The Java Memory Model: Operationally,
Denotationally, Axiomatically

Pietro Cenciarelli, Alexander Knapp, and Eleonora Sibilib

! Dipartimento di Informatica, Universitdi Roma “La Sapienza”
{cenciarelli,sibilio }@di.uniromal.it
2 Institut fur Informatik, Ludwig-Maximilians-Universit Miinchen
knapp@pst.ifi.Imu.de

Abstract. A semantics to a small fragment of Java capturing the new memory
model (JMM) described in the Language Specification is given by combining op-
erational, denotational and axiomatic techniques in a novel semantic framework.
The operational steps (specified in the form of SOS) construct denotational mod-
els (configuration structures) and are constrained by the axioms of a configuration
theory. The semantics is proven correct with respect to the Language Specifica-
tion and shown to capture many common examples in the JMM literature.

1 Introduction

Two processe$’ and (@ operating in parallel compete for a lock on shared data. The
structureA shown in Fig. 1 models the parallel compositiBi @, where P executes
lock; . .. unlock and the same do&g. The identifierdock andlock represenevents
occurring in computation, namely the execution of a “lock” action respectively by
and@. Similarly for unlockandunlocK.

‘@

unlock ('OC" ﬂ (['OCkI] unlocw} O

Fig. 1. Configuration structures

Sets of events, callezbnfigurationsand depicted here as rounded squares surrounding
their elements, represent consistent states of computation{urtheck lock} configu-

ration, for example, represents the state reached by the system after having performed
a lock actionfirst and then an unlock (whil€) remains dormant). We know the lock
came first because we se€{lack} subconfiguration but not afunlock}. Note that

there is no configuratiotilock, lock'} and this represents theutual exclusiorof the

two processes from the shared resource.

Structures as those depicted in Fig. 1 are catledfiguration structure§l], a deno-
tational model introduced by Winskel as an alternative presentation of (pewasit
structures[2]. Several closure conditions have been proposed over the years to make
configuration structures mathematically tractable. In [3] van Glabbeek and Goltz char-
acterise the class of configuration structures wherecthesal dependencletween
events can be faithfully represented by means of partial orders. Such structures, called
stable are required to be closed under bounded unions and bounded intersections. Sta-
ble structures possess useful semantic properties. For example, when@ istiart

of the “history” of a stateD, thenD is reachable frond’ by a sequence of atomic steps

of computation.

Unfortunately, many structures naturally arising in the semantics of concurrent systems
are not stable, for instance, is not. More general structures than the stable have been
studied in the literature [4,5,6,7]. Tmeonotoneconfiguration structures of [6], for ex-
ample, (of whichA4 is one) are those where causal dependency is preserved by inclusion
of configurations, indeed a minimal requirement for monotonic reasoning about states
of computation. However, consider an easy program where two threads both assign the
value42 to x (call « andb these events) while a third thread reads this value fiom
(eventc). The corresponding structuig,in Fig. 1, isnotmonotone. So, a (provocative)
guestion arisesvhat are algebraically neat event-based models good for?

The present paper advocates the usefulness of event based models by proposing a new
semantic framework which combines denotational, operational and axiomatic tech-
niques to challenge thiava memory model

The current definition of the Java memory model (JMM) [8] is still much driven by in-
formal examples and, while the key ideas are understood within the community, there is
a lack of rigor for mechanised reasoning. In our opinion, the reason of this is that, while
Java memory model and its run time semantcs are largely independent, no formal ac-
count has been given as yet of their interplay. The noticexetutionintroduced in the
language specification as formal basis to the former, is not clearly related with the latter,
in that executions may specify values being read or written which no single run of the
program may be able to produce collectively. Hence, executions mustidatedby a
complicated procedure involvirtgntativeexecutions, each validating the commitment

of certain actions, but each relying on different assumptions as to the values being read
or written by uncommitted actions. Conection with run time semantics is informally
given by the statement that “executions should obey intra-thread consistency” [9, 4.4,
clause 5].

In this paper we change perspective with respect to the language specification and pro-
pose an axiomatisation of the JMM based on the notionanfsality deriving from
denotational semantics, rather than ontihppens-beforeelation, upon which the ab-
stract executions of [8] rely. We propose a formal framework wisémactural opera-

tional semanticsdescribing program evaluation, interacts withaafiguration theory
describing the causal interplay of memory and threads.

Configuration theoriesvere proposed in [6] as an axiomatic approach to the seman-
tics of concurrent systems and are further developed here to capture mutual exclusion.
A configuration theory is a set gfoset sequentshich is closed under deduction. A
poset sequent is made of partially ordered sets (posets) of events, where the order is

interpreted as causal dependency. The sequent depicted below (where order is repre-
sented by the vertical bars, with time pointing upward) spells roughly: “whenever two
lock actions occur in a computation, they must occur sequentially, and moreover there
must be arunlockaction in between.” As one would expect, this sequent is satisfied by
structureA, but not by the structure obtained by adding the configurafiock, lock'}

to it, which violates mutual exclusion (see discussion in Sect. 3).

lock’ lock

lock lock’ = unlock , unlock

lock lock’

After developing the mathematics of configuration theories (Sect. 2 and 3), we present
six poset sequents like the above axiomatising the JMM from the point of view of
causal dependency (Sect. 4). The resulting configuration theory constrains the rules of
a structural operational semantics for the minimal fragment of Java which is relevant
for understanding the memory model (Sect. 5). Our semantics is then proven correct
with respect to the Java language specification o§18] (Sect. 6).

