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Abstract

We consider the function my(q) that counts the number of cycle permutations of a finite
field F, of fixed length k such that their permutation polynomial has the smallest possible
degree. We prove the upper-bound ny(g)<(k — 1)/(q(q — 1))/k for char(F;)>e*=3)/¢ and
the lower-bound my(q) = @(k)(g(q — 1))/k for ¢ = 1 (mod k). This is done by establishing a
connection with the F-solutions of a system of equations .o/ defined over Z. As example, we
give complete formulas for myy(¢q) when k = 4,5 and partial formulas for & = 6. Finally, we
analyze the Galois structure of the algebraic set .o7.
© 2003 Elsevier Inc. All rights reserved.

1. Introduction

Let g be a power of a prime and denote with [F, the finite field with g elements. If ¢
is a permutation of the elements of F,, then one can associate to ¢ the polynomial
in F,[x]

fo(x) = a(e)(1 = (x =) (1)

cely,
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Such a polynomial has the property that

1. f-(b) = a(b) for all beF,,
2. The degree 9( f;) <q — 2 (since the sum of all the elements of F, is zero).

/s is the unique polynomial in F, with these two properties and it is called the
permutation polynomial of a.

Permutation polynomials have increasingly attracted the attention of various
researchers in the past couple of decades. We suggest the inspiring survey papers by
Rudolf Lidl and Gary Mullen [11,5,6] for an introduction to the subject.

Various cryptographic applications, including a key exchange protocol for public
key cryptography based on permutation polynomials have been proposed (see [4,7]).

In their paper of 1988, Rudolf Lidl and Gary Mullen [5] discuss a number of open
problems regarding permutation polynomials. Among these, problem P6 asks to
determine the number Ny(g) of permutation polynomials of degree d where
1<d<q—2and d}q— 1. This seems to be a difficult problem at the moment. Some
partial results were given by Wells [12]. We will state his results later. See also the
paper of Sergey Konyagin and the second author [3] and the results by Pinaki
Das [1].

For a given permutation ¢ of F,, let us denote by S, the set of elements of [F, that
are moved by . Note that if ¢ and ¢’ are conjugated, then #S, = #S,.

If ¢ is not the identity we have that 9( f;)=>¢ — #S,. To see this it is enough to
note that the polynomial f;(x) — x has as roots all the elements of F, which are not in
S,. Therefore, if not identically zero, f; has to have degree at least g — #5S,.

Let % be a conjugation class of permutations of a finite field F, and ¢(%) the
number of elements of F, moved by any permutation in % (that is: ¢(%) = #S, for
any g€%). As we just noticed, for any €%,

q—220(fs)2q — c(%). (2)

An immediate consequence is that all transpositions have polynomials with degree
g — 2 while the degree of a 3-cycle can be ¢ — 2 or ¢ — 3.

In the first paper of this series [9] we dealt with the problem of determining /¢ (F,),
defined as the number of permutation polynomials associated to permutations in the
class ¥ whose degree is strictly less then ¢ — 2. There we obtained a number of
formulas and estimates. For classes of permutations that move up to 6 elements we
have computed closed formulas for /4 (F,). These results extend those of Wells.

In this paper we consider

My(Fy) = {oe€|0(fs) = q — #5,}
(i.e. the permutations in % for which the permutation polynomial has the minimum

possible degree g — ¢(%)) and set mg(q) = #Mqy(F,).
Let us also denote by [k] the class consisting of all the k-cycle permutations of [F,.
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Theorem 1.1. Let ¢ be the Euler totient function. If ¢ = 1 (mod k) then

myq(q) >$ q(q—1).

Next, we will show the upper bound:

Theorem 1.2. Suppose char(F,)>ek=3/¢. Then

’”[k](q)S(k;l)!Q(q— 1).

The hypothesis char(F,) >e*~3/¢ in Theorem 1.2 rules out the interesting case
when k has approximately the same size as ¢g. Our proof breaks down for these values
of k. However, we are convinced that the upper bound for myy(¢) holds for any value
of k<gq.

In general, if % is any conjugation class of permutations then an analogous upper
bound as the one in Theorem 1.2 can be proved for m¢(g). In some cases the bounds
are stronger. We have decided to restrict ourselves to the case of cycle permutations.

We will prove Theorem 1.2 in Section 3, Theorem 1.1 in Section 4. Section 5 is
dedicated to examples. We will consider k-cycles (k= 3,4,5,6) and give detailed
description of m(q) in these special cases.

2. Reduction to normalized permutations

A permutation ¢ of F, is said to be normalized" if ¢(0) = 1. We denote by N¢(F,)
the set of normalized permutations of € that have (minimal) degree ¢ — ¢(%) and we
set ¢ (q) = #N (F,).

Proposition 2.1. With the above notations we have
mi(q) = ——q(q = Dne(q).

Hence if mg(q)#0, then

rnw(q)>c((g) q(q —1).

"The definition of normalized permutation is different from the usual one where a permutation
polynomial f'(x) e F,[x] is said normalized if it is monic, if £(0) = 0 and if the coefficient of x"~! is 0 when
the degree n of f is not divisible by the characteristic p.
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Proof. Let A! (F,) be the group of affine transformations of F,, that is the group of
applications

Lyy:Fy—Fy,x—>ax+b.

It is clear that #A'(F,) = g(q — 1).
Consider the map

T: Al(Fy) x Ne(Fy) > Me(F,),
(Lap,0)— (L;}’O-La,b)‘
Clearly IT is well defined since
O(LypfoLap(x)) = (a ' (f(ax +b) — b)) = d(fs).

Furthermore IT is surjective. This follows from the fact that, given te M«(F,),
chosen be S; and set a = 1(b) — b, we have that L;})rLa,b is normalized and therefore

t=11(L,}, L, tLap).

