
The Java Memory Model: Operationally,
Denotationally, Axiomatically

Pietro Cenciarelli1, Alexander Knapp2, and Eleonora Sibilio1

1 Dipartimento di Informatica, Università di Roma “La Sapienza”
{cenciarelli,sibilio }@di.uniroma1.it

2 Institut für Informatik, Ludwig-Maximilians-Universiẗat München
knapp@pst.ifi.lmu.de

Abstract. A semantics to a small fragment of Java capturing the new memory
model (JMM) described in the Language Specification is given by combining op-
erational, denotational and axiomatic techniques in a novel semantic framework.
The operational steps (specified in the form of SOS) construct denotational mod-
els (configuration structures) and are constrained by the axioms of a configuration
theory. The semantics is proven correct with respect to the Language Specifica-
tion and shown to capture many common examples in the JMM literature.

1 Introduction

Two processesP andQ operating in parallel compete for a lock on shared data. The
structureA shown in Fig. 1 models the parallel compositionP |Q, whereP executes
lock; . . .unlock; and the same doesQ. The identifierslock and lock′ representevents
occurring in computation, namely the execution of a “lock” action respectively byP
andQ. Similarly for unlockandunlock′.


�	�b
�	�

�

	
�



�

	
�



�

	
�

a c

�

	
�



�

	
�



�

	
�



�

	
�




�

	

�




�

	

�


�

	
�

lock′unlock unlock′lock

(A ) (B)

Fig. 1.Configuration structures

Sets of events, calledconfigurationsand depicted here as rounded squares surrounding
their elements, represent consistent states of computation. The{unlock, lock} configu-
ration, for example, represents the state reached by the system after having performed
a lock actionfirst and then an unlock (whileQ remains dormant). We know the lock
came first because we see a{lock} subconfiguration but not an{unlock}. Note that
there is no configuration{lock, lock′} and this represents themutual exclusionof the
two processes from the shared resource.



Structures as those depicted in Fig. 1 are calledconfiguration structures[1], a deno-
tational model introduced by Winskel as an alternative presentation of (prime)event
structures[2]. Several closure conditions have been proposed over the years to make
configuration structures mathematically tractable. In [3] van Glabbeek and Goltz char-
acterise the class of configuration structures where thecausal dependencybetween
events can be faithfully represented by means of partial orders. Such structures, called
stable, are required to be closed under bounded unions and bounded intersections. Sta-
ble structures possess useful semantic properties. For example, when a stateC is part
of the “history” of a stateD, thenD is reachable fromC by a sequence of atomic steps
of computation.

Unfortunately, many structures naturally arising in the semantics of concurrent systems
are not stable;A, for instance, is not. More general structures than the stable have been
studied in the literature [4,5,6,7]. Themonotoneconfiguration structures of [6], for ex-
ample, (of whichA is one) are those where causal dependency is preserved by inclusion
of configurations, indeed a minimal requirement for monotonic reasoning about states
of computation. However, consider an easy program where two threads both assign the
value42 to x (call a andb these events) while a third thread reads this value fromx
(eventc). The corresponding structure,B in Fig. 1, isnotmonotone. So, a (provocative)
question arises:what are algebraically neat event-based models good for?

The present paper advocates the usefulness of event based models by proposing a new
semantic framework which combines denotational, operational and axiomatic tech-
niques to challenge theJava memory model.

The current definition of the Java memory model (JMM) [8] is still much driven by in-
formal examples and, while the key ideas are understood within the community, there is
a lack of rigor for mechanised reasoning. In our opinion, the reason of this is that, while
Java memory model and its run time semantcs are largely independent, no formal ac-
count has been given as yet of their interplay. The notion ofexecution, introduced in the
language specification as formal basis to the former, is not clearly related with the latter,
in that executions may specify values being read or written which no single run of the
program may be able to produce collectively. Hence, executions must bevalidatedby a
complicated procedure involvingtentativeexecutions, each validating the commitment
of certain actions, but each relying on different assumptions as to the values being read
or written by uncommitted actions. Conection with run time semantics is informally
given by the statement that “executions should obey intra-thread consistency” [9, 4.4,
clause 5].

In this paper we change perspective with respect to the language specification and pro-
pose an axiomatisation of the JMM based on the notion ofcausality, deriving from
denotational semantics, rather than on thehappens-beforerelation, upon which the ab-
stract executions of [8] rely. We propose a formal framework wherestructural opera-
tional semantics, describing program evaluation, interacts with aconfiguration theory,
describing the causal interplay of memory and threads.

Configuration theorieswere proposed in [6] as an axiomatic approach to the seman-
tics of concurrent systems and are further developed here to capture mutual exclusion.
A configuration theory is a set ofposet sequentswhich is closed under deduction. A
poset sequent is made of partially ordered sets (posets) of events, where the order is



interpreted as causal dependency. The sequent depicted below (where order is repre-
sented by the vertical bars, with time pointing upward) spells roughly: “whenever two
lock actions occur in a computation, they must occur sequentially, and moreover there
must be anunlockaction in between.” As one would expect, this sequent is satisfied by
structureA, but not by the structure obtained by adding the configuration{lock, lock′}
to it, which violates mutual exclusion (see discussion in Sect. 3).

` ,unlock

lock

lock’

unlock’

lock’

lock

lock lock’

After developing the mathematics of configuration theories (Sect. 2 and 3), we present
six poset sequents like the above axiomatising the JMM from the point of view of
causal dependency (Sect. 4). The resulting configuration theory constrains the rules of
a structural operational semantics for the minimal fragment of Java which is relevant
for understanding the memory model (Sect. 5). Our semantics is then proven correct
with respect to the Java language specification of [8,§17] (Sect. 6).