2 Stable Structures as Traces

A set systenconsists of a sef’ and a collectiond of subsets o [5]. If A € A we
write sub(A) the set{B € A | B C A}. If A,B € sub(C) for someC € A we
say thatA and B areboundin A. The sets in a systemd are calledconfigurations
when used for modeling a concurrent system, while the elements of ti¢.dedre
calledeventsIf B € A andA € sub(B), thenA is called asubconfiguratiorof B.

A labelled configuration structurfs] is a structureC endowed by a labelling function
A |C| — Act, whereAct is a fixed set of labels calleattions

In [4] several closure conditions on the set of configurations of a strugtuaee given
in order to get a precise match wigleneral event structurggeneralising those of [2]).
They are-finitenesdif an event belongs to a configuratioh then it also belongs to
a finite subconfiguration ofl), coincidence-freeneq# two distinct events belong to
a configurationA, then there exists a subconfiguration4dtontaining exactly one of
them), closure unddsounded unionandnon-emptynessf 4. We call configuration
structureg(or juststructure, and write thent, D, the set systems satisfying all of
the above requirementsxceptclosure under bounded unions (this is not standard in
literature). IfC C D, we callC asub-structureof D, andD anextensiorof C.
Coincidence-freeness endows each configurafiowith a canonical partial order:
a <¢ bifand only if, for all D € sub(C), b € D impliesa € D. This relation is
calledcausal dependencyf a € C, we writea |¢ the set{b € C' | b <¢ a}. Two
eventsa, b € C are said to beoncurrentin C, writtena ¢ b, when neitherr < b nor

b <¢ a hold.

A structureC is calledconnectedf, for all configurationsC' # (), there exista: € C
such thatC \ {a} € C. Clearly connectedness implies coincidence freeness and more-
over, having assume@ nonempty and finitary, it also implies théte C (rootednesp

Following [3] we callstablea configuration structure which is connected, closed under
nonempty bounded unions and nonempty bounded intersections. Stability was intro-
duced forevent structurem [4]. Stable structures are precisely those where the order on
a configuration determines its subconfigurations (see [3, Prop. 5.4 and Thm 5.2]). Be-
low we establish a precise correspondence between certain stable configuration struc-
tures andMlazurkiewicz tracesThe result motivates the use of stability as means for
abstracting computations over concurrent actions.

Given a strings over a setS, we write |s| the subset of elements &foccurring ins.

A pathover a sefS is a strings of elements ofS, none of which is repeated. @' is

a configuration of a structur@, we calladmissiblea paths overC' such thatu| € C

for all prefixesu of s. We write~» the smallest equivalence relation on the path€' of
such thatuabv ~¢ ubav if acb. A tracein C'is an equivalence class of- in which all

paths are admissible. The set of all trapgs ., such thats| = C'is denoted byT'(C).

Note that the traces of all configurations in event structurdorm a Mazurkiewicz

trace languagdsee [10] for detail), and the construction can be shown to be the object
map of an embedding (eo-reflection of the category of event structures into that of
trace languages [10, Cor. 39].

Theorem 1. Let C be a configuration in a structuré. There exists a one-to-one cor-
respondence between the tracedir(C) and the stable substructur&sof C such that
C € D C sub(C), and moreover no other such substructur€ @xtendsD properly.

Proof. See App. A.

In view of the above result, we shall cathcesof a configurationC' in a structureC
all the stable substructures @fsatisfying the conditions of Theorem 1. The following
result is used in Definition 2.

Proposition 1. Let D and £ be traces, respectively d? and E, in a configuration
structure, and le® C £. The inclusion map ab in E, written D — F, is monotone
with respect to the order induced Byand €.

Proof. Leta <p b and suppose £g b. There existsd € £ suchthab € A Z a. Then
DZDnNAce€é& Clearly,{C € £ | C C D} C sub(D) is a stable substructure 6f
which includesD properly (as it containd) N A), and hencé is not maximal, against
the assumptions. O

3 Sequents of Partial Maps

Notation. We write f : A — B to denote gartial function from A to B, and say that

the expressiorf(a) denotegan element oB) when f is defined om: € A. If e; and

ey are expressions as above involving partial functions, we wiite e; whene; and

eo denote the same element. Whérand B are posets, we cafl : A — B monotone

if, when f(a) and f(b) both denoteg < b implies f(a) < f(b). (A different notion is
usually adopted in domain theory, where the order represents approximation rather than
causal dependency.) Lgtandg be partial maps with same source and target; we write

f Egif f(z) = g(x) wheneverf(x) is defined. We usé’, A ... to denote sequences

of posets, and writé’; thei-th component of . The concatenation of two sequendés
andAiswritten I, A. If ' = A,,... A, andA = By, ... B, are finite sequences of
posets, we writey : I' — A to mean thap is anm x n-matrix of monotonenjective
partial functionsp;; : 4, — B;. Given two matricesx and 5 of the formI” — A,
we writea C 8 wheneay; T G5, for all ¢ and j. Function composition is written in
diagrammatical order.

Definition 1. A poset sequent’ -, A (just sequentfor short) consists of two finite
sequenceg’ and A of posets and a matrix : I' — A of monotone injective partial
functions.

The posets in a sequent are meant to represent fragments of a configuration. The intu-
itive meaning of a sequett -, A is that whenever a trace interpret$ components
of I, the interpretation extends alopgo at least onecomponent ofA. Of course the
A; may include events that are not mentioned’irthus specifying what is required to
happen after, or must have happened before, a certain combin&fiaf évents. We
write justp for a sequent” -, A whenI" andA are understood or not relevant. On the
other hand, we may omjt when obvious from the labelling conventions.

