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We shall not cease from exploration
and the end of all our exploring

will be to arrive where we started
and know the place for the first time.

T.S. Eliot
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Abstract

Nowadays, building accurate computational models for the semantics of language
lies at the very core of Natural Language Processing and Artificial Intelligence.
A first and foremost step in this respect consists in moving from word-based to
sense-based approaches, in which operating explicitly at the level of word senses
enables a model to produce more accurate and unambiguous results. At the same
time, word senses create a bridge towards structured lexico-semantic resources, where
the vast amount of available machine-readable information can help overcome the
shortage of annotated data in many languages and domains of knowledge.

This latter phenomenon, known as the knowledge acquisition bottlneck, is a crucial
problem that hampers the development of large-scale, data-driven approaches for
many Natural Language Processing tasks, especially when lexical semantics is directly
involved. One of these tasks is Information Extraction, where an effective model has
to cope with data sparsity, as well as with lexical ambiguity that can arise at the
level of both arguments and relational phrases. Even in more recent Information
Extraction approaches where semantics is implicitly modeled, these issues have not
yet been addressed in their entirety. On the other hand, however, having access to
explicit sense-level information is a very demanding task on its own, which can rarely
be performed with high accuracy on a large scale. With this in mind, in ths thesis
we will tackle a two-fold objective: our first focus will be on studying fully automatic
approaches to obtain high-quality sense-level information from textual corpora; then,
we will investigate in depth where and how such sense-level information has the
potential to enhance the extraction of knowledge from open text.

In the first part of this work, we will explore three different disambiguation scenar-
ios (semi-structured text, parallel text, and definitional text) and devise automatic
disambiguation strategies that are not only capable of scaling to different corpus
sizes and different languages, but that actually take advantage of a multilingual
and/or heterogeneous setting to improve and refine their performance. As a result,
we will obtain three sense-annotated resources that, when tested experimentally with
a baseline system in a series of downstream semantic tasks (i.e. Word Sense Disam-
biguation, Entity Linking, Semantic Similarity), show very competitive performances
on standard benchmarks against both manual and semi-automatic competitors.

In the second part we will instead focus on Information Extraction, with an
emphasis on Open Information Extraction (OIE), where issues like sparsity and
lexical ambiguity are especially critical, and study how to exploit at best sense-level
information within the extraction process. We will start by showing that enforcing
a deeper semantic analysis in a definitional setting enables a full-fledged extraction
pipeline to compete with state-of-the-art approaches based on much larger (but
noisier) data. We will then demonstrate how working at the sense level at the
end of an extraction pipeline is also beneficial: indeed, by leveraging sense-based
techniques, very heterogeneous OIE-derived data can be aligned semantically, and
unified with respect to a common sense inventory. Finally, we will briefly shift the
focus to the more constrained setting of hypernym discovery, and study a sense-aware
supervised framework for the task that is robust and effective, even when trained on
heterogeneous OIE-derived hypernymic knowledge.
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Chapter 1

Introduction

“When I use a word,"
Humpty Dumpty said in a rather scornful tone,

“it means just what I choose it to mean
–neither more nor less."

Lewis Carroll

Since the earliest days, encoding and representing the semantics of language with
computational models has been the key challenge of Natural Language Processing
(NLP) and Artificial Intelligence (AI). Getting a handle on the various phenomena
that determine and regulate the meaning of linguistic utterances can pave the way
for solving many long-standing and ambitious tasks in the field, from Machine
Translation to Question Answering and Information Retrieval.

However, a complete and effective semantic model of language needs first of
all reliable building blocks. In the last two decades, research in Lexical Semantics
(which focuses on the meaning of individual linguistic elements, i.e. words and
expressions), has produced increasingly comprehensive machine-readable resources
and dictionaries in multiple languages (Section 2.1): like humans, modern NLP
systems can now leverage these sources of lexical knowledge to perform Word
Sense Disambiguation (WSD), i.e. to discriminate among various senses of a given
lexeme, thereby improving their performance on a series of downstream tasks and
applications, including Machine Translation (Chan et al., 2007; Neale et al., 2016;
Pu et al., 2017), Information Retrieval (Agirre et al., 2010; Zhong and Ng, 2012),
Taxonomy Construction (de Knijff et al., 2011; Flati et al., 2016; Espinosa Anke
et al., 2016b) and Text Categorization (Hidalgo et al., 2005; Pilehvar et al., 2017).
Broadly speaking, the use of lexical knowledge resources encompasses all those NLP
tasks in which modeling Lexical Semantics is crucial. Two notable examples, both
strictly connected with WSD (Section 2.2), are Entity Linking (Rao et al., 2013),
where entity mentions can be highly ambiguous, and Semantic Similarity (Budanitsky
and Hirst, 2006; Turney and Pantel, 2010), where word-based models conflate different
meanings of an ambiguous word into the same semantic representation.
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As a matter of fact, the knowledge-based paradigm1 has always played a key
role in NLP; despite the overwhelming and well-established success of corpus-based
approaches (Halevy et al., 2009; Collobert et al., 2011), purely data-driven models,
whether supervised or unsupervised, still have limitations in terms of scalability
and noise, particularly when dealing with fine-grained lexical distinctions. This is
why, even today, the development and widespread application of lexical knowledge
resources continues to be an important research thread.

The Problem of Knowledge Acquisition

Nowadays, the main obstacle to developing lexical knowledge resources with high
quality and coverage (and, from these, high-performing knowledge-based models
for NLP) lies in the so-called knowledge acquisition bottleneck (Gale et al., 1992a;
Buchanan and Wilkins, 1993). In fact, even though resources like WordNet (Section
2.1.1) already encode a wide variety of lexical and semantic relations (hypernymy,
meronymy, etc.), knowledge-based algorithms need larger amounts of non-taxonomic
relations to achieve state-of-the-art results. These relations are mostly syntagmatic
in nature (e.g. car related-to driver, or play related-to game), hence not typically
available inside lexico-semantic resources with a taxonomic or ontological structure.
This is why the majority of syntagmatic relations have to be acquired from text,
encoded suitably and harmonized with the structured information already available,
in order for knowledge-based models to exploit them at best.

The challenging task described above is strongly connected to the main goal of
knowledge acquisition, i.e. building and enriching knowledge resources on a large
scale. As such, it has been addressed by a very broad spectrum of approaches over the
last years. A popular strategy consists in starting from existing knowledge and then
applying some algorithms to collect new information associated with the concepts
already known: approaches of this type are strongly tied to the structure of the
resource (e.g. computational lexicon, thesaurus, knowledge graph), and can range
from disambiguating the textual definitions associated with those concepts (Mihalcea
and Moldovan, 2001; Navigli and Velardi, 2005) to inference-based methods that
learn to predict missing links inside a knowledge base represented as a labeled
graph (Lao et al., 2011; Gardner et al., 2013; Gardner and Mitchell, 2015). This
latter trend, referred to as Knowledge Base Completion (West et al., 2014), has
recently attracted the attention of researchers working with semantic representations
based on neural networks (embeddings), and has led to numerous efforts in trying to
learn structured embeddings of knowledge bases (Bordes et al., 2011, 2013; Socher
et al., 2013; Neelakantan et al., 2015) to perform this task.

Another strategy consists, instead, in focusing on textual corpora and trying
to develop models for the automatic extraction of relation triples with various
techniques and degrees of supervision (Zhao and Grishman, 2005; Bunescu and
Mooney, 2007; Banko et al., 2007; Kozareva and Hovy, 2010; Carlson et al., 2010).
This broad research area, known as Information Extraction (Section 2.3), has
received considerable interest over the last two decades, and covers a wide and

1We use the term knowledge-based to refer to any NLP approach that makes substantial use of
lexico-semantic knowledge resources, as opposed to a corpus-based approach, that instead relies on
textual corpora (regardless of the degree of supervision).
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heterogeneous range of approaches, from those targeting a constrained and specific
set of predefined relations (e.g. in the biomedical domain) to those in which the
goal is the general-purpose, unconstrained extraction of an unspecified and open set
of semantic relations (Open Information Extraction, Section 2.3.2). Ultimately, all
these efforts are geared towards addressing the knowledge acquisition problem and
tackling one of the long-standing challenges of AI: Machine Reading (Mitchell, 2005),
i.e., as Tom Mitchell puts it, the capability of “automatically reading at least 80% of
the factual content across the entire English-speaking web, and placing those facts in
a structured knowledge base” in such a way that “computers would be harvesting in
structured form the huge volume of knowledge that millions of humans are entering
daily on the web in the form of unstructured text”.