2 Stable Structures as Traces

A set systemconsists of a setE and a collectionA of subsets ofE [5]. If A ∈ A we
write sub(A) the set{B ∈ A | B ⊆ A}. If A,B ∈ sub(C) for someC ∈ A we
say thatA andB arebound in A. The sets in a systemA are calledconfigurations
when used for modeling a concurrent system, while the elements of the set

⋃
A are

calledevents. If B ∈ A andA ∈ sub(B), thenA is called asubconfigurationof B.
A labelled configuration structure[5] is a structureC endowed by a labelling function
λ : |C| → Act , whereAct is a fixed set of labels calledactions.
In [4] several closure conditions on the set of configurations of a structureA are given
in order to get a precise match withgeneral event structures(generalising those of [2]).
They are:finiteness(if an event belongs to a configurationA, then it also belongs to
a finite subconfiguration ofA), coincidence-freeness(if two distinct events belong to
a configurationA, then there exists a subconfiguration ofA containing exactly one of
them), closure underbounded unionsandnon-emptynessof A. We callconfiguration
structures(or juststructures), and write themC,D . . . , the set systems satisfying all of
the above requirements,exceptclosure under bounded unions (this is not standard in
literature). IfC ⊆ D, we callC asub-structureof D, andD anextensionof C.
Coincidence-freeness endows each configurationC with a canonical partial order:
a ≤C b if and only if, for all D ∈ sub(C), b ∈ D implies a ∈ D. This relation is
calledcausal dependency. If a ∈ C, we writea ↓C the set{b ∈ C | b ≤C a}. Two
eventsa, b ∈ C are said to beconcurrentin C, writtena � b, when neithera ≤C b nor
b ≤C a hold.
A structureC is calledconnectedif, for all configurationsC 6= ∅, there existsa ∈ C
such thatC \ {a} ∈ C. Clearly connectedness implies coincidence freeness and more-
over, having assumedC nonempty and finitary, it also implies that∅ ∈ C (rootedness).



Following [3] we callstablea configuration structure which is connected, closed under
nonempty bounded unions and nonempty bounded intersections. Stability was intro-
duced forevent structuresin [4]. Stable structures are precisely those where the order on
a configuration determines its subconfigurations (see [3, Prop. 5.4 and Thm 5.2]). Be-
low we establish a precise correspondence between certain stable configuration struc-
tures andMazurkiewicz traces. The result motivates the use of stability as means for
abstracting computations over concurrent actions.
Given a strings over a setS, we write |s| the subset of elements ofS occurring ins.
A path over a setS is a strings of elements ofS, none of which is repeated. IfC is
a configuration of a structureC, we calladmissiblea paths overC such that|u| ∈ C
for all prefixesu of s. We write'C the smallest equivalence relation on the paths ofC
such thatuabv 'C ubav if a�b. A tracein C is an equivalence class of'C in which all
paths are admissible. The set of all traces[s]'C

such that|s| = C is denoted byTr(C).
Note that the traces of all configurations in anevent structureform a Mazurkiewicz
trace language(see [10] for detail), and the construction can be shown to be the object
map of an embedding (aco-reflection) of the category of event structures into that of
trace languages [10, Cor. 39].

Theorem 1. LetC be a configuration in a structureC. There exists a one-to-one cor-
respondence between the traces inTr(C) and the stable substructuresD of C such that
C ∈ D ⊆ sub(C), and moreover no other such substructure ofC extendsD properly.

Proof. See App. A.

In view of the above result, we shall calltracesof a configurationC in a structureC
all the stable substructures ofC satisfying the conditions of Theorem 1. The following
result is used in Definition 2.

Proposition 1. Let D and E be traces, respectively ofD andE, in a configuration
structure, and letD ⊆ E . The inclusion map ofD in E, writtenD ↪→ E, is monotone
with respect to the order induced byD andE .

Proof. Let a ≤D b and supposea 6≤E b. There existsA ∈ E such thatb ∈ A 63 a. Then
D 63 D ∩ A ∈ E . Clearly,{C ∈ E | C ⊆ D} ⊆ sub(D) is a stable substructure ofC
which includesD properly(as it containsD ∩A), and henceD is not maximal, against
the assumptions. ut

3 Sequents of Partial Maps

Notation. We writef : A ⇀ B to denote apartial function fromA toB, and say that
the expressionf(a) denotes(an element ofB) whenf is defined ona ∈ A. If e1 and
e2 are expressions as above involving partial functions, we writee1 = e2 whene1 and
e2 denote the same element. WhenA andB are posets, we callf : A ⇀ B monotone
if, whenf(a) andf(b) both denote,a ≤ b impliesf(a) ≤ f(b). (A different notion is
usually adopted in domain theory, where the order represents approximation rather than
causal dependency.) Letf andg be partial maps with same source and target; we write
f v g if f(x) = g(x) wheneverf(x) is defined. We useΓ,∆ . . . to denote sequences



of posets, and writeΓi thei-th component ofΓ . The concatenation of two sequencesΓ
and∆ is writtenΓ,∆. If Γ = A1, . . . Am and∆ = B1, . . . Bn are finite sequences of
posets, we writeρ : Γ ⇀ ∆ to mean thatρ is anm × n-matrix of monotoneinjective
partial functionsρij : Ai ⇀ Bj . Given two matricesα andβ of the formΓ ⇀ ∆,
we writeα v β whenαij v βij , for all i andj. Function composition is written in
diagrammatical order.

Definition 1. A poset sequentΓ `ρ ∆ (just sequentfor short) consists of two finite
sequencesΓ and∆ of posets and a matrixρ : Γ ⇀ ∆ of monotone injective partial
functions.

The posets in a sequent are meant to represent fragments of a configuration. The intu-
itive meaning of a sequentΓ `ρ ∆ is that whenever a trace interpretsall components
of Γ , the interpretation extends alongρ to at least onecomponent of∆. Of course the
∆i may include events that are not mentioned inΓ , thus specifying what is required to
happen after, or must have happened before, a certain combination (Γ ) of events. We
write justρ for a sequentΓ `ρ ∆ whenΓ and∆ are understood or not relevant. On the
other hand, we may omitρ when obvious from the labelling conventions.
Sequents predicate over traces. LetC be a configuration of a structureC; by a slight
abuse, we speak of atraceC to mean a traceD of C in C. In such a case we intend
C as endowed with the partial order induced by the configurations inD. We call inter-
pretationof a sequenceΓ of m posets in a traceC anm × 1-matrix Γ ⇀ C whose
components aretotal.

