two operations are
fundamental in the finite powerset construction: binary union, which we can use
to interpret or, and emptyset, which we can use to interpret loop. In this set-
ting, one can view call-by-value programs as homomorphisms with respect to
both operations, call-by-need with respect to union only, and call-by-name with
respect to neither. The following interpretation of the three calling mechanisms
is based upon this observation.

A nondeterministic program p(x), with a call-by-name parameter x, ex-
pects an unevaluated expression as input. Therefore such programs correspond
(roughly) to functions of the form PA — PB, and p(q) is obtained by straight
composition. On the other hand, if p is call-by-value, it must run on the results
of its argument’s evaluation and produce nothing if q produces none. Therefore,
such programs correspond to morphisms of the form A — PB. Composition
of such programs is obtained by exploiting the operation of Kleisli lifting (_)*»
of the monad P, which maps morphisms A — PB to morphisms PA — PB.
In particular, [p(q@)] = [p]*”[a]. In the computational metalanguage this is
written:

[p@] = letp z < [q] in [p].

Morphisms of the form f*? are strict and additive precisely because finite
powersets are the free construction associated with the theory of semilattices.
Semilattices are algebraic structures with a nullary operation 0 and a binary
operation V satisfying the following axioms:

V=
tVy=yVux
xV(yVvz)=(xVy)Vz

zV0=uz.

A monad providing the free construction associated with an algebraic theory
is said to classify the theory. The correspondence between monads and algebraic
theories in enriched categories is studied in [KP93,Rob95].



To model a call-by-need p, not only must we say how it behaves on values,
but also what it can do when no value is produced in input. This can be done by
interpreting p as a morphism A; — PB, where A} = {X € PA| card(X) <1}
and card (X) is the cardinality of X. Then, to interpret p(q), we look for an
operation (_)* to return an additive, possibly nonstrict extension of [p] to PA.

The idea is to split the finite powerset monad into two constructions, one for
each operation of the theory of semilattices. First we consider the theory of 0,
with no axioms. The free models of this theory in Set are given by the lifting
monad (_);. To “finish” the construction, we cannot use the finite nonempty
powerset monad P which classifies the theory of Vv, as PA # PY(A,). In
fact, we must consider this theory not in Set but in Set™, the category of al-
gebras of the monad (_);. An algebra (A,a) for this monad consists of a set
A and a distingiushed element a € A. Homomorphisms from (A,a) to (B,b)
are functions f : A — B such that f(a) = b. The free models of the the-
ory of V in Set™’ are given by the monad (PT, 7, 1), where PT maps (4, a) to
({X e PAlac X}, {a}), na.a)(®) = {z,a} and pi(4,4)(X) = Uy ex W. Clearly,
writing A, for the free algebra (A, (), the underlying set of PT(AL) is (iso-
morphic to) PA.

In fact, P is the extension of the monad P along the forgetful functor
Set® — Set in the sense explained below. Similarly, the operation (_)*»+, which
lives in Set™, extends to an operation ()* in Set. In particular, (_)* maps func-
tions A} — PB to functions PA — PB where f*X = |J{f(z) |z € X1 }. Then,
call-by-need is modelled as: [p(q)] = [p]*[q]. Pretty-printing:

[p(@] = let% x < [q] in [p]-

Functions of the form f* are strict only when f is strict. Moreover, they are
additive because (_)* extends the Kleisli composition of the monad P* which
classifies the theory of V.

The situation just described generalises as follows. We call extension setting
a categorical picture

F
c—x My
G

where F' - G are adjoint functors and M = (M, n™ M) is a monad on X. Let
R = (GF,n%, i) be the monad induced by the adjunction F' + G on C, let €
be the counit of this adjunction and let T' be the functor GMF : C — C. The
latter is the right Kan extension of GM along G. The natural transformations
nt = GnMFon® and pf = GUMFoGMeMF = G(eMF)*™ endow T with the
structure of a monad. Following [Str72], we call such a monad the extension of
M along G. This extension is unique in the sense of [Str72, §2].

We write settings like the one above as triples (F, G, M) and indicate with
R, T and e respectively the monad GF', the monad GM F' and the counit of the
adjunction F' 4 G. We call C the base category of the setting.