Apart from the paradigm and the strategy used, a key issue for all these knowledge
acquisition systems is that they should keep pace with the increasingly wide scope
of human knowledge: new specialized terms are coined every day as new concepts
are discovered or formalized, not to mention all knowledge about people, history
and society that is continuously changing and evolving. On top of this, another
crucial point to be addressed is multilinguality: the bulk of knowledge acquisition
research to date still focuses on English, and even though lexical resources do exist
for other languages, in most cases they do not have enough coverage to enable the
development of accurate NLP models. This, in turn, prevents effective knowledge
acquisition approaches to be implemented, especially for under-resourced languages.

Collaborative Semi-Structured Resources

Fortunately, the stalemate caused by the knowledge acquisition bottleneck has
recently begun to loosen up. A possible way of scaling up semantic knowledge, both
in terms of scope and in terms of languages, lies in the so-called semi-structured
resources (Hovy et al., 2013), i.e. large-scale collaborative knowledge repositories
that provide a convenient middle ground between fully structured resources and
unstructured textual corpora. These two extremes are indeed complementary: the
former consists of manually-assembled lexicons, thesauri or ontologies which have
the highest quality, but require strenuous creation and maintenance effort and hence
tend to suffer from coverage problems; the latter consists instead of raw, open and
unstructured text, much easier to harvest on a large scale but usually noisy and
lacking proper ontological structure. Semi-structured resources seem to take the
best of both worlds, insofar as they are kept up to date and multilingual and, at
the same time, reliant on human-curated semantic information. Although quality
should be intuitively lower when non-experts are involved in the process, it has been
shown that the collaborative editing and error correction process (“wisdom of the
crowd”) leads to results of remarkable quality (Giles, 2005)

The most prominent resource of this kind is certainly Wikipedia, the largest
and most popular collaborative multilingual encyclopedia of world and linguistic
knowledge. Wikipedia features articles in over 250 languages, partially structured
with hyperlink connections and categories, and constitutes nowadays an extraordinary
resource for innumerable tasks in NLP (Cucerzan, 2007; Gabrilovich and Markovitch,
2007; Wu and Weld, 2010). Among others, Wikipedia’s semi-structured corpus
of articles played recently a key role in the development of semantically informed
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Information Extraction approaches, which will be examined more closely in Section
3.2: these approaches lay down the basis for the sense-aware Information Extraction
techniques that will constitute the core of Chapter 5. A great deal of research has
also focused on enriching Wikipedia itself, thereby creating taxonomies (Ponzetto
and Strube, 2011; Flati et al., 2014) and semantic networks (Navigli and Ponzetto,
2012; Nastase and Strube, 2013). Furthermore, machine-readable resources drawing
upon Wikipedia have been continuously developed, including Wikidata (Vrandečić,
2012), YAGO (Mahdisoltani et al., 2015), and DBpedia (Lehmann et al., 2014).

The crucial limitation of semi-structured resources, however, is that they tend
to focus only on encyclopedic aspects of knowledge and neglect lexicographic ones
(i.e. the knowledge encoded in dictionaries). In some cases this is intentional, since
collaborative resources are first of all designed for humans to read. Wikipedia, for
instance, provides style guidelines2 suggesting users to hyperlink a certain concept
or entity only when relevant and helpful in the context of the page: this avoids
cluttered and less-readable articles, but prevents a lot of common-sense knowledge
and basic word senses to be modeled within the Wikipedia structure. This issue,
among others, will be tackled in the first part of the thesis: in fact, in Section 4.1
we will show how the structure of Wikipedia can be leveraged effectively to turn
Wikipedia itself into a full-fledged semantically annotated corpus.

Linking Knowledge Sources Together

Given the advantages and limitations of both structured and semi-structured re-
sources, devising a way of bringing together the fully structured information on
general concepts (from the former) and the up-to-date, wide-ranging world knowl-
edge (from the latter) appears to be the key step towards the ambitious objective
of creating a comprehensive lexical resource, capable of covering both encyclopedic
and lexicographic information for as many languages as possible. Such a resource
would enable NLP applications to integrate information otherwise available only in
a multitude of heterogeneous lexical resources, thereby laying a solid foundation for
large-scale approaches tackling the knowledge acquisition problem. For instance, let
us consider a Question Answering scenario, where an intelligent system needs to
know (or infer) that Pink Floyd was a group of people: although Wikipedia can be
used to discover that Pink Floyd was indeed a band, having a link from band to
its correct sense in, e.g. WordNet, would allow the system to immediately follow a
hypernymy chain to organization, whose definition includes “a group of people”.3

Apart from Question Answering, the landscape of NLP applications that a com-
prehensive, multilingual lexico-semantic resource can potentially enable varies widely.
Recent research work has already shown the development of effective knowledge-
based strategies for joint Word Sense Disambiguation and Entity Linking in multiple
languages (Sections 2.2.1 and 2.2.2), as well as multilingual and cross-lingual sense-
aware Semantic Similarity (Section 2.2.3). In line with this trend, we will largely
exploit a knowledge resource of this type throughout this thesis: BabelNet (Sec-
tion 2.1.3). BabelNet (Navigli and Ponzetto, 2012) is a multilingual encyclopedic

2https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style
3Example borrowed (and slightly modified) from Gurevych et al. (2016).
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dictionary and semantic network originally designed as the seamless integration of
WordNet and Wikipedia, which has now become the largest resource of its kind:
13 million concepts and entities, 380 million semantic relations and 271 languages
covered. Using BabelNet’s wide-coverage sense inventory and semantic network as
backbone will turn out to be a fundamental strategic choice for both harvesting
sense annotations on a large scale (Chapter 4) and enabling semantically augmented
Information Extraction techniques (Chapter 5).

Crucially, the effectiveness of any downstream application based on a knowledge
resource depends strictly on the quality of the resource itself: in fact, seamless
integration of heterogeneous knowledge requires accurate methods for linking, or
aligning, the entities and concepts across the individual inventories. This task gets
increasingly challenging due to the fundamental ever-changing nature of knowledge,
but also to the continuous development of new knowledge resources, with their own
features and advantages; all these isolated efforts foster the vision of a universal
“linking machine”, where the more new knowledge is integrated, the more confir-
mation is obtained that the current knowledge is appropriate (or not). On the
application side, however, it is also arguable that knowledge-based NLP ultimately
needs corpus-based learning approaches to attain outstanding results, especially
when dealing with semantics, as various contributions have already shown (Pilehvar
and Navigli, 2014; Wang et al., 2014; Aletras and Stevenson, 2015; Toutanova et al.,
2015; Camacho Collados et al., 2016c; Mancini et al., 2017).

Is Explicit Semantics Used/Useful in NLP?

Notwithstanding the central role of semantics within NLP and AI, explicit semantic
information is very challenging to extract and utilize. While the recent upsurge
of deep learning has fueled the development of powerful data-driven approaches,
with impressive results in many areas of AI (e.g. Computer Vision), the state of
the art in developing explicit semantic models for language seems to have reached a
plateau. In fact, encoding semantic information to train and test these models is a
very demanding task, which can rarely be performed with high accuracy on a large
scale. In the case of WSD, for instance, high-quality sense-annotated corpora have
usually been constructed by relying on human annotators (Section 3.1.1): due to the
intrinsic difficulty (and, to a certain extent, subjectivity) of annotating word senses
manually, obtaining reliable and coherent sense annotations is highly expensive
and especially difficult when fine-grained sense inventories are utilized, or when
non-expert annotators are involved (de Lacalle and Agirre, 2015). In addition, as
new encyclopedic knowledge about the world is constantly being collected, keeping
up using only human annotation is becoming an increasingly expensive endeavor,
severely hindered by the knowledge acquisition bottleneck: in fact, annotating
word senses and entity mentions manually using large and up-to-date knowledge
repositories like, e.g., BabelNet (Section 2.1.3), is not feasible. First of all, the number
of items to disambiguate is massive; moreover, as the number of concepts and named
entities increases, annotators would have to deal with the added complexity of
selecting context-appropriate senses from a prohibitively large sense inventory. In
terms of figures, while WordNet 3.0 (Section 2.1.1) comprises 117,659 word senses in
total, BabelNet 3.0 covers as many as 13,801,844 concepts and named entities.
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Not only obtaining annotations at the level of semantics can be troublesome:
their actual usefulness for downstream tasks has been questioned a few times in
the past, especially with respect to WSD (Kilgarriff, 1997; Carpuat and Wu, 2005;
Martín-Wanton et al., 2010). For example, in a very popular downstream application
like Machine Translation, attempts to utilize features based on explicit semantics
have brought mixed results (Carpuat and Wu, 2005; Chan et al., 2007; Wu and
Fung, 2009; Neale et al., 2016): this shows that, at the very least, it is not obvious
nor immediate for some NLP models to exploit sense-level information, even when
they do yield performance improvements on standard benchmarks.