To complete the proof we need to show that for every te My(FF,), the fibre IT~!(t)
has exactly ¢(%) elements. Indeed, consider the map

8, - I (1),
b (L, y, L, tLap),

where a = t(h) — b. Tt is clear that X is well defined and injective. Furthermore, X is
also surjective since if (L.4,0) eIl (1), then

t(—d/¢) = L, joLca(—d/c) = L_j0(0) = (1 —d)/c.
Therefore —d/ceS;, 1/c =1(—d/c) — (—d/c) and
2(—=d/c) = (Lcg,0).
Finally #IT7 (1) = #S; = ¢(%) and this concludes the proof. [
Remark. The previous proposition allows us to reduce the problem of computing
my(F,) to the easier one of computing n¢([F,). Indeed since ¢([k]) = k, Theorem 1.2

is equivalent to nyy(F,) < (k — 1)! and Theorem 1.1 is equivalent to nyy(F,) > ¢ (k) for
g =1 (mod k).
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3. From normalized permutation polynomials to affine algebraic sets. Proof of
Theorem 1.2

Let us write
Jo(x) = Ago1 + Agax + -+ A1x772,

From definition (1) it follows that for every i =1, ..., — 2,

A = Ai(o) = (—1)'*! (q; : ) 3 (o).

cely

It is well known (see for example [8, Exercise 7.1]) that for 0<i<
g—1, (-1)"'(¢;") = =1 in F,. Furthermore using the identity (see for example
[8, Lemma 6.3]),

Z Ci+1 -0

cely,

for i<g — 2, we deduce that

From these observations it follows that

me(q) = #{aefé such that Z c(c—a(c)=0fori=1,...,c(%) —2}.

ceS,

Let us now specialize to the case when ¢ is a normalized k-cycle:

o=1(0,1,a1,az, ...,ax2).

In this case
Ai(0) = (1 — ) +dj(a) — @) + - + df_3(ar—3 — ar_2) + @i,

Fori=1, ...,k — 2, define the polynomial with integer coefficients:

Gi(X1y ooy Xi—2 —l—xl—i—Zx Xj — Xj41) —|—xk 2EZ[x1,...,xk,2]. (3)

The degree (f;) = g — #S, if and only if
Al(O') = = Ak_z(d) =0.
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Therefore

n[k](q) = #{)_Ce(Fq\{O, 1})k_2 such that G(x) = -+ = Gx_2(x) =0 }

and all the components of x are distinct

We are naturally lead to consider the affine algebraic set .o/, in A¥~2 defined by the
equations:

(1= x1) +x1(x1 —x2) + = + X3(xk-3 — Xp2) + X7, = 0,
oy (1= x1) +x7(x1 —x2) + o + X35 (%k3 = Xk2) £, = 0, ()
(1 =xp) +x’f‘2(x1 —Xx2)+ - +xk 3(xk 3 — Xk—2) —l—x;ﬁ:; = 0.

Clearly .7 is defined over Z and therefore over any field.
We can also write that

ny(q) = #{xe/i(F,) with components not in {0,1} and all distinct}. (5)

Theorem 3.1. Let K be any algebraic closed field and keN be an integer such that

either char(K) =0 or char(K)>ek=3/¢. Then we have that the algebraic variety
dimension

dimK(gQ/k) =0.

Remark. Note that the hypothesis char(K) > e*~3/¢ is not redundant. In fact it can
be seen that, if p = char(K) is fixed, then

klim dimg (o) = + 0.

— 0

Corollary 3.1. Let K be any algebraic closed field and ke N be an integer such that
either char(K) = 0 or char(K) > ek=3)/¢. Then

/1 (K) = (k= 1)
where the points are counted with multiplicity.

Proof. We apply the Theorem of Bézout (see for example the book of Harris [2])
which states that if k£ — 2 hypersurfaces in P*~2(K) do intersect in a zero-dimensional

subvariety of P¥~2(K), then the number of points that they have in common is given
by the product of the degrees of the equations. In our case the product of the degrees
is2-3---(k — 1) and since none of the points is ““at infinity”’ we have the claim. O
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In order to prove Theorem 3.1, we will need the following three auxiliary lemmas:

Lemma 3.1. Let K be any field and let X, ..., X, €K". The linear system

xu+---+X,U, = 0,
XU + -+ X2U, = 0,
XU+ + XU, = 0,
U+ +U = X
has no solutions (Uy, ..., U,) in K".

Proof. The proof is done by induction on n. If n = 1, then the conditions X;U; = 0
and U; = X imply that X; = 0. Therefore no solution exists. Assume n>=2.

Let A be the matrix of the coefficients of the first » equations. Expanding the
Vandermonde determinant we obtain

det(4) = XX, T (X, - X))

i>j

If the system of equations admits a solution (uy, ...,u,), then not all the u;’s can
be equal to 0 otherwise the last equation cannot be satisfied. Therefore, the
homogeneous system given by the first # equations has to have a non-trivial solution.
This implies that det(4) =0 and therefore X; = X; for some i#j. Let us assume,

without loss of generality, that X,, = X,,_;. Now (uy, ..., (4,—1 + 1)) is a solution of
the system
XU+ - +XU,.1 = 0,
XU+ +X2,U,y = 0,
szilUl + - +X,7:11 Unfl = 07
U+ +U = X

which is a contradiction to the inductive hypothesis. [

Lemma 3.2. Let A = (ay) be a t x t matrix with integer entries such that the following
properties hold.

1. Foralli,j=1,...,t, i#], a;>0, a;<0 (i.e. the elements in the diagonal of A are
strictly positive and those outside are negative).

2. For every i =1, ...,t there exists j#i such that a;#0 (i.e. every row has at least a
non-zero entry outside the diagonal).

3. Foreveryj=1,....t, S_i_a; >0 and there exists j with 3_;_,a; >0 (i.e. the sum of
the elements in every column is positive and for at least one column is strictly
positive).
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Then

0<det(A)<a11 cedy.