Given an extension setting (F,G, M) on a base category C, we intend to
interpret program composition by means of a family (_)* of associative operations
of the form:

(*)Z,B : C(RAa TB) - C(TAv TB))

extending M-lifting along G. More formally: we require that, for all morphisms
h:FA— MFB, f: RB—TC and g: RA — TB, the following holds:

(Gh)" = G(h™) 3)
fregt=(f"e9)" (4)

When the functor G is monadic, (3) requires (-)* to behave like (_)*™ on
R-homomorphisms. Since T extends M along G, this is to say that f* should
preserve T structure whenever f preserves R structure. Note that the natural
transformation « = GpMF : GF — GMF in a setting (F,G, M) is a monad
morphism from R to T', and that the equation +* = id follows immediately from

(3).
Example 31 Call-by-value and call-by-name.

Given a monad T, an interpretation [p(q)] = [p]*[¢] of call-by-value pro-
gram composition is obtained in the setting (Id, Id,T), where R is the identity
and (1)* = (1)*T. On the other hand, a call-by-name interpretation is obtained
in any setting (F, G, Id), where R = GF =T and (_)* is the identity. These ex-
amples are the “extreme” cases where R possesses all or nothing of the structure
of T'. The following examples show that intermediate cases are also interesting.

Example 32 Call-by-need.

Here we describe a setting, analogous to the finite powerset example developed
earlier, relating the lifting and Hoare powerdomain monads in the category of
cpos. A similar picture can be drawn for algebraic cpos.

Let Cpo be the category of possibly bottomless cpos. The Hoare powerdo-
main P(A) of such a cpo A is the set of downward closed subsets of A ordered by
inclusion. Empty set and union are the universal operations on P(A) satisfying
the theory of semilattices, together with the axiom: x Vy > z.

One can split this construction in two steps as done for powersets. In particu-
lar, let Cpo =T be the category of cpos with bottom element and strict continuous
functions. This is the category of algebras of the lifting monad. If X is an ob-
ject of Cpo™L, let PTX be the cpo of nonempty downwards closed subsets of X
ordered by inclusion and let nx : X — PTX map z to {y|y < z}. The union
operation makes of P* X the free {V}-algebra generated by X in Cpo™. That is:
for any map f : A — B in Cpo™, where B is endowed with an operation V sat-
isfying the given equations, there is a unique V-homomorphism ff:P*A — B
such that ffens = f. This gives to PT the structure of a monad which extends
to P along the forgetful functor G+ = Cpot — Cpo. The operation (_)* such
that f*X = J{f(z)|z € X} extends (_)*»+ along G*.



Example 33 Composition of monads.

Any two monads which compose give rise to an operation (.)*. Let R and @
be monads on a category C and let the natural transformation A : RQ = QR
be a distributive law of ) over R. The functor Q .ot - CF mapping R-
algebras a to QoA has the structure of a monad which forms an extension
setting (F T GE, Q} The monad Q is the lifting of Q to CT associated with A
(see [Bec69]). In particular, we have GEQ = QGE. The extension of Q along the
forgetful functor G is the composite monad QR. In fact, we have GRQFE =
QGEFE = QR. Note that the pair (FF,)) is a monad morphism Q — Q.

Writing h*e = ue -Qh and noticing that p@ is the underlying natural trans-
formations of u®?, we see that the operation (,);?4_’ nrp> Which is obviously asso-
ciative, extends (-)*@ along the forgetful functor G*.

4 Notions of composition

In the previous section we developed some intuition on how a general operation
(_)* to interpret program composition should look like and we wrote axioms to
support our intuition formally. We assumed that such an operation, similar to
composition in the Kleisli category of a monad, lives in an extension setting.
Here we develop the theory of more general notions of composition, which need
not belong to an extension setting. When they do, we prove that the equations
of Section 3 are satisfied. However, it is in the more general theory that we derive
the properties that we expected to hold from our earlier discussion.

Let R : C — C be a functor, let 7' be a monad on C and let 0 : R — T
be a natural transformation. Given h : A — T B, we write h, : RA — TB the
morphism

hy = h*To0.

Note that, when R has the structure of a monad and ¢ is a monad morphism,
there is a forgetful functor G, : CT — C® mapping T-algebras (4,a) to R-
algebras (A, ao0). In this case we have h, = GFh', where bt : FFA — G, FT'B
corresponds bijectively to h by the adjunction F® - GE.

Definition 41 Let R: C — C be a functor and let T be a monad on a category
C; a weak notion of composition is a pair (¢, (-)*), where v : R — T is a natural
transformation and (2)* is a family of operations:

()45 : C(RA, TB) — C(TA,TB)

satisfying the following equations: for oll f : RB — TC, g : RA — TB and
h:A—TB,

frogt=(f"9)" (4)
B = h*T. (5)

L



We write (¢, (1)*) : R — T for a weak notion of composition as above to make
R and T understood.

