
Configuration Structures and Logical
Equivalence

Pietro Cenciarelli

University of Rome, “La Sapienza”
Department of Computer Science - Via Salaria 113, 00198 Roma.

cenciarelli@dsi.uniroma1.it

Abstract. Configuration theories [Cen02] describe concurrent systems
axiomatically. Rules for composing configurations (of events) are repre-
sented by sequents Γ `ρ ∆, where Γ and ∆ are sequences of posets (of
events) and ρ is a matrix of monotone maps from the components of Γ
to the components of ∆. The structural rules of Gentzen’s sequent cal-
culus are decorated by suitable operations on matrices, where cut corre-
sponds to product. The calculus is interpreted in a rather general class of
configuration structures called monotone. Two such structures are called
logically equivalent if they satisfy the same sequents. This notion of equiv-
alence is shown to be intermediate between (pomset) trace equivalence
and (history preserving) bisimulation. A new form of sequent, more ex-
pressive than in [Cen02], is also proposed and some of the classical closure
properties adopted in literature for configuration structures are thereof
axiomatised. In this more expressive setting the notion of logical equiv-
alence becomes “resource sensitive,” and it is shown to correspond to
isomorphism when models are restricted to tree-like structures.

1 Introduction

Two processes P and Q operating in parallel compete for a lock on shared
data. The following structure models the parallel composition P |Q, where P
executes lock ; . . . unlock ; and the same does Q. The identifiers lock and lock ′

represent events occurring in computation, namely the execution of a “lock”
action respectively by P and Q. Similarly for unlock and unlock ′.

(1)

�
	
�



�

	
�


�

	
�



�

	
�




�

	

�




�

	

�


�
	
�

lock ′unlock unlock ′lock

Sets of events, called configurations and depicted here as rounded squares
surrounding their elements, represent consistent states of computation. The
{unlock , lock} configuration, for example, represents the state reached by the



system after having performed a lock action first and then an unlock (while Q
remains dormant). We know the lock came first because we see a {lock } subcon-
figuration but not an {unlock}. Note that there is no configuration {lock, lock ′ }
and this represents the mutual exclusion of the two processes from the shared
resource.

Diagram (1) depicts a configuration structure [Win82], a model introduced
by Winskel as an alternative presentation of (prime) event structures [NPW81].
Different closure conditions have been proposed over the years to make configu-
ration structures mathematically tractable. In [GG01] van Glabbeek and Goltz
characterise the class of configuration structures where the causal dependency
between events can be faithfully represented by means of partial orders. Such
structures, called stable, are required to be closed under bounded unions and
bounded intersections. Stable structures possess useful semantic properties. For
example, when a state A is part of the “history” of a state B, then B is reachable
from A by a sequence of atomic steps of computation. Unfortunately stability
is not satisfied by structures such as (1), which arise naturally in the semantics
of concurrent systems. We open the present paper by proposing a more gen-
eral class of models: the monotone configuration structures, of which (1) is an
example. Section 2 studies the closure properties of such models.

Monotone configuration structures are designated models of configuration
theories, an axiomatic approach to the semantics of concurrent systems proposed
in [Cen02] and surveyed here in Section 3. A configuration theory is a set of poset
sequents closed under deduction. In Figure 1 we see two such sequents. They spell
roughly: “every unlock action must be preceded by a lock action” and “in between
any two lock actions an unlock must occur.” Poset sequents are made of partially
ordered sets (posets) of events, where the order (represented in the picture by
the vertical bars) is interpreted as causal dependency.

`
lock

unlock
unlock

lock

lock
unlock

lock

lock

`

Fig. 1. A naive axiomatisation of locks.

In Section 4 we investigate how fit poset sequents are for describing concur-
rent systems and, in particular, how accurate they are in discriminating process
behaviour. We discover that the natural notion of logical equivalence arising
from interpreting sequents (two structures are equivalent when they satisfy the
same sequents) is intermediate between pomset trace equivalence and history pre-
serving bisimulation. These two equivalences are chosen here as representative
respectively of “linear time” and “branching time” semantics within causality-
based models because they do not rely on the assumption of action atomicity

2



[LC87]. Other notions, such as interleaving trace equivalence or pomset bisim-
ulation equivalence for example, are less stable with respect to changes in the
level of abstraction at which systems are described as they are not preserved
under action refinement (see discussion in [GG01]).

In [Cen02] we axiomatised the memory-cache interaction protocol adopted in
Java by means of poset sequents, and derived formally a nontrivial property of
the Java memory model involving basic actions of the virtual machine. However,
when it comes to describing the management of locks, which involves a complex
interplay of subconfigurations, causal dependency alone proves inadequate. Ex-
ample 2 shows that the sequent to the right of Figure 1 actually fails to prevent
locks from being granted when the shared resource is still busy. A correct ax-
iomatisation is obtained in Section 5, where we introduce a more expressive form
of sequent, called structure sequents, whose components are not just posets but
configuration structures. In this new, more expressive setting the classical closure
properties adopted in literature for configuration structures (such as coincidence
freeness or closure under bounded unions) are easily axiomatised. In Section 6
we show that, when referred to structure sequents, logical equivalence becomes
“resource sensitive,” and that it corresponds to isomorphism when models are
restricted to tree-like structures.

