
The Synchronised Hyperedge Environment

Ivano Talamo
CASPUR

Consorzio interuniversitario per le Applicazioni di Supercalcolo
Per Universitá e Ricerca

italamo@caspur.it

Alessandro Tiberi
Dipartimento di Informatica, “La Sapienza”

Via Salaria, 113, Roma
tiberi@di.uniroma1.it

Pietro Cenciarelli
Dipartimento di Informatica, “La Sapienza”

Via Salaria, 113, Roma
cenciarelli@di.uniroma1.it

Abstract

(versione 4) We introduce the Synchronised Hyperedge
Environment, SHE, a tool for developing, analysing and
automatically verifying distributed and concurrent systems.
SHE supports a visual, declarative style of programming
based on a graph rewrite system called Synchronising
Graphs (SG) [3, 4], a general semantical framework which
has been used for interpreting various process calculi, such
as Mobile Ambients, the distributed CCS and Fusion. Af-
ter describing the system’s architecture, we develop two ap-
plications: The first offers a simple declarative solution to
the problem of syntactic unification, and shows how flexi-
ble the system is in supporting both textual and graphical
representation of data. The second example is a classical
problem in distributed programming: the leader election.
The proposed solution is proven correct both by a mathe-
matical proof and by automatic verification through model
checking.

1 Introduction

We introduce the Synchronised Hypergraph Environment
(She),1 a tool for assisting distributed software development
and verification. The system provides an interactive envi-
ronment based on graph rewriting, where applications are
developed declaratively and computation can be visualised
as a sequence of graph transformations. The user can ex-
plore the state space of the application under construction,
and search for states satisfying safety conditions, as well as

1available at HTTP://BRIANTB.UNIXCAB.ORG/SHETEMP/

non-local properties, such as having a specified number of
next states. Execution paths can be selected and the corre-
sponding run can be animated. It is possible, for example,
to visualise the movement of the forks in between dining
philosophers, or the routing of a message in a network of
communicating agents.
She is based on Synchronising Graphs (SG) [3], a pow-
erful system of graph rewriting inspired by [7]. SG have
been used by the authors to model various process cal-
culi, such as Mobile Ambients, the distributed CCS and Fu-
sion (ibid.). The simplicity of the encoding and its mathe-
matical tractability (e.g. in proving operational correspon-
dence) suggests that SG is well suited as common semantic
framework for calculi of mobility: by implementing spe-
cific front-ends, and using SG as intermediate language, She
can work as a multilingual interpreter and verifier, a novelty
with respect to similar systems ([6, 10] to cite a few). In the
present paper we develop two applications. The first offers
a simple, declarative solution to the problem of syntactic
unification [11], where computation is distributed over the
nodes of a term graph. The example shows that SG specifi-
cations are compact (28 characters alltogether [?]) and that
She can easily be tailored to suit the specific needs of dif-
ferent applications. The second example, the leader elec-
tion problem, is a classic in distributed programming. The
proposed implementation is proven correct both by a math-
ematical proof (showing the tractability of synchronising
graphs) and by automatic verification through model check-
ing, showing an integration of the latter (which is more of-
ten used for verifying fully developed systems) within the
framework of (distributed) program development.

1

graphmlXML

prog.C

gccMurphi

prog

prodedit (composition)

genall (generation)

rules.m

execution

shegrave (exploration)

header.m

rulegen.ToMurphi

Figure 1. The architecture of She

2 The Synchronised Hyperedge Environment

The Synchronised Hyperedge Environment (figure 1) is
composed of three modules corresponding to three different
stages in the development of a SG application:

• specification of a system,

• generation of its transitions,

• verification and analysis of computation.

The first component, prodedit, is a tool that allows
the user to specify a set of axioms and an initial graph. Its
output is a set of XML files that are parsed by the next com-
ponent, genall, which generate the graph S of all reach-
able states. The nodes of S represent synchronising graphs
which can be obtained from the initial graph by means of
rewriting, while edges represent transitions derivable from

the axioms (see section 3). The module genall uses the
Murphi model checker [8] to generate a graphml representa-
tion of the state graph of the system. Graphml [2] is a stan-
dard and widely used XML format for describing graphs.
The module shegrave allows system verification by anal-
ysis of the state graph.