Proposition 42 The operation (—)74,3 of a weak notion of composition is natu-
ral in B.

Proof. Let (¢,()*) : R — T be a weak notion of composition; naturality of
(-)% p in B is expressed by the equation T'fog* = (T'f-g)*, where f : B — C
and g : RA — T'B. Then,

Tfegt=mof)eg"=mef)eog-=(mef)og)=(Tfeg)"

Proposition 43 Weak notions of composition (¢, (.)*) : R — T satisfy the fol-
lowing equations:

L* = idT (6)
[regm=(f"g) (7)
Th = (1o Rh)*. (8)

Proof. Note that . =1,. Let f: B—-TC,g: RA—TB and h: A — B,

= =0t =ddr;
[rogt=fleg" = (fe9) = (f9)%
Th=(neh)*e* = ((neh) et)* = (Thet)* = (o Rh)*.

Weak notions of composition (¢, (-)*) : R — T in which R is a monad on
C and ¢ is a monad morphism, often live in an extension setting. In fact, the
forgetful functor G, : ¢T — C® induced by ¢ often has left adjoint. This is
always the case when C is Set [BW85, 9.3]. In general, it is well known that G,
has left adjoint when C? has all coequalisers of reflexive pairs [Lin69, coroll. 1].
A sufficient condition for that to happen is that C has such coequalisers and T'
preserves them [Lin69, coroll. 3].

If G, has left adjoint F,, we obtain an extension setting (F*, G M) where
M is the monad induced on C® by the adjunction F, 4 G,. In this setting,
GEMF® = GEG,F,FF =GTFT =T.

The following theorem shows the correspondence between weak notions of
composition and operations satisfying (3) and (4) as in Section 3.

Theorem 44 Let (F,G,M) be an extension setting; a family of operations
(Jap : C(RA,TB) — C(TA,TB) satisfies (3) and (4) if and only if (¢, ()*)
is a weak notion of composition, for some v such that tonf =nT.
Proof. [(3)=(5)] Let .= GnMF and let h : A — TB. Using the naturality
of (1)*, we have:
hi = (uhovrp e Rh)" = (Geyypp o Gnprp ° GFR)* = (G(epp o nirp o Fh))*
= G(extrponprp e FR)™ = Geyfop o Gnppp o Fh)™
= p° G((nppp)™ e MFh) = pj o Th = h*7.



[(5)=(3)] Let (+,(0)*) : R — T, with ton® = nT, be a weak notion of
composition. For any f : RA — TB we have (fon®), = f by easy calculations.
Let h : FA — MF B, we have:

(Gh)* = (GhenR): = (Gheon})™™ = p" < T(Ghen})
= Gu¥y o GMepppoGMFGhoTn%
= GuMg e GMhoGMep - GMFn%
= G(pppeMh)oGM (epa°Fnj}) = Gh*™.

Definition 45 A notion of composition is a weak notion of composition
(¢, (2)*) such that, for all f: RA — TB the following equation holds:

frou=f. 9)

When working with sets, the inclusions ¢4 : A} — PA of Section 3 do not
satisfy (9) while they do in the case of cpos (example 32). Another strictly weak
notion of composition is the pair of operation ml% and let¥ defined in the
introduction to model dramatic failure. On the other hand, (9) is satisfied in the
models of interleaving of Application 54.

The following results are used in the next section:

Proposition 46 The operation (,)273 of a notion of composition is natural in

A.

Proof. Let (¢,(-)*) : R — T be a notion of composition; naturality of ()} 5
in A is expressed by the equation f*-Tg = (f°Rg)*, where f : RA — TB and
g: C — A. Then, from (8) and (9) we have:

[reTg=fro(tacRg)* = (f*ora°Rg)* = (f°Rg)*.

Proposition 47 Let (¢,(0)*) : R — T be a weak notion of composition and let
(' S — T be a natural transformation such that « = J/ov for some natural
transformation v. The pair (', ()*Y), where f*¥ = (fov)*, is a weak notion of
composition S — T.

Proof. The associativity of (-)*” is an immediate consequence of the associa-
tivity of (_)*. Moreover, let h: A — T'B,

Z(/I/ — (h*T OLI)*IJ — (h*T oLloy)* — (h*T OL)* — h*T OL* — h*T.
Proposition 48 Let (¢,(_)*) : R — T be a notion of composition and let
v : R — S be a natural transformation with a right inverse, that is a natu-
ral transformation v’ such that vev' = id. The pair (', (2)*"), where ' = tov’
and f* is as above, is a notion of composition S — T.