Definition 2. A structureC is said tosatisfya sequentΓ `ρ ∆ when, for any traceC
in C and interpretationπ : Γ → C, there exist a traceD extendingC, a component
∆k ∈ ∆ and a monotone injective total functionq : ∆k → D such thatρikq v πiu for
all i, whereu : C ↪→ D is the inclusion.

A labelled sequentρ is one in which the elements of posets are assigned labels from
Act and the maps inρ preserve them. Definition 2 extends to labelled sequents and
structures by requiring that interpretation maps preserve labels.
A pathological kind of sequent is̀, which features empty sequences as antecedent and
succedent, and is decorated by the empty matrix. Under the assumption that structures
are not empty, this sequents denotes theabsurd. A sequent of the form̀ A is satisfied
by structures in which every trace is bound to produce a configuration matchingA.
Similarly the sequentA ` is satisfied by structures in which no configuration ever
matchesA.
The formal system of poset sequents introduced in [6] featured inference rules mimick-
ing the structural rules of Gentzen’s sequent calculus. The differences with the present
work are in the kind of maps decorating the sequents (total in [6], partial here) and in
the notion of interpretation (quantifying over configurations vs. traces). Partial maps
yield a stronger system, in which the old rules are derivable. The sequenta ` a b, for

example, is now derivable from
b

a ` | ,
a

while it was previously not, although the former

holds in any structure satisfying the latter. The metatheory is also more compact, fea-
turing four rules against ten, and a generalcut rule, which was previously split into left



and right rules. On the other hand, interpreting over traces allows us to axiomatisemu-
tual exclusion, as with the lock/unlock example, which could not be captured in the old
system. In fact, consider the labelled structureA depicted in Sect. 1, where we assume
λ(lock) = λ(lock ′) andλ(unlock) = λ(unlock ′), and letA′ be the structure obtained
fromA by adding the configuration{lock , lock ′} (no mutual exclusion!). In both struc-
tures the configurationC = {lock , unlock , lock ′, unlock ′} is endowed with the order-
ing lock ≤ unlock , lock ′ ≤ unlock ′. Hence, had we defined satisfaction by quantifying
over configurations rather than on traces, the axiom depicted in Sect. 1 would be satis-
fied by neither structures. However, whileA′ only has one trace onC (viz. A′ itself),
featuring the same order as above,A has two:{lock ≤ unlock ≤ lock ′ ≤ unlock ′} and
{lock ′ ≤ unlock ′ ≤ lock ≤ unlock}. Hence, in the current development,A satisfies
the axiom whileA′ does not, as expected.
The following lemmas are used to prove the soundness of our inference system of poset
sequents (Fig. 2).
Let Γ = Γ1, . . . , Γn and∆ = ∆1, . . . ,∆m be vectors of posets; acovariant mapfrom
Γ to ∆ consists of a functionf : {1, . . . , n} → {1, . . . ,m} on indices, and a family
of (total) monosψi : Γi � ∆f(i). We write(f, ψ) : Γ >7−→ ∆ such a map, shortening
(f, ψ) asf when no confusion arises. Acontravariant map(f, ψ) : Γ <7−→ ∆ is defined
just as above, except forf : {1, . . . ,m} → {1, . . . , n} mapping the indices of∆ to
those ofΓ , and theψi being of the formΓf(i) � ∆i. A matrix σ : Γ ⇀ Σ is called
right extensionof a matrixρ : Γ ⇀ ∆ when there exists a contravariant mapΣ <7−→ ∆
such thatσjf(i)ψi v ρji, for all i, j. In such a case we writeσ ∈ rex (ρ).

Lemma 1. Letσ ∈ rex (ρ); if a structure satisfiesρ, then it satisfiesσ.

Proof. Let a structureC satisfyρ : Γ ⇀ ∆, let σ : Γ ⇀ Σ be in rex (ρ) by a con-
travariant map(f, ψ) : Σ <7−→ ∆, and letπ : Γ → C ∈ C be an interpretation of
Γ in C. SinceC satisfiesρ there exists an inclusionu : C ↪→ D of C in a configura-
tion D and, for somek, a mapq : ∆k → D such thatρikq v πiu, for all i. Then,
σif(k)ψkq v ρikq v πiu as required. ut

The left composition of a matrixσ : Σ ⇀ ∆ with a covariant map(f, ψ) : Γ >7−→ Σ
is the matrixfσ : Γ ⇀ ∆ where(fσ)ij(a) = σf(i)j(ψi(a)). A left Kan extensionof
a matrixρ : Γ ⇀ ∆ along a covariant map(f, ψ) : Γ >7−→ Σ is a matrixρ̂ : Σ ⇀ ∆
such thatρ v fρ̂, and moreover̂ρ v σ holds for allσ : Σ ⇀ ∆ such thatρ v fσ. It
is easy to check that, when theψi arestrong, such aρ̂ exists if and only if, whenever
f(i) = f(j), ψi(a′) = ψj(a′′) if and only if ρik(a′) = ρjk(a′′). In such a casêρhk(a)
is ρjk(a′) whenj anda′ exist such thath = f(j) anda = ψj(a′); otherwiseρ̂hk(a) is
undefined. Note that the above definition ofρ̂ does correspond to the categorical notion
of left Kan extension [11, 10.3] in a precise sense. A matrixσ : Σ ⇀ ∆ is calledleft
extensionof a matrixρ : Γ ⇀ ∆ whenρ has a left Kan extension̂ρ along some map
Γ

>7−→ Σ andσ v ρ̂. In such a case we writeσ ∈ lex (ρ).

Lemma 2. Letσ ∈ lex (ρ); if a structure satisfiesρ, then it satisfiesσ.