As a result, a great deal of NLP research is now leaving semantic modeling
somehow implicit, often developing end-to-end models directly tailored to their
specific tasks. Even in the area of Lexical Semantics, one of the most prominent
paradigms today is that of distributional semantics and vector space models (Turney
and Pantel, 2010), where words are represented as points in a vector space. The recent
advances on neural networks have further increased the popularity of this technique,
by allowing words to be ‘embedded’ in low-dimensional vector spaces (Mikolov et al.,
2013a; Pennington et al., 2014) where they seem to capture very well a number of
syntactic and semantic regularities. Such phenomena suggest that these approaches
are very effective in modeling semantics implicitly, and researchers have further
verified this empirically by employing them to provide performance boosts in various
applications (Zou et al., 2013; Bordes et al., 2014; Weiss et al., 2015).

A major limitation of word-level vector space models is that they do not explicitly
address lexical ambiguity: instead, they conflate the different meanings of an
ambiguous word into a single vector representation, which might encode multiple
senses implicity if the word is ambiguous (Yaghoobzadeh and Schütze, 2016; Arora
et al., 2016). While several works have tackled this issue by automatically inducing
word senses from text (Huang et al., 2012; Neelakantan et al., 2014; Tian et al., 2014),
sometimes even questioning whether modeling multiple word senses is useful (Li and
Jurafsky, 2015), another important research thread focuses on going beyond the
word level by explicitly modeling senses instead of words (Chen et al., 2014; Jauhar
et al., 2015; Iacobacci et al., 2015; Rothe and Schütze, 2015; Camacho Collados et al.,
2016c; Pilehvar and Collier, 2016). While the former approaches are solely based on
textual corpora and hence more self-contained and flexible, their induced senses are
(1) typically difficult to interpret (Panchenko et al., 2017) and, crucially, (2) not easy
to map to lexical knowledge resources, a shortfall that limits their expendability
within downstream application.

On the Side of Knowledge

Broadly speaking, the contraposition between these two tendencies (implicit vs.
explicit knowledge) goes far beyond distributional semantics, and it is widespread
across the NLP community, constantly feeding the debate. In this thesis we take a
stance in favor of sense-level approaches in which semantics is explicitly modeled.
In fact, in light of our long-term goal of overcoming the knowledge acquisition
bottleneck, we aim at showing that explicit sense-level information is not only
useful for downstream applications, but it is actually a key component to enable
large-scale NLP models that would not be easily attainable in a standard supervised
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way. Among other large-scale endeavors, Open Information Extraction, intrinsically
unsupervised, is one of those tasks that directly address the knowledge acquisition
problem, and where a grasp of Lexical Semantics, either implicit or explicit, is
fundamental. While a few recent approaches (Section 3.2) have started to study how
to explicitly model Lexical Semantics in the extraction process, in Chapter 5 we take
this semantically-informed approach to the next level and demonstrate the potential
of sense-aware methods within a full-fledged pipeline (Section 5.1) and after the
pipeline (Section 5.2) to align, unify and harmonize the extracted knowledge. In
addition, we show in Section 5.3 how this extracted knowledge, once ‘semantified’
properly, can in turn be leveraged to develop a competitive sense-aware framework
in the constrained, supervised setting of hypernym discovery.

The proved benefits of explicit sense-level information, however, come at a cost:
as previously observed, annotating word senses is in itself a demanding task that
suffers from the knowledge acquisition bottleneck, thereby being very difficult to carry
out on a large scale. We address this issue in the first part of the thesis (Chapter 4)
by investigating how, in various settings, the harvesting of sense annotations can be
fully automatized and scaled up to larger corpora, while at the same time retaining a
reasonably high quality compared to manual or semi-automatic approaches. Summing
up, we believe that explicit semantic modeling is indeed possible, and worth pursuing
wherever purely data-driven approaches can be effectively supported and augmented
by lexico-semantic knowledge encoded in machine-readable resources. While in
the present thesis we make the case for Information Extraction, we argue that
sense-aware methods capable of exploiting lexical resources stands as a promising
way of overcoming the knowledge acquisition problem in many areas across NLP.

1.1 Focus and Objectives

The core objective of this thesis lies in developing a principled approach to open-text
knowledge acquisition based on explicit semantic analysis. To this aim, we investi-
gate a series of disambiguation and extraction techniques that leverage sense-level
information explicitly, not only to address lexical ambiguity in language, but also to
take advantage of the scaffolding of structured lexico-semantic information provided
by wide-coverage multilingual knowledge resources like BabelNet.

Given that our main target is general-purpose text in natural language (Open
Information Extraction) rather than a partially-populated machine-readable knowl-
edge base to be enriched (Knowledge Base Completion), our methodology requires,
first of all, to obtain sense-annotated text on a large scale. While off-the-shelf
disambiguation systems surely constitute a viable way for harvesting sense anno-
tations, using them blindly might be suboptimal for a series of reasons (e.g. poor
context or structural biases in the disambiguation algorithm). Moreover, there are
semi-structured settings, such as that of Wikipedia articles, in which the partial
structure of the target corpus already provides valuable information that an external
disambiguation/linking system would in principle neglect.

Once equipped with a reliable way of obtaining sense annotations, together with
a wide-coverage knowledge resource and a structured sense inventory of concepts
and entities, we can reframe the Information Extraction task at the sense level, inves-
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tigating where and how sense-aware methods are effective to semantically augment
the extraction process. Working with word senses and entity mentions should, on
the one hand, enhance the extraction procedure with unambiguous relation triples
and, on the other, connect smoothly the extracted information with the structured
knowledge that is already available in the underlying lexical resource.

To summarize, in the present thesis we tackle a two-fold objective:

• Developing reliable, fully automatic methods to harvest sense anno-
tations on a large scale: given a target textual corpus, our objective is to
cover as many content words as possible by labeling them with concepts and
named entities from a reference sense inventory. We aim at flexible algorithms,
scalable to large amounts of text in different languages, and possibly capable
of exploiting multilinguality at best;

• Reframing the task of Open Information Extraction at the sense
level: i.e. studying the benefits of sense-aware techniques at every stage
of the extraction process. In particular, working at the sense level enables
us to extract high-quality unambiguous relation triples and link them to an
underlying knowledge resource, where they can exploit the structural properties
of the resource itself (e.g. taxononomic information, inter-resource mappings).

In a wider perspective, the long-standing challenge we are facing is that of dealing
with lexical ambiguity, at least when it comes to understand the factual content of
natural language utterances. This effort is strongly intertwined with overcoming the
knowledge acquisition bottleneck: in fact, on the one hand, populating and enriching
knowledge resources is a key step towards developing large-scale disambiguation
algorithms; on the other, however, extracting information from open text is one of
those tasks where facing lexical ambiguity is of the utmost importance.

Finally, in this thesis we put special emphasis on unsupervised and knowledge-
based approaches, consistently with the premises laid down throughout this chapter.
In fact, as we explain in Section 2.2.1, supervised disambiguation systems are
currently less flexible and more difficult to scale (especially in a multilingual setting)
despite reporting higher accuracy on all standard benchmarks. Although research
efforts in this direction are under way (Raganato et al., 2017b), studying extensively
the behavior of a supervised model in our setting falls outside the scope of the present
work. Nevertheless, most of our findings are general and not tied to an unsupervised
or a knowledge-based scenario: on the contrary, the sense-annotated resources we
present throughout Chapter 4 can potentially pave the way for large-scale supervised
disambiguation systems; by the same token, “semantified” OIE-derived knowledge
is also beneficial within a supervised framework, as we show in Section 5.3 in the
context of hypernym discovery.

1.2 Published Material
For the major part, the content of this thesis has already been published in top
conferences and journals of Natural Language Processing and Artificial Intelligence.
In the following sections we list these publications, together with other publications
co-authored by the candidate that are not included in the present work. The former
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set of publications represent the core of this thesis and their content is covered to a
great extent in some chapters and sections, as indicated accordingly below.