Notation. We write function composition in diagrammatical order.

2 Monotone Configuration Structures

A set system consists of a set E and a collection A of subsets of E [GP95].
Without loss of generality we may assume that each element of E belongs to at
least one element of A. Hence we write just A for a set system and let |A| be the
set

⋃
A. If A ∈ A we write sub (A) the set {B ∈ A |B ⊆ A}. If A,B ∈ sub (C)

for some C ∈ A we say that A and B are bound in A. The sets in a system A
are called configurations when used for modeling a concurrent system, while the
elements of the set |A| are called events. If B ∈ A and A ∈ sub (B), then A is
called a subconfiguration of B.

Notation. Events are written a, b, c . . . . When events are labelled (e.g when
part of a labelled structure or sequent) we adopt the convention that the same
metavariable is used for all events with the same label, distinguishing different
occurrences with primes and indices. For example a set of three events, two with
label α and a third labelled β, may be written {a, a′, b}. When no confusion
arises, we push notation even furhter and write such a set as {a, a, b}, making
repetition count. When labels carry special meaning evocative identifiers are
used: {lock, unlock, lock, unlock} denotes a set of four events, two of which per-
forming an action of locking and the others unlocking. Sometimes we represent
configuration structures in pictures, where configurations are drawn as circles or
polygons surrounding the elements that they contain. For example, ©a b c

3



represents the structure {∅, {a}, {a, b}, {c}}. Unless otherwise stated, we always
assume the empty configuration, without representing it explicitely. �

In [Win87] several closure conditions on the set of configurations of a struc-
ture A are given in order to get a precise match with general event struc-
tures (generalising those of [NPW81]). They are: finiteness (if an event belongs
to a configuration A, then it also belongs to a finite subconfiguration of A),
coincidence-freeness (if two distinct events belong to a configuration A, then
there exists a subconfiguration of A containing exactly one of them), closure
under bounded unions and non-emptyness of A.

We call configuration structures (or just structures), and write them C, D . . . ,
the set systems satisfying all of the above requirements, except closure under
bounded unions (this is not standard in literature). Coincidence-freeness endows
each configuration C with a canonical partial order: a ≤C b if and only if, for all
D ∈ sub (C), b ∈ D implies a ∈ D. This relation is called causal dependency. If
a ∈ C, we write a↓C the set {b ∈ C | b ≤C a}.

A structure C is called connected if, for all configurations C 6= ∅, there exists
a ∈ C such that C − {a} ∈ C. Clearly connectedness implies coincidence free-
ness and moreover, having assumed C nonempty and finitary, it also implies that
∅ ∈ C (rootedness). Conversely, coincidence freeness does not imply connected-
ness, even when in conjunction with closure under bounded unions. Following
[GG01] we call stable a configuration structure which is connected, closed under
nonempty bounded unions and nonempty bounded intersections. Stability was
introduced for event structures in [Win87]. Stable structures are precisely those
where the order on a configuration determines its subconfigurations (see [GG01,
Proposition 5.4 and Theorem 5.2]).

Example 1 Each of the structures depicted below, which we name (from left
to right) 1.1, 1.2 and 1.3, features a maximal configuration {a, b, c} with the
discrete order. Only 1.1 is stable.

�
�
�
��

��#

"
 
!�


��'

&

$

%
b ca�
��

�
�

�
�

'
&
$
%�


���
��



�

	

�
b ca �
��

�
�
�
�

#
"
 
!

'

&

$

%�

���
��a b c

�

While having nice algebraic consequences, stability is a rather strong require-
ment which is not satisfied, as noted regretfully in [Win87], when events can be
caused in several compatible ways. Here we seek weaker conditions to yield more
general models, though retaining nice algebraic properties (see Theorem 2).

In a stable structure C causal dependency is preserved by inclusions: if C ∈ C
and D ∈ sub (C), the inclusion D ⊆ C is a monotone map from (D,≤D) to
(C,≤C). We call this property monotonicity.

4



Definition 1 A configuration structure is called monotone if, for all configura-
tions C and D ∈ sub (C), a ≤D b implies a ≤C b.

The structure of diagram (1) is monotone but not stable, and so is 1.3 of Ex-
ample 1, while 1.2 is not even monotone. In [Cen02] we noted that a structure
is monotone (then called conservative) if and only if it has downwards-closed
bounded intersections. Below we extend this result by giving a further charac-
terization of monotonicity which does not refer to the order (condition 4).

Theorem 2 The following conditions on a structure C are equivalent:

1. C is monotone;
2. C is closed under principal ideals;
3. a↓A= a↓B for all A and B bound in C and a ∈ A ∩B;
4. A ∩B =

⋃
{D ∈ C |D ⊆ A ∩B} for A and B bound in C.

