
Context-free Synchronising Graphs

Pietro Cenciarelli and Alessandro Tiberi

University of Rome, “La Sapienza”
Department of Computer Science - Via Salaria 113, 00198 Roma.

Abstract. Synchronising Graphs is a system of parallel graph trans-
formation designed for modeling process interaction in a network envi-
ronment. Although notions of observational equivalence are abundant
in the literature for process calculi, not so for graph rewriting, where
system behaviour is typically context dependent. We propose a theory
of context-free synchronising graphs and a novel notion of bisimulation
equivalence which is shown to be a congruence with respect to graph
composition and node restriction. This notion is used to provide a proof
technique for the hyperequivalence of the Fusion calculus, through an en-
coding which is shown to be sound and complete. This builds a bridge
between graph rewriting and process algebra. As a further application,
we prove the correctness of a system component, called non-deterministic
commuter, with respect to its specification. The result shows that our
notion of equivalence is fine enough to discriminate between different
degrees of parallelism in a network.

1 Introduction

Synchronising Graphs (SG) is a system of parallel graph transformation de-
signed for modeling process interaction in a network environment. The system
is inspired by [DM87], and it stems from the Synchronized Hyperedge Replace-
ment of [FMT01], with which it has been compared in [CT05]. In the SG model,
as in SHR, hyperedges represent agents, or software components, while nodes
are thought of as communication channels, synchronisation points or, more gen-
erally, network communication infrastructure. The idea that hypergraphs may
interact by synchronising action and co-action pairs at specific synchronisation
points (the nodes) is quite intuitive, while the flexibility of the model in rep-
resenting diverse network topologies and communication protocols makes SG a
reasonable candidate as common semantic framework for interpreting different
calculi. We followed this idea in [CTT05], where Mobile Ambients [CG00] and
the distributed CCS of [RH01] (without restriction) were both modeled by us-
ing a common recursive synchronising graph architecture, called ambient graphs.
In particular distributed CCS terms were shown to correspond to flat ambient
graphs, while mobile ambients were trees.

Any common semantic framework for interpreting process calculi must come
equipped with a notion of observational equivalence. Indeed such notions are
often sought in the theory of concurrency so as to achieve a sort of composition-
ality in the semantics: considering as meaning of a process its abstract behaviour,

which is traditionally identified by its bisimulation equivalence class, composi-
tionality requires that, when equivalent processes are plugged into the same
context, they produce equivalent results. This amounts to proving that bisim-
ulation is a congruence. However, although such results are abundant in the
literature for process calculi, not so for graph rewriting, where system behaviour
is typically context dependent. Then, in order to bridge the gap between the two
disciplines, we seek a characterisation of context-free synchronising graphs, and a
suitable notion of bisimulation to capture their abstract behaviour. Such a notion
has not yet emerged for related models such as [FMT01]. Indeed, some progress
in this direction has been made in [KM01], which contains, to our knowledge,
the only notion of observational equivalence proposed as yet in the framework of
synchronised graph rewriting. However, the system of [KM01], we call it SGR ,
differs substantially from ours, both in the kind of synchronisation and in the
model of mobility. In particular, in SGR graphs synchronise à la Hoare (an ar-
bitrary number of them may synchronise with a unique action) while we use
Milner style synchronisation, adopted by a large majority of process algebras.
As for mobility, synchronising graphs, like for example processes in the Ambi-
ent calculus, can freely migrate within the network environment, while in SGR,
where only new names can be communicated, processes cannot move to exist-
ing locations. Finally, the observational equivalence on SGR is, by the authors’
admission, rather coarse. We meet their challenge for a finer notion, capable of
distinguishing between different degrees of parallelism.

After presenting the general model of SG in section 2, we investigate the pos-
sible sources of context dependency in synchronised graph rewriting. In section 3
we focus on context-free SG, that is systems of synchronising graphs whose be-
haviour is specified by simple axioms called productions. The use of productions
derives from [DM87] and it is built in the model of [FMT01]. A novel notion of
bisimulation equivalence is introduced in section 4, and shown to be a congru-
ence with respect to graph composition and node restriction. Two applications
are considered for the proposed notion of equivalence. One is a (simple) proof
of correctness of an implementation of a simple system called nondeterministic
commuter. The second is the derivation of a proof technique for hyperbisimula-
tion in the Fusion calculus [PV98].

Fusion is indeed a natural choice for linking the synchronising graphs with
process calculi: because of its input/output symmetry it is closest to our model,
while, because of its correspondence with π (which it contains as a proper sub-
calculus) it provides a gateway to the universe of process algebra. This is the
topic (and the title) of section 5, where we prove an operational correspon-
dence (preservation and reflection of computational steps) between Fusion and a
specific theory of SG. Here we improve a previous result of [LM03], where oper-
ational correspondence with Fusion was obtained by an ad-hoc, simplified set of
inference rules. Moreover, as mentioned above, we show that if the translations of
two fusion processes P and Q are observationally equivalent graphs, then P and
Q are hyperequivalent. We do not know whether the opposite direction (which
would amount in full abstraction holds.

Notation. We often write function application without parentheses, that is fx
instead of f(x). We write x for a finite sequence x1, x2, . . . xn. If f ⊆ A × B is
a relation and a ∈ A, we write fa for the set {b ∈ B | (a, b) ∈ f}. The domain
of f is the set dom (f) = {x ∈ A | ∃ b ∈ B . (a, b) ∈ f}. If ϕ is an equivalence
relation, we write [x]ϕ the equivalence class of an element x; or just [x], when ϕ
is understood.

Proofs of theorems and such are moved to the appendix.

2 Synchronising Graphs

Let N be a set of nodes, which we consider fixed throughout. A graph
G = (E,G, R) consists of a set E of hyperedges (or just edges), an attachment
function G : E → N ∗ and a set R ⊆ |G| of nodes, called restricted, where

|G| = {x ∈ N | ∃ e ∈ E s.t. G e = x1 . . . xn and x = xi}

is the set of nodes of the graph. When G e = x1x2 . . . xn we call n the arity of
e and say that the i-th tentacle of e is attached to xi. We denote by res (G) the
set of restricted nodes of G, and by fn (G) the set |G| − res (G) of free nodes.
We write e(x) for an edge of a graph G such that G e = x. Moreover, we let
νxG denote the graph (E,G, R∪{x}) when x ∈ |G|, while νxG = G otherwise.
The composite of two graphs (E,G, R) and (D,F, S), written G|F , is the graph
(E]D,G+F,R]S), where] denotes disjoint union and G+F is the attachment
function mapping e ∈ E to G e and d ∈ D to Fd.

Let Act = {a, b, . . . } ∪ {a, b, . . . } be a set of actions; we call a the co-action
of a, and intend a by a. Let Act + denote the set Act × N ∗. Given an element
(a,x) of Act +, we call objects of a the components of x. A pre-transition is a
triple (G, Λ,H), written

G
Λ−→ H

(or just Λ for short), where Λ ⊆ N × Act + is a relation, while G and H are
graphs, called respectively the source and destination of Λ.