Sequents predicate over traces. Lebe a configuration of a structutg by a slight
abuse, we speak ofteace C to mean a trac® of C in C. In such a case we intend
C' as endowed with the partial order induced by the configuratiois We callinter-
pretationof a sequencé’ of m posets in a trac€ anm x 1-matrix I’ — C whose
components artotal.

Definition 2. A structureC is said tosatisfya sequent” -, A when, for any trace”
in C and interpretationr : I" — C, there exist a traceD extendingC, a component
Ay € A and a monotone injective total functign A, — D such thatp;,q C m;u for
all i, whereu : C — D is the inclusion.

A labelled sequenp is one in which the elements of posets are assigned labels from
Act and the maps ip preserve them. Definition 2 extends to labelled sequents and
structures by requiring that interpretation maps preserve labels.
A pathological kind of sequent is, which features empty sequences as antecedent and
succedent, and is decorated by the empty matrix. Under the assumption that structures
are not empty, this sequents denotesahsurd A sequent of the formr A is satisfied
by structures in which every trace is bound to produce a configuration matehing
Similarly the sequentd + is satisfied by structures in which no configuration ever
matchesA.
The formal system of poset sequents introduced in [6] featured inference rules mimick-
ing the structural rules of Gentzen’s sequent calculus. The differences with the present
work are in the kind of maps decorating the sequents (total in [6], partial here) and in
the notion of interpretation (quantifying over configurations vs. traces). Partial maps
yield a stronger system, in which the old rules are derivable. The sequentb, for

b
example, is now derivable fromt | , while it was previously not, although the former

a
holds in any structure satisfying the latter. The metatheory is also more compact, fea-
turing four rules against ten, and a genenatirule, which was previously split into left

and right rules. On the other hand, interpreting over traces allows us to axiomatise

tual exclusionas with the lock/unlock example, which could not be captured in the old
system. In fact, consider the labelled structdreepicted in Sect. 1, where we assume
A(lock) = M(lock”) and\(unlock) = A(unlock’), and letA’ be the structure obtained
from A by adding the configuratiofiock, lock’} (no mutual exclusion!). In both struc-
tures the configuratiod’ = {lock, unlock, lock’, unlock’} is endowed with the order-

ing lock < unlock, lock’ < unlock’. Hence, had we defined satisfaction by quantifying
over configurations rather than on traces, the axiom depicted in Sect. 1 would be satis-
fied by neither structures. However, whil only has one trace o (viz. A’ itself),
featuring the same order as abovehas two:{lock < unlock < lock’” < unlock’} and

{lock” < unlock’ < lock < unlock}. Hence, in the current development,satisfies

the axiom whileA’ does not, as expected.

The following lemmas are used to prove the soundness of our inference system of poset
sequents (Fig. 2).

LetI'=14,...,I, andA = Ay, ..., A, be vectors of posets;@variant magrom
I' to A consists of a functiorf : {1,...,n} — {1,...,m} on indices, and a family

of (total) monosy; : I — Ay We write (f,) : I ~— A such a map, shortening
(f,%) asf when no confusion arises. @ntravariant mag f,) : I' — A is defined
just as above, except fof : {1,...,m} — {1,...,n} mapping the indices aofl to
those ofl", and they; being of the forml ;) — A;. Amatrixo : I' — X'is called
right extensiorof a matrixp : I — A when there exists a contravariant map— A
such thaw ;¢ (;)1; T pjs, for all 4, j. In such a case we write € rex(p).

Lemma 1. Leto € rex(p); if a structure satisfiep, then it satisfies-.

Proof. Let a structure satisfyp : I' — A, leto : I' — X be inrex(p) by a con-
travariant map(f,v) : ¥ — A, and letr : I’ — C € C be an interpretation of
I in C. SinceC satisfiesp there exists an inclusion : C' — D of C' in a configura-
tion D and, for somek, a mapg : A, — D such thatp;pq¢ E m;u, for all 4. Then,
Tif(k)¥rq E pirg C miu as required. ad

The left composition of a matrix : > — A with a covariant magf,v) : I' —— X
is the matrixfo : I' — A where(fo);;j(a) = 05);(¢i(a)). A left Kan extensioof
amatrixp : I' — A along a covariant magf,) : I' — X is a matrixp : X — A
such thatp C f5, and moreovep C ¢ holds for allo : ¥ — A such thap C fo. It
is easy to check that, when thige arestrong such ap exists if and only if, whenever
(1) = f(4), ¢i(a") = ¥;(a”) ifand only if p;(a’) = pjr(a”). In such a casgp(a)
is pjr(a’) whenj anda’ exist such thak = f(j) anda = ;(a’); otherwisepy(a) is
undefined. Note that the above definitionpaloes correspond to the categorical notion
of left Kan extension [11, 10.3] in a precise sense. A matrixX — A is calledleft
extensiorof a matrixp : I' — A whenp has a left Kan extensiofialong some map
I' — X ando C p. In such a case we write € lez(p).

Lemma 2. Leto € lex(p); if a structure satisfiep, then it satisfies.