Proof. We develop the proof only for 1, 3 and 4. (1⇒3) Let C ∈ C and let
A,B ∈ sub (C). If C is monotone then b ≤A a implies b ≤C a. Then, if a ∈ A∩B,
b ≤B a follows from the definition of ≤C . So a ↓A⊆ a ↓B . The argument is
symmetrical. (3⇒4)

⋃
{D ∈ C |D ⊆ A ∩ B} ⊆ A ∩ B trivially. If a ∈ A ∩ B

then a ∈ a ↓A and a ∈ a ↓B . By hypothesis a ↓A= a ↓B ⊆ A ∩ B. Then, since
3⇒ 2, a ∈

⋃
{D ∈ C |D ⊆ A ∩ B}. (4⇒1) Suppose C is not monotone. There

must exist C ∈ C and A,B ∈ sub (C) such that a ≤A b, b ∈ B and a 6∈ B. If
a ≤A b then all subconfigurations of A containing b must also contain a and
hence, if a 6∈ B, there cannot be a configuration D ⊆ A ∩ B such that b ∈ D.
Therefore, A ∩B 6⊆

⋃
{D ∈ C |D ∈ A ∩B}. �

Note that, since condition 1 implies 4, monotone structures which are closed
under bounded unions are also closed under bounded binary intersections. This
implication also follows from [Win82, Proposition 1.8]. Theorem 2 shows that,
like in event structures, the principal ideals of a monotone structure C are config-
urations. However, note that, unlike in event structures, principal ideals are not
the complete primes of the poset (C,⊆), and neither are they compact elements.

Let C be a structure and let A,B ∈ C. When B = A ∪ {a} for some event
a 6∈ A we write A → B, or A a→ B to make a explicit. The reflexive and
transitive closure of → is written ↪→ and, when this relation holds, we also
denote by A ↪→ B the inclusion map. This map is monotone (with respect to
causal dependency) when C is monotone. When C is connected and closed under
bounded unions, A ∈ sub (B) implies A ↪→ B. This is not true in general for
connected monotone structures.

3 Configuration Theories

Capital letters A, B . . . are used here to denote posets, while Γ , ∆ . . . denote se-
quences of posets. Unless such a sequence is introduced explicitly by an equation
Γ = A1, . . . Am, we write Γi for the i-th component of Γ . The concatenation of

5



two sequences Γ and ∆ is written Γ,∆. If Γ = A1, . . . Am and ∆ = B1 . . . Bn are
finite sequences of posets, we write ρ : Γ → ∆ to mean that ρ is an m×n matrix
of monotone functions ρij : Ai → Bj . If C is a configuration of a configuration
structure and Γ is as above, we call interpretation of Γ in C an m × 1 matrix
Γ → C of monotone injective functions, where C is viewed as endowed with the
causal dependency order.

Definition 3 ([Cen02]) A poset sequent Γ `ρ ∆ (just sequent for short) con-
sists of two finite sequences Γ and ∆ of posets and a matrix ρ : Γ → ∆ of
monotone injective functions.

The posets in a sequent are meant to represent fragments of a configuration
of events. The intuitive meaning of a sequent Γ `ρ ∆ is that whenever a single
configuration interprets all components of Γ , the interpretation extends along
ρ to at least one component of ∆. Of course the ∆i may include more events
than are mentioned in Γ , thus specifying what is required to happen after (or
must have happened before) a certain combination (Γ ) of events. We write just
ρ for a sequent Γ `ρ ∆ when Γ and ∆ are understood or not relevant. On the
other hand, we may omit ρ when obvious from the labelling conventions. When
drawing sequents in pictures, we generally do not surround the elements of a
posets. Hence, we may write a ` a b instead of a ` a b .

Definition 4 ([Cen02]) A monotone structure C is said to satisfy a sequent
Γ `ρ ∆ when, for any configuration C ∈ C and interpretation π : Γ → C, there
exist a configuration D ∈ C, a component ∆k ∈ ∆ and a monotone injective
function q : ∆k → D such that C ∈ sub (D) and, for all i, the following diagram
commutes.

�� -

-

??

Γi ∆k

q

ρik

DC

πi

A pathological kind of sequent is `, which features empty sequences as an-
tecedent and succedent, and is decorated by the empty matrix. Under the as-
sumption that structures are not empty, this sequents denotes the absurd. A
sequent of the form ` A is satisfied by structures in which every computation
is bound to produce a configuration matching A. Similarly the sequent A ` is
satisfied by structures in which no configuration ever matches A.

A labelled configuration structure [GP95] is a structures C endowed by a
labelling function λ : |C| → Act, where Act is a fixed set of labels called actions.
Similarly, a labelled sequent ρ is one in which the elements of posets are assigned
labels from Act and the maps in ρ preserve them. Definition 4 extends to labelled
sequents and structures by requiring that interpretation maps preserve labels.