Notation. We write (x, a,y) for an element (x, (a,y)) of Λ, and (x, a) when y

is the empty sequence. Given a pre-transition G
Λ−→ H, we denote by |Λ| the set

|G| ∪ |H| and by res (Λ) the set res (G) ∪ res (H). By obj (Λ) we denote the set
of objects {y ∈ N : ∃ (x, a,y) ∈ Λ such that y ∈ y }. 2

Intuitively, (a,y) ∈ Λ x expresses the occurrence of action a at node x. In SG
the occurrence of both (a,y) and (a,z) at x is called a synchronisation, and it
corresponds to the silent action τ of most process calculi. Synchronising agents
may exchange information. This is implemented in SG by unifying the lists y
and z of objects, which are required to be of the same length. Only two agents at
a time may synchronise at one node. Moreover, if an action occurs at a restricted

node, then it must synchronise with a corresponding co-action, as we consider
observable the unsynchronised actions. A restricted node may be “opened” by
unifying it with an argument of an observable action, or with a node which is
not restricted. These requirements are formalised as follows.

An action set is a relation Λ ⊆ N × Act + such that, for all nodes x, Λ x
has at most two elements and, when so, it is of the form {(a,y), (a,z)}, where
the lengths of vectors y and z coincide. Given an action set Λ, we denote by
Λ= the smallest equivalence relation on nodes such that, if (x, a, y1y2 . . . yn) and
(x, a, z1z2 . . . zn) are in Λ, then yi

Λ= zi, for i = 1 . . . n. Arguments of unsyn-
chronised actions are called dangling. More precisely, we call dangling in Λ the
elements of the set

dng (Λ) = {y ∈ obj (Λ) : Λ x = {(a, y1 . . . yn)} and y
Λ= yi, for some x}.

Definition 1 A transition is a pre-transition G
Λ−→ H such that:

1. Λ is an action set such that dom (Λ) ∪ obj (Λ) ⊆ |G|;
2. if a node x is restricted in G then |Λ x| 6= 1;
3. if x ∈ |H|, then x ∈ fn (H) if and only if x ∈ fn (G) ∪ dng (Λ).
4. H = ρH for some unifier ρ of Λ such that ρ x ∈ fn (G) for all x ∈ fn (G).

By condition 1, the pre-transition e(x)
x,a,y−−−→ d(y) is not a transition, because

y 6∈ |e(x)|. A consequence of 1 and 3 is that all free nodes in the destination of

a transition must occur in the source. Hence, while e(x) ∅−→ νy d(y) is a legal

transition, e(x) ∅−→ d(y) is not. Condition 4 enforces fusions. It also grants a
privilege to the free nodes when they are fused with the bound, which allows

νy e(x y)
x,a,x
x,a,y
−−−→ d(x) and forbids νy e(x y)

x,a,x
x,a,y
−−−→ d(y). This restriction is not

essential in fact for the theory of synchronising graphs but, as we shall see, it
simplifies the meta-theory without loss of generality.

In SG, synchronisation is subject to a non-interference condition: two transitions
can be synchronised provided they are disjoint and they share no restricted
nodes. Formally, G

Λ−→ H and F
Θ−→ K are said to be non-interfering, written

Λ # Θ, when:

– Λ ∩Θ = ∅, and moreover
– res (Λ) ∩ |Θ| = res (Θ) ∩ |Λ| = ∅.

It is an easy check that the only nodes two non-interfering transitions may
have in common are the free nodes in their sources. By F# G we mean that the
identity transitions F

∅−→ F and G
∅−→ G do not interfere.

As mentioned above, graph synchronisation involves unification, like in the
Fusion calculus. Let f : N → N be a function on nodes and let (E,G, R)
be a graph; we write fG the graph (E, fG, fR) obtained by substituting all
nodes x in G with fx. More precisely, for all e ∈ E, if G e = x1 . . . xn then
(fG) e = fx1 . . . fxn. A function f : N → N is said to agree with an equivalence
relation ϕ on N if, as a set of pairs, it is a subset of ϕ, that is if (x, fx) ∈ ϕ,
for all nodes x ∈ N . A unifier of ϕ is a function ρ which agrees with ϕ and such
that | ρ[x]ϕ| = 1 for all x. By a slight abuse, we say that a function agrees with

(or unifies) an action set Λ to mean that it agrees with (unifies) the relation Λ=.
The rules of the system of synchronising graphs are:

G
Λ−→ H F

Θ−→ K[sync]
G|F Λ∪Θ−−−→ ρ(H|K)

(if Λ # Θ and ρ unifies Λ ∪Θ)

G
Λ−→ H[open]

νxG
Λ−→ H

(if x ∈ dng (Λ))

G
Λ−→ H[res]

νxG
Λ−→ νxH

(if x 6∈ dng (Λ))

A non-deterministic commuter (extended example). Consider a system
consisting of a certain number of input and output sockets. The system, which we
shall call non-deterministic commuter, acts by connecting client processes pos-
sibly attached to an input socket, non-deterministically with one of the output
sockets, where server processes may be attached. Connections are established
one at a time. Figure 1 depicts a commuter C with three input and two output
sockets. A client process r is being connected with a server q.

bbb bbC
p

qr

p bb bb r

q
C

-

Fig. 1. A non-deterministic commuter

Non-deterministic commuters can be engineered in SG by assembling sim-
ple components of the form in (xu) and out (u y), representing input and output
sockets respectively. Clients are meant to be attached to the node x, while servers
are attached to y. The node u represents an internal communication channel of
the system. Then, ignoring the two unused sockets, the initial state of the com-
muter C is represented by the graph νu in (xu) | in (z u) | out (u y). The system’s

behaviour is specified by the following two transitions, where a and a represent
the input and output actions respectively.

in (xu)
u,a,x−−−→ ∅

out (u y)
u,a,y−−−→ out (u y)

To be precise, these are to be considered as axiom schemes for deriving the
whole system’s transition. In particular, in lack of labels on edges, as there are
for example in [FMT01], we must assume one axiom of the first kind for each
input socket, and one of the second for each output. In the present example, we
further assume that any edge can perform a passive (empty) transition to itself.
Then, ignoring p and its socket, the transition of figure 1 is obtained by the
derivation of figure 2. 2

r(z) | q(y)
∅−→ r(z) | q(y)

in (z u)
u,a,z−−−→ ∅ out (u y)

u,a,y−−−→ out (u y)
[sync]

in (z u) | out (u y)

u,a,y
u,a,z
−−−→ out (u y)

[res]

νu in (z u) | out (u y)

u,a,y
u,a,z
−−−→ νu out (u y)

[sync]

r(z) | q(y) | νu in (z u) | out (u y)

u,a,y
u,a,z
−−−→ r(y) | q(y) | νu out (u y)

Fig. 2. Deriving a commuter transition

The rest of this section is devoted to proving two meta-theoretical proper-
ties of the system of synchronising graphs which are crucial for the theory of
observational equivalence developed in the next section.

Notation. Let G
Λ−→ H and F

Θ−→ K be transitions; we denote by Λ ∗Θ the set
of transitions of the form G|F Λ∪Θ−−−→ ρ(H|K) obtained by synchronising Λ and
Θ. Clearly, Λ ∗ Θ is empty when Λ and Θ interfere. The expression (Λ ∗ Θ) ∗ Φ
stands for

⋃
Ξ∈Λ∗Θ(Ξ ∗Φ). Similarly, we let νxΛ be the transition which results

from restricting Λ on x by an application of [res] or [open]. The expression
νx (Λ ∗Θ) denotes the set of transitions of the form νxΞ with Ξ ∈ Λ ∗Θ.