The fact that the different components communicate ex-
clusively by exchanging files makes SHE an open applica-
tion, where users can add their own modules. Moreover,
the choice of XML facilitates the development of add-on
modules as it is largely supported format.

Specification of a system. A SG application consists of a
set of axioms and an initial graph. The interactive module
prodedit allows users to specify both in a visual fash-
ion. An axiom is created by drawing (point ’n click, drag ’n
drop) left and right hand side of the axiom in distinct pan-
els, and by adding actions over nodes. Once a production

2

has been drawn the tool checks that it is coherent. Produc-
tions can be deleted, added and duplicated. Initial graphs
are created in much the same way: the user creates and links
nodes and hyperedges. The tool produces an XML file for
each axiom and one for the initial graph.

Generation of the transitions. Once a SG application
has been specified it is possible to run it, thus generating its
state graph, which includes all possible computations orig-
inating from the initial graph. The state graph is generated
by the Murphi model checker. Murphi allows the user to
describe a system by a specification consisting of an initial
state and a set of conditional rule to perform state change.
From the XML file produced during the previous phase,
SHE creates a Murphi specification where the starting state
is the initial graph and every production is translated into a
Murphi rule. Next the specification is compiled to obtain an
executable which actually explores the state space. The out-
put of the exploration is the state graph, in graphml format.

System analysis. The state graph can be analyzed and
properties can be verified by the third software component,
shegrave. For the development of this component, we
wanted a tool where users could visually explore the state
graph and select states both by using the mouse or by sub-
mitting queries (see below). We chose to develop a flexi-
ble tool, the Graph Viewer and Explorer (GraVE), with the
general capability of exploring a graph with information at-
tached to nodes, and then to tailor it to the specific domain
of SHE, thus producing shegrave. In particular, Grave
includes:

• a component for the generation of a graph G;

• a component for the visualization of G and

• a component for the visualization of the information
associated with the nodes of G.

All these components are configurable, that is the user
can create its own Java classes to generate the graph, visu-
alise it, and view the information attached to its nodes. The
component for the generation of the graph is not a single
Java class but a pipeline of classes, each one taking input
from the previous, performing some actions on it, and then
passing it forward. The pipeline components can be reused
in other applications, this speeding up development process.
For example, a pipeline used in shegravewould typically
be as follows:

• the first element prompts the user for a graphml file
representing a SG state graph, and generates a Java ob-
ject representing the given graph;

• the second element applies a layout to the graph;

• the third element applies label i to the i-th node;

• the fourth element resizes nodes according to their la-
bels.

Further the pipeline classes can insert items in the menu
of the application, thus expanding its functionalities. For
example, GraVE provides a class that acts as a pass-through
element in the pipeline, but adds a ”Save” item to the menu,
to save the passed-through graph to a file in the graphml
format. Some pipeline elements provide both the function-
ality. For example the layouter applies a default layout to
the graph but also adds an item to the application menu that
allows the user to select a different layout to the graph.

GraVE already provides some of these general compo-
nents, like classes to open a graph from a file, to layout a
graph, to save it on a file, and various classes to change
graphical features of the graph.

GraVE also offers its users a tool for selecting nodes by
means of queries. These are expressions involving boolean
operators (AND, OR, NOT) as well as graph-specific opera-
tors, such as for select nodes with zero incoming/outcoming
edges, and so forth. The set of available operators can be ex-
panded by a plugin method: if a user wants a new operator
he/she simply writes a Java class that implements the plu-
gin interface. Each operator selects some nodes on the state
graph and this selection can depend on the selection of other
operators. For example, the RAND operator selects nodes
randomly, SOURCE select all the nodes that have only out-
coming edges (sorce nodes), and AND(RAND,SOURCE)
selects randomly a source node.

These expression can be expressed both in a graphical
and in a textual way, and can be saved on files, for later use
of exchange with other users.

3 Synchronising Graphs

This short presentation of SG is in great part borrowed
from [4, 5], to which we refer the reader for more details
and examples.