6



Example 2 In Figure 1 we rely on the labelling conventions introduced in
Section 2. In particular, the matrix remains implicit in both sequents because
there exists a unique label preserving monotone function from the antecedent to
the succedent. The sequent to the right is satisfied by the structure of diagram
(1) trivially, simply because none of the two lock actions in (1) depends on the
other, and hence there exists no interpretation in (1) of the sequent’s antecedent.
Unfortunately, just for the same reason, the sequent is also satisfied by the
structure obtained by adding to (1) the “forbidden” configuration {lock, lock ′ },
thus showing that the axiom does not serve the purpose of enforcing mutual
exclusion. �

[true] ` ∅ [iso]
φ is iso

A `φ B

[l-weak]
Γ `ρ ∆

Γ, ∅ `ρ;∅ ∆
[r-weak]

Γ `ρ ∆
Γ `ρ,σ ∆,A

[l-contr]
Γ,A,A `ρ;σ;σ ∆

Γ,A `ρ;σ ∆
[r-contr]

Γ `ρ,σ,σ ∆,A,A
Γ `ρ,σ ∆,A

[l-exc]
Γ,A,B,Π `ρ;σ;τ ;θ ∆

Γ,B,A,Π `ρ;τ ;σ;θ ∆
[r-exc]

Γ `ρ,σ,τ,θ ∆,A,B,Π
Γ `ρ,τ,σ,θ ∆,B,A,Π

[l-cut]
Π `τ A Γ,A `ρ;σ ∆

Γ,Π `ρ;τσ ∆
[r-cut]

A `τ Π Γ `ρ,σ ∆,A
Γ `ρ,στ ∆,Π

Table 1. Structural rules

Table 1 presents a system of structural inference rules proposed in [Cen02].
A configuration theory is a set of sequents that is closed under deduction. The
rules are shown to be sound with respect to interpretation in monotone struc-
tures. Completeness is proven for a restriction of the calculus to finite sequents,
augmented by a rule for extending the premises of a sequent to larger contexts
of events. The rules are roughly the structural rules of Gentzen’s sequent cal-
culus, decorated by suitable matrix expressions. We explain the cut rules and
refer the reader to [Cen02] for a more formal presentation. In [l-cut] ρ : Γ → ∆
is an m × n matrix, where m = |Γ | and n = |∆|, while σ : A → ∆ is 1 × n.
Then (ρ ; σ) is the (m+ 1)×n matrix Γ,A→ ∆ obtained by placing ρ above σ,
that is: (ρ ;σ)ij = ρij if i ≤ m, while (ρ ;σ)(m+1)j = σ1j . Moreover, if |Π| = r,
then τ σ : Π → ∆ is the r × n matrix obtained by multiplying the r × 1 matrix
τ : Π → A with the 1 × n matrix σ : A → ∆, where multiplication of matrix
components is just function composition. Similarly, (ρ, σ) : Γ → ∆,A in [r-cut]
is the matrix obtained by placing ρ : Γ → ∆ beside σ : Γ → A, while σ τ is a
product as above.

7



4 Notions of Equivalence

Here we assess the expressive power of poset sequents, and how accurate they
are in specifying system behaviour. We implicitely assume that structures and
posets are labelled over one set Act of action labels.

Definition 5 Two monotone structures C and D are called logically equivalent,
written C ∼=` D, when, for all sequents ρ, C satisfies ρ if and only if D satisfies
ρ.

Example 3 The structure C = {{a}, {a, b}, {a, b, c}, {c}} is logically equivalent
to D = {{a}, {a, b}, {a, b, c}, {c}, {c ′ }}. Note that neither structure satisfies the
sequent c ` {c, a}, stating that any configuration containing a c extends to one
containing an a. In fact, once the antecedent is interpreted in the configuration
{c}, no commuting diagram as required by Definition 4 exists because, although
{c} ⊆ {a.b.c}, {c} ↪→ {a, b, c} does not hold. In the setting of [Cen02] where ↪→
means just containment, C would satisfy c ` {c, a} while D would not.

Example 4 The structure {{a}, {b}, {a, b, c}} is not logically equivalent to

{{a}, {b}, {a, b, d}}, as the former satisfies
d
| `
a

while the latter does not.

Definition 6 A history preserving bisimulation between two structures C and D
is a relation R ⊆ C×D×P(|C|×|D|) such that (∅, ∅, ∅) ∈ R and, if (C,D, f) ∈ R,
then

– f is an isomorphism between (C,≤C) and (D,≤D);
– if C a→ C ′ then there exist D′ ∈ D such that D a→ D′ and (C ′, D′, f ′) ∈ R,

where f ′ extends f ;
– if D a→ D′ then there exist C ′ ∈ C such that C a→ C ′ and (C ′, D′, f ′) ∈ R,

where f ′ extends f .

Two structures C and D are history preserving bisimulation equivalent (bisim-
ulation equivalent for short), written C ≈h D, when there exists a history preserv-
ing bisimulation between them. The above definition is from [GG01] where stable
structures endowed with a termination predicate are considered. It rephrases in
terms of configuration structures the partial order equivalence of [DNM87]. Note
that, in general, monotonicity is not preserved by history preserving bisimula-
tion: when C ≈h D and C is monotone, D need not be monotone.