Lemma 1 Let Λ and Θ be transitions and let x occur unrestricted in the source
of Λ. Then, (νxΛ) ∗Θ ⊆ νx (Λ ∗Θ).

Note that the opposite inclusion does not hold in general. For example, if
Λ is e(x y)

x,a,y−−−→ h(y) and Θ is νz d(x z)
x,a,z−−−→ k(z), then νy (Λ ∗ Θ) includes

νyz e(x y)|d(x z)
x,a,z
x,a,y
−−−→ νy h(y)|k(y), while (νy Λ)∗Θ is empty because the result

of applying [sync] to νy Λ and Θ violates condition 3 of definition 1.

Lemma 2 Synchronisation is associative: (Λ ∗Θ) ∗Ξ = Λ ∗ (Θ ∗Ξ).

3 Context-free theories

Notation. In this section we abandon the brute force notion of node substitu-
tion in a graph G adopted in the previous sections, and denote by hG the graph
obtained by applying a substitution h to the free nodes of G, while bound nodes
are suitably renamed so as to avoid capture. This simplifies the statement of
results such as lemma 4 while remaining consistent with the theory developed
so far. In particular, note that the new interpretation of ρ(H|K) in [sync] does
not alter the set of derivable transitions. 2

A theory of synchronising graphs is a set of transitions which is closed under
the inference rules. The theory generated by a set T of transitions, called axioms,
is the smallest theory including T . One of the aims of the present paper is to
characterise the theories of synchronising graphs in which the behaviour of a
graph is not affected by the context. The following examples will clarify this
concept.

Example. In the theory generated by a unique axiom e|d ∅−→ ∅, the two processes
e and d, considered in isolation, have the same behaviour: none of them can move.
However, if set in the context []|d, the two processes exhibit quite different
behaviour, as e|d can move while d|d cannot.

Example (?). In the theory generated by a unique axiom νx e(x) ∅−→ ∅, the
process e(x) cannot move, thus exhibiting the same catatonic behaviour as the
empty process ∅. However, when set in a context νx [] where x is restricted,
νx e(x) can move while νx ∅ = ∅ cannot.

Example. In the theory generated by the four axioms h(x y)
x,a,x
x,a,y
−−−→ ∅, d

∅−→ d,

e(x y) ∅−→ e(x y) and e(xx)
x,a−−→ ∅, e(x y) behaves just like the process d, cycling

forever over itself. However, when put in parallel with h(x y), e(x y) yields a

trace which h(x y) | d does not have: h(x y)|e(x y)
x,a,x
x,a,y
−−−→ e(xx)

x,a−−→ ∅.

Example. In the theory generated by the three axioms h(x y)
x,a,x
x,a,y
−−−→ ∅, d

∅−→ d

and e(x) ∅−→ e(x), the processes e(x) and d have the same behaviour. However,

when put in parallel with h(x y), e(x) yields a transition to a catatonic state,
namely e(y), which h(x y) | d cannot reach. 2

The four examples above capture in fact the only possible sources of context
dependency in a theory of synchronising graphs. This is shown in the present
section by providing a notion of bisimulation equivalence on graphs and then
proving that, in any theory generated from axiom sets which exclude the four
scenarios just described, the proposed equivalence is a congruence with respect
to restriction and parallel composition.

An instance of a transition G
Λ−→ H is a transition of the form hG

hΛ−−→ ρ hH
where h : N → N is a node substitution and ρ is a unifier of hΛ. A production is
a transition whose source consists of a single edge e(x), where all components of
x are distinct and none of them is restricted. A theory of synchronising graphs
is called context-free when it is generated by all the instances of a given set of
productions. Note that, the constraints productions are asked to satisfy prevent
the first three examples of context dependency to occur, while the use of all their
instances for generating the theory accounts for the fourth example.

Parallel and sequential composition have useful meta-theoretical properties
in context-free theories. Let Λ be any transition of a composite graph G|F ;
there exists a Y-shaped derivation of Λ where the actions of G and those of F
are synchronised separately in each branch of the Y. More precisely:

Theorem 1 Let Λ be a transition in a context-free theory, and let G|F be its
source. Then, Λ is an element of a set νx (Θ ∗Ξ), where G has exactly the same
edges as the source of Θ and F as the source of Ξ.

Similarly, synchronisations occurring in parallel can be serialised, provided
the axioms of the theory are suitably simple. We call simple a transition Λ such
that |dom (Λ)| ≤ 1. A simple transition of the form G

∅−→ G is called an identity.

Theorem 2 Let G
Λ∪Θ−−−→ H be a transition in a context-free theory generated

from simple axioms including the identities, and let dom (Λ)∩dom (Θ) be empty.

Then G
Λ∪Θ−−−→ H factorises as G

Λ−→ F
ρ Θ−−→ H, where ρ is a unifier of Λ.

Corollary 1 Any transition in a context-free theory with simple axioms and
identities factorises as a sequence of simple transitions.

4 Observational equivalence

We call parameters the elements of the set P = N × Act × Nat . Intuitively,
a parameter (x, a, i) is an abstraction over the i-th argument yi of an action
(x, a,y). We call observations the elements of the set O = N ∪ P. Given an
action set Λ, the relation Λ= extends to a relation Λ=o on observations as follows:

Λ=o⊆ O ×O

is the smallest equivalence relation such that (x, a, i) Λ=o (x, a, i) and moreover
(y, b, j) Λ=o z if (y, b, z1 . . . zj . . . zn) ∈ Λ and z = zj .

Not all of Λ=o is to be observed. The set obs (Λ) of observables of a transition
G

Λ−→ H consists of its observable objects, the set of which we denote by |Λ|o,
together with the parameters of the unsynchronised actions:

|Λ|o = {x ∈ fn (G) : x is dangling or x
Λ= y 6= x for some y ∈ fn (G)};

obs (Λ) = |Λ|o ∪ {(x, a, i) ∈ P : Λ x = {(a,y)} and 0 ≤ i ≤ |y |}.

Note that x is not observable in e(x)
x,a,x
x,a,x
−−−→ e(x) because, although it is free

in e(x), “self-fusion” has no bearing on the interacting environment.

The observable part of the relation Λ=o, written
Λ', is the equivalence relation

obtained by restricting Λ=o to obs (Λ):

p
Λ' q if and only if p

Λ=o q and p, q ∈ obs (Λ).

Definition 2 Two transitions G
Λ−→ H and F

Θ−→ K are called equivalent when:

–
Λ' and

Θ' are the same relation, and
– {x ∈ fn (G) : |Λ x| = 2} = {y ∈ fn (F) : |Θ y| = 2}.

Alpha equivalent graphs, that is graphs which are identical up to renaming of
bound nodes, do have equivalent transitions. In particular, νx e(x y)

y,a,x−−−→ d(x)
and νz e(z y)

y,a,z−−−→ d(z) are equivalent. However, if we want the two sources to
be observationally equivalent, we must relate x and z in the target graphs.