Proof. Let a structure® satisfyp : I' — A, let p be a Kan extension gf along a map
(f,): '+~ X, leto C pandletr : X — C € C be an interpretation of in C. The

[true] T@ [incl] T (¢ : B — Ais strong)

re,d oug LrreAA S Abe 1T

[sub]
bo 11 L2 F (0, (rmie) A 1T

Fig. 2. Inference rules

interpretationfr yields a configuratiod' C D € C and a magy : Ay — D such that
pirq E Vi siypu, Whereu : €' — D is the inclusion. Theny C p yieldsoq C 7u as
required. O

Figure 2 shows rule schemes for deriving poset sequents. Rule [sub] makes use of a
preorder< over sequents defined to be the smallest transitive relation whetep
wheno is either inlexz(p) or in rexz(p). In the [cut] rule two operations (comma and
semi-colon) are used to compose matriceg. dindo are matrices of sizev x n and

r X n respectively, we writép; o) for the (m + r) x n matrix obtained by “placing
aboveo”: the ij-component of p; o) is p;; for i < m, while itis o(;_,,); wheni > m.
Similarly, if p ando are of sizen x n andm x r, we write(p, o) forthem x (n +)

matrix obtained by “placing to the left of¢”: the ij-component of(p, o) is p;; for

J < n, while itis o;;_,) whenj > n. Finally, let and7 be respectively a x 1
column vector and & x m row vector. Thenyr stands for the: x m matricialproduct

of the two, where(r7);; is the composite map; —~ A -, II;. By () we mean a
matrix (of suitable size) whose components are the always undefined partial functions.

Definition 3. A configuration theorys a set of sequents which is closed under the rule
schemes of Fig. 2.

Theorem 2. The rules of Fig. 2 are sound.

The proof is alImost immediate for all the rules except for [sub], where it follows from
Lemmas 1 and 2. Completeness can also be obtained by adjoining to the rules of Fig. 2
the [extend] rule of [6, 5]. This is however out of the scope of the present paper.

4 A Configuration Theory of Java

Here we present a configuration theory specifying the rules by which events of a Java
computation may depend on each other.

Let Var, Mon andTid denote disjoint countable sets, respectively of program variables
(ranged over by, . . .), monitors {n. . .) and thread identifier§(¢, ¢...). Theactions

of the theory of Java are either of the fo(tH, 0, z,v), whereH € {R, W} andv is a

value, or of the form(K, 0, m), with K € {L,U}. Actions(H, 0, z,v), calledmemory
actions represent theeading(R) of a valuev from the variabler by a thread), or the
assignmentl{/ for writing) of v to = by 6, while actions of the forn{ X, 8, m), called
synchronisationsrepresent théocking (L) or theunlocking(U) of a monitorm by 6.

When H and K are irrelevant(H, 6, x,v) and (K, 6, m) are shortened respectively

a b la) a=(0,z,v), b= (0,z,w)

1) ab - | ’ | 1b) a = (0,z,v), b= (0,m)
b a 1c) a=(¢,m), b= (0,m)
(R797:L‘7/U)
(R,0,z,v) B (R,0,z,v) | (R,0,z,v)
R o weme .
St (W, 0,2, w) | (W, ¢,z,v)
(W, 0,z,w)
(L,0,m;) (R,0,2,v)
(R,0,z,v) (R,0,z,v) where ‘ and ‘
o | ...l FB,...,B., | Ai = (U, ¢G,mi) Bi= (W, ¢, x,0)
A A, (W, &, z,v) \ |
(W,Ci,ﬂ?,’lﬂj) (chiyxawi)
(U,G,m)” . (L797m) (L797m)
5 U.6m" | ® o
(L707m)7L (L,C’m)n (U7C7m)"

(%) v # w, w; forall ¢

(x)0#¢

Fig. 3. The configuration theory of Java

as (0, z,v) and (6, m). Other action component may be similarly omitted when not
relevant. Events are labeled by actions. We weite to mean that event has label.
When no confusion arises, we use actions to denote the event of which they are label.
We do so in Fig. 3.
Figure 3 shows the axiom schemes of our configuration theory of Javap Thea
sequent” -, A is left implicit by convening that an eveat: A in I'; is mapped by;;
to one with the same label in A}, in lack of whichp;;(e) is undefined.
Scheme 1 describes how the different kinds of thread actions are to be ordered in legal
executions of a program, according to the Java memory modéL g, In particular:
all memory actions of one thread over a same variable must be totally ordered (1a),
while all synchronisations of a thread over a monitor must be ordered with the memory
actions of that thread (1b) and with the synchronisations of other threads over the same
monitor (1c).
Schemes 2, 3 and 4 specify how threads are allowed to read values from the shared
memory. Any value being read by a thre@drom a variablex must have been pre-
viously assigned ta: by a possiblydifferent thread (2). Moreover, #f reads its own
assignment, then it must be the most recent one (3), while, if it is a value assigned by
another thread, it must be the most recent onlydfand(synchronised over the same
monitor (4).
Schemes 5 and 6 describe synchronisationaBywve mean a poset af a-labelled

b’n
eventsa, ,. . .a,,, with the discrete ordering, while| denotes the poset* U b where

an

a; < b;, for all i. Then, scheme 5 says that any unlock action must be paired with
a preceding lock by the same thread, while 6 guarantees, in combination with 5, that
locks are granted to one thread at a time.

5 An Event-Based Semantics of Java

The axioms are used to constrain the applicability of the operational rules: semantic
configurations of events, labelled as in Sect. 4, are included as part opénational
configurations, and each time the semantics reduces a Java term an event is added to
(and causal dependencies recorded in) the current semantic configysediodedthis
complies with the specified theory. Thus, operational semantics builds a denotational
model of the program (see discussion in Sect. 7). However, events may also be added
to the semantic configuratioqsesciently(by rule [pre] in Tab. 1), that is before the
corresponding reduction is performed, and only |&tfilled by the execution engine.
Hence, semantic configurations are also equipped witlifément predicateg-)! on

write events. Intuition is thati?’)! holds inn precisely when W) has been fulfilled

by program evaluation. More formally: configurations of events are calledt spaces

(and ranged over by, ¢ ...) when viewed as part of operational configurations. Math-
ematically an event space is just a poset equipped with a fulfilment predicate and sat-
isfying the axioms of Fig. 3. By that we mean that it does when viewed as the (stable)
structure whose configuations are its downward closed subsets.