Partially ordered multisets, or pomsets [Pra86], are isomorphism classes of
posets (labelled over a set Act). We write [A] the pomset (the isomorphism class)
of a poset A. Viewing the configurations of a structure C as posets, we write
Poms(C) the set {[C] |C ∈ C} of its pomsets. Two structures C and D are called
pomset trace equivalent [GG01, 8.1], written C ∼=t D, when Poms(C) = Poms(D).
Again, the definition in [GG01] refers to stable structures.

8



Example 5 Connected structures may be depicted as graphs where nodes rep-
resent configurations and edges represent transitions a→. For example, the struc-
tures C = {{a}, {a, b}, {a, c}} and D = {{a}, {a, b}, {a′}, {a′, c}} are drawn re-

spectively
b \ / c
| a and

b | | c
a \/ a . This is a textbook example of trace equivalent

processes that are not bisimulation equivalent. �

Surprisingly enough, bisimulation does not imply pomset trace equivalence:
the structures of Example 4 are bisimulation equivalent although the first fea-
tures a configuration {a, b, c} that the other does not have. In fact, in the general
case of monotone structures, no inclusion holds among the three notions of equiv-
alence we are considering. In order to relate them we start by observing that
both {a, b, c} and {a, b, d} in Example 4 are not reachable. It is easy to see that,
when models are restricted to connected structures, ≈h implies ∼=t. The following
theorem states that so it happens with ∼=`.

Theorem 7 Let C and D be monotone and connected structures. If C ≈h D then
C ∼=` D.

Proof. Let C ≈h D. We show that, if C satisfies Γ `ρ ∆ then so does D. Let
A ∈ D and let π : Γ → A be an interpretation of Γ in A. By simulating in C
the computation ∅ ↪→ A we get a configuration B ∈ C related with A by an
isomorphism f : A → B. Since C satisfies ρ, the interpretation π f : Γ → B
yields ∆k ∈ ∆, C ∈ C and q : ∆k → C such that u : B ↪→ C and π f u = ρik q
for all i. Since A and B are related by a history preserving bisimulation, the
computation u is simulated in D by a v : A ↪→ D such that f u = v g, as in the
diagram. Then, πiv = πiv g g

−1 = πif u g
−1 = ρik q g

−1 for all i, as required.
�

?f

B

A

�� -

�� -

?

?

-

�
�
�
�
�
�/

�
�
��=

C

D

Γi
πi

∆k

q
g

q g−1

u

v

ρik

The result does not extend to the weak history preserving bisimulation of
[GG01, Def 9.3], where the isomorphism between related configurations is not
part of the relation itself. Note also that Theorem 7 fails when ↪→ is interpreted as
containment (just consider the bisimulation equivalent structures of Example 3).

The setting of connected structures is still too general to relate trace and log-
ical equivalence. The structures 1.1 and 1.3 of Example 1 are logically equivalent
although the former features a (reachable) configuration that the latter does not
have. On the other hand ∼=t 6⇒∼=`, as shown by the following example.

9



Example 6 {{a}, {a, b}} is trace equivalent to {{a}, {a, b}, {a′}}. However the
former satisfies ` b, while the latter doesn’t. �

Logical equivalence becomes strictly stronger than pomset trace eqivalence
if we restrict to stable and finitely branching structures. A structure is called
finitely branching if the number of configurations of cardinality n is finite, for
every finite n.

Theorem 8 Let C and D be stable, finitely branching structures. If C ∼=` D then
C ∼=t D.

Proof. Let C and D be stable, finitely branching structures, and suppose there
exists no configuration in D isomorphic to some C ∈ C. Let r : C → D ∈ D
be a monotone injective function. Either i) r(C) 6∈ D, or else ii) there exist
a, b ∈ C such that a 6≤C b and r(a) ≤D r(b). Since stable structures are closed
under taking downwards closed subsets of configurations, if i) holds then r(C)
is not downwards closed and hence, by the definition of ↪→, there can exist
no injection C ↪→ B ∈ C factorising through r. Neither can there be such a
factorisation if ii) holds because, by the definition of causal dependency, a 6≤C b
implies a 6≤B b. Call minimal a map C → D, where D ∈ D, if it factorises
through no subconfiguration of D, and consider the (possibly empty) sequence
ρ = ρ1, ρ2 . . . containing all the monotone injective minimal maps ρi : C → Di

where Di ∈ D. Since D is finitely branching, this sequence is finite. Clearly D
satisfies C `ρ D1, D2 . . . . However C does not satisfy it because, choosing the
identity interpretation of the antecedent in itself, satisfaction would require an
injection C ↪→ B ∈ C factorising through some ρk, which was shown impossible.

5 Structure Sequents

The structures of Example 5 are logically equivalent, although D cannot simulate
C. What distinguishes the two structures is that in C two conflicting events, b
and c, may both follow a certain configuration, {a}, but not so in D. The sequent
{a} ` {a, b}, {a, c}, for example, would not make this distinction. The reason
is clear from Definition 4: poset sequents predicate over the structure (causal
dependency) of single configurations, and hence they cannot express conflict.

In this section we introduce a more expressive form of sequent Γ `ρ ∆, called
structure sequent, where the components of Γ and ∆ are not meant as pieces of
configurations, but rather as pieces of configuration structures, while the ρij are
structure morphisms. In this new setting, as we shall see below, structure C of
Example 5 satisfies the sequent below while D does not.