Synchronising Graphs were proposed in [3] as a model
of process interaction in a network environment. The model
is based on hyperedge replacement [7, 9], a form of graph
transformation where edges, representing processes, inter-
act by synchronising action and co-action pairs at specific
synchronisation points, the nodes, representing communi-
cation channels. The behaviour of parallel, possibly dis-
tributed systems is specified in SG by a set of axioms.
System transitions are derived by means of inference rules
implementing agent interaction (synchronisation) and re-
source encapsulation (restriction).

Graphs. Let N be a set of nodes, which we consider fixed
throughout. A graph G = (E, G, R) consists of a set E

3

of hyperedges (or just edges), an attachment function G :
E → N ∗ and a set R ⊆ |G| of nodes, called restricted,
where

|G| = {x ∈ N | ∃ e ∈ E s.t. G e = x1 . . . xn and x = xi}

is the set of nodes of the graph. We denote by res (G) the set

of restricted nodes of G, and by fn (G) the set |G|− res (G)
of free nodes of G. We write e(~x) for an edge of a graph
G such that G e = ~x. Moreover, we let νx G denote the
graph (E, G, R ∪ {x}) when x ∈ |G|, while νx G = G

otherwise. If (E, G, R) and (D, F, S) are graphs such that
E ∩ D = |G| ∩ S = |F | ∩ R = ∅, we write G|F the graph
(E ∪D, G + F, R ∪ S), whose attachment function G + F

maps e ∈ E to G e and d ∈ D to F d.

Transitions. Let Act = {a, b, . . . } ∪ {a, b, . . . } be a set of
actions and co-actions (overlined), and let a denote a. We
write Act + the set Act ×N ∗. Given (a, ~x) in Act +, we call
the components of ~x arguments of a. A pre-transition Λ of
a graph G to a graph H , written:

G
Λ

−→ H,

is a relation Λ ⊆ N × Act + such that dom (Λ) ⊆ |G|. We
denote with |Λ| the set of arguments appearing in Λ. We
write (x, a, ~y) for an element (x, (a, ~y)) of Λ, and (x, a)
when ~y is the empty sequence. Intuitively, (a, ~y) ∈ Λ x

expresses the occurrence of action a at node x. In SG the
occurrence of both (a, ~y) and (a, ~z) at x triggers a synchro-
nisation between two agents (edges) of the graph, what is
traditionally represented by a silent action τ . When such
is the case the synchronising agents may exchange infor-
mation. This is implemented in SG by unifying the lists ~y

and ~z of parameters, which are required to be of the same
length. Only two agents at a time may synchronise at one
node. Moreover, if an action occurs at a restricted node,
then it must synchronise with a corresponding co-action, as
we consider observable the unsynchronised actions. A re-
stricted node may be “opened” by unifying it with an argu-
ment of an observable action, or with a node which is not
restricted.

The above requirements are formalised as follows. An
action set is a relation Λ ⊆ N × Act + such that, for all
nodes x, Λ x has at most two elements and, when so, it
is of the form {(a, ~y), (a, ~z)}, where the lengths of vec-
tors ~y and ~z coincide. Given an action set Λ, we denote

by
Λ
= the smallest equivalence relation on nodes such that,

if (x, a, y1y2 . . . yn) and (x, a, z1z2 . . . zn) are in Λ, then

yi
Λ
= zi, for i = 1 . . . n. The dangling nodes of an ac-

tion set Λ are arguments of unsynchronised actions. More
precisely they are elements of the set {x | ∃ y s.t. Λ y =

{(a, z1 . . . zn)} and x
Λ
= zi}. A predicate opens (Λ, x, G)

is defined to hold precisely when either x is dangling in Λ

or [x]Λ
=
6⊆ res (G). A transition is a pre-transition G

Λ
−→ H

such that:

1. Λ is an action set;

2. if a node x is restricted in G then |Λ x| 6= 1;

3. if a node x occurs in H ∩ (|G| ∪ |Λ|), then x ∈ fn (H)
if and only if opens (Λ, x, G).

An identity is a transition of the form G
∅
−→ G. We say that

an action a is observed at node x during a transition Λ if
Λ x is a singleton {(a, ~y)}. The first clause above expresses
the coherence of synchronisation; the second says that no
actions can be observed at restricted nodes; the third states
the conditions under which a node x, possibly restricted in
G, can occur free in H .