Proof. Let a structureC satisfyρ : Γ ⇀ ∆, let ρ̂ be a Kan extension ofρ along a map
(f, ψ) : Γ >7−→ Σ, letσ v ρ̂ and letπ : Σ → C ∈ C be an interpretation ofΣ in C. The



[true]
` ∅

[incl]
A `φ−1 B

(φ : B � A is strong)

Γ `ρ ∆
[sub]

Σ `σ Π
σ ≤ ρ

Γ `τ,ρ A, ∆ Σ, A `σ;π Π
[cut]

Γ, Σ `(ρ;∅),(τπ;σ) ∆, Π

Fig. 2. Inference rules

interpretationfπ yields a configurationC ⊆ D ∈ C and a mapq : ∆k → D such that
ρikq v ψiπf(i)ku, whereu : C → D is the inclusion. Then,σ v ρ̂ yieldsσq v πu as
required. ut

Figure 2 shows rule schemes for deriving poset sequents. Rule [sub] makes use of a
preorder≤ over sequents defined to be the smallest transitive relation whereσ ≤ ρ
whenσ is either inlex (ρ) or in rex (ρ). In the [cut] rule two operations (comma and
semi-colon) are used to compose matrices. Ifρ andσ are matrices of sizem × n and
r × n respectively, we write(ρ;σ) for the(m + r) × n matrix obtained by “placingρ
aboveσ”: the ij-component of(ρ;σ) is ρij for i ≤ m, while it isσ(i−m)j wheni > m.
Similarly, if ρ andσ are of sizem× n andm× r, we write(ρ, σ) for them× (n+ r)
matrix obtained by “placingρ to the left ofσ”: the ij-component of(ρ, σ) is ρij for
j ≤ n, while it is σi(j−n) whenj > n. Finally, let τ andπ be respectively an × 1
column vector and a1×m row vector. Then,τπ stands for then×mmatricialproduct

of the two, where(τπ)ij is the composite mapΓi
τi−→ A

πj−→ Πj . By ∅ we mean a
matrix (of suitable size) whose components are the always undefined partial functions.

Definition 3. A configuration theoryis a set of sequents which is closed under the rule
schemes of Fig. 2.

Theorem 2. The rules of Fig. 2 are sound.

The proof is almost immediate for all the rules except for [sub], where it follows from
Lemmas 1 and 2. Completeness can also be obtained by adjoining to the rules of Fig. 2
the [extend] rule of [6, 5]. This is however out of the scope of the present paper.

4 A Configuration Theory of Java

Here we present a configuration theory specifying the rules by which events of a Java
computation may depend on each other.
Let Var, Mon andTid denote disjoint countable sets, respectively of program variables
(ranged over byx, y. . . ), monitors (m. . . ) and thread identifiers (θ, ζ, ξ. . . ). Theactions
of the theory of Java are either of the form(H, θ, x, v), whereH ∈ {R,W} andv is a
value, or of the form(K, θ,m), withK ∈ {L,U}. Actions(H, θ, x, v), calledmemory
actions, represent thereading(R) of a valuev from the variablex by a threadθ, or the
assignment (W for writing) of v to x by θ, while actions of the form(K, θ,m), called
synchronisations, represent thelocking (L) or theunlocking(U ) of a monitorm by θ.
WhenH andK are irrelevant,(H, θ, x, v) and (K, θ,m) are shortened respectively



`
a

b

a = (θ, x, v), b = (θ, x, w)

a = (θ, x, v), b = (θ, m)

a = (ζ, m), b = (θ, m)

1a)
1b)
1c)

a1) b
a

b

,

`(R, θ, x, v)

(R, θ, x, v)

(W, ζ, x, v)
2) `

(R, θ, x, v)

(W, θ, x, v)

(W, θ, x, w)

,
(R, θ, x, v)

(W, θ, x, w)

3)? ∗
(R, θ, x, v)

(W, ζ, x, v)

`B1 , . . . , Bn , Ai = (U, ζi, mi)

(L, θ, mi)

(W, ζi, x, wi)

Bi =

(R, θ, x, v)

(W, ζi, x, v)

(W, ζi, x, wi)

4)?

(R, θ, x, v)

. . .
AnA1

(R, θ, x, v)

(W, ξ, x, v)

andwhere

`(U, θ, m)n5)

(U, θ, m)n

(L, θ, m)n

(L, θ, m)

(L, ζ, m)n

6)∗
(L, θ, m)

(U, ζ, m)n

`

(?) v 6= w, wi for all i
(∗) θ 6= ζ

Fig. 3.The configuration theory of Java

as (θ, x, v) and (θ,m). Other action component may be similarly omitted when not
relevant. Events are labeled by actions. We writee : l to mean that evente has labell.
When no confusion arises, we use actions to denote the event of which they are label.
We do so in Fig. 3.
Figure 3 shows the axiom schemes of our configuration theory of Java. Theρ in a
sequentΓ `ρ ∆ is left implicit by convening that an evente : A in Γi is mapped byρij

to one with the same labelA in ∆j , in lack of whichρij(e) is undefined.
Scheme 1 describes how the different kinds of thread actions are to be ordered in legal
executions of a program, according to the Java memory model [8,§17]. In particular:
all memory actions of one thread over a same variable must be totally ordered (1a),
while all synchronisations of a thread over a monitor must be ordered with the memory
actions of that thread (1b) and with the synchronisations of other threads over the same
monitor (1c).
Schemes 2, 3 and 4 specify how threads are allowed to read values from the shared
memory. Any value being read by a threadθ from a variablex must have been pre-
viously assigned tox by a possiblydifferent thread (2). Moreover, ifθ reads its own
assignment, then it must be the most recent one (3), while, if it is a value assigned by
another threadζ, it must be the most recent only ifθ andζ synchronised over the same
monitor (4).
Schemes 5 and 6 describe synchronisation. Byan we mean a poset ofn a-labelled

eventsa1,. . .an, with the discrete ordering, while
bn

|
an

denotes the posetan ∪ bn where



ai ≤ bi, for all i. Then, scheme 5 says that any unlock action must be paired with
a preceding lock by the same thread, while 6 guarantees, in combination with 5, that
locks are granted to one thread at a time.