1.2.1 Key Publications

Published material covered in Chapter 4:

• SEW (Raganato et al., 2016b; Delli Bovi and Raganato, 2017): a semantically
enriched version of Wikipedia constructed by solely exploiting its hyperlink
structure and the sense inventory of BabelNet (Section 4.1;

• EuroSense (Delli Bovi et al., 2017): a multilingual sense-annotated resource
built via the joint disambiguation of the Europarl parallel corpus (Section 4.2);

• SenseDefs (Camacho Collados et al., 2016a): a multilingual sense-annotated
corpus of definitional knowledge constructed by jointly disambiguating the
whole set of glosses in BabelNet (Section 4.3).

Published material covered in Chapter 5:

• DefIE (Delli Bovi et al., 2015b): a full-fledged sense-aware Open Information
Extraction pipeline for definitional knowledge (Section 5.1);

• KB-Unify (Delli Bovi et al., 2015a): a Knowledge Base Unification approach
based on disambiguation and sense-based relation alignment (Section 5.2);

• TaxoEmbed (Espinosa Anke et al., 2016a): a supervised distributional frame-
work for hypernym discovery at the sense level (Section 5.3).

1.2.2 Publications not Included in this Thesis

A number of publications, co-authored by the candidate and strongly connected
to the topics treated in this thesis, are not covered in the following chapters and
sections. These publications include:

• A sense-aware supervised method to extract definitional knowledge (Espinosa
Anke et al., 2015), based on semantic features derived from Entity Linking
and Semantic Similarity;

• An experimental study on neural sequence learning models for supervised
WSD (Raganato et al., 2017b), where a single all-words model achieves state-
of-the-art (or statistically equivalent) results on all standard benchmarks;

• A flexible, open-source Java toolkit and RESTful API for supervised WSD (Pa-
pandrea et al., 2017), designed to be modular, fast and scalable for training
and testing on large datasets.
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1.3 Contributions

Consistently with our focus and objectives laid down in Section 1.1, the work
presented in this thesis puts forward the following contributions:

• A series of disambiguation techniques to obtain reliable sense an-
notations on a large scale. Throughout Chapter 4 we deal with three
disambiguation scenarios, and show that exploiting at best the structure and
the properties of the target corpus is key to harvest high-quality annotations in
a self-contained way (Raganato et al., 2016b) and to reduce the structural bias
of off-the-shelf disambiguation algorithms (Camacho Collados et al., 2016a;
Delli Bovi et al., 2017). The principled multilingual disambiguation technique
that we detail in Sections 4.2 and 4.3, based on the synergy between a graph-
based disambiguation system and a vector-based representation of concept
and entities, is a robust, novel approach potentially capable of accommodating
different settings not explored in this thesis (e.g. larger comparable texts, news
articles on the same subject);

• Three large-scale semantic resources, all providing an unprecedented
amount of sense annotations of concept and named entities from the BabelNet
sense inventory (Raganato et al., 2016b; Camacho Collados et al., 2016a; Delli
Bovi et al., 2017). We assess the quality of each resource intrinsically and ex-
trinsically, leveraging them in various NLP tasks: Word Sense Disambiguation,
Entity Linking, Semantic Similarity, Sense Clustering, Information Extraction.
Our experiments show that the results obtained using these resources are
comparable or even superior to those obtained using a resource constructed
semi-automatically. At the same time, thanks to the wide coverage of BabelNet,
these resources take a leap forward in terms of scope and coverage (as they
include both encyclopedic and lexicographic knowledge), in terms of languages
(as BabelNet covers all the languages available in Wikipedia) and in terms of
flexibility (as BabelNet’s inter-resource mappings can be used to convert these
sense annotations to many individual sense inventories, such as WordNet or
Wikipedia). All these features contribute to reshape the landscape of WSD,
opening up opportunities for supervised systems to scale to larger training sets
while retaining high disambiguation accuracy;

• A full-fledged Open Information Extraction pipeline for definitional
knowledge. Among the various strategies presented throughout Chapter 5 to
redefine and study OIE at the sense level, in Section 5.1 we show experimentally
that moving an OIE system to the denser, virtually noise-free setting of
definitional text (Delli Bovi et al., 2015b, DefIE) is beneficial: in fact, a
comprehensive semantic analysis yields unambiguous relation triples, as well as
‘semantified’ relations that can leverage the taxonomic structure of BabelNet
and be arranged in a relation taxonomy. Indeed, working at the sense level is
the key feature that puts DefIE in line with state-of-the-art OIE approaches
based on much larger datasets. Furthermore, our experimental findings raise
some questions as to where valuable knowledge can be found, and whether
just tackling very noisy Web-scale corpora is always the optimal choice;
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• An approach to Knowledge Base Unification via sense embeddings
and disambiguation. In Section 5.2 we depart from previous literature on
the subject, and address the issue of merging and harmonizing OIE-derived
knowledge by exploiting sense-aware semantic analysis (Delli Bovi et al.,
2015a, KB-Unify). Again, we show that exploiting the sense inventory
of BabelNet as a backbone is extremely effective when interconnecting not
only lexical knowledge, but also relational knowledge; to this aim, we devise
a disambiguation algorithm ad-hoc for relation triples, and then use these
disambiguated triples to align heterogeneous knowledge bases at the sense level.
While most research efforts focus on developing new extraction procedures,
we instead show that semantic analysis can be used to unify the knowledge
already extracted, instead of putting forward yet another isolated, OIE-derived
knowledge base. Finally, in Section 5.3 we employ hypernymic relation triples
from KB-Unify as training set in a supervised sense-aware framework for
hypernym discovery, TaxoEmbed (Espinosa Anke et al., 2016a), further
demonstrating the robustness and flexibility of working at the sense level, even
in the more constrained scenario of hypernymic relations.

Individual Contributions. Some of the contributions presented in this thesis
are the output of a joint work of the candidate with other members of the Linguistic
Computing Laboratory,4 or with other researchers from international institutions.
In terms of individual contributions, the candidate had the leading role in designing
both the methodological approaches and the experimental evaluations presented
in Sections 5.1 and 5.2, with the close supervision of his advisor. As regards the
material in Section 5.3, the candidate’s main focus, in accordance with the topic of
this thesis, was the construction of an OIE-derived training dataset for hypernym
discovery, as well as the experimental comparison with DefIE (cf. Section 5.22).5 In
Chapter 4, the candidate contributed in designing some components of the hyperlink
propagation pipeline in Sew (cf. Section 4.1.1.2, and Section 4.2 in the paper), and
focused on the extrinsic experiment on semantic similarity (Section 4.1.3.3, and
Section 6.3 in the paper), including the evaluation study of Section 4.1.4, and the
participation to the SemEval-2017 task 2 competition (Delli Bovi and Raganato,
2017). He also designed the first stage of the disambiguation pipeline in Sections 4.2
and 4.3, with their respective context enrichment strategies, and he conducted the
extrinsic evaluation of SenseDefs on OIE (Section 5.1.4.7).6

1.4 Outline of the Thesis

The remainder of the thesis is organized as follows:

• We start by providing a broad overview of the machinery used throughout
4http://lcl.uniroma1.it
5Sections 1 to 3, and sections 5 to 8, with the exception of 6.3, in the DefIE paper (Delli Bovi

et al., 2015b); sections 3 to 8, with the exception of 5.1, 5.2, and 8.2, in the KB-Unify paper (Delli
Bovi et al., 2015a); sections 3 and 5.2 in the TaxoEmbed paper (Espinosa Anke et al., 2016a).