Proof. We proceed by induction on ¢.
If t=2,then 4 = ("“ ”12) and det(A4) = ajjaxn — axarn. By the third hypothesis

ay  an
we have that a;; > — a1, a> — ajp and one of the two inequalities is a strict one.
Therefore, since by property 1, — a;; >0 and —a;» >0, we have

ayax >daxdp.

Finally det(A4)>0. The inequality det(A4)<ajjas; follows from the first hypothesis.
Assume now that >3 and also assume, without loss of generality, that
Z;Zlail >1.1f Ay, 4y, ..., A, are the rows of A, then consider that matrix:

Ay ay app o dy
a1 A — an A 0

. - . B 3
a4, —an A 0

where B = (b;), i,j=2,...,t and
bj = ana; — apa;.

It is clear that a!;! det(4) = aj; det(B). We claim that B verifies the hypothesis of
the Lemma and therefore, as a;1a1;=0 for j =2, ..., ¢, by induction

0<det(B)<(anaxn — ayan) - (anay — anay,) <dy'axn--ay

and this implies the claim.
Let us check that B verifies the hypothesis of the lemma:

1. Since 25:1 ap =1, for every i=2,...,t, a;;> — a;1. Furthermore a;> — ay;,
therefore

bi = anai — anay;>0.
Also by = aya; — aja;;<0 (if i#j) since it is the sum of two negative numbers.

2. Forevery i=2,...,t, let j#i be such that a; #0. Then b;;<aj1a;; <0 is also non-

Zero.
3. Consider

t t t
E by =an E a; — ay E apn = —anay — ay(l —an) = —ay.
i P i
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Therefore > ¢ ,b;>0 for all j=2,...,¢ and if j is such that a;;#0, then
th:zblj>0

This concludes the proof. [
The following lemma is a standard application of calculus.

Lemma 3.3. If T eN is given, then
max{x;--Xg| X1, ..., X, Nso, x; + -+ + x,< T}<eT/‘),
where e is the Napier constant.

Proof. Since the arithmetic mean always bounds the geometric mean, we have

s s
xl...xsg(u) <<Z) ,
N S

The real variable function on the right-hand side above has a maximum for s = T /e.
The result follows from the fact that for 7'>3,

max{([T_T/e])”/"l(ﬁ)”ﬁ“}w o

Proof of Theorem 3.1. The proof will proceed as follows: we denote by ¥7; the
projective variety in P¥~2 corresponding to .7

Xo(Xo — X1) + Xi(X1 — X2) + - 4+ Xp3(Xom3 — Xe2) + X2, = 0,

o X3 (Xo = X0) + X7 (X1 — Xo) + - + X7 3(Xks — X 2) + X7, = 0,
K )

X2 (X0 — X))+ XF2(X0 = Xo) + o + XE2(Xes — Xaa) + X = 0.

(6)

To prove that 774 (K) is zero-dimensional, we will show that it has no points of
intersection with the projective hyperplane “‘at infinity”” X, = 0. Indeed, note that if
4" (K) contains a positive dimensional subvariety, then it has to have non-empty
intersection with any plane. In particular, if we substitute X, = 0 in (6) we should
obtain some non-trivial solutions. We will see that this is impossible and that the
only solution is (X7, ..., Xx—2) = (0, ..., 0).

Assume that k> 3, otherwise the statement can be verified directly and also follows
from the work of Wells [11] (see (9) below) and let n = k — 2. If n = 2, then we have
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the equation

XP - XX+ X3 =0,
X} —XPXo+ X5 =0

which is quickly seen to have as solutions only (X7, X3) = (0,0) over any field.
Assume n>3 and let (Xi,...,X,)#(0,...,0) be a non-trivial solution. We can
assume that X; #0 otherwise we would have a non-trivial solution (X3, ..., X;) that
we rule out by induction. For the same reason we can assume that X, #0 and that
Xi#X; g fori=1,...,n—1.
Let us rewrite the equations in the following way:

X X2 - X\ /1 -1 0 - 0\ /X 0
X x3 - x2|lo 1 -1 Ol x| |0
xpoxy - xr/\o o0 - 0 1/\X, 0

Note that the first matrix has determinant

XX, [ (G- X))

i>j

while the second has determinant 1.

This immediately implies that the first matrix has to have determinant equal to 0
otherwise we would obtain the contradiction that (X, ..., X,) = (0, ...,0).

By setting U; = X; — X1y, if i<n and U, = X, and applying Lemma 3.1, we
obtain that at least one of the X; = 0.

Now let us relabel the set {X;, X, ..., X, } =K as {y1,)2, ..., »,,0} in such a way
that

1. y1, ...,y are all distinct;
2. y1, ...,y are all not zero;
3. for every se{l,...,n} there exists ie {1, ..., ¢} such that X; = y;.

Let us also assume that y; = X} and note that 1<n — 1. Now consider the first ¢
equations of (6) and replace (X1, ..., X;) with (y1, ...,»,), so that

yiLliyi, - ye) + o vl ) = 0,
: (7)
y[1L1<J/1a---7J/t>+"'+)’§L1(J’17---7yt) = 07
where fori=1,...,¢,

!
L,’(y]7 ...,y[) = Zaﬁy_,
J=1
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and

0 {#{se{l,...,n}|XS=J’i} if i=J, @)

—#{se{l, ... ,n—1}| Xy = y;, Xs1 = y;} if i#).

Let A = (a;) be the ¢ x ¢t matrix with integer entries defined by (8) and A be the
matrix obtained by A4 reducing the entries in K, where we assume that either
char(K) = 0 or char(K) > e3¢,

Note that a; >2 otherwise one row of 4 would contain only one 1 and possibly
one —1 and this would imply the contradiction that either two y;’s are equal or one
y; 1s zero.