5 An Event-Based Semantics of Java

The axioms are used to constrain the applicability of the operational rules: semantic
configurations of events, labelled as in Sect. 4, are included as part of theoperational
configurations, and each time the semantics reduces a Java term an event is added to
(and causal dependencies recorded in) the current semantic configuration,providedthis
complies with the specified theory. Thus, operational semantics builds a denotational
model of the program (see discussion in Sect. 7). However, events may also be added
to the semantic configurationspresciently(by rule [pre] in Tab. 1), that is before the
corresponding reduction is performed, and only laterfulfilled by the execution engine.
Hence, semantic configurations are also equipped with afulfilment predicate( )! on
write events. Intuition is that(W )! holds inη precisely when(W ) has been fulfilled
by program evaluation. More formally: configurations of events are calledevent spaces
(and ranged over byη, ζ . . . ) when viewed as part of operational configurations. Math-
ematically an event space is just a poset equipped with a fulfilment predicate and sat-
isfying the axioms of Fig. 3. By that we mean that it does when viewed as the (stable)
structure whose configuations are its downward closed subsets.
By using prescient actions, threads may read values from the shared memory which
have not yet been assigned to the corresponding variable. As predicated in the Java
specification [8], this allows the language implementation to apply compiler optimisa-
tion techniques (such as swapping statements, extracting assignments from the branches
of an if . . . ) without violating the legal executions of a program.

Dependencies.A syntactic dependency setis a set of read events. Given syntactic de-
pendency setsδ1 andδ2, we writeδ1δ2 for δ1∪ δ2, whileδ e stands forδ ∪{e}. Syntactic
dependencies are attached to statements during evaluation. Intuitively, ifx is assigned
the value7 by a statementx = y + 2, the corresponding write action must depend on
some event labelled by(R, y, 5). When fulfiling the assignment, the operational seman-
tics checks that its syntactic dependencies do correspond to causal dependencies in the
current event space.
An evente is adjoined to an event spaceη by an operation⊕. More precisely, letη and
η′ be event spaces; we writeη′ ∈ η ⊕ e when:

– |η′| = |η| ∪ {e} and the order inη′ extends that ofη conservatively;
– fulfilment in η′ extends that ofη conservatively, withe unfulfilled if e : (W );
– if e is labelled by(R, θ, x), thend! holds for alld : (W, θ, x) < e;
– if e : (θ) < d : (θ), thend is an unfulfilled write.

We writeη ⊕ e to denoteanyη′ ∈ η ⊕ e. If no suchη′ exists, thenη ⊕ e is undefined.
Given an event spaceη, a dependency setδ and a write action(W, θ, x, v), the expres-
sionη ↓δ (W, θ, x, v) is defined if there exists anunfulfilledevente : (W, θ, x, v) in η
such thatd! holds for alld : (W, θ, x) < e, and moreoverd′ < e in η for all d′ ∈ δ.



Noting that such ane is necessarily unique, we letη ↓δ (W, θ, x, v), when defined,
denote the event spaceη with the new fulfilmente!.

Syntax.We use the following simple fragment of Java.

D-Term::= D-Stm| D-Expr
D-Stm::= Stm Dep

D-Expr ::= Expr Dep

Stm::= ; | Var = D-Expr; | D-Stm D-Stm
| if ( D-Expr) D-Stmelse D-Stm
| synchronized ( Mon) D-Stm
| synchronized( Mon) D-Stm

Expr ::= Lit | Var | Expr Op Expr

Here, Lit is the syntactic domain ofliterals, which we identify with the domain of
values and where we assume suitable functionsop : Lit × Lit → Lit corresponding
to the syntactic binary operatorsop ∈ Op. Dep stands for the domain of syntactic
dependency sets. A “conventional” Java term likex = 1; is turned into aD-Term
(dependentterm) by filling in empty dependency sets, i.e.,(x = (1)∅ ; )∅, and we omit
empty dependency sets in our examples.

Operational configurations.An operational configuration represents the state of ex-
ecution of a multi-threaded Java program; therefore, it may include several depen-
dent terms, one for each thread of execution. We callmultiterm a partial map from
thread identifiers to dependent terms. We let the metavariableT range over multiterms:
T : Tid ⇀ D-Term. When we assume thatθ is not in the domain ofT we writeT ‖(θ, t)
for the multitermT ′ such thatT ′(θ) = t andT ′(θ′) ' T (θ′) for θ′ 6= θ; whereh ' h′

means that ifh is defined so ish′, and vice versa.
An operational configurationis a pair(T, η) consisting of a multitermT and an event
spaceη. In writing operational configurations, we generally drop the parentheses and all
parts that are not immediately relevant in the context of discourse; for example, we may
write just “t, η” to mean some configuration(T ‖ (θ, t), η). Operational configurations
are ranged over byγ.

Rule conventions.In writing an axiomγ1 → γ2 we focus only on the relevant parts of
the configurations involved, and understand that whatever is omitted fromγ1 remains
unchanged inγ2. For example, we understand that the axiom; p → p stands for
T ‖ (θ, ; p), η → T ‖ (θ, p), η. On the other hand, rules with a premise are read by
assuming that whatever changes occur in the omitted parts of the premise also occur in
the conclusion. For example, we understand that:

e1 → e2

e1 op e→ e2 op e
means

T1 ‖ (θ, (e1)δ1), η1 → T2 ‖ (θ, (e2)δ2), η2
T1 ‖ (θ, (e1 op e)δ1), η1 → T2 ‖ (θ, (e2 op e)δ2), η2

.

Operational rules.The operational rules are given in Tab. 1. The metavariables used
(in variously decorated form) in the rule schemes range as follows:u, v ∈ Lit, x ∈ Var,
m ∈ Mon, d, e ∈ Expr, s ∈ Stm, p, q ∈ D-Stm, δ, ε ∈ Dep.
The JMM axioms (Fig. 3) constrain the operational rules. This is because the latter
rely on⊕ producing a legal event space. For example, an attempt by a threadθ to use



[binop1]
d → e

d op e′ → e op e′
[binop2]

d → e

v op d → v op e

[binop3] u op v → op(u, v) [var] θ : x, η → θ : v(R,θ,x,v), η ⊕ (R, θ, x, v)

[assign1]
d → e

x = d; → x = e;
[assign2] θ : x = vε; δ, η → θ : ; δ , η ↓δε (W , θ, x, v)