Let Λ and Θ be equivalent transitions as above; we say that x ∈ |Λ| and
y ∈ |Θ| are observationally related if either x = y ∈ fn (G)∩ fn (F) or there exists
o ∈ obs (Λ) such that x

Λ=o o
Θ=o y. Note that the relation is symmetrical because,

by the first clause in definition 2, obs (Λ) = obs (Θ) when Λ and Θ are equivalent.
Note also that, as shown by the above transitions of alpha-equivalent graphs,
observational relation is not restricted to observable nodes, being it defined by
Λ=o and Θ=o rather that by

Λ' and
Θ'.

Definition 3 A simulation is a binary relation S on graphs such that GS F

implies that for all transitions G
Λ−→ H there exists a transition F

Θ−→ K such
that:

– Λ and Θ are equivalent, and
– hH S kK, where h : |H| → N and k : |K| → N are injective node substitu-

tions such that h x = k y if and only if x and y are observationally related.

A graph G is simulated by a graph F , written G ≺ F , if there exists a simulation
S such that GS F . Note that ≺ is a simulation itself.

Example. νzw e(x y z w)
x,b,z
y,a,w
−−−→ f(z) and νzw d(x y z w)

x,b,w
y,a,z
−−−→ f(z) are equiva-

lent transitions. They are, however, not part of a bisimulation, unless f(z) and
f(w) simulate each other. And this may only happen when f is a process that
cannot act.

Lemma 3 Let h : N → N be a node substitution and let hG
Ψ−→ H be derivable

from a set of productions. Then, Ψ is of the form hG
hΛ−−→ νx ρ(hK), where

G
Λ−→ K is a derivable transition and ρ is a unifier of hΛ.

Lemma 4 Simulation is preserved by node substitution: for all h : N → N ,
G ≺ F implies hG ≺ hF .

Indeed the lemma may fail for non-context-free theories, as for instance that
of example (?) . Note also that the lemma would have to be rephrased were we
adopting the brute-force notion of node substitution of section 2.

Corollary 2 Simulation is transitive.

Next we show that simulation is preserved by node restriction and parallel
composition. The result is proven by a standard technique which consists in
showing that a suitably defined relation R is a simulation. In particular, writing
α≡ for alpha-equivalence, let

S = {(νx (G|U), νx (F |U)) : G # U, F # U and G ≺ F} and
G RF if and only if G

α≡ G′ and G′SF ′ and F ′ α≡ F.

Theorem 3 R is a simulation.

A bisimulation is a symmetric simulation. Two graphs G and F are called
bisimulation equivalent, written G ∼ F , when they are related by a bisimulation.
This is our notion of observational equivalence on context-free synchronising
graphs.

Theorem 4 Bisimulation is a congruence.

The result is obtained as for theorem 3: by replacing ≺ with ∼ in the defini-
tion of S, we get a relation R̃ similar to R. The proof that R̃ is a bisimulation
goes through as for R. Then, for a non-interfering U , G ∼ F is shown to imply
G|U ∼ F |U by choosing the empty vector for x in the definition of R̃. And
similarly for restriction.

A non-deterministic commuter (continued). The internal communication
channel of a non-deterministic commuter as described in section 2 can be im-
plemented by a local network without affecting the observable behaviour of the
system. We build such internal infrastructure by means of simple components,

called connectors, of the form c(u1u2v). Connectors echo the information re-
ceived from u1 (call it the input node) over u2 (the output node) using a service
node v for the matching. Once v has served its purpose, a new service node is
created. In symbols:

c(u1u2v)
u1,a,v
u2,a,v
−−−−→ νw c(u1u2w).

Figure 3 shows a new representation of the commuter of figure 1 where the
internal channel is implemented by a net of four connectors. (We draw labeled
boxes for edges and bullets for nodes. The latter are solid when restricted, and
clear otherwise. Tentacles are represented by lines connecting edges with nodes.)
With this implementation, the transition of figure 2 is simulated by an equivalent
transition G

Λ−→ H, where (grouping all indexed names into vectors):

G = r(z) | q(y) | ν u v in (z u1) | c(u1u2v1) | c(u2u3v2) | c(u3u4v3) | out (u4y)
H = r(y) | q(y) | ν u w c(u1u2w1) | c(u2u3w2) | c(u3u4w3) | out (u4y)
Λ = { (u1, a, z), (u1, a, v1), (u2, a, v1), (u2, a, v2),

(u3, a, v2), (u3, a, v3), (u4, a, v3), (u4, a, y) }.

s
p c in

s q

ss ss
s

sc
cs

r

out

c c c

c

in
u1 u2 u3z

y

v3

v1 v2

u4

Fig. 3. a non-deterministic commuter with internal structure

In general, a graph made of sockets and connectors behaves like a non-
deterministic commuter when it is a tree (that is, connected and acyclic) in
which output sockets are attached by their first tentacle, input sockets by their
second, no connector is attached by its service node, and moreover there ex-
ists a node, called pivot, splitting the graph into two (possibly disconnected)
subgraphs, one including all the input and the other all the output sockets. In
figure 3, nodes u2, u3 and u4 are all pivotal. Of course, in the absence of a
pivot, the internal infrastructure may allow for parallel connections, which are
not contemplated in the specification of section 2.

Proposition 1 Any graph G satisfying the conditions above is bisimulation
equivalent to the non-deterministic commuter obtained by deleting all the con-
nectors from G and attaching all sockets to the pivot node.

5 A gateway to process algebra

Our rule of synchronisation is reminiscent of the communication law of the Fu-
sion Calculus [PV98] (see appendix). Fusion contains the π-calculus as a proper
sub-calculus and the encoding of the latter in the former is straightforward.
Linking to Fusion is therefore a natural gateway for us to the universe of process
algebra. Here we exhibit a context-free theory of synchronising graphs which can
be viewed, in a precise sense, as a parallel, syntax-free version of the Fusion cal-
culus. Beside establishing an operational correspondence with the calculus, and
proving it sound and complete, we show that the bisimulation of section 4 can
be conveniently used for proving observational equivalence (hyperequivalence) of
Fusion processes.

Of the Fusion calculus we shall not consider summation, which can be treated
straightforwardly when restricted to guarded sums, while it complicates trans-
lation in its general form. Similarly, we do not consider fusion prefixes, such as
{x = y}.P , which can be regarded as derived forms (corresponding semantically
to (z) (z x | z y.P)). Without loss of generality, we also make the simplifying
assumptions that the bound names of a sub-term are always new.

As in SG, input and output are completely symmetrical in Fusion. The name
vectors y and z that are passed as arguments of symmetrical communication
actions xy and xz are matched to define an equivalence relation, denoted by
{y = z}. More precisely {y = z} is the smallest equivalence relation on nodes
including all pairs (yi, zi), with 1 ≤ i ≤ |y| = |z|. This relation is used as
label to the transition corresponding to communication. Members of the same
equivalence class are fused by applying a scope operator, written (x)P which
corresponds to restriction in SG. This is shown by the rules [com] and [scope].
We denote by bn (P) the bound names of P . Note that scope is the only binding
operator in fusion, whereas in the π-calculus there are two (input and restriction).