Relations (7) can be written as

Yoo e 1 0
2 2

. 0
Al =
ytl y; Vi 0

Since the first matrix has determinant

vy [T =) #0,

i)
we deduce that
n 0
il ="
) \o

We want to obtain a contradiction by showing that det(A4)0. We will do this by
applying Lemma 3.2 to A which will give

O<det A<ay--ay

and since
t
Z a; = #{se{l, ... ,n} | X;#20}<n— 1=k — 3,
i=1

we have by Lemma 3.3 that

0<det A<e*¥/¢ <char(K).

Therefore det(A)+0 which implies the claim.



C. Malvenuto, F. Pappalardi | Finite Fields and Their Applications 10 (2004) 72-96 83

The only thing left to show is that A satisfies the hypothesis of Lemma 3.2: the first
hypothesis is immediately verified by the definition of the matrix 4 in (8). Similarly
the second hypothesis follows from the fact that if all the elements outside the
diagonal were 0 this would imply that a;y; = 0€K and since a; <n<char(K), a;#0
would give a contradiction.

Let us check that the third hypothesis holds. Indeed by (8),

Z dij = #{SE nHXY:ijval :0}4»8]-;07

where ¢; =1 if j=1 and 0 otherwise. It follows that the sum of the elements
in the first column is strictly positive. This concludes the proof of the
theorem. [

Proof of Theorem 1.2. Apply the corollary to Theorem 3.1 with K =TF,. For

char(F,) >e*=3)/¢ we have the bound

#.oA 1 (Fg) <#A1(Fy) = (k= 1)!
Finally, from (5) and from Proposition 2.1 we obtain

(¢—1)

my(q) = 1 Al ()< k- 1)

- 1).

and this concludes the proof of Theorem 1.2. [J

4. Cyclotomic permutation polynomials. Proof of Theorem 1.1

We want to prove Theorem 1.1 by producing, in the case ¢ = 1 (mod k), ¢(k)
distinct normalized k-cycles in Ny ([F,).

Let us start noticing that the condition ¢ = 1 (mod k) implies that F, contains all
the kth roots of unity and that they are all distinct. Denote by { a primitive kth root
of unity in [,. Consider the normalized k-cycle:

or = (07 17(1 +C), ,(1 +C+ +Ck*2))

Clearly as { varies among the ¢(k) primitive kth roots of unity, we obtain
distinct normalized k-cycles. We want to check that O(f;) =¢—k (ie. o€

N[k]([Fq))-
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Let us compute, fori=1,....k — 2,

() =G((1+0)y ooy 1L+ o+ 7))
k-3
= — (Z CHI(I +C+ - +Cj)i> + (1 NIy Jré/kfz)iﬂ

_ -1 '<k3 C’”(CHI B 1)1. 3 (Ck—l _ 1)i+1>

[—1

B 1 k— 41 i (Z) i (j+l)t_(ék71 - 1)i+1
_(g—l)l(-og ; DT )

Interchange the two sums of the last equation and observe that, since 1+ 1<i+
1<k —1 and { is primitive, we have

kz3 (’“ C(kfz)(m) _ 1'
= Ct+l 1
Therefore
A( i ( ) z tCtJrlC )(1+1) -1 - (é/kfl o 1)i+1 .
i < Ct+1 1 C— 1
Now use the fact that (*~! = (!, The above becomes
Ao, Z R St B (St VAl
_ - €t+1 —1 -1

0
( ( )c Lol )")
_é ~ (i I N B B
_C(c—l)’(,o(t)( D (@ 1>)

=0.

Finally, recalling that J(f;)>q — ¢(%), we have o;e Nyy(F,) for all primitive {.
Therefore nyj(q)>¢@(k) and by Proposition 2.1, this concludes the proof of
Theorem 1.1. O

Remark. We will call the permutations a; cyclotomic permutations. In the case k = 3,
Theorem 1.2 gives that Nz(F,)<%¢(¢ — 1) while Theorem 1.1 gives that if ¢ =
1 (mod 3), then Nz (F,) =2 ¢(q — 1). Therefore all normalized 3-cycles are cyclotomic
permutations if ¢ = 1 (mod 3). On the other hand in 1969, Wells [12] proved the
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formula

2g(q—1) if g=1(mod3),
Np(Fg) =40 if ¢ =2 (mod 3), 9)
q(g—1) if ¢=0(mod3).

W=

Our results can be seen as generalizations of the above. Note that in [12, p. 50] there
is a misprint in the case ¢ = 0 (mod 3) where the claim that Np3(3") = 3"(3" — 1)
should be corrected into Nj3(3") = 3"'(3" — 1) as all possible 3-cycles permutations
are

(a,a+b,a—D)

which for all choices of a,belF3: give rise to the above amount of permutations.

5. Numerical examples: the number of k-cycles with minimal degree for k<6
In this section we consider the specific examples of 4-, 5- and 6-cycles. The case

of 3-cycles has been analyzed with by Wells [12] (see the remark in the previous
section).

5.1. Computation of my(q)
We will prove the following:

Theorem 5.1. Let myy(F,) be the number of 4-cycle permutations of F, such that their
permutation polynomial has minimal degree q — 4. Then, if (¢,10) = 1,

my(Fy) = 349(q — 1)Ky,

where
6 if ¢ =1 (mod 20),
K — 4 if g =11 (mod 20),
)2 if ¢=9,13,17 (mod 20),
0 if ¢=3,7,19 (mod 20)
while

I/}’I[4]([F5n) = %5"(5” - 1)
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and

22— 1) if 4n,

0 otherwise.

mig) (Far) = {

Remark. From (2) it follows that the degree of a 4-cycle permutation polynomial can
either be ¢ —2, ¢—3 or ¢—4. In [9] we proved that the number of 4-cycle
permutation polynomials over F, with degree strictly less then ¢ — 3 is

g1l if ¢ =1(mod 12),
q=3 if ¢ =5 (mod 12),
-7 if ¢ =7 (mod 12
lQ(Q—l)tq where 7, = 4 1 61_ (mod 12),
) g+11 if ¢ =11 (mod 12),
(q—HA+(=1)") if g=27,
q—5-=2(-1)" if ¢ =3".