[if1]
d → e

if ( d ) p else q → if ( e ) p else q

[if2] (if ( trueε ) p else q)δ → pδε

[if3] (if ( falseε ) p else q)δ → qδε

[if4]
pδ, η → p′δ, η

′ qδ, η → q′δ, η
′

(if ( v ) p else q)δ, η → (if ( v ) p′ else q′)δ, η
′

[syn1] θ : synchronized ( m ) p, η → θ : synchronized( m ) p, η ⊕ (L, θ, m)

[syn2]
pδ → qδ

(synchronized( m ) p)δ → (synchronized( m ) q)δ

[syn3] θ : synchronized( m ); , η → θ : ; , η ⊕ (U , θ, m)

[skip] ; p → p [seq]
pδ → p′δ

(p q)δ → (p′ q)δ

[pre] T, η → T, η ⊕ (W )

Table 1.Operational rules

[syn1] for acquiring a lock onm would fail if m is detained by a different thread in the
current stateη, because the expressionη ⊕ (L, θ,m) would then denote no event space
satisfying the axioms for locks. Similarly, the valuev read byθ in x through rule [var]
is forced to comply with the model by the requirement thatη ⊕ (R, θ, x, v) be defined.

Examples.We show that an execution of the sample program in Fig. 4, top-left, started
with all variables initialised to zero can result inr1 andr2 set to1, as predicated in [9].
Using rule [pre], the operational semantics may first “guess” thatx andy will eventually
be set to1 and that these settings do not causally depend on any previously read value.
In fact, this will be fulfilled by execution according to the operational semantics, and
thus the Java trace (writinga → b for a ≤ b) in Fig. 4, top-right, can be produced (see
App. B).
In contrast, in the program

θ1 : r1 = x; if (r1 == 1) y = 1; ‖ θ2 : r2 = y; if (r2 == 1) x = 1;

the write action fory and x do depend on the values previously read fromr1 and
r2 , respectively. Consequently, a poset like the one depicted in Fig. 4, bottom-right,
in which (W , θ2, x , 1) does not extend to a fulfilled execution. But, in fact, this Java



Threadθ1 Threadθ2

r1 = x; r2 = y;
y = 1; x = 1;

a : (R, θ1, x , 1)

?
b : (W , θ1, r1 , 1)!

c : (W , θ1, y , 1)!

*
a′ : (R, θ2, y , 1)

?
b′ : (W , θ2, r2 , 1)!

c′ : (W , θ2, x , 1)!

Y

Threadθ1 Threadθ2

r1 = x; r2 = y;
if (r1 == 1) if (r2 == 1)

y = 1; x = 1;
else

x = 1;

(R, θ1, x , 1)

?
(W , θ1, r1 , 1)!

?
(R, θ1, r1 , 1)

?
(W , θ1, y , 1)!

�
(R, θ2, y , 1)

?
(W , θ2, r2 , 1)!

?
(R, θ2, r2 , 1)

(W , θ2, x , 1)

]

Fig. 4.Examples of Java programs and resulting Java configurations

configuration with this event being fulfilled is the possible outcome of the program in
Fig. 4, bottom-left, where a single write tox not depending onr2 suffices.

6 Correctness

The JMM, as described in the JLS [8,§17], is based on a notion of “happens-before”.
This notion subsumes on the one hand theprogram order po, a thread-wise total order
of actions as dictated by sequentially executing each thread according to the JLS; on the
other hand, it is based on thesynchronisation order so, the total order of all lock and
unlock actions in a program run. Then thehappens-before order hb, which must be a
partial order, is defined to include the transitive closure ofpowith thesynchronises-with
order swwhich restrictssoto lock and unlock actions on the same monitor.
The action description of the JMM differs from our notion of Java actions with respect
to the values, which we included into the actions: In the JMM, two functionsV and
W are used whereV gives for a write action thevalue writtenof this write andW
references for a read action thewrite seenby this read. The write-seen function must
be compatible with the happens-before order in the sense that no write can be seen by a
read which actually happens after it, and no read can see a write that happened before it
but has been overwritten in the happens-before order. Finally, the JMM requires that all
variables of a program are properly initialised and that these initialisations can be seen
by all threads. For this purpose it strengthens the synchronises-with order to include the
initialising writes and the first action of each thread.
A (well-formed)executionof a programP with an action setA now, according to the
JMM, is a tuple(P,A,po, so,W, V, sw,hb) fulfilling the description above. It has to
be stressed that the JMM description [8,§17] does not define the connection between
the programP and the actionsA and the various orderings and functions. In fact, the
actions actually executed in a program run will, in general, depend onW andV , and
their precise connection would be mutually recursive.



The notion of happens-before alone does not suffice to capture causally legal execu-
tions, as it would allow “out-of-thin-air” results to be produced. Thus, the JMM predi-
cates that an executionX has to bevalidatedby a sequence of other executions(Xi)i of
the same programcommittingsubsequently all actions ofX in an increasing sequence
(Ci)i. The process of commitments must be such that the happens-before orders and
the value-written functions ofX andXi coincide on already committed actions inCi;
the writes-seen ofXi, however, need not coincide onCi, but only onCi−1, with the ad-
ditional requirement that every new read action inXi has to see a write that happened-
before inXi and, if it is committed inCi, then the write-seen must be inCi−1. Finally,
synchronisation actions immediately following each other inXi below a committed
action inCi must persist in the validation process.
In order to prove that our semantics is correct with respect to the JMM, we have to
show that a run of the operational semantics on a multitermT such that the final Java
trace is fulfilled indeed gives rise to an executionX for T that can be validated by a
sequence(Xi, Ci)i of executions and commitments. We assume in the following that
the operational semantics starts with an initial Java traceηT that show initialisations for
all variables ofP and thatηT will be extended during computation in such a way that
all subsequent events depend on the initialisations.
Let T be a multiterm and let~γ be a computationγ0 → · · · → γn, with γ0 = (T, ηT ),
γi = (Ti, ηi), andηn totally fulfilled. For the first task, producing an execution, we
observe that the computation~γ induces a total order on the events inηn by assigning
to eache ∈ |ηn| the index of the computational step in which either it was added, if
e : (R), or e : (L), e : (U ), or it was fulfilled, ife : (W ). We construct an execution

exec(~γ) = (T, |ηn|,po(~γ), so(~γ),W (~γ), V (~γ), sw(~γ),hb(~γ))

as follows: Constraining the total order of events to each thread and to all synchro-
nisation actions, we obtain a program orderpo(~γ) and a synchronisation orderso(~γ),
respectively; this also induces a happens-before orderhb(~γ) and a synchronises-with
order sw(~γ). We define the value-written functionV (~γ) by settingV (~γ)(e) = v if
e : (W , v) ∈ ηn, and a write-seen functionW (~γ) by settingW (~γ)(e) to thate′ ∈ ηn

which satisfiese′ : (W , v) ≤ e : (R, v) in ηn and has the minimum distance of indices
assigned toe ande′.