By using prescient actions, threads may read values from the shared memory which
have not yet been assigned to the corresponding variable. As predicated in the Java
specification [8], this allows the language implementation to apply compiler optimisa-
tion techniques (such as swapping statements, extracting assignments from the branches
of anif ...) without violating the legal executions of a program.

DependenciesA syntactic dependency ssta set of read events. Given syntactic de-
pendency set$ andd,, we writed; d2 for §; U d2, while d e stands fod U{e}. Syntactic
dependencies are attached to statements during evaluation. Intuitivelsg, &ssigned

the value? by a statement = y + 2, the corresponding write action must depend on
some event labelled KiR, y, 5). When fulfiling the assignment, the operational seman-

tics checks that its syntactic dependencies do correspond to causal dependencies in the
current event space.

An evente is adjoined to an event spagédy an operatiom. More precisely, let) and

7’ be event spaces; we writg € n & e when:

— || = In| U {e} and the order im’ extends that ofy conservatively;

— fulfilment in ' extends that ofy conservatively, witte unfulfilled if e : (W);
— if eis labelled by(R, 6, z), thend! holds for alld : (W, 0, z) < e;

— if e: (0) < d: (), thend is an unfulfilled write.

We writen) & e to denoteanyn’ € n & e. If no suchy’ exists, them & e is undefined.
Given an event spacg a dependency sétand a write actior{iV, 0, z, v), the expres-
sionn |s (W,0,z,v) is defined if there exists amfulfilled evente : (W, 6, x,v) in n
such thatd! holds for alld : (W, 6,x) < e, and moreovet!’ < e inn forall d’ € ¢.

Noting that such ar is necessarily unique, we let |s (W, 0, z,v), when defined,
denote the event spagewith the new fulfilmente!.

Syntax.We use the following simple fragment of Java.

D-Term::= D-Stm| D-Expr Stm::=; | Var = D-Expr; | D-Stm D-Stm
D-Stm::= Stm Dep |if(D-Expr) D-Stmelse D-Stm
D-Expr ::= Expr Dep | synchronized(Mon) D-Stm

| synchronized Mon) D-Stm
Expr ::= Lit | Var | Expr Op Expr

Here, Lit is the syntactic domain dfterals, which we identify with the domain of
values and where we assume suitable functigms Lit x Lit — Lit corresponding
to the syntactic binary operatoogp € Op. Dep stands for the domain of syntactic
dependency sets. A “conventional” Java term like= 1; is turned into aD-Term
(dependenterm) by filling in empty dependency sets, i&<,= (1)g ;)g, and we omit
empty dependency sets in our examples.

Operational configurations.An operational configuration represents the state of ex-
ecution of a multi-threaded Java program; therefore, it may include several depen-
dent terms, one for each thread of execution. We walltiterm a partial map from
thread identifiers to dependent terms. We let the metavariabdage over multiterms:

T : Tid — D-Term When we assume théis not in the domain of” we write T || (6, t)

for the multitermT” such thatl” (0) = ¢ andT”(¢") ~ T'(¢’) for ¢’ # 6; whereh ~ b/
means that if is defined so i%/’, and vice versa.

An operational configurations a pair(7',7) consisting of a multiterfT and an event
space;. In writing operational configurations, we generally drop the parentheses and all
parts that are not immediately relevant in the context of discourse; for example, we may
write just “¢,n” to mean some configuratiofT” || (6,t),). Operational configurations

are ranged over by.

Rule conventionslIn writing an axionry; — 2 we focus only on the relevant parts of

the configurations involved, and understand that whatever is omittedra@mains
unchanged iny,. For example, we understand that the axipnmp — p stands for
TI|,; p),n— T1I (8,p),n Onthe other hand, rules with a premise are read by
assuming that whatever changes occur in the omitted parts of the premise also occur in
the conclusion. For example, we understand that:

e1 — e means Th || (8, (e1)s,),m — T || (6, (e2)s,)s M2

e10pe—ex0pe Ty ” ('97 (61 op 6)51)’771 — Ty || (9, (62 op 6)52)7772 .

Operational rules. The operational rules are given in Tab. 1. The metavariables used
(in variously decorated form) in the rule schemes range as followse Lit, x € Var,

m € Mon, d, e € Expr, s € Stm p, q € D-Stm 6, ¢ € Dep.

The JMM axioms (Fig. 3) constrain the operational rules. This is because the latter
rely on@ producing a legal event space. For example, an attempt by a thrteadse

d—e d—e

binopl] ——F binop2] ———
[binop1] dope —eope [binop2] vopd—vope
[banpS] uwopv— Op(u7 U) [var] 0 : T, n— 0 : V(R,0,x,v): 7] D (R7 07 T, ’U)
: d—e .
[assignl]] —— [assign2] 0 :x=ve; 5,m—0:5 5,10 lse (W,0,z,0)
r=d, —x=c¢
d—e

(1] if(d) pelse ¢q—if(e) pelse ¢

[if2] (if (truec) pelse q)s — pse
[if3] (if (false.) pelse q)s — gse

ps,n — P51 g5, — 45,1
(if(v) pelse q)s,n— (if(v) p else ¢')s,n

[synl] 6 :synchronized (m) p,n — 6 : synchronized m) p,n® (L,0,m)

[if4]

Ps — 4s

[syn2] . :
(synchronized m) p)s — (synchronized m) q)s

[syn3] @ :synchronized m); ,n—0:;,n®(U,0,m)

ps — Ps

(v a)s — (0 0)s ore] T,n —Ton& (W)

[skip] ; p—p [seq]

Table 1.Operational rules

[syn1] for acquiring a lock omn would fail if m is detained by a different thread in the
current state), because the expressigm (L, §, m) would then denote no event space
satisfying the axioms for locks. Similarly, the valugead byé in x through rule [var]
is forced to comply with the model by the requirement that (R, 0, z, v) be defined.