This result together with Theorem 5.1 provides complete information of the
number of 4-cycles of each given degree.

Proof of Theorem 5.1. From Proposition 2.1, we have that

miy (Fg) = @nm(ﬂ)

and from (5) it follows that

g (F)#H{ (x,7) € (FAO, 1) | x 2, (x,7) e /4(F,)},

where

S (=x) +x(x—p) +»* =0,
4 {(1—x)+x2(x—y)+y3=0.

The resultant R with respect to the variable y of the two equations defining .o74 is
R=10x* — 4x” + x° 4+ 15x> — 15x7 — 8x 42
=(x* = 2x+2)(x* —2x* +4x? —3x 4+ 1).

Now denote by /;(x) the first factor and by /A, (x) the second. The resultant of /;

and /i, is equal to 5. Therefore, if (¢,5) =1, h; and h, will never have common
roots.
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The number of roots of /4;(x) is

0 if ¢g=3(mod4),
2 if g=1(mod4), (10)
1 if g is even.

Furthermore, if ¢ = 1 (mod 4) and 1 = v/—1 is a primitive fourth root of unity in Fy
from the roots of /1; we can construct the two points of .<Z4(F,)

(i) =0 +,14+14+1%), (x,0m)=1—-1,1 —147). (11)
These points give rise to the two distinct (normalized) cyclotomic permutations:
0,1, (T41), (1414 1%)); (0,1, (1 —1), (1 — 1+ 12)).

If ¢ is even, then the root x =0 of /; gives the point (0,1)eF» that leads to no
permutation polynomials.
Let us now deal with h,. We claim that the number of roots of 4, is

4 if ¢g=1(mod)5),
1 if ¢=0(mod)5), (12)
0 otherwise.

Indeed a calculation shows that if { is a primitive fifth root of unity in F,, then

(x_l_Ci_CQi)

—.

hz(x) =

i=1

while
hy(x) = (x +2)* (mod 5).

Hence (12) follows.

If ¢g=1(mod5) and x; is a root of A, then a computation shows that y; =
1 — 2x; + x7 — x} is the only value for which (x;,y;)€.Z4(F,).

The conditions x; = 0 or x; = | are never satisfied since /,(0) = 1 and /(1) = 1
and the other conditions

xXi=y, yi=0, y=1

are also never satisfied. This is easily checked by some computation. For example the
condition y; =0 can be checked by calculating the resultant between /,(x) and
1 — 2x + x?> — x3. This resultant is equal to 1.

Putting together (10) and (12), and working out the various congruence relations
modulo 20, we obtain the claim for characteristic different from 2 and 5.
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Let us now deal with the case when ¢ = 5. The two roots of /;(y) will provide the
two points of .oZ4(Fs:) (3,2) and (4, 3), while

hy(x) = (x+2)*

has only one root x; =3 which gives y; =2, but the point (2,3)e.eZ4(Fs) has
already been counted. Therefore #.o74(Fsi) = 2.

Finally let us deal with the case when ¢ = 2". The root x = 0 of /;(x) has to be
excluded and /i, (x) provides 4 distinct points if 2" = 1 (mod 5) (i.e. n|4).

This concludes the proof of the theorem. [

Remark. We want to summarize the process that we used to construct all the points
in A4(F,) since we will adopt the same approach in the following examples:

1. We have decomposed
A 4(Fy) = A 4(Fg(V=1)) U Aa(Fy((5)),

where the union is disjoint except in the case 5|q.

2. We have checked that the coordinates of each point of .«Z4(F,) were distinct and
different from 0 or 1. This has always been the case except when 2|q.

3. If (¢,10) = 1, then the number myy(q) is g(q — 1)/4 times n; +ny where n; is

the number of points in oZ4(F,(v/—1)) and ny is the number of points in
A 4(Fy(L5))-

Note that for every prime p#2,5, n; is the number of prime ideals of Q(v/—1)
over p and n;, is the number of prime ideals of Q({s) over p. This property suggests to

first look at .«74(Q) and then consider the reduction in the various finite fields. We
will follow this approach in the sequel.

5.2. Computation of ms5(q)
We will prove the following:
Theorem 5.2. Let g be a power of a prime p which is not in the set

{2,13,61,3719,3100067}.

Then

q\q
mys)(Fg) = %547
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where
4 if g=1(mod)5),

Sq=rtg+ty+tu, t;=<1 if ¢g=0(mod?), uqz{
0 otherwise,

-1 if p=11,41,
0 otherwise

and ry is the number of roots in F, of the polynomial

ga(x) =2x% — 29x1% 4+ 229x!® — 1249x"7 + 5187

17222x1 + 47040x" — 107505x"3 + 207622x"2
— 340496x" + 474638x'" — 560999x° + 559052x°

465487x7 + 319628x° — 177653x> + 77807x* — 25797x°

+ 6074x> — 904x + 64.

Proof. Again we start from the formula:

q(g—1)

mis)(Fy) = 5

#{(x,y,2)eA5(Fy), x,»,2¢{0, 1}, x#y#z#x},
where

H = (1-x)+x(x=y)+y(y—z+22=0,
As:{ Hy=(1—x)+x(x—p)+y’(y—z)+2=0,
Hy=(1-x)+x(x=y)+y(y—z)+z* =0.