Inference rules. Let f : N → N be a function on
nodes and let (E, G, R) be a graph. We write fG the
graph (E, fG, fR) obtained by substituting all nodes x in
G with fx, that is, for all e ∈ E, if G e = x1 . . . xn then
(fG) e = fx1 . . . fxn. A function f : N → N is said to
agree with an equivalence relation ϕ on N if, as a set of
pairs, it is a subset of ϕ, that is if (x, fx) ∈ ϕ, for all nodes
x ∈ N . A unifier of ϕ is a function ρ which agrees with
ϕ and such that |ρ [x]| = 1 for all x. By a slight abuse, we
say that a function agrees with (or unifies) Λ to mean that it

agrees with (unifies)
Λ
=.

In SG, synchronisation is subject to a non-interference

condition: two transitions G
Λ

−→ H and F
Θ
−→ K can

be synchronised provided they are disjoint and that nodes
appearing as arguments in Λ (Θ) are not res (F) (res (G)).

Formally two transitions G
Λ

−→ H and F
Θ

−→ K are said
to be non-interfering, written Λ # Θ, when:

• Λ ∩ Θ = ∅, and moreover

• |Λ| ∩ res (F) = |Θ| ∩ res (G) = ∅.

The rules of the system of synchronising graphs are:

G
Λ

−→ H F
Θ
−→ K

[sync]
G |F

Λ∪Θ
−−→ ρ(H |K)

(if Λ #Θ and
ρ unifies Λ ∪ Θ)

4

Figure 2. the root.

G
Λ
−→ H

[open]
νx G

Λ
−→ H

(if opens (Λ, x, νxG))

G
Λ
−→ H

[res]
νx G

Λ
−→ νρ(x) ρ(H)

(if ¬opens (Λ, x, νxG)
and ρ unifies Λ)

Note that the applicability of [sync] is implicitly con-
strained by Λ ∪ Θ being a transition (e.g. Λ and Θ cannot
issue different actions at a same node). Similar considera-
tions apply to [open] and [res].

An axiom is a transition G
Λ
−→ H such that H = ρH for

some unifier ρ of Λ. This condition, stating that all nodes
unified by Λ are fused in H , is preserved by the inference
rules, and it is therefore satisfied by all transitions derived
from axioms. Given a set T of axioms, a T -computation,
or just computation for short, is a sequence of transitions

G0
Λ1−→ G1

Λ2−→ . . . each of which is derived from the
axioms in T .

Actually SHE employs a slightly limited version of SG
in which there is no node restriction and all actions have
to be synchronised. Also, instead of axioms, productions
are used. These are a special kind of transition whose left
hand side is a single edge with every tentacle attached to a
different node. Productions can be instantiated as long as
the result of the instantiation process remains a transition.

4 Syntactic unification

Here we develop a SG theory of syntactic unification
[11] in SHE. A full length description of this application is
given in [4], from which some material used in this section
derives, and to which we refer for a more detailed mathe-
matical treatment.

A syntactic unifier of two first order terms t and t′ is a
substitution of terms for variables making t and t′ identical.
In our running example we shall consider t = f(h(y), g(z))
and t′ = f(z, g(x)); the function ρ mapping every variable
to itself except for ρ(x) = ρ(z) = h(y) is a unifier of t

and t′, while the result of unification is f(h(y), g(h(y))).
The substitution ρ is in fact a most general unifier of the
two terms, and we shall assume this notion as understood.
Let F = {f, g, h . . .} and V = {x, y, z . . . } be disjoint
sets of symbols, called respectively functions and variables.
We represent first order terms by means of S-graphs, that is
synchronising graphs whose nodes are variables and whose
edges are labelled by symbols. We use a bold s to denote
an edge labeled by a symbol s. A family of functions J Kx

indexed by nodes translates terms into S -graphs:

JxKx =x(x)

Jf(t1, . . . tn)Kx = f(x y1 . . . yn) | Jt1Ky1
| . . . | JtnKyn

,

where yi = ti when ti is a variable, or otherwise yi is a
new node. The node to which the first tentacle of an edge is

5

Figure 3. an axiom

attached is called the result node of the edge. We define the
S-graph Gt=t′ corresponding to an equation t = t′ between
terms of T to be either x(x) |y(x), when both t = x and
t′ = y are variables, or else JtKx | Jt′Kx, where x is new if
neither t nor t′ are variables. The right panel in figure 2 de-
picts Gt=t′ for t = f(h(y), g(z)) and t′ = f(z, g(x)). (Us-
ing the internal naming discipline of SHE, nodes are called
n1 . . . n7. This is of course uninfluential.)