Lemma 3. exec(~γ) is a well-formed execution ofT .

Proof. By construction,hb(~γ) is a partial order.W (~γ) conforms to the requirements of
the JMM as, although there may be several writes of the desired value for a read that
can be seen by the read, there will be at least one valid forW (~γ) by axioms (2–4) on
Java configurations. ut

For the second task, validating an executionexec(~γ), we construct a sequence of execu-
tions and commitments(X(~γ)i, C(~γ)i) inductively as follows:X(~γ)0 andC(~γ)0 are
empty. AssumingX(~γ)k andC(~γ)k to have been defined already for a0 < k < n, we
let ek+1 be a minimal element ofηn \ Ck. Then there is a computation~γ(k) = γ

(k)
0 →

· · · → γ
(k)
l , with γ(k)

0 = (T, ηT ), η(k)
l fulfilled, ηn�C(~γ)k = η

(k)
l , andek+1 maximal

in η(k)
l , which uses the [pre] rule only for events inCk. Indeed, usingexec(~γ) as the



guide for executing which statement and action, no rule execution can be prohibited, but
it may produce a different value for the read and write actions. In fact, having chosen
ek+1 to be minimal inηn \ C(~γ)k all events in theη(i)

l only depend on actions having
been committed inCk and thus, in particular, forek+1 the same value as inη will be
produced. As~γ(k) is a computation, it induces an executionX(~γ)k+1 = exec(~γ(k)) by
Lemma 3; we also setC(~γ)k+1 = C(~γ)k ∪ {ek+1}.

Lemma 4. exec(~γ) is validated by the sequence(X(~γ)i, C(~γ)i)i.

Proof. By construction, the happens-before order ofexec(~γ) is preserved on each
C(~γ)i and all read actions either use a happens-before value inX(~γ)i, as the [pre]
rule must not be used for uncommitted actions, or see a happens-before write.ut

It is worth noting that we have resolved the dilemma of the mutually dependent defini-
tions of program actions and the values seen and written by these actions in the JMM by
restricting the use of prescient write actions in our construction of a validation sequence.

7 Conclusions and Further Research

We presented a structural operational semantics of a small fragment of Java includ-
ing much of what is needed to understand the JMM. The semantics was proven correct
with respect to the language specification of [8]. The specification of the memory model
(Fig. 3) is separate from the run time semantics (Tab. 1) and yet connected in a single
formal framework which gives unambiguous account of their interplay. We believe this
has been missing in the literature as yet. Moreover, the theoretical foundations of the
proposed framework, combining denotational, operational and axiomatical semantics,
support formal reasoning about programs, specifically for proving correctness of otimi-
sation techniques.
There are, for example, obvious compiler optimisations that the current JMM doesnot
support. An example is the following program where threadsθ1 andθ2 run in parallel:

θ1 : r1 = x; r2 = y; if (r1 == 1 && r2 == 1) z = 1;
θ2 : r3 = z; if (r3 == 1) { x = 1; y = 1; } else { y = 1; x = 1; }

After reordering the independent statements in theelse branch, a compiler may exe-
cute assignmentsx = 1; andy = 1; early, so thatr1 , r2 , r3 can all be assigned1.
However, such a behaviour is not legal according to the current JMM, as it violates the
condition that the happens-before orders during validation be consistent with the final
happens-before on the committed actions. In fact, the latter will have the write tox
before the write toy , but during validation the write toy happens before the write tox .
This is indeed a counterexample to the claim by Manson, Pugh, and Adve [9, Thm. 1]
that in the JMM all independent program statements can be reordered; it seems that
the happens-before order would have to be relaxed, not requiring, e.g., the ordering
of independent program actions. In our framework, such a compiler optimisation can
be included by a simple editing of rule [if4]. The theory of reorderings developed by
Saraswat et al. [12] takes into account also more complicated code rearrangements, but,
like the JMM, is not connected to a language semantics.



On a more theoretical side, we notice that our axiomatisation of the JMM has only been
used to contrain the operational rules bylocal checks on fragments of a configuration
structure, the event spaces. What thewholestructure is, which represents the full pro-
gram denotationally, can also be made explicit. (The following construction extends
easily to possibly infinite computations, e.g. when includingwhile loops.)
Letη0, . . . ηn be the sequence of event spaces of a computation~γ. We writeη~γ to denote
the last event spaceηn in ~γ. A computation~γ is calledaccomplishedif all write actions
in η~γ are fulfilled and moreover, ifTn is its last multiterm, thenTn(θ) is ; , when
defined, for all threadsθ.
We writex to denote a specific occurrence of a variablex in a programT , and similarly
for monitors. LetET be the set whose elements are either pairs(x, v), wherex is
a variable andv a value, or pairs(m,K), wherem is a monitor andK ∈ {L,U }.
Viewing the elements ofET as events, we construct a denotational model ofT by
assuming that operational semantics adjoins events to the current trace according to the
following protocol:

– [var] adds(x, v) : (R, x, v) if v is the value read atx;
– [pre] adds(x, v) : (W , x, v) if v is the value written inx;
– [syn1] adds(m,L) : (L,m) when evaluatingsynchronized ( m ) p;
– [syn3] adds(m,U ) : (U ,m) when evaluatingsynchronized( m ); ;

Given a programT , we letJT K be the structure whose configurations are setsC ⊆ ET

such that there exists an accomplished computation~γ of T andC is a downward closed
subset ofη~γ . Note that the causal dependency relation associated with such aC in JT K
is included in, but may not coincide with, the partial order ofη~γ restricted toC.