Our encoding makes use of syntactic entities called templates. A template θ
is a term of Fusion in which all free names are replaced by distinct progressive
indices, starting from 1, as in 1 2.3 | (w) 4 w.5. The arity of θ, written |θ|, is its
highest index: 5 in the above example, 0 in the inaction process ∅. Given a
vector x = x1x2 . . . xn of names, with n = |θ|, we write θ〈x〉 the term of Fusion
obtained by replacing each index i with xi in θ. For example, if θ is the above
template, θ〈x y z x z〉 is the term x y.z | (w)xw.z.

The theory of Fusion, SGF , is a context-free theory of synchronising graphs
featuring the names of Fusion as nodes and indexed (prefix) templates as edges.
An edge θn(x) is to represent an instance of the term θ〈x 〉. Let the metavariable
a range over the set {x, x . . . } of names and co-names. Processes translate into
graphs by a function [[]] defined as follows:

[[∅]] = ∅

[[ay.P]] = θn(x), where n is new and θ〈x〉 = ay.P

[[P |Q]] = [[P]] | [[Q]]

[[(x) P]] = νx [[P]]

Note that indices are used to distinguish different occurrences of the same term,
as in [[x.y |x.y]] = θ7(x, y) | θ4(x, y), where θ is the template 1.2. This explains
the requirement for a new n in the second clause.

We model Fusion by letting Act = {ı, ı}. Then, elements of an action set are
either of the form (x, ı, y), which we write xy, or of the form (x, ı, y), which we
write xy. The axioms of SGF are generated by all productions of the form:

[[ay.P]]
a y−−→ [[P]].

Transitions are labeled in the Fusion Calculus by actions γ of two kinds:
possibly bound input/outputs, as in (x) ay, and fusion actions, represented by
equivalence relations on names (see the appendix). If ϕ is such a relation and
X is a set of names, we let {(y, z) ∈ ϕ | y 6∈ X and z 6∈ X} ∪ {(x, x) |x ∈ X} be
denoted by ϕ �X.

Lemma 5 Let [[P]] Λ−→ G, be a simple, nonempty transition derivable in SGF .

– If Λ = {ay} then P
(x) a y−−−−→ Q, where [[Q]] = G and x includes all names in

y that are bound in P ;
– if Λ is a synchronisation then P

ϕ−→ Q, where ϕ is Λ=�bn (P) and σ[[Q]] = G
for a unifier σ of ϕ

Note that, when transitions correspond to fusions, synchronising graphs do
apply the fusion to the right hand side of the transition, while Fusion only does
it to bound names. This justifies the application of σ to [[Q]] in the second clause
of the theorem. In general, the notion of simulation given in [PV98] justifies
defining a computation P

γ
=⇒ Q in Fusion to be a sequence γ = γ1 . . . γn of

transitions P
γ1−→ Q1, σ1Q1

γ2−→ Q2, σ2Q2
γ2−→ Q3,. . . where Qn = Q and, for all

i, σi is a unifier of γi. The above lemma, in conjunction with corollary 1, yields
the following soundness result.

Theorem 5 Let [[P]] Λ−→ G be in SGF . There exists a computation P
γ

=⇒ Q
such that G = σ[[Q]], where σ unifies the last fusion in γ, Λ includes all fusions
in γ, and Λ x = {(ı, y)} if and only if (z) xy ∈ γ (and similarly for ı).

The following completeness result shows that translation preserves compu-
tational steps.

Theorem 6 Let P
γ−→ Q be a transition in the Fusion Calculus.

– If γ = (x) ay, then [[P]]
a y−−→ [[Q]] is derivable in SGF ;

– if γ is a fusion, then [[P]] Λ−→ ρ[[Q]] is derivable in SGF , where Λ is simple,
ρ unifies γ, and γ is Λ= �bn (P).

Note that α-equivalent terms are identified in Fusion, and hence judgments
of the form [[P]] Λ−→ [[Q]] hold in theorem 6 up to α-equivalence. This means that
there exist P ′ and Q′ that are α-equivalent respectively to P and Q and such
that [[P ′]] Λ−→ [[Q′]] is derivable.

As in the π-calculus, the naive definition of bisimulation relating processes in
Fusion [PV98, Def.7] does not yield observational equivalence: bisimilar processes
may be distinguished by plugging them into context which fuse some of their
names. Then, hyperbisimulation is introduced in [PV98, Def.8], that is a simula-
tion closed under name substitution. Hyperbisimulation equivalence, which we
write h∼, is shown to be preserved by the operations of the calculus, but it may be
hard to prove, as it involves quantification over all possible substitutions. In the
rest of this section we introduce a proof technique for hyperbisimulation which
consists in applying our translation to the Fusion processes and then checking
that the resulting graphs are bisimulation equivalent in a system where paral-
lelism has been suitably restricted. No quantification over substitutions involved.

A single action transition is a transition of the form {(x, a,y)} or of the form
{(x, a, y1 . . . yn), (w, ā, z1 . . . zn)}, with x possibly different from w. A hypobisim-
ulation, is a relation on synchronising graphs defined just like bisimulation in
section 4, but restricting quantification over Λ and Θ in definition 3 to sin-
gle action transitions. Two graphs G and F are hypobisimulation equivalent, or
hypoequivalent for short, written G

.∼ F , when they are related by a hypobisimu-
lation. Hypoequivalence satisfies the following properties: it is preserved by node
substitution, and moreover it is a congruence. We do not include the proofs of
these results as they are replicas of the ones in section 4.

In general, neither does hypoequivalence imply bisimulation equivalence nor
the other way around. Moreover, two graphs of the form [[P]] and [[Q]] may be
bisimulation equivalent even if P and Q are not hyperequivalent. Below we show
that the same cannot happen if [[P]] and [[Q]] are hypoequivalent.

Theorem 7 Let P and Q be processes in Fusion. [[P]] .∼ [[Q]] implies P
h∼ Q.

6 Conclusions

Synchronised graph rewriting has been proposed as a unifying semantic frame-
work for process calculi [HM01,FMT01,LM03,CTT05]. To fulfill this project,
graphs must be endowed with abstract notion of behaviour. In this paper we do
so by introducing a notion of bisimulation equivalence for a system of context-
free synchronising graphs, and by proving it a congruence with respect to parallel
composition and node restriction. As an application, the Fusion calculus is en-
coded in SG and an operational correspondence is proven between the terms of
the calculus and their translations. Our bisimulation yields a proof technique

for hyperbisimulation, which captures observational equivalence in Fusion. Hy-
perbisimulation is defined by a quantification over all substitution. By our tech-
nique, we can avoid this difficulty by just observing suitable truly-concurrent
transitions which processes cannot perform in Fusion but their translations are
capable of performing in SG. We called hypoequivalence the relation obtained on
graphs by such observations. Hypoequivalence implies hyperequivalence, but do
non know whether the opposite holds. Were it the case, it would amount to the
first full-abstraction result relating process calculi and graph rewriting.