Examples.We show that an execution of the sample program in Fig. 4, top-left, started
with all variables initialised to zero can resultrth andr2 set tol, as predicated in [9].
Using rule [pre], the operational semantics may first “guess™ttzatdy will eventually

be set taol and that these settings do not causally depend on any previously read value.
In fact, this will be fulfilled by execution according to the operational semantics, and
thus the Java trace (writing— b for a < b) in Fig. 4, top-right, can be produced (see
App. B).

In contrast, in the program

0, :rl=x;if(rl==1)y=1,; |62 :r2=y;if(r2==1) x=1,

the write action fory andx do depend on the values previously read frdim and
r2 , respectively. Consequently, a poset like the one depicted in Fig. 4, bottom-right,
in which (W, 65, x,1) does not extend to a fulfilled execution. But, in fact, this Java

a:(R,0:1,%x,1 a :(R,02,y,1
Threads; ||Threadd, (2,61) (R, 82,y,1)

ri=x; ([r2 =vy; b: (W,01,r1,1)! b (W,02,12 /1)
y =1, |x =1,
c: (W,01,y,1)! ' (W,02,x,1)!
Threadd, | Threadd, (R,01,x,1) R,02,y,1)
rl = x; r2 =vy; | |
|f (I’l —_— 1) If (r2 == 1) (W,01,r1 71) (W,02,I’2 71)
y = 1, x =1
clse (R,01,r1,1) (R,02,12 ,1)
X = 1' (Wyelvyvl)! (W7923X71)

Fig. 4. Examples of Java programs and resulting Java configurations

configuration with this event being fulfilled is the possible outcome of the program in
Fig. 4, bottom-left, where a single write ¥onot depending on2 suffices.

6 Correctness

The JMM, as described in the JLS [8,7], is based on a notion of “happens-before”.
This notion subsumes on the one handghegram order poa thread-wise total order

of actions as dictated by sequentially executing each thread according to the JLS; on the
other hand, it is based on tlsgnchronisation order sdhe total order of all lock and
unlock actions in a program run. Then thappens-before order hlvhich must be a
partial order, is defined to include the transitive closungaivith thesynchronises-with

order swwhich restrictssoto lock and unlock actions on the same monitor.

The action description of the IMM differs from our notion of Java actions with respect
to the values, which we included into the actions: In the JMM, two functidrend

W are used wher& gives for a write action th@alue writtenof this write andiW/’
references for a read action thaite seenby this read. The write-seen function must

be compatible with the happens-before order in the sense that no write can be seen by a
read which actually happens after it, and no read can see a write that happened before it
but has been overwritten in the happens-before order. Finally, the JMM requires that all
variables of a program are properly initialised and that these initialisations can be seen
by all threads. For this purpose it strengthens the synchronises-with order to include the
initialising writes and the first action of each thread.

A (well-formed) executionof a programP with an action sed now, according to the

JMM, is a tuple(P, A, po,so W, V, sw, hb) fulfilling the description above. It has to

be stressed that the JMM description §&7] does not define the connection between
the programP and the actions! and the various orderings and functions. In fact, the
actions actually executed in a program run will, in general, depend’andV, and

their precise connection would be mutually recursive.

The notion of happens-before alone does not suffice to capture causally legal execu-
tions, as it would allow “out-of-thin-air” results to be produced. Thus, the JMM predi-
cates that an executidXi has to bevalidatedby a sequence of other executidd$;), of

the same programommittingsubsequently all actions d€ in an increasing sequence
(C;)i. The process of commitments must be such that the happens-before orders and
the value-written functions ok’ and X; coincide on already committed actionsdah;

the writes-seen ak;, however, need not coincide @), but only onC;_ 1, with the ad-
ditional requirement that every new read actiorXinhas to see a write that happened-
before inX; and, if it is committed inC;, then the write-seen must bed_;. Finally,
synchronisation actions immediately following each otheXinbelow a committed
action inC; must persist in the validation process.

In order to prove that our semantics is correct with respect to the JMM, we have to
show that a run of the operational semantics on a multitBreuch that the final Java
trace is fulfilled indeed gives rise to an executi&nfor 7' that can be validated by a
sequencé X;, C;); of executions and commitments. We assume in the following that
the operational semantics starts with an initial Java tracéaat show initialisations for

all variables ofP and thatyr will be extended during computation in such a way that
all subsequent events depend on the initialisations.