Proposition 2. JT K satisfies the Java axioms.

Proof. SupposeJT K does not satisfy an axiomΓ `ρ ∆. There must exist a traceC
in JT K and an interpretationπ : Γ → C violating the conditions of Definition 2. By
definition,|C| is a downward closed subset of someη~γ , and there exists an event spaceη
in ~γ (hence satisfying the axioms) which contains all events inC. By an easy argument,
η satisfiesρ if and only if so doesC, against the assumptions. ut

By the arguments developed in Sect. 1, we know thatJT K is neither stable nor monotone.
What the algebraic properties of such structures are is still under investigation, and we
believe that such a denotational understanding may provide valuable tools for formal
proofs of program properties.

Acknowledgements.We would like to thank Florian Lasinger for pointing us to some
problems in the JMM.

References

1. Winskel, G.: Event Structure Semantics of CCS and Related Languages. In Nielsen,
M., Schmidt, E.M., eds.: Proc. 9th Int. Coll. Automata, Languages and Programming
(ICALP’82). Volume 140 of Lect. Notes Comp. Sci., Springer, Berlin (1982) 561–576



2. Nielsen, M., Plotkin, G.D., Winskel, G.: Petri Nets, Event Structures and Domains: Part I.
Theo. Comp. Sci.13 (1981) 85–108

3. van Glabbeek, R.J., Goltz, U.: Refinement of Actions and Equivalence Notions for Concur-
rent Systems. Acta Informatica37 (2001) 229–327

4. Winskel, G.: Event Structures. In Brauer, W., Reisig, W., Rozenberg, G., eds.: Advances in
Petri Nets 1986, Part II. Number 255 in Lect. Notes Comp. Sci., Springer, Berlin (1987)

5. van Glabbeek, R.J., Plotkin, G.D.: Configuration Structures. In: Proc. 10th IEEE Symp.
Logics in Computer Science (LICS’95), San Diego, IEEE Computer Society Press (1995)
199–209

6. Cenciarelli, P.: Configuration Theories. In Bradfield, J.C., ed.: Proc. 16th Int. Wsh. Computer
Science Logic (CSL’02). Volume 2471 of Lect. Notes Comp. Sci., Springer, Berlin (2002)
200–215

7. van Glabbeek, R.J., Plotkin, G.D.: Event Structures for Resolvable Conflicts. In Fiala, J.,
Koubek, V., Kratochv́ıl, J., eds.: Proc. 29th Int. Symp. Mathematical Foundation of Computer
Science (MFCS’04). Volume 3153 of Lect. Notes Comp. Sci., Springer, Berlin (2004) 550–
561

8. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification. 3rd edn.
Addison-Wesley (2005)

9. Manson, J., Pugh, W., Adve, S.V.: The Java Memory Model. In: Proc. 32nd ACM SIGPLAN-
SIGACT Symp. Principles of Programming Languages (POPL’05), ACM Press (2005) 378–
391

10. Winskel, G., Nielsen, M.: Models of Concurrency. In Abramsky, S., Gabbay, D.M.,
Maibaum, T.S.E., eds.: Handbook of Logic in Computer Science. Vol. 4: Semantic Mod-
elling. Oxford University Press, Oxford (1995) 1–148

11. MacLane, S.: Categories for the Working Mathematician. Springer, New York (1971)
12. Saraswat, V., Jagadeesan, R., Michael, M., von Praun, C.: A Theory of Memory Models

(2006)http://www.saraswat.org/raofull.pdf .

A Proof of Theorem 1

Let [s]' be a trace inTr(C). We show that the setD of configurations of the form|r|,
wherer is a prefix of some path in[s]', is stable.D is clearly rooted and connected. It
is also closed under bounded unions. In fact, let|u| and|v| be configurations inD, and
let r1 andr2 be paths in[s]', with u a prefix ofr1 andv of r2. If v is empty the result
holds trivially. Otherwise, letv = av′. Writing r1 aswaw′, a must be independent of
each event inw. Hence,r1 ' aww′, and moreover the latter has a prefixu1 such that
|u1| = |u| ∪ {a}. By iterating the argument, all events inv can be pushed towards the
front of r1 to obtain a path in[s]' with a prefixun such that|un| = |u| ∪ |v|. Hence,D
is stable, the argument for bounded intersections being similar to the above. Conversely,
let D satisfy the stated conditions. It is easy to show that the set of pathsr in C such
that |r| = C and|u| ∈ D, for all prefixesu of r, is a trace inTr(C). This construction
is inverse to the above. ut

B Execution for Fig. 4, top-left

The following run on the operational semantics justifies the resulting computation in
Fig. 4, top-right:

r1 = x; y = 1; ‖ r2 = y; x = 1; , ∅ [pre]−−→



r1 = x; y = 1; ‖ r2 = y; x = 1; , {c′} [assign1, var]−−−−−−−→
r1 = 1 a; y = 1; ‖ r2 = y; x = 1; , {c′ < a} [pre]−−→
r1 = 1 a; y = 1; ‖ r2 = y; x = 1; , {c′ < a < b} [assign2]−−−−→
; y = 1; ‖ r2 = y; x = 1; , {c′ < a < b!} [skip]−−−→
y = 1; ‖ r2 = y; x = 1; , {c′ < a < b!} [pre]−−→
y = 1; ‖ r2 = y; x = 1; , {c′ < a < b!, c} [assign2]−−−−→
; ‖ r2 = y; x = 1; , {c′ < a < b!, c!} [assign1, var]−−−−−−−→
; ‖ r2 = 1a′ ; x = 1; , {c′ < a < b!, c! < a′} [pre]−−→
; ‖ r2 = 1a′ ; x = 1; , {c′ < a < b!, c! < a′ < b′} [assign2]−−−−→
; ‖ ; x = 1; , {c′ < a < b!, c! < a′ < b′!} [skip]−−−→
; ‖ x = 1; , {c′ < a < b!, c! < a′ < b′!} [assign2]−−−−→
; ‖ ; , {c′! < a < b!, c! < a′ < b′!}

where the terms for the threadsθ1 andθ2 are shown left and right to‖.