Bisimulation equivalence is also useful for proving the correctness of system
implementations, or (dually) of optimisation steps. We developed a simple appli-
cation where the specification of a simple component, called non-deterministic
commuter, is shown to be equivalent to an implementation in which the inter-
nal communication channel is replaced by a local net. The equivalence relies
on the particular “sand clock” shape of the net. Differently shaped nets would
make the equivalence fail, e.g. by introducing a degree of parallelism which non-
deterministic commuters do not have. This responds to the challenge proposed
in [KM01] for an equivalence capable of determining the degree of parallelism in
a network.

References

[CG00] L. Cardelli and A.D. Gordon. Mobile Ambients. Theoretical Computer Sci-
ence, 1(240):177–213, 2000.

[CT05] P. Cenciarelli, , and A. Tiberi. Rational Unification in 28 Characters. Elec-
tronic Notes in Theoretical Computer Science, 127-5:3–20, 2005.

[CTT05] P. Cenciarelli, I. Talamo, and A. Tiberi. Ambient Graph Rewriting. Elec-
tronic Notes in Theoretical Computer Science, 117:335–351, 2005.

[DM87] Pierpaolo Degano and Ugo Montanari. A model for distributed systems based
on graph rewriting. Journal of the ACM (JACM), 34:411–449, 1987.

[FMT01] G. Ferrari, U. Montanari, and E. Tuosto. A LTS semantics of ambients via
graph synchronization with mobility. Proc.ITCS 01, Springer LNCS 2202,
2001.

[HM01] Hirsch, Dan and Montanari, Ugo. Synchronized hyperedge replacement with
name mobility: A graphical calculus for name mobility. In Larsen, Kim and
Nielsen, Mogens, editors, 12th International Conference in Concurrency The-
ory (CONCUR 2001), volume 2154 of Lecture Notes in Computer Science,
pages 121–136, Aalborg, Denmark, August 2001. Springer Verlag.

[KM01] Barbara König and Ugo Montanari. Observational equivalence for synchro-
nized graph rewriting with mobility. In TACS: 4th International Conference
on Theoretical Aspects of Computer Software, 2001.

[LM03] I. Lanese and U. Montanari. A graphical fusion calculus. In Proc. of
COMETA’03, 2003.

[PV98] J. Parrow and B. Victor. The fusion calculus: Expressiveness and symmetry
in mobile processes. Proc. LICS’98, 1998.

[RH01] J. Riely and M. Hennessy. Distributed Processes and Location Failures. The-
oretical Computer Science, 266:693–735, 2001.

Appendices

Proof of Lemma 1.

A transition Ξ in (νxΛ)∗Θ is of the form (νxG)|F Λ∪Θ−−−→ ρ(H ′ |K), where H ′ =
H if x ∈ dng (Λ) and H ′ = νxH otherwise. Note first that, since νxΛ#Θ implies
Λ#Θ, the transition G|F Λ∪Θ−−−→ ρ(H|K) is in Λ ∗Θ. Let x ∈ dng (Λ). Since Ξ is
a transition, x 6∈ ρ(H|K) by condition 3 of definition 1. Then, independently of
whether [open] or [res] is applied to G|F Λ∪Θ−−−→ ρ(H|K), we obtain (νxG)|F =
νx (G|F) Λ∪Θ−−−→ ρ(H ′ |K) in νx (Λ∗Θ) as required. Otherwise, let x 6∈ dng (Λ). If
x 6∈ |H|, then H ′ = νxH = H. If x ∈ dng (Λ∪Θ) then Ξ is the result of applying
[open] to G|F Λ∪Θ−−−→ ρ(H|K). On the other hand, since Ξ satisfies condition 3,
x 6∈ dng (Λ∪Θ) implies x 6∈ ρ(H|K), and hence Ξ is obtained again from Λ∪Θ

by [res]. Finally, if x ∈ |H|, the synchronisation of νxG
Λ−→ νxH with Θ has no

effect on x. Hence ρ(νxH|K) = νx ρ(H|K) and moreover, again by condition 3,
x 6∈ dng (Λ ∪ Θ). Then Ξ is the result of applying [res] to (Λ ∪ Θ) ∈ Λ ∗ Θ as
above.

Proof of Lemma 2.

We show one inclusion; the other is proven likewise.
Let F |G Λ∪Θ−−−→ ρ(H|K) be in Λ ∗ Θ and let F |G|I Λ∪Θ∪Ξ−−−−−→ σ(ρ(H|K)|J) be

in (Λ ∗ Θ) ∗ Ξ. It is easy to check that (Λ ∪ Θ) # Ξ if and only if Λ # Ξ and
Θ # Ξ. Hence, by synchronising Ξ with Θ, and the result with Λ, we obtain a
transition F |G|I Λ∪Θ∪Ξ−−−−−→ σ(H|π(K|J)) in Λ # (Θ # Ξ). The result follows by
noticing that σρ = σπ = σ and hence:

σ(ρ(H|K)|J) = σ(H|K|J) = σ(H|π(K|J)).

Proof of Theorem 1.

Observe that, if x does not occur or it is restricted in the source of a transition
Λ, then νxΛ = Λ. Hence, the hypothesis of lemma 1 can be assumed to hold for
any application of [open] and [res] in a derivation tree. All such applications
can therefore be moved toward the root of the tree. Moreover, since the source
of productions are single-edged, all applications of [sync] can be reshuffled by
lemma 2 so as to separate the actions of G from those of F .

Proof of Lemma 3.

By induction on the depth of the derivation tree. If Ψ is an axiom, the statement
holds with Λ obtained as an instance of the same production as Ψ . This is
because each tentacle in the source of a production is attached to a distinct
node. As for the inductive steps, we only show the case where Ψ is the result of
a synchronisation. The others are similar.

Let Ψ be a transition h(G1|G2)
Ψ1∪Ψ2−−−−→ ρ(H1|H2) obtained by synchronising

hG1
Ψ1−→ H1 and hG2

Ψ2−→ H2. By inductive hypothesis Ψ1 and Ψ2 are respec-
tively of the form hG1

hΛ1−−→ νx1ρ1(hK1), and hG2
hΛ2−−→ νx2ρ2(hK2), and the

transitions G1
Λ1−−→ K1 and G2

Λ2−−→ K2 are derivable. Since ρ1 unifies Ψ1, while
ρ unifies Ψ1 ∪ Ψ2, we have ρ ◦ ρ1 = ρ, and similarly for ρ2. Moreover, x1 and x2

are not affected by the synchronisation of Ψ1 and Ψ2, and hence by ρ. Therefore,
writing x for x1x2, we have:

ρ(H1|H2) = ρ(νx1ρ1hK1|νx2ρ2hK2) = νx ρ(ρ1hK1|ρ2hK2) = νx ρ h(K1|K2).

Let G1|G2
Λ1∪Λ2−−−−→ σ(K1|K2) result from synchronising Λ1 and Λ2, and let x be

a node of K1|K2. Since σx ∈ [x]Λ1∪Λ2 , we have hσx ∈ h[x]Λ1∪Λ2 ⊆ [hx]h(Λ1∪Λ2).
Hence, ρ hσx = ρ hx. Then, ρ hσ(K1|K2) = ρ h(K1|K2) as required.

Proof of Lemma 4.

Define R to be the relation {(νx.ρG, νx.ρF) |G ≺ F} where ρ is a fusion affecting
only free nodes. Let Rα be its α−closure. We show that Rα is a simulation.