6Sections 1 to 5, with the exception of 3.2, in the EuroSense paper (Delli Bovi et al., 2017);
sections 1, 3.1, 5.2.1, and 7 in the SenseDefs paper (Camacho Collados et al., 2016a).

http://lcl.uniroma1.it
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the thesis in Chapter 2: first of all, a bird’s-eye view on the most popular
lexico-semantic resources used across the NLP community (Section 2.1), with
a special emphasis on BabelNet (Section 2.1.3), extensively used in the core
chapters and sections of the thesis. Then, in Section 2.2 we survey the state
of the art in the areas of Word Sense Disambiguation (Section 2.2.1), Entity
Linking (Section 2.2.2), and sense-based vector representations (Section 2.2.3);
in this section we describe some key building blocks of the approaches treated
in the later chapters. Finally, Section 2.3 introduces and contextualizes the
task of Information Extraction, while Section 2.4 clarifies the nomenclature;

• In Chapter 3 we narrow our focus to the key topics of the thesis. We first
analyze the related work on sense-annotated resources (Section 3.1), from
manually curated corpora to semi-automatic and fully automatic approaches;
we then move to OIE (Section 3.2) and look at how semantic analysis has been
carried out in the published literature on the subject. In particular, we bring
into focus two OIE approaches that are very similar in spirit to those treated
in the present work: Patty (Section 3.2.1) and WiSeNet (Section 3.2.2).
Both contributions have marked a clear turning point in the field by enforcing
a deeper semantic analysis of text, laying down the basis and inspiration for
the sense-aware techniques presented in the following chapters;

• Chapter 4 constitutes the first core component of this thesis. Here we
address the first objective described in Section 1.1, i.e. that of developing
fully automatic methods to harvest sense annotations on a large scale. As
previously explained, we deal with three different disambiguation scenarios:
semi-structured text (Section 4.1), parallel text (Section 4.2), and definitional
text (Section 4.3). In each case, we develop a disambiguation strategy to exploit
at best the structure and characteristics of the target corpus, and produce a
sense-annotated resource that is extensively validated on experimental grounds
and then released to the research community;

• Chapter 5 constitutes the second core component of our work. Here we
address the second objective described in Section 1.1, i.e. that of reframing the
task of Open Information Extraction at the sense level. We start by studying
a sense-level full-fledged OIE pipeline designed for definitional text (Section
5.1), where a denser and noise-free setting enables a comprehensive semantic
analysis to produce unambiguous triples, and link them to BabelNet; in Section
5.2 we shift our focus at the end of the extraction process, and utilize an array
of sense-aware techniques to disambiguate, align and unify heterogeneous
knowledge bases extracted from open text; finally, in Section 5.3 we move
from the unconstrained setting of OIE to the constrained setting of hypernym
discovery, where we present a robust, sense-level supervised framework that
leverages OIE-derived hypernymic knowledge at training time.

• Finally, Chapter 6 showcases all the released data and resources that are
associated with the material presented herein, while Chapter 7 concludes the
thesis by summarizing its main findings and presenting some medium-term
and long-term perspectives of future work.
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Chapter 2

Preliminaries

If you wish to make an apple pie from scratch
you must first invent the universe.

Carl Sagan

In this chapter we provide some important background knowledge, necessary to put
the rest of this thesis in context. Most of the following sections are devoted to give
an up-to-date view on the landscape of Lexical Semantics. First of all, we go over
the most important and widely used knowledge resources in the NLP community,
with their differences and commonalities (Section 2.1); we put a special focus on
BabelNet (Section 2.1.3), the encyclopedic dictionary and semantic network that
serves as a backbone for the core Chapters of this thesis. In Section 2.2 we examine
the state of the art in three fields of study that constitute the cornerstones of today’s
research in Lexical Semantics: Word Sense Disambiguation (Section 2.2.1), Entity
Linking (Section 2.2.2) and Semantic Representations for lexical items (Section 2.2.3).
Again, we put a special emphasis on some important tools that we utilize as building
blocks in the following chapters: Babelfy (Moro et al., 2014b), Nasari (Camacho
Collados et al., 2016c) and SensEmbed (Iacobacci et al., 2015).

In Section 2.3 we move to Information Extraction, and survey some milestone
contributions in this broad and long-standing field of NLP. We focus in particular
on Open Information Extraction (Section 2.3.2), i.e. the unsupervised branch of
Information Extraction, overviewing the seminal papers on the subject, as well as
more recent advances. We will then return on this topic later on, in Section 3.2, where
we describe some important contributions connecting unsupervised extraction with
Lexical Semantics (hence much closer in spirit to the present work). Finally, Section
2.4 defines some common and well-established nomenclature, that we subsequently
employ in the core Chapters of thesis.
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2.1 Knowledge Resources

As shown in Chapter 1, lexical knowledge resources are of primary importance in
many areas across NLP, given their role of encoding human knowledge of language
in machine-readable form. Extensively used by the research community, lexical
knowledge resources exist nowadays in many flavors and with different features. At
the time of writing, over 2,800 language resources are listed in the META-SHARE
repository1, while the LRE Map2 contains almost 4,000 entries, including lexicons,
dictionaries, ontologies, and terminologies.

To our aim, a lexical knowledge resource can be operatively defined as a structured
or semi-structured resource that contains information on lexical units (words and
multi-word expressions) of a particular language or set of languages. This information
is expressed with respect to canonical word forms, usually lemmas or lexemes (i.e.
lemmas with their associated parts of speech). For instance, write is the lemma
of wrote, and writev is the associated verbal lexeme. Inside a lexical knowledge
resource, sense-level information is generally encoded as a set of pairings of lemma
and meaning (word senses), which constitute the sense inventory of the resource.3
The sense inventory associates each word sense with a unique sense identifier, in
order to deal with cases where a lemma can have more than one meaning (polysemy).
For example, there are two distinct meanings of the verb to write, which give rise
to two distinct senses: one refers to communicating with someone in writing, and
another one refers to producing a literary work. Accordingly, the sense inventory
might identify them with two distinct identifier, e.g. write01 or write02.

Depending on its specific focus, each knowledge resource contains a variety
of information (e.g., morphological, syntactic, semantic), which determines its
particular internal structure. In this thesis we deal with lexico-semantic knowledge
resources, where most of the encoded information consists in semantic relationships
interconnecting concepts and named entities. As a result, these resources can also be
represented as semantic networks, i.e. graphs where nodes are concepts, and edges
are semantic relationships between them. On the basis of their production process,
knowledge resources can be split into three groups:

• Expert-built knowledge resources: these resources are designed, created
and edited by a group of designated experts (e.g. lexicographers, linguists or
psycho-linguists). Despite their lower coverage, due to their slow and expensive
production and maintenance cycles, they have the highest quality, and often
include very specialized aspects of language. Expert-built resources are typically
structured (e.g. computational lexicons, machine-readable dictionaries, or full-
fledged ontologies) and usually biased towards lexicographic knowledge;

• Collaboratively-built knowledge resources: this category includes large-
scale semi-structured repositories, typically focused on encyclopedic knowledge,

1http://www.meta-share.org
2http://www.resourcebook.eu
3Throughout this thesis we use the terms meaning and concept interchangeably to refer to the

possibly language-independent part of a word sense. We also distinguish the case in which the word
or multi-word is a mention of a named entitiy: in this case we use named entity mention in place of
word sense, and named entity instead of concept.

http://www.meta-share.org
http://www.resourcebook.eu
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and constructed via the collaborative effort of a community of users. In
fact, a “crowd” of users, that might include experts along with casual non-
expert annotators, can substitute a small and organized group of experts in
gathering and editing lexical information. This open approach can handle the
otherwise enormous effort of building large-scale multilingual resources, that
quickly adapt to new information, and yet maintain a high quality thanks to a
continuous revision process (Giles, 2005);

• Linked knowledge resources: this category comprises large-scale resources
of a hybrid nature, constructed automatically or semi-automatically by in-
tegrating, or mapping, two or more resources from the above two groups.
Inter-resource mappings are realized via accurate disambiguation and linking
algorithms designed to align (link) named entities and concepts across the
different individual inventories. In many cases the individual resources being
integrated provide complementary information (e.g. lexicographic vs. encyclo-
pedic knowledge) and enable the creation of wide-coverage repositories and
richer knowledge representations (Gurevych et al., 2016).

In the following subsections we examine one representative example for each of
the three groups above: WordNet (Section 2.1.1), Wikipedia (Section 2.1.2), and
BabelNet (Section 2.1.3), respectively.

2.1.1 WordNet

Undoubtedly the most popular and widely used lexical knowledge resource in the
area of NLP, the Princeton WordNet of English (Miller et al., 1990; Fellbaum,
1998) is an expert-built computational lexicon based on psycholinguistic principles.
A concept in WordNet is represented as a synonym set (synset), i.e. a set of words
that share the same meaning. For instance, the concept of play as a dramatic work
is expressed by the following synset:

{ play1
n, drama1

n, dramatic play1
n }

where subscript and superscript of each word denote its part of speech and sense
number, respectively. Hence, e.g., play1

n represents the first nominal sense of the
word play.4 Being polysemous, the word play might appear in other synsets, e.g. the
one referring to the concept of play as children’s activity:

{ play8
n, child’s play2

n }

Similarly to traditional dictionaries, WordNet provides a textual definition (gloss)
and small usage examples for each synset. WordNet synsets are also connected with
lexico-semantic relations, including:

- is-a relations such as hypernymy (e.g. play1
n is-a dramatic composition1

n) and
hyponymy, which express concept generalization and specialization, respec-
tively. These relations are extremely important as they structure the concepts
expressed by synsets into a lexicalized taxonomy;

4n stands for noun (see Section 2.4).
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- instance-of relations denoting set membership between a named entity and
the class it belongs to (e.g. Shakespeare1

n is an instance of dramatist1n). In the
majority of NLP applications making use of hypernymic information, this type
of relation is generally considered and regarded as a specific form of is-a;

- part-of relations expressing the elements of a partition by means of meronymy
(e.g. stage direction1

n is a meronym of play1
n) and holonymy (e.g. play1

n is a
holonym of stage direction1

n).