Proof. 1t is a weak notion of composition by the previous proposition. More-
over:

f*VoL/ = (fOI/)*OLOI// = fo]/ol// = f.



5 Applications to modular semantics

In [Mog90a], a modular approach to denotational semantics is proposed, where
mathematical models of computation are obtained by stepwise application of
monad constructors. These are functions F mapping monads to monads and
satisfying certain naturality conditions. Intuitively, the monad F7T augments
the structure of T with the machinery to interpret a new computational fea-
ture. For example, the constructor F such that (FT)A = (T(A x S))¥ adds
to T the capability of modelling side-effects. Monad constructors are studied in
[CM93,Cen95).

In [Mog90b] the notion of uniform redefinition is introduced to lift operations
defined in a computational setting M to a new setting FM. Let ¢(-) be some
type scheme, let op 4 : ((MA) be an operation defined for a monad M in a
category C, let H : C — C be an endofunctor and let F be a monad constructor
of the form (FT)A = THA; op can be uniformly redefined for the monad FM
as follows:

(Fop)a=o0ppa-

This technique is not always applicable: when either F or op are not of the
appropriate form, ad-hoc redefinitions must be sought. The above constructor
for side-effects, for example, does not fulfill the requirements. Neither does the
operation Cy g : (A — MB) x (MA— MB)x MA — MB used in [CM93, ex-
ample 2.10] to perform case analysis on interleaving programs. In this section we
propose a technique based on notions of composition which yields well behaved
redefinitions of operations in both cases.

We show that two benefits derive from using notions of composition to define
operations in a computational setting M: on the one hand it allows properties of
the operations to be formally derived without exposing (all of) the structure of
M (thus for a large class of models); on the other hand it allows the operations
to be redefined in cases where uniform redefinitions are not available, and their
properties automatically preserved.

Application 51 Reinterpreting failure in state models.

Let R be the monad RA = A + 1. We say that a monad (H,n,(_)*) has a
structure for failure when it is equipped with a weak notion of composition
(¢, (1)*) : R — H and with a natural transformation p : H — H such that:

toinl =1 (10)
fron = foin (11)
frofail = pofoinr (12)
F* o fail = fail (13)

where fail 4 : HA is the natural transformation ¢oinr. Intuitively, p(N) is the
program running N after some recovery action. For example, p would be the



identity for HA = ((A + 1) x S)° while it would feed its argument with some
recovery state for HA = ((A x S) +1)%.

An operation handle 4 : HA x HA — HA running its first argument and
handling a possible failure with its second can be defined as follows:

handle(M,N) = [, N]* o M.

The following equations are satisfied by fail and handle in any structure for
failure:

handle(n,N) =n
handle (fail, N) = p(N)
handle (L, handle (M, N)) = handle (handle (L, M), N).

In fact, handle (n, N) = [, N]*on = [n, N]einl = n and similarly for the other
equations.

The signature HA x HA — H A is indeed of the form ((HA), which makes
handle qualify for uniform redefinition. Not so however for the monad construc-
tor F mapping H to (FH)A = (H(A x S))%. This constructor, however, extends
to structures for failure as follows:

(Fp)w = As. p(w(so))
(Fu)z = As.let g a <= o(z) in valg(a,s)
7w = \s.let® 2 < w(s) in case z of inl{a,s'). f(inl(a))s’

inr(u).  f(inr(u))so.

These operations are easily shown to satisfy the axioms (10-13). Thus, by suit-
ably extending the action of the constructor F to weak notions of composition
R — H, operations such as fail and handle are automatically redefined in mod-
els of computation with side-effects, in such a way that the relevant properties
are also preserved.

Remark. The operations val% and letf of Section 1 are obtained by applying
the constructuion just described to the identity notion of composition R — R.

Application 52 Inwards monad constructors.

Here we describe a class of monad constructors F which have a canonical
lifting of (weak) notions of composition R — T to FR — FT. In the next
application we use this construction to obtain a reinterpretation interleaving in
models of exceptions.

We call inwards a monad constructor F such that:

(FM)A = M(HA) for some functor H, and
™M = M HoMp for some natural transformation p: HMH — MH.