First we prove that R is a simulation up to alpha-equivalence. More precisely,
we show that, if (a, b) ∈ R and a

Λ−→ c, then b
Θ−→ d with Λ ∼ Θ and (hc′, kd′) ∈ R,

where h, k are two injective substitutions as in the definition of simulation and
c′, d′ are α−variants of c and d.

Consider a pair (νx.ρG, νx.ρF) in R and a transition νx.ρG
Ψ−→ H ′. By

lemma 3 we know that Ψ can be obtained from G
Λ−→ H and hence it must

be of the following form: νx.ρG
ρΛ−−→ νu.σρH where σ is a unifier of ρΛ and

σ is the identity on u. It is easy to check that νx.ρF can make a transition
νx.ρF

ρΘ−−→ νv.σ′ρK such that ρΛ ∼ ρΘ and that for some h, k satisfying the
condition in the definition of simulation it holds that hH < kK. Thus we have
to show that (h′νu.σρH, k′νv.σ′ρK) is in Rα for a suitable choice of h′, k′.

Observe first that σ (and σ′) can be written as the composition of three
fusions, affecting different kinds of nodes. That is σ = σf · σb · σbf where σf

affects nodes free in νx.ρG, σb nodes bound in both νx.ρG and in νu.σρH and
σbf nodes bound in νx.ρG but free in νu.σρH (similarly for σ′). We can also
assume σf and σ′f to be the same function since ρΛ ∼ ρΘ.

Now we show that there are α variants of νu.σρH and νv.σ′ρK which can
be rewritten as νy.σf · σ̄b ·σbf ·ρ′ ·hbH and νy.σf · σ̄b ·σ′bf ·ρ′ ·kbK, where hb, kb

are h, k restricted to bound nodes of the graphs. Consider a class [ui] containing
the image under ρ of a node yi free in G. Because of the equivalence of Λ and
Θ there must be a class [vj] observationally related to [ui] containing ρ(yi) and
h[ui] = k[vj]. Extend ρ to a function ρ′, defined on h[ui] so that ρ′(h[ui]) = ρ[ui]
and define σ̄b(ρ[ui]) = ρ(yi). On the other hand, if [ui] contains only nodes
already bound in G, these nodes can not be affected by ρ. Moreover in Θ there
must be a class [vj] that is observationally related to [ui] and h[ui] = k[vj].
Choose a representative z and define σ̄b(k[ui]) = σ̄b(h[vj]) = z.

Next we define two injective substitutions h′ and k′ and a function σ̄bf such
that h′ · σbf · ρ = σ̄bf · ρ′ · h and k′ · σ′bf · ρ = σ̄bf · ρ′ · k. Observe that for
each class [xi] that is affected by σbf , there is an observationally related class
[zi] affected by σ′bf , hence these classes can be equated by h′ and k′. Consider
[xi] containing the image under ρ of a node y free in G and let [zj] be the
class observationally related to it. Notice that [zj] must contain ρ(y). Define
h′ · σbf [xi] = ρ(y) = k′ · σ′bf [zj]. Notice that h′ · σbf and k′ · σ′bf on these classes
can be written as a σ̄bf defined on ρ′h[xi] = ρ′k[zj]. Consider now the classes
[xi], [zi] which are observationally related, and contain no free node of G (and
hence of F). The fusion ρ must be the identity on these classes. Define h′, k′

so that h′ · σbf [xi] = h · σbf [xi] and k′ · σ′bf [zi] = h′ · σbf [xi]. The fusion σ̄bf

defined above can be extended so that on these classes h′ · σbf = σ̄bf · h and
k′ · σ′bf = σ̄bf · k. Thus, by applying h′ and k′, we obtain two graphs of the
following form:

νy.σf · σ̄b · σ̄bf · ρ′ · hH

νy.σf · σ̄b · σ̄bf · ρ′ · kK

which by definition are in R. This concludes the proof that R is a simulation up
to alpha-equivalence.

Consider a pair (a′, b′) ∈ Rα; if a′
Λ′

−→ c′′ then b′
Θ′

−→ d′′ with Λ′ ∼ Θ′,
because there are two equivalent transitions, a

Λ−→ c equivalent to Λ′, and b
Θ−→

d equivalent to Θ′. Moreover, since (hc′, kd′) ∈ R and c′′ and d′′ are almost
α equivalent to c′ and d′ (they can differ on nodes that were restricted but
have been opened), we can define h′ and k′ in agreement with the definition of
simulation so that h′c′′ is α−equivalent to hc′ and k′d′′ to kd′, hence (h′c′′, k′d′′)
is in Rα. Hence, Rα is a simulation.

Proof of Corollary 2.

Let G ≺ F ≺ I and let G
Λ−→ H be a transition. There exist F

Θ−→ K and I
Ξ−→ J

such that Λ, Θ and Ξ are equivalent and moreover hH ≺ kK for suitable h
and k. Since F ≺ I, so are kF and kI by lemma 4. By lemma 3, and since k is
injective, there exists a transition kF

kΘ−−→ kK which is simulated by kI
kΞ−−→ kJ ,

with h′kK ≺ k′kJ for suitable h′ and k′. Then, again by lemma 4:

h′hH ≺ h′kK ≺ k′kJ.

Proof of Theorem 3.

Let G, F and U be graphs such that G#U , F#U and G ≺ F . For simplicity
we consider the transitions of G|U and F |U , rather than νx G|U and νx F |U .
The general proof is only slightly more complicated. So, let G|U Φ−→ W be a
transition. We start by exhibiting an equivalent transition F |U → Z. Define the
focus in a derivation of a transition Ξ to be Ξ itself if it is an axiom or the

conclusion of a [sync]; otherwise the focus is that of the sub-derivation of the
premise of Ξ. By Lemma 1, there exists a derivation of Φ in which all the actions
of G are separated from those of U . Let G0|U0

Λ∪Ψ−−−→ ρ(H0 |V0) be its focus, with
G0

Λ−→ H0 and U0
Ψ−→ V0 as premises, where G = νx0 G0 and U = νu0 U0.

Since, by assumption, x0 ∩ |U | = ∅, there are no unsynchronised actions on x0

in Λ (such actions would otherwise occur unsynchronised in Φ as well), and a
transition G

Λ−→ H can therefore be derived from G0
Λ−→ H0. Since G ≺ F , there

exists a transition F
Θ−→ K which is equivalent to Λ, and such that h H ≺ k K

for h and k as in definition 3. By lemmas 1 and 2, there exists a derivation
of Θ where all synchronisations are applied first. Let F0

Θ−→ H0 be its focus,
with F = νy0 F0, and let F0|U0

Θ∪Ψ−−−→ σ(K0 |V0) be derived by synchronising
U0

Ψ−→ V0 with F0
Θ−→ H0. By restricting Θ ∪ Ψ on y0 and u0, a transition

F |U Θ∪Ψ−−−→ Z is obtained, which is easily shown to be equivalent to Φ. Then we
exhibit two functions h′ : |W | → N and k′ : |Z| → N such that h′W R k′Z as
required by Definition 3.