The problem of unifying two terms t and t′ is
solved by a computation of the graph Gt=t′ within
the theory of S-graphs. The theory features a set
Act = {f, f, . . . x, x . . . } of actions, including all symbols
and their complements (co-actions). The axioms of the the-
ory include the identities and all instances of the following
axiom schemes.

s(x~y)
x,s,~y
−−−→ s(x~y)

s(x~y)
x,s,~y
−−−→ ∅

Figure 3 shows the axiom f(u x y)
u,f,x y
−−−−→ f(u x y),

an instance of the first scheme above, as visualised by
prodedit, the module in SHE which supports interac-
tive generation of axioms. The module features three panels
which, proceeding from left to right we shall call A, B and
C. The XML file representing the axiom, f1.prod, is se-
lected from A, where other such files available for editing
are listed. The panels B and C visualise respectively the left
and the right hand sides of the axiom, and feature, at the
bottom, a textual representation of the corresponding graph
(which coincide in this case). The actions, together with
their arguments, are written in B beside the associated node.
Hence, above node u we find the action f and the pair 〈x, y〉

of arguments. These data are edited from the text fields just
below the horizontal scroll bar of panel B. The positive
check box specifies whether the given symbol is to be taken
as action or co-action.

As explained in section 2, once the axioms of the the-
ory and an initial graph are generated, the corresponding
XML files are compiled into a Murphi specification and run
through the model checker. Murphi’s log file is then in-
terpreted by the module shegrave to produce the graph
of all reachable states. The nodes of this graph represent
states of the computation, that is synchronising graphs ob-
tained by the rewriting process, while the edges represent
transitions. Figure 2 shows a screenshot of shegrave’s
graphical interface.

The panel to the left, called the graph panel, depicts the
state graph of our running example. By clicking on a spe-
cific node, the corresponding synchronising graph is visu-
alised in the panel to the right, the data panel, while all pos-
sible next states are highlighted. In the picture, the “root”
of the computation (the leftmost node in the graph panel)
was selected. Nine possible next states (including the root
itself) are highlighted, while the data panel visualises the
initial state, that is the graph Gt=t′ . This graph features two
edges labelled by f and attached by their result node n2.
By synchronising a rewrite of the fist edge by the axiom
of figure 3 with a rewrite of the second edge by the ax-

iom f(u x y)
u,f,x y
−−−−→ ∅ (an instance of the second scheme

above), we obtain a transition to the graph depicted in fig-
ure 4. One more transition, where the two g-labelled and the
two z-labelled edges synchronise in parallel, and we reach a
final state, that is a state with a unique output edge to itself.
All graphs associated with such a state are isomorphic to the
one depicted in figure 5, representing both the unified term

6

Figure 4. second step of computation.

f(h(y), g(h(y))) and the unifier ρ mapping x and z to h(y).
How to extract the unifier from a final graph is explained in
[4] and implemented in shegrave by means of a viewer
which can be selected by clicking the button at the top of
the data panel.

5 Leader election

In this section we show how to program the Leader Elec-
tion Protocol using SG and SHE. Let us recall the proto-
col (as presented in [1]). The aim of this protocol is to to
choose, among a set of processors, one as the leader. Each
processor is labeled with a unique number and they are or-
ganized as a ring so that every processor is adjacent to two
neighbors. Processors can communicate by sending mes-
sages: every processor can receive messages from its left
neighbor and send messages to its right neighbor. Commu-
nication is safe: once a message is sent we are assured that
it will be delivered. The ring is asynchronous: no assump-
tions are made on the scheduling of the processors and also
on the time that it takes for a message to be read. A pro-
tocol that solves the problem is the following: first every
processor sends a message containing its label then it starts
receiving messages. The behavior of a processor p when
a message m is read depends on the message’s content: if
p > m then the message is discarded, instead if p < m the
message is forwarded while if p = m then p becomes the
leader.
Now we show how to program this protocol in SG. Notice

Figure 5. the result of unification.