�
�� 

�
	
�



�
	
�

a a c

b

` �
��

10



Definition 9 An embedding of a set system A in a set system B consists of a
function φ : A → B and a function f : |A| → |B| such that:

– φ preserves containment,
– for all A ∈ A, f |A : A→ |B| is one-to-one, and
– for all A,B bound in A and for all a ∈ A, f(a) ∈ φ(B) if and only if a ∈ B.

The third clause above requires that embeddings reflect intersections of bound
configurations. From this condition it follows immediately that f(A) ⊆ φ(A) for
all A ∈ A. If C and D are the structures of Example 5, there exists an obvious
embedding of D in C but none in the opposite direction.

Definition 10 A morphism A → B of set systems is a function f : |A| → |B|
such that there exists an embedding (φ, f) of A in B.

Definition 10 weakens the standard notion of synchronous morphism found
in literature ([Win87,GG01]), which requires f(A) to be a configuration. We
call strict the morphisms satisfying this requirement. For example, a morphism
{{unlock}} → {{lock}, {lock, unlock}} is needed to act as ρ in a sequent express-
ing that any unlock action must be preceeded by a lock action, as in Section 1.
This is indeed a morphism according to Definition 10, but not a strict one as in
[Win87].

Definition 11 A structure sequent Γ `ρ ∆ (just sequent for short) consists of
two finite sequences Γ and ∆ of set systems and a matrix ρ : Γ → ∆ of set
system morphisms.

Let C and D be configuration structures. We call D a substructure of C if
D ⊆ C and moreover, for all D ∈ D and C ∈ C, if C ⊆ D then C ∈ D. Note that
D ∈ sub (C) holds if and only if, viewing a configuration as the structure con-
sisting of all its subconfigurations, D is a substructure of C. Hence we extend
to structures the notation introduced for configurations, and write D ∈ sub (C)
if D is a substructure of C. Clearly, if D ∈ sub (C) the injection |D| → |C| is a
set system morphism. Our notion of substructure is weaker than that used by
Winskel [Win82, 2.3] for interpreting recursive processes in event structures. Ac-
cording to our definition, for example, {{a}, {b}, {a, b}, {a, c}} is a substructure
of {{a}, {b}, {a, b}, {a, c}, {b, c}}, but not according to Winskel’s. It is easy to
check that any substructure D of a monotone structure C is monotone.

A configuration structure C is said to satisfy a structure sequent Γ `ρ ∆
when, for any E ∈ sub (C) and interpretation π : Γ → E , there exist a substruc-
ture D of C, a component ∆k ∈ ∆ and a morphism q : ∆k → D such that
E ∈ sub (D) and, for all i, the following diagram commutes.

-

??
-

Γi ∆k

ρik

E
⊆πi q

D

11



Example 7 In Example 2 we failed to find a poset sequent ruling out compu-
tations in which a process is granted a lock which is currently held by someone
else. We succeed here with the following structure sequent, which is satisfied
(not trivially now) by the structure of diagram (1).



�
	
�

lock lock ′ 

�
	
�



�

	
�


�

	
�



�

	
�

,
lock lock unlock lock ′unlock` lock ′

It reads: if a configuration includes two lock actions by distinct processes P
and Q, then there must exist either an intermediate state (the subconfiguration
{lock, unlock }) where P has released the lock and Q has not yet acquired it or
(the comma) one where Q has released the lock before P gets it. �

1. coincidente freeness:

�
�
�
�a b l��

�
�
�
�
�
�lba , ba`

2. monotonicity:
lc l��

�
�

#
"

 
!l��

�
�

#
"

 
!

�
�
�
� l��

�
�l` aba cb

3. closure b’ded unions:
la lb��
�
�c lb��

�
�l��
�
�a c`

4. pre-tree cond’n: la lb��
�
�`

Table 2. Axiomatising classes of structures

Besides being used for specifying features of programming languages, such
as the Java policy for granting locks, structure sequents allow compact axioma-
tisations of classes of models. In Table 2 we axiomatise some of the structure
properties defined in Section 2. The axiom of monotonicity is understood in view
of Theorem 2, point 4. As an example we prove the third axiom correct. This
is in fact the only axiom in the table to rely on the additional assumption that
configurations are finite.

Proposition 12 If all configurations of a structure C are finite, then C is closed
under binary bounded unions if and only if it satisfies axiom 3 of Table 2.