Let H = νx1 H0 and V = νw1 V0, with x1 ⊆ x0 and w1 ⊆ u0. Since
the nodes in x1 and w1 are not affected by the synchronisation of Λ and Ψ ,
νx1 ρH0 = ρH and νw1 ρV0 = ρV . Similarly, for σ. Hence, W and Z are re-
spectively of the form νx2 ρ(H|V) and νy2 σ(K|V), where x2 ⊆ x0u0 are the
dangling nodes of Λ and Ψ which are fused by the synchronisation, and similarly
for y2 ⊆ y0u0. Summarising: we look for suitable functions h′ and k′ such that

h′ νx2 ρ(H|V)R k′ νy2 σ(K|V). (1)

Calling interface of a transition Ξ the set of its unsynchronised parameters
|Ξ|ι = {(x, a, i) ∈ P : Ξx = {(a,y)} and 0 ≤ i ≤ |y |}, we let xR y hold on
|Λ∪Ψ | × |Θ ∪Ψ | precisely when x and y are related either observationally or by
the interface of Ψ , that is: x

Λ∪Ψ= o
Θ∪Ψ= y for some o ∈ |Ψ |ι. The projections of

R form a pushout diagram

?

-

? -

R |Θ ∪ Ψ |

|Λ ∪ Ψ | N ⊆ N

f

g

in which N is a set of fresh nodes, and g and f are such that g x = fy if and
only if xR y. Let ξ : fn (hH) ∪ fn (kK) → N be the node renaming function
mapping x to g(h−1x) if x ∈ fn (hH), or else to f(k−1x) if x ∈ fn (kK). This is
a good definition because, if x ∈ fn (hH) ∪ fn (kK), then g(h−1x) = f(k−1x). It
is easy to check that g(ρH) = ξ(hH) and f(σK) = ξ(kK). Since hH ≺ kK, by
Lemma 4:

g(ρH) ≺ f(σK). (2)

Moreover, let x be a free node of V . Either x is free in U , in which case x (as
an object of |Λ∪Ψ |) is observationally related with itself (as an object of |Θ∪Ψ |)
or there exists a parameter o in the interface of Ψ such that x

Λ∪Ψ= o
Θ∪Ψ= x. In

both cases ρxRσx, and therefore

g(ρV) = f(σV). (3)

Finally, there exists a vector v such that

νv gρ(H|V) = ν(gx2) gρ(H|V) and (4)
νv fσ(K|V) = ν(fy2) fσ(K|V). (5)

In fact, any node x ∈ x2 must be either dangling in Λ or in Ψ . Since Λ

and Θ are equivalent, there must exist y ∈ |Θ| such that x
Λ∪Ψ= o

Θ∪Ψ= y for
some o ∈ |Ψ |ι. Hence, xR y holds. Then, either [y]Θ∪Ψ ∩ |σ(K|V)| = ∅, in
which case gx 6∈ fσ(K|V), or else there exists y′ ∈ y2 such that gx = fy′.
In either cases ν(gx) ν(fy2)fσ(K|V) = ν(fy2) fσ(K|V). The dual argument
applies when x ∈ y2. So, we obtain the equations (4) and (5) by taking v to be
gx2 ∪ fy2.

Now, define h′ to be the restriction of g to the free nodes of νx2 ρ(H|V) and
k′ the restriction of f to the free nodes of νy2 σ(K|V). Since ρ and σ are unifiers,
both h′ and k′ are injective and moreover, since they do not affect the nodes in
x2 and y2, they are such that h′x = k′y if and only if x and y are observationally
related, as required. Then, noticing that h′νx2 ρ(H|V) and ν(gx2) gρ(H|V) are
alpha-equivalent, and so are k′νy2 σ(K|V) and ν(fx2) fσ(K|V), we can finally
prove the relation (1):

h′νx2 ρ(H|V) α= ν(gx2) gρ(H|V) = νv gρ(H|V) by (4)
νv gρ(H|V) S νvfσ(K|V) by (2) and (3)

νvfσ(K|V) = ν(fy2) fσ(K|V) α= k′νy2 σ(K|V) by (5).

Proof of Proposition 1.

Writing CG the commuter obtained from a graph G of sockets and connectors
as above, the set of all pairs of the form (G, CG) is a bisimulation. In fact, any
transition of CG must involve the synchronisation of one (because the infras-
tructure is acyclic) and only one (because a pivot exists) input/output pair of
sockets. By an easy check, the echoing actions (u1, a, v) and (u2, a, v) performed
by the connectors preseve the equivalence of transitions.

Proof of Theorem 7.

We show that S = {(P,Q) | [[P]] .∼ [[Q]] } is a simulation. Then, the results follows
because S is clearly symmetric and closed under substitution (because so is .∼).
Spelling out the definition of simulation [PV98], this means to prove that, for
all P

γ−→ P ′ such that bn(γ) ∩ fn(Q) = ∅, there exists Q
γ−→ Q′ such that σQ′

simulates σP ′ for a substitutive effect σ of γ. Consider a generic transition of
P

γ−→ P ′ such that bn(γ) ∩ fn(Q) = ∅. Since .∼ is closed under α equivalence
and arbitrary fusions, and because of theorem 6, we know that there exists an
α-variant of [[P]] which can go into [[σP ′]] with an action set Λ that corresponds
exactly to γ, where σ is a substitutive effect of γ. Since [[P]] .∼ [[Q]] and since
bn(γ) ∩ fn(Q) = ∅, we also know that there is an α-variant of [[Q]] which can
make a transition to [[σQ′]] with an action set Θ that corresponds to γ and is
equivalent to Λ, where σ is as above. Moreover, we also know that two injective
renamings h, k exist such that h[[σP ′]] .∼ k[[σQ′]], but since the two actions sets
used above are identical, and since .∼ is closed under fusions, we can assume h, k
to be identities. Hence Q simulates P as required.

The fusion Calculus

Here we sketch the operational semantics of the Fusion Calculus (see [PV98]
for more detail). Transitions are labeled by actions of two kinds: input/output
and fusion. Input/output actions can be bound, as in (x) ay, thus recording
that the action opens the scope of x. Fusions occur as a result of matching
the names that are passed during communication, and they are represented in
labels by equivalence relations. In particular, {x = y} denotes the smallest
equivalence relation ϕ such that (xi, yi) ∈ ϕ. Fusions are applied only when they
occur under the scope of some bound name x. In such a case, if a free name
y exists such that (x, y) ∈ ϕ, then y substitutes x in the right hand side of
the transition, and the relation labeling the transition is restricted as follows:
ϕ � x = ϕ ∩ (N − {x})2 ∪ {(x, x)}.

[pref]
-

α.P
α−→ P

[par]
P

α−→ P ′

P |Q α−→ P ′ |Q

[com]
P

xy−−→ P ′ Q
xz−−→ Q′

P |Q {y=z}−−−−→ P ′ |Q′
[scope]

P
ϕ−→ Q xϕ y x 6= y

(x)P
ϕ�x−−→ [y/x]Q

[pass]
P

α−→ Q x 6∈ n(α)
(x)P α−→ (x)Q

[open]
P

(y)az−−−→ Q x ∈ z − y a 6∈ {x, x}
(x)P

(xy)az−−−−→ Q