Let T be a multiterm and lef be a computationg — --- — 7, withyg = (T, 77),

v = (T;,m;), andn, totally fulfilled. For the first task, producing an execution, we
observe that the computatighinduces a total order on the eventsrin by assigning

to eache € |n,| the index of the computational step in which either it was added, if
e: (R),ore: (L), e: (U),oritwas fulfilled, ife : (W). We construct an execution

exec(Y) = (T 1|, Po(7), 8o(7), W (7), V(7), SW7), hb(7))

as follows: Constraining the total order of events to each thread and to all synchro-
nisation actions, we obtain a program orgefy) and a synchronisation ordeo(¥),
respectively; this also induces a happens-before dibgf) and a synchronises-with
ordersw(¥). We define the value-written functiovi(¥) by settingV'(y)(e) = v if

e: (W,v) € n,, and a write-seen functioW (7) by settingiW (%) (e) to thate’ € n,

which satisfieg’ : (W,v) < e: (R, v) inn, and has the minimum distance of indices
assigned te ande’.

Lemma 3. ezec(¥) is a well-formed execution @f.

Proof. By constructionsb(7) is a partial orderiV (¥) conforms to the requirements of

the JMM as, although there may be several writes of the desired value for a read that
can be seen by the read, there will be at least one vali#iif¢7) by axioms (2—4) on

Java configurations. O

For the second task, validating an executiorc(¥), we construct a sequence of execu-
tions and commitment&X (7);, C(¥);) inductively as follows:X (¥), andC(¥), are
empty. AssumingX (7), andC (%) to have been defined already fob & k < n, we
let e, be a minimal element of,, \ Cy. Then there is a computatioi®) = 7" —

= 4 with v = (T, nr), n™ fulfilled, 7, 1C(7)x = 0, ande,,, maximal

in nl(k), which uses the [pre] rule only for events@,. Indeed, usingzec(¥) as the

guide for executing which statement and action, no rule execution can be prohibited, but
it may produce a different value for the read and write actions. In fact, having chosen
er+1 to be minimal inn,, \ C(7); all events in theyl(l) only depend on actions having
been committed i, and thus, in particular, fot;; the same value as ipwill be
produced. Agj(®) is a computation, it induces an executi&iity) .+, = ezec(y*)) by
Lemma 3; we also s&t'(Y)r+1 = C(V)r U {ex+1}-

Lemma 4. exec() is validated by the sequen¢& (7);, C'(¥):)i-

Proof. By construction, the happens-before orderestc(¥) is preserved on each
C(¥); and all read actions either use a happens-before valdé(¥);, as the [pre]
rule must not be used for uncommitted actions, or see a happens-before write

It is worth noting that we have resolved the dilemma of the mutually dependent defini-
tions of program actions and the values seen and written by these actions in the JMM by
restricting the use of prescient write actions in our construction of a validation sequence.

7 Conclusions and Further Research

We presented a structural operational semantics of a small fragment of Java includ-
ing much of what is needed to understand the JMM. The semantics was proven correct
with respect to the language specification of [8]. The specification of the memory model
(Fig. 3) is separate from the run time semantics (Tab. 1) and yet connected in a single
formal framework which gives unambiguous account of their interplay. We believe this
has been missing in the literature as yet. Moreover, the theoretical foundations of the
proposed framework, combining denotational, operational and axiomatical semantics,
support formal reasoning about programs, specifically for proving correctness of otimi-
sation techniques.

There are, for example, obvious compiler optimisations that the current IMMnabes
support. An example is the following program where threadandd, run in parallel:

0, :rl=x;r2=y;if(rl==18&&r2==1) z=1;
0 :r3=z;if(r3==1){x=1;y=1;}else{y=1; x=1;}

After reordering the independent statements inglse branch, a compiler may exe-

cute assignments = 1; andy = 1; early,sothatrl,hr2,r3 canall be assigned
However, such a behaviour is not legal according to the current JIMM, as it violates the
condition that the happens-before orders during validation be consistent with the final
happens-before on the committed actions. In fact, the latter will have the wrie to
before the write ty, but during validation the write tp happens before the write xo

This is indeed a counterexample to the claim by Manson, Pugh, and Adve [9, Thm. 1]
that in the JMM all independent program statements can be reordered; it seems that
the happens-before order would have to be relaxed, not requiring, e.g., the ordering
of independent program actions. In our framework, such a compiler optimisation can
be included by a simple editing of rule [if4]. The theory of reorderings developed by
Saraswat et al. [12] takes into account also more complicated code rearrangements, but,
like the JMM, is not connected to a language semantics.

On a more theoretical side, we notice that our axiomatisation of the JIMM has only been
used to contrain the operational ruleslbgal checks on fragments of a configuration
structure, the event spaces. What wWieole structure is, which represents the full pro-
gram denotationally, can also be made explicit. (The following construction extends
easily to possibly infinite computations, e.g. when includiidle loops.)

Letno, . .. 7, be the sequence of event spaces of a computgtidve writeny to denote

the last event spaag, in 4. A computationy is calledaccomplishedf all write actions

in ny are fulfiled and moreover, if;, is its last multiterm, therf,(0) is ; , when
defined, for all threads8.

We writex to denote a specific occurrence of a variabla a progranil’, and similarly

for monitors. LetEr be the set whose elements are either pgiss), wherex is

a variable andy a value, or pair§m, K), wherem is a monitor andk’ € {L, U}.
Viewing the elements ofy as events, we construct a denotational model dfy
assuming that operational semantics adjoins events to the current trace according to the
following protocol:

— [var] adds(z, v) : (R, z,v) if v is the value read at;

— [pre] adds(z,v) : (W, z,v) if v is the value written irx;

— [synl] addgm, L) : (L,m) when evaluatingynchronized (m) p;
— [syn3] addgm, U) : (U, m) when evaluatingynchronized m); ;

Given a progrant’, we let[T] be the structure whose configurations are 6ets Er
such that there exists an accomplished computatiof7” andC' is a downward closed
subset ofy;. Note that the causal dependency relation associated with stich §7]
is included in, but may not coincide with, the partial ordengfrestricted taC.