Proof. We show the if implication (the converse is simpler). Let C satisfy ax-
iom 3 and let the configurations A,B,C ∈ C be such that A ∪B ⊆ C. If A ⊆ B
or B ⊆ A then A ∪ B ∈ C trivially. Otherwise, let a ∈ A − B and b ∈ B − A.
Suppose there exists an event c ∈ C− (A∪B). Then, there exists an embedding

12



(φ, p) of the axiom’s antecedent in C such that φ({a}) = A, φ({b}) = B and
φ({a, b, c}) = C. Since C satisfies the axiom, there must exists an embedding
(ψ, q) of the succedent in C, where c 6∈ ψ({a, b}). Either ψ({a, b}) = (A ∪B), or
there exists an event c′ ∈ ψ({a, b}) − (A ∪ B) and the argument repeats. Since
configurations are finite we eventually conclude that A ∪B ∈ C. �

The pre-tree condition characterises structures, called pre-trees in [Win82],
such that, if two configurations A and B are bound, then either A ⊆ B or B ⊆ A.
Pre-trees are clearly closed under bounded unions. In table 3 we show a simple
derivation of axiom 3 from axiom 4 by means of two inference rules from [Cen02]:

(∗)[ falsum ]
Γ `

Γ `σ Π
[ ◦ ]

A `r B
AA◦a `r+a Bφ1(A)◦a, . . .Bφn(A)◦a

(∗) for all embeddings (φi, r) of A in B. Here AA◦a denotes the set system
obtained by adding a new fresh event a to a configuration A ∈ A:

AA◦a = {X ⊆ |A| ] {a} | X − {a} ∈ A and (a ∈ X iff A ⊆ X)},

where ] is disjoint union. Then, r + a denotes the vector whose componets (all
equal) are the obvious extension of r to |A| ] {a}. This rule adapts to structure
sequents the rule [extend] of [Cen02] which was proven sound for poset sequents.

l l�� ��
�
�

�
�a b cl l��

�
�̀a b c

�� ��l la b `

l l�� ��a b c `
[falsum]

[◦]

Table 3. pre-trees are closed under bounded unions

Proposition 13 The [falsum] and [ ◦ ] rules and the structural of Table 1 (un-
derstood as referring to structure sequents) are sound.

6 Logical Equivalence and Isomorphism of Structures

Set systems and their morphisms form a category S where identities and compo-
sition are those of sets. A morphism is monic in S (then called a monomorphism)
if and only if it is one-to-one. It is epi if and only if it is onto. Note however
that a morphism which is monic and epi need not be an isomorphism in S. For
example, the morphism {{a, b}} → {{a}, {b}, {a, b}} is one-to-one, onto, but it
has no inverse in S (the third clause of Definition 9 forbids).

13



Lemma 14 Let A and B be finitely branching set systems, and let f : A → B
be a strict monomorphism; f is an isomorphism in S if and only if there exists
a strict monomorphism B → A.

Proof. The only if implication is immediate. We show the if. Let g : B → A be a
strict mono, and let b ∈ B ∈ B. The sets b† = {x ∈ |B| | x = (g f)k(b), k ≥ 0} and
g(b)† = {x ∈ |A| | x = (f g)k(g(b)), k ≥ 0} must both have finite cardinality
because each of their elements must belong to a configuration of finite cardinal-
ity |B| (because f and g are strict) and there is only a finite number of such
configurations (because A and B are finitely branching). Moreover, it must be
|b†| = |g(b)†| because both f and g are one-to-one. Hence, there must exist
a ∈ g(b)† such that f(a) = b. Since b is arbitrary, f : |A| → B is onto, and hence
an isomorphism of sets. Similarly, for all X ⊆ |A|, f(X) ∈ B implies A ∈ A. In
fact the cardinality of the set f(X)† = {B ∈ B | B = (g f)k(f(X)), k ≥ 0} is
finite and must be equal to that of (f g)(X)† = {A ∈ A | A = (f g)k(X), k > 0}.
This shows that, for all B ∈ B, f−1(B) ∈ A, and we can conclude that f is an
isomorphism of set systems. �

We write C ≡` D when, for all structure sequents ρ, C satisfies ρ if and
only if D satisfies ρ. This notion of logical equivalence is rather strong. We
know that it is not weaker than bisimulation. For example, the bisimulation
equivalent structures {{a}} and {{a}, {a}}, respectively written a and a+ a in
CCS, are distinguished by the sequent ©a ©a ` ©a . While this is generally
considered an overdiscrimination, such expressive power may become desirable
in the context of resource sensitive computation, for example when processes are
located. In [CNL99] process algebra axiomatisations are studied which exclude
the idempotence axiom X + X = X. The proposed argument is that a process
a+ a exhibits a sort of cold redundancy, which makes it more tollerant to faults
than a because it may take advantage of the different instances of the available
resources.

Are there examples of logically equivalent structures which differ from each
other in any “interesting” way? It is easy to find examples of logically equiv-
alent structures which are not isomorphic because of cardinality. For instance
N = {{0}, {1}, {2} . . . } and R = {. . . {2.5}, . . . {π}, . . . } (the reals). Indeed
R can be mapped to N (for example by any constant function) so that both
structures satisfy ` R. In general, no sequent can distinguish the two. More
interesting examples arise when restricting to finite sequents, that is sequents
involving only finitely many events. No finite sequent distinguishes N from
N + 1 = {{0}, {1}, {2}, . . . {0, 1, 2 . . . }}, although there exists no morphism
N + 1→ N and therefore no isomorphism.