Remark. The above condition on 7™ arises when composing monads with
functors. Let H be a functor, let n : Id — H be a natural transformation and
let n™H be nM Honf. There is a one to one correspondence between natural
transformations p : HM H — M H satisfying

pen MH = id
pe HfM™ =™ H
po HuMH = [ MH N H,

where pM# is the natural transformation p™ H o Mp, and monads (MH, nMH )

such that poy™ HMH = p™M H o My (see [JD93)).

Proposition 53 Let the monad constructor (FM)A = M(HA) be inwards, and
let (¢,(2)*) : R — T be a (weak) notion of composition. The pair of operations
(H, ()7, where ()55 = (D a.up, i o (weak) notion of composition FR —
FT.

Proof Associativity (and right unit) are inherited immediately form (¢, (_)*).
Let f: A — THB, noticing that f*T# = (po H f)*T, we have:

Z}? _ (f*TH OL)* _ ((pon)*TOL)* — (pon)*T 0¥
=pleTpeTHf =p" oTHf = fru.

Application 54 Reinterpreting interleaving in models of exceptions.

In [CM93], the semantics of computation with interleaving is described in
terms of the “resumptions monad” TA = pX.Q(A + X) and two families of
operations

T4a:TA—TA
Cap:(A—=TB)x (TA—TB)xTA—TB.

from which interesting programming constructs can be defined, such as the op-
erator pand of parallel composition described in [Cen95, 7.3]. The operations T
and C arise from a notion of composition (¢, ()*): Id + T — T. Let cca be the
isomorphism Q(A +TA) — T A and let y4 be its inverse. We define:

1(z) = case z of inl(a). a(valg(inl(a)))
inr(u). a(valg (inr(u)))
fr(w) = a(letq z < y(w) in 1(f(2)))
The associativity of (_)* follows easily from the associativity of (_)*@. Simi-

larly, f*o1 = f follows from f*@+n® = f. As for (5), note that, for h: A — TB,

we have:

h,(z) = case z of inl(a). h(a)
inr(u). a(valg(inr (h*Tu)))



and hence
hi(w) = a(letg z < y(w) in case z of inl(a). y(h(a))
inr(u). valg(inr (h*Tuw)))

= h*Tw.

Now, the operations 7 and C of [CM93] can be defined as follows:

7(w) = t(inr(w))
C(f,9,w) = (Az. case z of inl(a). f(a)

*

Noticing that n?" = ¢einl, from (6) and (9) one can easily derive the equations

C(f.gm)=f
C(f.g.7)=g
Cn,m,w) =w

showing that 7 and C behave respectively as right injection and case analysis.
The commutativity of the operator pand of [Cen95, 7.3] can be easily derived
from these equation and from the commutativity of an operation of nondeter-
ministic choice.

Let H be the functor HA = A+ E, where E is some object “of exceptions.”
Given a monad M there is a unique monad (M H,n, i) such that n = n™ H o inl
and pop™HMH = p™ Ho Mu. This follows from the remark in 52. We write
F the monad constructor for exceptions, mapping monads M to M H.

The constructor F is inwards. Hence, applying Proposition 53 to the notion
of composition Id + T — T defined above, we get a notion of composition
H + TH — TH satifying (9). Then, noticing that the natural transformation
lid + n"T' Hoinr,inr] : H+ TH — Id + TH has a right inverse inl + id, we
obtain, by Proposition 48, a notion of composition Id +TH — TH to interpret
interleaving in models constructed by F. Again, C' and 7 are automatically
reinterpreted in such models and the relevant properties are preserved.

6 Conclusions

We proposed a general categorical setting for modeling program composition in
which the call-by-value and call-by-name disciplines fit as special cases. Call-
by-need is also captured in this framework for nondeterministic programs; it
is an interesting question whether call-by-need programs with side effects can
be captured similarly. The proposed theory of program composition features
two operations ¢ and (_)*, reminiscent of the unit and lifting of Kleisli triples,
of which only weak properties are assumed. These are however enough to de-
rive simple equational properties of common program constructs such exception



handling and parallel composition. The paper argues that, by defining program
constructs in terms of ¢ and (_)*, not only can one validate program equivalences
axiomatically for large classes of models, but also reinterpret the constructs when
models are extended, preserving the truth of the relevant axioms. Since we are
able to do this in cases where the uniform redefinition proposed in [Mog90b] are
not available, our technique makes one step forward towards a modular approach
to denotational semantics. The proposed technique is applied in [Cen98] to the
semantics of Java, where we seek a modular proof of computational adequacy
with respect to the operational semantics of [CKRWO9S8].
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