As of version 3.0, the Princeton WordNet contains 117,659 synsets for all open-
class parts of speech, arranged in a semantic network with 364,569 lexico-semantic
relations. Being hand-crafted by experts, WordNet’s semantic information is of
the highest quality, despite its considerably smaller scale in comparison with the
other lexical resources. Various research projects stem from the Princeton WordNet,
such as the eXtended WordNet (Mihalcea and Moldovan, 2001), which includes
structured semantic information extracted from the textual definitions of senses,
WordNet Domains (Bentivogli et al., 2004), and SentiWordNet (Baccianella et al.,
2010), which assign domain labels and sentiment scores, respectively, to each synset.

Furthermore, the Princeton WordNet for English has inspired the creation of
‘wordnets’ in many other languages worldwide, many of which also provide links to
the English senses in the Princeton WordNet. Examples include, among others, the
Italian WordNet (Toral et al., 2010), the Japanese WordNet (Isahara et al., 2008),
and the German WordNet (Hamp and Feldweg, 1997, GermaNet). More recently,
all these language-specific efforts have been gathered, normalized and interlinked
with the creation of Open Multilingual WordNet (Bond and Foster, 2013).

2.1.2 Wikipedia

Already introduced in Chapter 1, Wikipedia is a widely used multilingual Web-
based encyclopedia with a prominent role in a great variety of NLP areas. It was
conceived as a collaborative open-source medium maintained by volunteers, in order
to provide a very large wide-coverage repository of encyclopedic information. Each
article in Wikipedia is represented as a page (henceforth, Wikipage) and contains a
variety of information about a specific concept (e.g. Play (theatre)) or named
entity (e.g., William Shakespeare). Although, strictly speaking, Wikipedia does
not provide an explicit sense inventory, the pairing of an article and the concept or
entity it describes can be interpreted as a word sense. This interpretation actually
complies with the bracketed disambiguation policy of Wikipedia, which associates
ambiguous word in the title of a page with a parenthesized label specifying its
meaning (e.g. Java (programming language) and Java (town)).

Due to its focus on encyclopedic knowledge, Wikipedia contains almost exclu-
sively nominal senses. However, thanks to its partially structured text, it represents
an important source of knowledge from which structured information can be har-
vested (Hovy et al., 2013). Apart from infoboxes (tables summarizing the most
important attributes of an entity –such as the birth date and biographical details
of William Shakespeare), Wikipages are connected by means of a number of
semantic relations, including:
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- Redirect pages, which used to express alternative expressions for the same
concept or entity (e.g. Stageplay and Theatrical Play redirecting to
Play (theatre)), thus modeling synonymy;

- Internal hyperlinks across the text of a Wikipage, which often refer to concepts
or entities related to the one being treated therein (e.g. Play (theatre) linked
to Literature and Playwright), thus representing generic or unspecified
semantic relatedness;

- Inter-language links, i.e. connections between the concept or entity described
in a Wikipage and its counterparts in other languages (e.g. the English Play
(theatre) linked to the Italian Dramma and the German Bühnenwerk);

- Categories with which multiple Wikipages are associated, used to encode
common topics or features among related concepts or entities (e.g. Play
(theatre) categorized as Theatre, Drama and Literature);

Wikipedia is a massive multilingual lexical resource where the number of concepts
and entites being described is constantly growing; only the English subset, as of 2015,
comprised more than 4.3 million Wikipages and over 71 million internal hyperlinks.
Over the years, this enormous amount of information has been exploited in a variety
of ways. Depending on the task, Wikipedia can be seen as:

1. A large-scale (partially) sense-annotated corpus: in fact, Wikipages
bear textual content and, at the same time, implicitly define a sense inventory
(as each Wikipage is unambiguously used to refer to a concept or entity). As
a consequence, internal hyperlinks represent, by all rights, sense annotations.
Despite not being structurally designed as a sense-annotated corpus (a short-
coming we explore deeply in Section 4.1), Wikipedia has been successfully
used as such in a variety of prominent NLP tasks, including Named Entity
Disambiguation (Section 2.2.2) and Information Extraction (Section 2.3);

2. A lexicalized semantic network: since each Wikipage identifies a specific
concept or entity, and it is connected to related concepts or entities via its
internal hyperlinks, the whole Wikipedia can be seen as a full-fledged semantic
network. Each node in the network encodes a concept that is lexicalized
(through the title of the Wikipage and the associated redirections) and possibly
language-independent (since inter-language links bring together Wikipages
describing the same concept or entity in different languages). Using the
hyperlink structure of Wikipedia as a semantic network has proved to be very
effective for measuring Semantic Similarity (Section 2.2.3), as well as a key
step to construct and refine Wikipedia-based taxonomies and ontologies (de
Melo and Weikum, 2010; Ponzetto and Strube, 2011; Nastase and Strube, 2013;
Mahdisoltani et al., 2015; Flati et al., 2016).

The fact that Wikipedia can be viewed as a semantic network puts forward a crucial
commonality with WordNet (Section 2.1.1): despite the profound structural and
conceptual differences between the two resources, they can both be represented
as directed graphs. An excerpt of such graphs centered on the synset play1

n and



18 2. Preliminaries

(a) Excerpt of the WordNet graph centered on
the synset play1

n.
(b) Excerpt of the Wikipedia graph centered
on the page Play (theatre).

Figure 2.1. Excerpts of the WordNet (a) and Wikipedia (b) graphs drawn borrowed from
Navigli and Ponzetto (2012). Both resources can be viewed as directed graphs with
synsets (Wikipedia pages) as nodes and relations (hyperlinks) as edges.

the Wikipedia page Play (theatre) is given in Figure 2.1(a) and 2.1(b), respec-
tively. While there are nodes corresponding to the same concept (e.g. tragedy2

n

and Tragedy), each resource also contains specific knowledge which is missing in
the other, both general concepts (for instance no Wikipedia entry corresponding to
direction6

n) and named entities (like Ancient Greece missing in WordNet).

Enhancing Wikipedia: Wikidata, Freebase and DBpedia

The central role of Wikipedia in NLP has motivated a series of research efforts
targeted at turning it into a fully structured knowledge resource. Among many such
efforts, the Wikidata project (Vrandečić, 2012) is arguably the most prominent
one. Wikidata is operated directly by the Wikimedia Foundation with the goal of
providing a common source of data that can be used by other Wikimedia projects.
It is designed as a document-oriented semantic database based on items, each
representing a topic and identified by a unique identifier (e.g. the item for Politics is
Q7163). Knowledge is encoded with statements in the form of property-value pairs.

Part of the information currently in Wikidata comes from another large-scale
collaborative knowledge base, Freebase (Bollacker et al., 2008). Freebase was an
online collection of structured data harvested from many sources, including individual
Wikipedia contributions. In contrast to Wikidata, Freebase used a non-hierarchical
graph model where tables and keys were replaced by a set of nodes and a set of
links expressing semantic relationships. As of today, the project has been officially
discontinued, and most of its data moved into Wikidata.

Another popular Wikipedia-based project is DBpedia (Lehmann et al., 2014),
a crowd-sourced community effort to extract structured information from Wikipedia
and make it available on the Web by means of an RDF database and ontology
accessible through SPARQL queries. Similarly to Wikidata, DBpedia exploits
infoboxes as one of the richest sources of information.

As noted in Chapter 1, however, not even a wide-coverage resource like Wikipedia
(or, for that matter, Wikipedia-derived resources like the ones described above) works
at best for all application scenarios. Instead, the optimal way of making use of
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Figure 2.2. An illustrative overview of BabelNet drawn from the original article (Navigli
and Ponzetto, 2012). Unlabeled edges come from Wikipedia hyperlinks (e.g. Play
(theatre) links to Musical (theatre)), while labeled edges are drawn from WordNet
(e.g. play1

n has-part stage direction1
n).

knowledge appears to be the orchestrated exploitation of multiple, heterogeneous
resources (Gurevych et al., 2016). In recent years, a series of successful approaches
have demonstrated this: Menta (de Melo and Weikum, 2010), Uby (Gurevych
et al., 2012), Yago (Mahdisoltani et al., 2015), and, of course, BabelNet (Navigli
and Ponzetto, 2012) which we examine in the following section.