We do not know whether, in general, logical equivalence implies bisimula-
tion. However, we do know that, for tree-like structures, ≡` coincides with iso-
morphism, even when confined to the finite sequents (Corollary 16). To prove
the result we find it convenient to work with a one-sided version of ≡`. Given
two monotone structures C and D, we write D v` C if, whenever D satisfies a

14



(structure) sequent ρ, also C satisfies ρ. We call strongly finitary a configuration
structure which is finitely branching and such that all configurations are finite.

Theorem 15 Let C and D be strongly finitary pre-trees. If D v` C then there
exists a strict monomorphism C → D.

Sketch of proof. We write AA;a the set system defined as AA◦a (see Section 5)
where ⊆ is replaced by strict containment. Similarly, let A be a set and let
a, b ∈ A. We write Aa≡b the set obtained by identifying a and b in A. Formally,
Aa≡b is the quotient of A with respect to the smallest equivalence relation ≡
such that a ≡ b. We write [ ] the function mapping x ∈ A to its equivalence
class [x] ∈ Aa≡b. Given a set system A and a, b ∈ |A| we denote by Aa≡b the
set system {X ⊆ |A|a≡b | X = [ ](A) for some A ∈ A}. If a and b are conflicting
elements of A (that is, there exists no A ∈ A such that a, b ∈ A), the map
[ ] : |A| → |A|a≡b is a set system morphism A → Aa≡b. The construction applies
straightforwardly to labelled structures by requiring that a and b have the same
label. Assume no strict monomorphism C → D exists. Since C is strongly finitary,
it must have a finite substructure Ĉ such that no strict monomorphism Ĉ → D
exists. Let ∆ be the list of all (and only) the set systems of the form ĈA;a, for
all A and a such that a transition A → B is possible in Ĉ and a has a label
occurring in any D ∈ D such that |D| ≤ |Ĉ|. Let ρ : Ĉ → ∆ be the matrix of
the obvious injections. Similarly, let Γ be the list of all the set systems of the
form Ĉa≡b, for all conflicting a, b ∈ |Ĉ|, and let σ : Ĉ → Γ be the matrix with
projections [ ] : Ĉ → Ĉa≡b as components. Both ∆ and Γ are finite since C is
finitely branching, and hence Ĉ `ρ,σ ∆,Γ is a well formed structure sequent.
The proof develops by showing that D satisfies (ρ, σ) while C does not. �

Corollary 16 Two connected finitely branching pre-trees are logically equivalent
(≡`) if and only if they are isomorphic.

Proof. By Lemma 14 and Theorem 15.

7 Conclusions

We tried to understand how detailed a configuration theory can be in speci-
fying the behaviour of a concurrent system. Two settings were studied: one in
which (poset) sequents predicate over single configurations, and another where
pieces of possibly incompatible computations may be addressed within the same
(structure) sequent. In the first case we can place logical equivalence in between
bisimulation and trace equivalence. This gives us a proof technique for the latter
and one for invalidating the former. On the other hand, the logical equivalence
arising from structure sequents was proven to coincide with isomorphism for tree-
like structures, but no firm result was found for the general case. Still, structure
sequents are shown to strech the expressive power of configuration theories to
capture and reason about both model theoretic and language related properties.

15



References

[Cen02] P. Cenciarelli. Configuration Theories. In J. Bradfield, editor, Proceedings
CSL02, pages 200–215. Springer LNCS 2471, 2002.

[CNL99] F. Corradini, R. De Nicola, and A. Labella. Models of Nondeterministic
Regular Expressions. Journal of Computer and System Sciences, 59:412–449,
1999.

[DNM87] P. Degano, R. De Nicola, and U. Montanari. Observational Equivalence for
Concurrency Models. In Formal Description of Programming Concepts - Proc
of 3rd IFIP WG 2.2, pages 105–129. North-Holland, 1987.

[GG01] R.J. van Glabbeek and U. Goltz. Refinement of actions and equivalence
notions for concurrent systems. Acta Informatica, 37:229–327, 2001.

[GP95] R.J. van Glabbeek and G.D. Plotkin. Configuration structures (extended
abstract). In D. Kozen, editor, Proceedings of LICS’95, pages 199–209. IEEE
Computer Society Press, June 1995.

[LC87] L. Pomello L. Castellano, G. De Michelis. Concurrency vs interleaving: an
instructive example. In Bull. EATCS 31, pages 12–15, 1987.

[NPW81] M. Nielsen, G.D. Plotkin, and G. Winskel. Petri Nets, Event Structures and
Domains: Part I. Theoretical Computer Science, 13(1):85–108, 1981.

[Pra86] V.R. Pratt. Modeling Concurrency with Partial Orders. Int. Journal of
Parallel Programming, 15(1):33–71, 1986.

[Win82] G. Winskel. Event Structure Semantics of CCS and Related Languages.
Springer LNCS, 140, 1982. Proceedings ICALP’82.

[Win87] Glynn Winskel. Event Structures. In G. Rozenberg W. Brauer, W. Reisig,
editor, Petri Nets: Applications and Relationships to Other Models of Con-
currency, number 255 in LNCS. Springer-Verlag, 1987.

16