Let us first compute .o75(Q).
From Theorem 3.1 we know that #.o/5(Q) = 24. Furthermore 4 points of .«Z5(Q)
are the cyclotomic ones

I+ N+ +F 1+ +3 4+, (=5, j=1,2,3,4. (13)

We solve the system of equations defining .«/s in the following way. Consider
H, — (z+ y)H; = 0 and note that we can solve it for z obtaining

X2y x4 xy—x—y+1
z= )
X2 —xy+)2—x+1

(14)

Similarly, consider H3 — zH> — y*H; = 0. Also here we can solve it for z obtaining:

Z_x4—x3y—x2y2+xy3+xy2—y2—x+1

xX3—xty+p3—x+1

(15)
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Now, subtracting H3 — z>H, — yH, = 0, we can solve it for z> obtaining:

s X =2y Xty —x—y+ 1

: X2 —xy+y2—x+1

(16)

Replacing z? in H; with the right-hand side of (16) and z with the right-hand side
of (14) we obtain (after simplification):
(x* =2y X xy—x—y+1)
— (3 =2+ P+ xy—x—y+ D1 —x+x(x—p)+*)*=0. (17)

Finally, consider the equation obtained replacing z in (14) by the right-hand side
of (15)

(x*

Xy =X 0 = x D) -y - x )
(32 3 352 2 v —
(X =xy+y —x+ )X =2xy+xy " +xy—x—y+1)=0. (18)

In this way we have eliminated the variable z. We might have introduced new
solutions but we will see later that this is not the case.

We have used Maple V [10] to compute the resultant R of (17) and (18) with
respect to y and we obtained:

R =g1(x) - g2(x),
where
gi(x) =x* = 3x° +4x% —2x + 1 (19)
and
g2(x) =2x%° — 29x" 4+ 220x!® — 1249x!7 4+ 5187x!¢ — 17222x"

+ 47040x™ — 107505x"% 4 207622x'% — 340496x"!

+ 474638x'" — 560999x7 + 559052x% — 465487

+ 319628x° — 177653x° 4 77807x* — 25797x°

+ 6074x? — 904x + 64 (20)

Now the splitting field of g;(x) is @(e*™/°). Furthermore, the roots of g; are
xp=(1+), j=1,2,34

We can also easily compute x and y for each of the above. Hence .o/5(Q({s)) is
exactly the set described in (13).
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Let Ms be the splitting field of g,. For each root « of g(x), one can compute
(o, y(a), z(ax)) € As(Ms) where:

1
3.13-61-3719 - 3100067

+ 425897367479627411x% — 1556772755104088477x°

y(x) =3 (6245340990732510 — 74275247020348477x
+ 4068122356423765520x* — 8092377944341897339x°

+ 12739155747072503154x° — 16281608694400072277x"

+ 17191467892889878476x" — 15176855331347725064x°

+ 11289210111615920188x'" — 7103742513094855073x"!

+ 3782081407301444460x'% — 1696979431552752820x"3

+ 635807089991226023x'* — 195705738631474759x"3

+ 48121368022605621x'® — 9009616966592957x"7

+ 1165803130533438x'® — 82558295396232x'%)

and from (14) and some computation

2(v) :x3 — 2x2p(x) + xp(x)* + xp(x) — x — p(x) + 1
(%)> = xp(x) + p(x)* = x + 1

1
13613719 3100067(—292290150269490x19+3950333490943181x18

29484664428617801x'7 + 152268243151302965x"°

599002775464475543x"° + 1880438345917167218x"
— 4841135989461751552x" + 10378374551469856881x'>

— 18679878403151115130x'" + 28303942873286020848x"°

36041151267474587782x° + 38336702176933085823x"
— 33711958096174593304x7 + 24129466512539278343x°
— 13742359416000756136x° + 6020424561116746133x*
— 1925677501494324283x° + (413273185040891961x°

— 51203861193252214x + 2593061963570136).



92 C. Malvenuto, F. Pappalardi | Finite Fields and Their Applications 10 (2004) 72-96

Finally
A 5(Q) = o5(Q(/?)) U o/ 5(Ms),

where the union is disjoint.

We are now ready to investigate .o/s([F,).

The roots of ¢i(x) in /5(F,) are 4 if ¢ = 1 (mod 5) and in this case the 4 points
give the cyclotomic permutation polynomials. If ¢ = 5", then g (x) = (x + 3)* and
the root x¢ = 2 leads to the point (2, 3,4)e.o/5(Fs:) and therefore to the normalized
5-cycle (0,1,2,3,4).

Let us deal with the roots of g»(x). The characteristics

{2,13,61,3719, 3100067} (1)

appearing in the denominators of y(x) and z(x) will have to be treated separately and
we have not done it here.

For all other primes, note that g,(0) = 2°, g>(1) = 2 and we have the following
resultants:

R(y(x),02(x)) = 2%, R(r(x) = 1,g2(x)) = 2%, R(y(x) - x,02(x)) = 2",

R(z(x),gz(x)) = 2197 R(Z(X) - 17g2(x)) = 2247 R(Z(X) - X, g2(x)) = 2247

R(y(x) = 2(x), g2(x)) = 2",

where R(a,b) is the resultant of the univariate polynomials a and b. Therefore, for
any finite field F, (of characteristic distinct from those in (21)), if ¢»(xo) = 0, then
(x0,¥(x0),2(x0)) €/ (F,) and ¢ = (0,1, x9, y(x0), z(xo)) is a well-defined normalized
permutation in ns)(F,).

The characteristics {11,41,160591} are those for which g¢g;(x) and g,(x)
have roots in common. These can be determined by computing the resultant
R(g1,92).

For p =11, the only common root is x =6 and the only point in .o7s(F;n)
that has such a value as first coordinate is (6,9,2); for p = 41, the only common
root is x = 38 and the only point in .o/5(F4») that has such an x is (38,13,31).
Therefore in these two cases the number of normalized permutations should
be one less. Finally for p = 160591 the only common root is x = 93 but there
are two points in .o/5(Fieps91) with x =93 which are (93,8557,144881) and
(93,36072,14312).