2.1.3 BabelNet

The high degree of complementarity between WordNet and Wikipedia, together with
the similarity between their internal structures (Figure 2.1), opened the way for an
integration that brought together seamlessly lexicographic information organized
in a fully structured way (from WordNet) and specialized, up-to-date world knowl-
edge in hundreds of languages (from Wikipedia). The result of this integration is
BabelNet (Navigli and Ponzetto, 2012)5, a large-scale, multilingual encyclopedic
dictionary (i.e. a resource where both lexicographic and encyclopedic knowledge is
available in multiple languages) and at the same time a semantic network where all
this knowledge is interconnected with several million semantic relations.

Formally, BabelNet is structured as a labeled directed graph G = (V,E) where V
is the set of nodes –i.e. concepts such as play and named entities such as Shakespeare–
and E ⊆ V × R × V is the set of edges connecting pairs of concepts or entities
(e.g. play is-a dramatic composition). Each edge is labeled with a semantic relation
from R, e.g., {is-a, part-of , . . . , ε}, with ε denoting an unspecified semantic relation.
Importantly, each node v ∈ V contains a set of lexicalizations of the concept for
different languages, e.g. { playen, Theaterstückde, drammait, obraes, . . . , pièce de
théâtrefr }. Such multilingually lexicalized concepts are called Babel synsets.

Nodes and edges in BabelNet have been harvested from both WordNet and
Wikipedia. In order to construct the BabelNet graph G, extraction took place at
different stages: from WordNet, all available word senses (as nodes) and all the lexico-
semantic relations between synsets (as edges); from Wikipedia, all the Wikipages (as
nodes) and all their internal hyperlinks (as edges). A graphical overview of BabelNet
is given in Figure 2.2. Crucially, the overlap between WordNet and Wikipedia (both
in terms of concepts and relations) made the merging between the two resources

5http://babelnet.org
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possible and enabled the creation of a unified knowledge resource. After establishing
this first Wikipedia-WordNet mapping, multilinguality was achieved by collecting
lexical realizations of the available concepts in different languages. Finally, multilin-
gual Babel synsets were connected by establishing semantic relations between them.
In short, the construction of BabelNet consisted of three main steps:

1. The integration of WordNet and Wikipedia via an automatic mapping between
WordNet senses and Wikipedia pages. This avoided duplicate concepts and
allowed heterogeneous sense inventories of concepts to complement each other;

2. The collection of multilingual lexicalizations of the newly-created concepts
(Babel synsets) by means of (a) the human-generated translations provided
by Wikipedia (via inter-language links), as well as (b) a machine translation
system to translate occurrences of the concepts within sense-tagged corpora;

3. The interconnection of Babel synsets by harvesting all the relations in WordNet
and in the Wikipedias in the languages of interest, and by subsequently
weighting them to quantify the strength of associations between the source
and target Babel synsets.

Since its earliest version, based solely on the WordNet-Wikipedia mapping just
described, BabelNet has been continuously developed and improved, integrating new
resources and pursuing the vision of a unified lexico-semantic repository capable of
covering as many languages and areas of knowledge as possible. As of today, BabelNet
is the largest interlinked semantic resource available, with 14 different knowledge
resources integrated and 13,801,844 entries in 271 languages, interconnected in a
semantic network of 380,239,084 lexico-semantic relations.6 From a lexicographic
perspective, BabelNet has been referred to as the dictionary of the future (Steinmetz,
2016), because of its encyclopedic breadth and scope, its organizational structure
that favors semantic relatedness (instead of the mere alphabetical order of traditional
dictionaries) and its richness of information which comprises, among other features,
over 40M textual definitions, 10M images and 2.6M domain labels.

As discussed in Chapter 1, the construction and continuous development of a
resource like BabelNet, where both lexicographic and encyclopedic knowledge is
available and interconnected in multiple languages, has a great impact on a variety of
downstream tasks and applications. What emerges from the NLP approaches directly
powered by BabelNet that have been developed over the years, is that the advantage
of using such resource is generally two-fold: on the one hand, the unification of
lexicographic and encyclopedic information enables NLP systems to perform jointly,
and hence with mutual benefit from one another, tasks that were previously conceived
as separated; on the other, having language-independent information creates a direct
bridge towards multilingual and “language-agnostic” methods, enabling English-
centered models to be directly projected to other languages without modifying
their basic structure. In Section 2.2 we examine two important examples of this:
multilingual joint Word Sense Disambiguation and Entity Linking (Section 2.2.2.3)
and sense-based vector representations of concepts and entities (Section 2.2.3).

6Detailed statistics, also across versions, can be found at: http://babelnet.org/stats.

http://babelnet.org/stats
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The Quest of Harvesting Semantic Relations

Despite its great potential, BabelNet alone is not enough to overcome the knowledge
acqusition bottleneck: even with all the edges derived from WordNet and Wikipedia,
the process of connecting concepts or entities in BabelNet with high quality and
coverage is today still far from complete, and subject to continuous research effort.
In fact, if we consider only WordNet and Wikipedia, the vast majority of edges are
drawn from the latter resource; as such, they come with no label or specification,
only conveying a generic “semantic relatedness”. Labeled edges, such as hypernyms
and hyponymys, are limited to the (much smaller) lexicographic portion of WordNet.

The case of taxonomic information, indeed, is of paramount importance: the
huge amount of specialized knowledge from Wikipedia pages still lacks a proper
integration with the general concepts and semantic classes populating WordNet.
This is crucial for downstream applications: in the illustrative example of Chapter 1,
the word band is not hyperlinked in the Wikipedia page Pink Floyd. Thus, even if
the corresponding Wikipedia concept Musical ensemble is correctly mapped to the
WordNet band1

n, there are no means of establishing the connection with Pink Floyd
and Musical ensemble in the first place (and hence, no hypernymy chain to follow).
This shortcoming has motivated, among other efforts, the development of a Wikipedia
Bitaxonomy (Flati et al., 2014), i.e. an integrated taxonomy of both Wikipedia
pages and categories. Constructing the Wikipedia bitaxonomy involves an iterative
process of mutual reinforcement in which complementary information coming from
either one of the individual taxonomies is propagated into the other (Figure 2.3). As
in the construction of BabelNet, this method exploits at best the graph structure of
Wikipedia, not only to extend coverage to as many Wikipedia concepts as possible,
but also to project the obtained taxonomies from English (used as pivot language)
to an arbitrary language, thereby achieving full multilinguality (Flati et al., 2016).

Integrating the Wikipedia Bitaxonomy into BabelNet has been a major step
towards characterizing the deluge of unlabeled semantic relations from Wikipedia,
followed up by the integration of Wikidata (Vrandečić, 2012). A lot of work still
remains to be done in this respect: indeed, this scenario has contributed to shape part

Figure 2.3. An illustration of the Wikipedia Bitaxonomy borrowed from Flati et al. (2016).
The page taxonomy (left) and category taxonomy (right) are connected with cross-links
(dashed lines), i.e. links between Wikipages and the categories they belong to.
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of the motivation and the focus of this thesis. As we discuss in Section 3.2, approaches
based on extracting semantic relations from open text have been investigated and
are currently under investigation; however, they are somehow still suboptimal in
utilizing the sense-level information that a resource like BabelNet would put at their
disposal. In Chapter 5 we study how to bring these approaches to the next level.

2.2 From Words to Senses
Studying how to move from words to senses means entering the domain of Lexical
Semantics (Cruse, 1986). Lexical Semantics is the subfield of Linguistics concerned
with establishing the meaning of lexical items, the building blocks that make up
the catalogue of words in a given language (lexicon). In order to deal with Lexical
Semantics computationally, we need first of all a few basic operative assumptions:

1. Words in isolation do have meaning, and a sentence acquires its meaning by
virtue of the words that compose it and the manner of their combination (Cruse,
1986; Miller, 1999);

2. For every word w in a language L, having multiple senses s1, s2, . . . , sn, the
lexicon expresses these senses as a sorted list of form-meaning associations,
i.e. word senses (Pustejovsky, 1991);

3. Senses refer to language-independent conceptual primitives, which are then
expressed (lexicalized) in each specific language (Mandler, 1996; Wierzbicka,
1996).