Proposition 2. [T7] satisfies the Java axioms.

Proof. Suppos€[T] does not satisfy an axiod -, A. There must exist a trac@
in [T] and an interpretation : I" — C violating the conditions of Definition 2. By
definition,|C| is a downward closed subset of somgand there exists an event spgce
in ¥ (hence satisfying the axioms) which contains all events.iBy an easy argument,
7 satisfieg if and only if so doe<”, against the assumptions. O

By the arguments developed in Sect. 1, we know [idtis neither stable nor monotone.
What the algebraic properties of such structures are is still under investigation, and we
believe that such a denotational understanding may provide valuable tools for formal
proofs of program properties.

Acknowledgementsie would like to thank Florian Lasinger for pointing us to some
problems in the JMM.

References

1. Winskel, G.: Event Structure Semantics of CCS and Related Languages. In Nielsen,
M., Schmidt, E.M., eds.: Proc."9Int. Coll. Automata, Languages and Programming
(ICALP’82). Volume 140 of Lect. Notes Comp. Sci., Springer, Berlin (1982) 561-576

2. Nielsen, M., Plotkin, G.D., Winskel, G.: Petri Nets, Event Structures and Domains: Part I.
Theo. Comp. Scil3(1981) 85-108

3. van Glabbeek, R.J., Goltz, U.: Refinement of Actions and Equivalence Notions for Concur-
rent Systems. Acta Informati@&¥ (2001) 229-327

4. Winskel, G.: Event Structures. In Brauer, W., Reisig, W., Rozenberg, G., eds.: Advances in
Petri Nets 1986, Part Il. Number 255 in Lect. Notes Comp. Sci., Springer, Berlin (1987)

5. van Glabbeek, R.J., Plotkin, G.D.: Configuration Structures. In: Prdt.|IEEE Symp.
Logics in Computer Science (LICS'95), San Diego, IEEE Computer Society Press (1995)
199-209

6. Cenciarelli, P.: Configuration Theories. In Bradfield, J.C., ed.: Prd&ldWsh. Computer
Science Logic (CSL'02). Volume 2471 of Lect. Notes Comp. Sci., Springer, Berlin (2002)
200-215

7. van Glabbeek, R.J., Plotkin, G.D.: Event Structures for Resolvable Conflicts. In Fiala, J.,
Koubek, V., Kratochil, J., eds.: Proc. 29Int. Symp. Mathematical Foundation of Computer
Science (MFCS’04). Volume 3153 of Lect. Notes Comp. Sci., Springer, Berlin (2004) 550—
561

8. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specificati@un3
Addison-Wesley (2005)

9. Manson, J., Pugh, W., Adve, S.V.: The Java Memory Model. In: Prdé.A2M SIGPLAN-
SIGACT Symp. Principles of Programming Languages (POPL'05), ACM Press (2005) 378—
391

10. Winskel, G., Nielsen, M.: Models of Concurrency. In Abramsky, S., Gabbay, D.M.,
Maibaum, T.S.E., eds.: Handbook of Logic in Computer Science. Vol. 4: Semantic Mod-
elling. Oxford University Press, Oxford (1995) 1-148

11. MacLane, S.: Categories for the Working Mathematician. Springer, New York (1971)

12. Saraswat, V., Jagadeesan, R., Michael, M., von Praun, C.: A Theory of Memory Models
(2006)http://www.saraswat.org/raofull.pdf

A Proof of Theorem 1

Let [s]~ be a trace inTr(C). We show that the s@ of configurations of the forny|,
wherer is a prefix of some path if]~, is stableD is clearly rooted and connected. It
is also closed under bounded unions. In fact|dégnd|v| be configurations iD, and
let 7, andr, be paths ifs|~, with « a prefix ofr; andv of r,. If v is empty the result
holds trivially. Otherwise, let = av’. Writing r; aswaw’, a must be independent of
each event inv. Hence,r; ~ aww’, and moreover the latter has a prefix such that
|ui| = |u| U {a}. By iterating the argument, all eventsdrcan be pushed towards the
front of v, to obtain a path irfs]~ with a prefixu,, such thatu,| = |u| U |v|. Hence,D

is stable, the argument for bounded intersections being similar to the above. Conversely,
let D satisfy the stated conditions. It is easy to show that the set of pathé’ such
that|r| = C and|u| € D, for all prefixesu of r, is a trace inTr(C). This construction
is inverse to the above. O

B Execution for Fig. 4, top-left
The following run on the operational semantics justifies the resulting computation in
Fig. 4, top-right:

ri=x;y=1; |r2=y;x=1; ,0 Iprel,

[assign1, var]
_—

ri=x;y=1; |r2=y;x=1; ,{c}

r=1,y=1;, |r2=y;x=1; ,{d <a} Iprel,
n=1,y=1 |[rR2=y;x=1; {<a<b} 1220
y=1, |[r2=y;x=1; ,{d <a<?b} Iskip]|
y=1; ||r2=y;x=1; ,{c <a<b} pre],
y=1; ||r2=y;x=1; ,{d <a<blc} [assign2]

D lIr2=yix=1 {d <a<bl el [assignt, var]

Dlr2=1x=1; {d <a<bd<a} Ipre],
D122 1uix=1 {d <a<bld<ad <y} 2292
D lix=1; {d <a<b e <d <V} Iskip],
pIx=1; {d <a<blcl<d <V} [assign2]

A <a < bl <d <V}

where the terms for the threadsandf, are shown left and right tf.