This concludes the proof. [
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5.3. Partial computation of mye(q)

Let us consider the affine algebraic set .oZ¢:

(1=x)+x(x =) +y(y—2)+z2(z-1)+ 1 =0,
Hy=(1-x)+x}(x—p)+)y*(y—z)+2(z—-t)+£ =0,

(1=x)+(x =) +y -2 +2@Ez-0)+ =0,

( Y+ (x =)+ —z2)+ 22—+ =0.

We know from Theorem 3.1 that #.o/4(Q) = 120. The problem can be solved
along the same lines as in the last subsection. Here is the Maple V program that we
used:

restart:

H[1]=1-x+x"(x-y) +y" (y-2z) +z" (z-t) +t " 2:

H[2] :=1-x+x" 2" (x-y) +y" 2" (y-z) +z" 2" (z-t) +t " 3:
H[3] =1-x+x" 3" (x-y)+y" 3" (y-z)+z" 3" (z-t) +t " 4:
H[4] =1-x+x" 4" (x-y)+y" 4" (y-z)+z" 4" (z-t) +t " 5:
F[1]:=solve(H[2]-(t+z) H[1],t):
F[2]:=solve(H[3]-t"H[2]-z"2"H[1],t):
F[3]:=solve(H[4]-t"H[3]-z"3"H[1],t):
F[4]:=solve(H[3]-z'H[2]-t"2'H[1],t)[1]"2:

G[1] =numer (F[1]-F[2]):

G[2] =numer (F[3]-F[1]):

G[3]:=numer (F[4]-z"F [1]+1-x+x" (x-y) +y" (y-z)+2" 2) :
A[1]:=resultant(G[1],G[2],z):
A[2]:=resultant(G[1],G[3],z):
A[3]:=resultant(G[2],G[3],z):
Bl[1]:=resultant(A[1],A[2],y):
B[2]:=resultant(A[1],A[3],y):
B[3]:=resultant(A[2],A[3],y):
factor(gcd(B[1],gcd(B[2],B[3])));

It produces as output:

[i() - A(x) - f5(x) - falx) - 92(0) - g1 ()7,
where g; and g, are the same polynomials of the previous subsection and do not

yield any point in .o7¢(Q),
fix) =x*=3x+3, fo(x)=x* =32 +9x* —9x + 3,

f3(x) = x% —4x + 12x* — 22x% +25x% — 14x +3
and f4(x) is a degree 108 polynomial, shown below. Very little can be done about it (e.g.
we cannot factor its discriminant). However, we know that given one of its 108 roots Xx,

there exist rational functions y(x), z(x), #(x) such that (x, y(x), z(x), #(x)) € /¢(Q).



94 C. Malvenuto, F. Pappalardi | Finite Fields and Their Applications 10 (2004) 72-96

Sa(x) =

2048 x'%® — 165888 x'%7 4 6799872 x'% — 187752960x'% + 3922763776 x'* — 66068319680 x'*
4933320077408 x'% — 11363232453904 x'*" + 121609445410488 x'® — 1161198732496436 x*°
+10008850476882864 x*° — 78606667549447068 x” 4 566828548445747784 x° — 3776776878293093668 x°*
+23377338985281206132 x°* — 135038479362980318078 x> + 730833294640515925896 x*
—3718457594383449440377 x°' + 17839854280234088048504 x°° — 80918773915266921688911 x*
+347817829980603691940144 x* — 1419720414224675767707558 x*7 + 5513288219047478965908265 x*
—20403343418466290909559217 x*° + 72065722093337704619789754 x* — 243267380374046351368535386 x*°
+785782176891688617129372777 x*2 — 2431475137872624992934580357 x°' + 7214881866132247318290915548 x™°
—20548659512217571859089105859 x7° + 56221257258312886794846517663 x™
—147882404554712812657831273826 x7" + 374230043847540583315597499959 x™¢
—911691931385646228439986925230x7 + 2139449841280212409103799322605 x7*
—4838781255382865924142092881113 x7 4 10552734185292011384044411424566 x7*
—22201680743797784367677070019329 x7" 4 45079400421222501688611989232857 x”°
—88370131835128893374420804013985 x% 4 167308044867058677528870842347726 x5
—306018091440642946312309370096773 x* + 540901707766162203714093161026402 x*¢
—924145503563203698506557364196092 x* + 1526550997692643704549449565023087 x**
—2438475861371766718260022687359403 x%* + 3767372156555906676771592362227252 x
—56303863877957509148787875969353278 x5 + 8140939139357659835287965640730513 x*°
—11389249472014526491272002805160961 x*° + 15418372730959804119154464592501925 x>*
—20199212963332568595992849480574793 x°7 + 25609653568875523492121650783680523 x
—31423786674815287982856648211485665 x°° + 37316636201275774332720329351064002 x>
—42887487674528678056202555216506600 x* + 47701189936940459634356766395673379 x>
—51342370723861934089578323730701241 x°' + 53473605808047948459645336373877904 x>
—53886451035411447622870618958843743 x™ + 52534755181805885450898834956212846 x*
—49542943308323803416607202273116258 x*7 + 45187255671028388860208926229245651 x*
—39853834776380146454538798283342894 x* + 33982440027129229551505906960627180 x*
—28007124276968506959166892217933313 x* + 22304864978517515995360691909021985 x*
—17160233130232486543207338901006740 x*' + 12749752732446670751318525720373287 x*°
—9145009691119593703082103400176233 x*° + 6330015056336126215839775082630388 x**
—4226514548260823401239096740258288 x°7 + 2720942861141654856875643560186175 x°¢
—1688109362923362914905627143729438 x™ + 1008768415625546502227835131362059 x**
—580279479672452851412256035043958 x°> 4 321115048795909727104320629068345 x*
—170828586279878576733366714859762 x°! + 87299009196449969872102046466464 x>
—42820393799631399542004753630026 x*° + 20141728505903344673399260414668 x**
—9076637830955551006671020183951 x%7 + 3914484242526498208181639312379 x*
—1613770892718885947479095327793 x* + 635149654477638378211058318534 x>
—238326908840088875601414025833 x> + 85127356062476807845436220758 x*2
—28895680606614726658303804088 x*' + 9303712106309033749916140254 x*°
—2835587512930135705228988470 x" + 816198705952614985217016076 x'* — 221309370680671620177529840 x'7
+56364041482436139001235584 x'¢ — 13439641318120378785990472 x'° 4 2989147250976033209662704 x**
—617501175174317760066496 x> + 117904318811134669800960 x'? — 20688959726700010283264 x'!
+3313845039406468383232 x'° — 480619489043461936640 x° + 62499665119858375680 x°
—7198855775276720128 x7 + 723131989749039104 x° — 62070327274504192 x° + 4427182693416960 x*
—251951884271616 x° + 10728106885120 x> — 303868936192 x + 4294967296.
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We have named the above polynomial: “Devil’s Hat”. For every root { of the
polynomial f}, we have the cyclotomic points