7

that besides the protocol also the computational model is
modeled (e.g. topology, asynchrony). A processor with
label p is represented by an edge p attached to two dif-
ferent nodes: p(x y). Node x is shared by p and its left
neighbor, while y connects p to its right neighbor. If a
processor p has not yet sent its first message ps(x y) is
used instead of p(x y). A message m is represented by
an edge with a single node m(x). Since every commu-
nication channel is shared by only two processors, every
node is restricted. So, any given ring with processors
(from left to right) p1p2 . . . pn is represented by a graph
νx1x2 . . . xn.p1(x1 x2)|p2(x2 x3)| · · · |pn(xn x1). The fol-
lowing productions, with the addition of all the identities
realize the protocol:

ps(x y) −−−→ p(x y)|p(y) (1)

p(x y)
(x,m)
−−−→ p(x y)|m(y) if m > p (2)

p(x y)
(x,m)
−−−→ p(x y) if m < p (3)

p(x y)
(x,m)
−−−→ L(x y) if m = p (4)

m(x)
(x,m)
−−−→ ∅ (5)

L(x y)
(x,m)
−−−→ L(x y) (6)

Production 1 is used by a processor to send its first message,
which contains its label. Production from 2 to 4 are used to
read a message: with 2 a message is read and discarded,
with 3 it is forwarded while using 4 a processor receives a
message containing its own id and it becomes leader. Mes-
sages have only one production (5), which is applied when
they are received. Production 6 is used by a processor that
has become leader to continue receiving messages. Those
messages are completely ignored, actually this production
is provided only to satisfy the safety condition on commu-
nication, which guarantees that every message is received.

Programming this protocol in SHE is straightforward.
Hence, given an arbitrary ring we can check that our pro-
tocol is correct, at least for that specific instance, simply by
generating the state graph and checking that every compu-
tation ends in a graph which has exactly one leader. This
can be done either by hand or by building a simple node
selector that shows all the final states. In a similar way
we can check that the state graph does not contain any cy-
cles. An applet showing the protocol running is avaible at
HTTP://BRIANTB.UNIXCAB.ORG/SHETEMP/ in the down-
load section. Here we also provide a proof of correctness
for the protocol as we have programmed it in SG.

Let us call idle a transition of the form G
∅
−→ G. Also

call idle a (possibly infinite) computation composed only
by idle transitions. A run of a graph G is a computation

G
Λ1−−→ · · ·

Λn−−→ F in which every transition is non-idle and
such that every computation starting from F is idle. Let us

also denote by R
s
n an arbitrary ring with n processors all in

the initial state, all of them equipped with a different label:

R
s
n

def
= ν x1 . . . xn.

(ps
id1

(x1 x2) | p
s
id2

(x2 x3) | · · · | p
s
idn

(xn x1))

. The following theorem holds.

Theorem 1. Let R
s
n

Λ1−−→ · · ·
Λk−−→ E be a run of R

s
n. Then

E is of the following form:

νx1 . . . xn.

pid1
(x1 x2) | · · · | pidj−1

(xj−1 xj) |

L(xj xj+1) | pidj+1
(xj+1 xj+2) | · · · | pidn

(xn x1)

.

Proof. Observe first that in E there can be neither a mes-
sage that has not been read nor a processor still in the initial
state, otherwise from E we could do a non idle transition to
a different graph E ′ (respectively by reading and by send-
ing a message). Note also that messages are never lost, that
is if in a transition a production like 5 is used then during
the same transition also the corresponding processor pro-
duction (i.e. a production that issues the co-action m on the
same node) must be used, since all nodes are restricted and
so every action has to be synchronised. For the very same
reason a processor can read a message only if it is actually
there. Now observe that if a processor p receives a mes-
sage containing its own label, then this message has already
been read by all the other processors. This is because p is
the only one who can generate a message with its own label
(since labels are assumed to be distinct) and because when
messages are forwarded they are not altered, as we can see
from the productions. So a message sent by p before com-
ing back to the processor must be forwarded through all the
ring. But if a message p is forwarded by all processors then
p is the greatest label across all the ring. So there can be
only one processor with such a label.