(£,20-2,20 = 3,0 - 2)ed/s(Q).
For every root t of the polynomial f>, we have the points in .o/4(Q)
(t,:(11 =19t + 7% — 313),%(9 — 11t 437 — 2‘53),%(—7 + 131 — 472 + 7).

Furthermore, for every root y of f3, we have the points of .«Z¢(Q) (7, y,, z,, t,) where

41 14
S LA R Wi T

41 , 14, 4
2 3 4 5
Z=6-%y+22" - =y + ' - 37,
14, 4
R T

Finally

A(Q) = A(Ky) U.oZ6(Ka)U.oZ6(K3)U.Z6(Ky),

where K; is the splitting field of f;. Note however that the union is not disjoint this

time. Indeed K; = Q(v—3)<K; = Q(v/ —18 +2v/-3).

Furthermore,
2 if i=1,
Lot o(Ky) = 4 if i =2,
ST Y6 ifi=3,
108 if i = 4.

Numerically if can be verified that all the coordinates of each point of .«74(Q) are
distinct and never in {0, 1}. This allows us to conclude

Theorem 5.3. For all but finitely many characteristics

mig)(Fy) = q(q4 ) (51 + 82+ 53 + 51),

where s; is the number of roots of f; in [F,.
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6. Conclusion

The complete computations of .77 is out of our reach at the present.

It is natural to ask whether the construction of the present paper can be extended
to more general classes of permutations. The answer is yes. Indeed if % is any
partition with parts larger then 1, then one can define an algebraic set .27 analogue
to .o/;. The connection with normalized permutation polynomials with minimal
degree can be established also in this more general setting. However the extensions of
Theorems 1.2 and 1.1 are not straightforward. We expect in some cases stronger
estimates to hold. For example it can be shown that

mpy 5(Fy) <2q(q — 1).

Numerical examples indicate interesting arithmetical properties. For these reasons
we have decided to dedicate a future paper to general classes of permutation.

Acknowledgments

We thank Lucia Caporaso for suggesting the idea that led us to prove Theorem
3.1. Furthermore we thank Igor Shparlinski for offering shelter at Macquarie
University where this manuscript was finally written and revised.

References

[1] P. Das, The number of permutation polynomials of a given degree over a finite field, Finite Fields
Appl. 8 (4) (2002) 478-490.

[2] J. Harris, Algebraic Geometry, A First Course, Graduate Texts in Mathematics, Vol. 133, Springer,
Berlin, 1992.

[3] S. Konyagin, F. Pappalardi, Enumerating permutation polynomials over finite fields by degree,
Finite Fields Appl. 8 (4) (2002) 548-553.

[4] J. Levine, J.V. Brawley, Some cryptographic applications of permutation polynomials, Cryptologia 1
(1) (1977) 76-92.

[5] R. Lidl, G.L. Mullen, When does a polynomial over a finite field permute the elements of the field?,
Amer. Math. Monthly 95 (1988) 243-246.

[6] R. Lidl, G.L. Mullen, When does a polynomial over a finite field permute the elements of the field?
II, Amer. Math. Monthly 100 (1993) 71-74.

[71 R. Lidl, W.B. Miiller, A note on polynomials and functions in cryptography, Ars Combin. 17A (1984)
223-229.

[8] R. Lidl, H. Niederreiter, Finite Fields, Encyclopedia of Mathematics Applications, Vol. 20, Addison-
Wesley, Reading, MA, 1983.

[9] C. Malvenuto, F. Pappalardi, Enumerating permutation polynomials I: permutations with non-
maximal degree, Finite Fields Appl. 8 (4) (2002) 531-547.

[10] Maple V Release 5.1 (1999), Waterloo Maple Inc.

[11] G.L. Mullen, Permutation polynomials over finite fields, Finite Fields, Coding Theory, and Advances
in Communications and Computing, Las Vegas, NV, 1991, Lecture Notes in Pure and Applied
Mathematics, Vol. 141, Dekker, New York, 1993, pp. 131-151.

[12] C. Wells, The degrees of permutation polynomials over finite fields, J. Combin. Theory 7 (1969) 49-55.



	Enumerating permutation polynomials II: k-cycles with minimal degree
	Introduction
	Reduction to normalized permutations
	From normalized permutation polynomials to affine algebraic sets. Proof of Theorem 1.2
	Cyclotomic permutation polynomials. Proof of Theorem 1.1
	Numerical examples: the number of k-cycles with minimal degree for kles6
	Computation of m[4](q)
	Computation of m[5](q)
	Partial computation of m[6](q)

	Conclusion
	Acknowledgements
	References