Note also that every run is finite as the following lemma
shows.

Lemma 1. Every computation starting from R
s
n and such

that every transition in it is non idle is of finite length.

Proof. It is easy to see that in every non idle transition at
least one message is either sent for the first time or read (and
then discarded or forwarded). The number of transitions
in which a fresh message is generated is at most n. Each
message can not be read more than n times. So the length
of those computations is bounded by n × (n + 1)

8

6 Conclusions

Even if SHE is fully functional and, as we have shown,
can be used for quite different applications, there are still
many features that we would like to add. First of all we
would like to support the full version of SG so as to al-
low unsynchronised actions, which are interesting when
analysing subsystems in isolation. Another interesting is-
sue is to fully integrate Murphi in SHE in a way that makes
it possible and easy to take advantage of all its features: up
to now inside SHE Murphi is used mainly as an engine that
generates the state graph. If we want to check that some
properties are preserved during the generation of the state
graph and not after it has been fully generated, we have
to hard code them by hand inside the Murphi file. So it
would be much easier if we could specify, together with the
starting graph, the properties in which we are interested and
then automatically generate a Murphi executable capable of
testing their validity. Another quite interesting evolution of
SHE consists in turning it into a common workbench for
different process calculi. This is a very natural development
since the programming language of SHE is SG. SG has been
proved capable of providing models for many process cal-
culi, in an easy intuitive way. So using SG as an interme-
diate language we would be able to turn SHE into an inter-
preter for virtually any interesting process calculus. In ad-
dition, being the architecture of SHE very modular, imple-
menting this extension should prove to be a not so difficult
task. The main effort would be to write, for each process
calculus supported, a module implementing the translation
from that calculus into SG. Finally, a promising develop-
ment of SHE is tied to a recent advance in SG theory. In fact
the authors have formulated a notion of behavioural equiv-
alence for SG, which essentially allows to equate graphs
showing the same behaviour. If we consider SG as a declar-
ative programming language, this notion makes it possible
reasoning on programs equivalence, allowing for instance
to tell whether a particular implementation of an abstract
specific is correct or not. Our intention is to add to SHE a
module that deals with equivalence, thus allowing to auto-
matically check programs for equivalence.

References

[1] H. Attiya and J. Welch, Distributed computing,
McGraw-Hill, 1998.

[2] Brandes, Eiglsperger, Herman, Himsolt, and Marshall,
GraphML progress report (structured layer proposal),
GDRAWING: Conference on Graph Drawing (GD),
2001.

[3] P. Cenciarelli, I. Talamo, and A. Tiberi, Ambient
Graph Rewriting, Proceedings of WRLA’04. To ap-
pear in Elsevier ENTCS, 2004.

[4] P. Cenciarelli and A. Tiberi, Rational Unification in 28
Characters, Proceedings of 2nd International Work-
shop on Term Graph Rewriting (TERMGRAPH’04).
To appear in Elsevier ENTCS, 2004.

[5] , Synchronising Graphs, Submitted, 2004.

[6] R. Cleaveland, J. Parrow, and B. Steffen, The Concur-
rency Workbench, Springer LNCS 407 (1989), 24–37.

[7] P. Degano and U. Montanari, A model of distributrd
systems based on graph rewriting, Journal of the ACM
34 (1987), 411–449.

[8] David L. Dill, The murphi verification system,
April 08 1998.

[9] G. Ferrari, U. Montanari, and E. Tuosto, A LTS se-
mantics of ambients via graph synchronization with
mobility, Proc.ITCS 01, Springer LNCS 2202 (2001).

[10] G.J. Holzmann, The Model Checker Spin, IEEE Trans.
on Software Engineering 23 (1997), no. 5, 279–295.

[11] A. Robinson, A Machine oriented Logic Based on the
resolution principle, Journal of the ACM 12 (1965),
23–41.

9