The second assumption, defined by Pustejovsky (1991) as the “sense enumeration
lexicon”, is based on the fact that all form-meaning associations (word senses) in
a language can be listed within the lexicon. In this setting, a word form is said to
be polysemous when its lexical entry includes multiple distinct word senses. By the
same token, a word meaning can be expressed (lexicalized) by one or more word
forms, which are said to be synonyms. Despite the many controversies as to whether
both the first and the second assumption are legitimate (Pustejovsky, 1991; Hanks,
2000), a list-based lexicon provides a clear computational framework in which Lexical
Semantics remains separate and independent from syntactic knowledge: in fact,
WordNet (Section 2.1.1) is the prototypical example of such a framework. The third
assumption, apart from being a long-standing theoretical controversy in Cognitive
Semantics, stands as the foundational hypothesis of multilingual lexical resources like
BabelNet (Section 2.1.3), where concepts and entities are encoded as multilingual
sets of synonyms representing their language-specific lexicalizations.

Given the above assumptions, a computational model of Lexical Semantics needs
to address two fundamental issues: on the one hand, how to represent the semantics
of lexical items computationally; on the other, how to establish a mapping from a
given lexical item to an appropriate word sense in the lexicon, inside the context of
a language utterance. In both cases, computational approaches are based on the
basic, well-known principle that, in order to understand the meaning of words, we
should look at the various contexts in which they occur:

You shall know a word by the company it keeps (Firth, 1957)
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2.2.1 Word Sense Disambiguation

The issue of establishing a mapping from lexical items in context to senses in a
sense inventory corresponds, in computational terms, to performing Word Sense
Disambiguation. The literature on WSD is broad and comprehensive (Agirre et al.,
2009; Navigli, 2009, 2012): new models are continuously being developed and tested
over a variety of standard benchmarks (Edmonds and Cotton, 2001; Snyder and
Palmer, 2004; Pradhan et al., 2007; Navigli et al., 2007, 2013; Moro and Navigli,
2015). Moreover, the field has been explored in depth from different angles by means
of extensive empirical studies and evaluation frameworks (Pilehvar and Navigli, 2014;
Iacobacci et al., 2016; McCarthy et al., 2016; Raganato et al., 2017a).

Following Navigli (2009), we define WSD as the task of computationally deter-
mining which sense of a word is activated by its use in a particular context. It
is usually performed on one or more texts (altough in principle any collection of
naturally occurring words might be employed), which we can represent as a sequence
of words T = (w1, w2, . . . , wn). Given T , WSD can be formally described as the task
of assigning the appropriate sense(s) to all or some of the words in T , that is, to
identify a mapping A from word to senses, such that A(i) ⊆ S(wi), where S(wi) is
the set of senses encoded in a sense inventory S for word wi (cf. Section 2.1) and
A(i) is the subset of the senses of wi which are appropriate in the context T .7

WSD can certainly be (and has been) viewed as a classification task, with words
in context being the input instances, and word senses being the classes; a classifier
can be trained to assign each occurence of a word to one or more classes based
on the evidence from the context T , as well as from external knowledge resources.
However, an important difference between WSD and other typical classification tasks
studied throughout NLP (e.g. part-of-speech tagging, named entity recognition, text
categorization) is that the latter use a single predefined set of classes (e.g. parts of
speech, categories), whereas in the former the set of classes changes depending on
the word to be classified. In this respect, WSD actually comprises n classification
tasks, where n is the size of the lexicon.

2.2.1.1 Evaluation and Standard Benchmarks

We can distinguish two variants of the generic WSD task: Lexical Sample (Kil-
garriff, 2001; Mihalcea et al., 2004), where a system is required to disambiguate a
restricted set of target words, usually occurring one per sentence, and All-words
WSD, where systems are expected to disambiguate all open-class words in a text
(i.e. nouns, verbs, adjectives, and adverbs). This latter task is typically harder,
as it requires wide-coverage systems capable of dealing with data sparsity issues
(including the knowledge acquisition bottleneck discussed in Chapter 1), and it has
been proposed in a number of varieties. For instance, depending on the granularity
of the sense inventory employed, it has been referred to as fine-grained WSD, when
WordNet is used as it is as sense inventory, or coarse-grained WSD, when based
on a reduced set of coarser senses obtained by clustering the original WordNet
sense inventory –as in, e.g., Navigli et al. (2007). In fact, it has been shown that

7The mapping A can assign more than one sense to each wi ∈ T , although typically only the
most appropriate sense is selected, that is, |A(i)| = 1.
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sense granularity is key when developing and utilizing WSD models (Edmonds
and Kilgarriff, 2002; Navigli, 2006; McCarthy et al., 2016), especially when the
sense distinctions encoded in reference sense inventories like WordNet are too subtle
even for human annotators. This phenomenon reflects on the typical upper bound
considered in WSD, i.e. the inter-annotator agreement (ITA): on coarse-grained
sense inventories the ITA is calculated around 90% (Gale et al., 1992b; Navigli et al.,
2007), whereas on fine-grained WordNet-style sense inventory the ITA is estimated
between 67% and 80% (Snyder and Palmer, 2004; Palmer et al., 2007).

In the all-words WSD task, a typical baseline is represented by the most likely
sense for each word regardless of context, which can be computed as the most
frequent sense (MFS), or most common sense (MCS), of that word inside a reference
corpus, or as the first sense provided for that word by the sense inventory.8 Initially
conceived as a lower bound, this baseline has been shown to pose serious difficulties
to WSD systems, and it is often hard to beat (Gale et al., 1992a; Navigli, 2009). Also,
due to the skewness of sense distributions inside many sense-annotated corpora, the
MFS represent a strong bias not only for supervised systems (Postma et al., 2016),
but also for knowledge-based systems (Calvo and Gelbukh, 2015), being correlated
with the number of semantic connections inside WordNet.

In Chapter 4 we use the all-words WSD task as a major testbed for evaluating
extrinsically a sense-annotated corpus. In particular, we rely on the standard WSD
datasets from the Senseval/SemEval competitions: Senseval-2 (Edmonds and Cotton,
2001), Senseval-3 task 1 (Snyder and Palmer, 2004), SemEval-07 task 17 (Prad-
han et al., 2007), SemEval-13 task 12 (Navigli et al., 2013) and SemEval-15 task
13 (Moro and Navigli, 2015). Recently, these five datasets have been standardized
and unified in the framework of Raganato et al. (2017a), together with some of the
sense-annotated corpora described in Sections 3.1.1 and 3.1.2.

Finally, attention is increasingly being paid to performing WSD across languages,
a task referred to as cross-lingual WSD (Lefever and Hoste, 2010, 2013): in this
setting, an input sentence is provided in a source language (e.g. English) and the
WSD system has to provide word senses encoded in a target language (e.g. Italian)
using a sense inventory constructed with translations from a parallel corpus. The
underlying assumption of this task is that sense distinctions of a word in a source
language are determined, at least partially, by its different translations in other
languages. Supported by several studies (Gale et al., 1992c; Ide et al., 2002; Ng
et al., 2003), this assumption also motivates some of the techniques used in Chapter
4 to obtain sense annotations in a multilingual setting. Alongside cross-lingual
WSD, truly multilingual WSD (Navigli et al., 2013; Moro and Navigli, 2015),
where the all-words WSD task is entirely redefined with training and test datasets
for languages other than English, is another important thread of WSD evaluation,
recently enabled by multilingual sense inventories like BabelNet (Section 2.1.3).

2.2.1.2 Approaches to WSD

There are three mainstream approaches to WSD, namely:

8Typically these two baselines coincide: in WordNet, for instance, sense order is determined on
the basis of sense-annotated text (cf. Section 3.1.1).
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• Supervised WSD, based on the formulation of WSD as a series of classifica-
tion tasks in which a dedicated classifier (word expert) is trained for each target
word using a sense-annotated corpus. Supervised models have been shown to
consistently achieve higher performances in all standard benchmarks (Raganato
et al., 2017a), at the expense, however, of harder training and limited flexibility.
Apart from the fact that obtaining sense-annotated data is a highly expensive
endeavor, as discussed throughout Chapter 1, the ‘word expert’ paradigm
is one of the major limitations of these approaches, as it requires framing a
separate classification problem for each target word or, in the generel case, for
each ambiguous entry in the lexicon;

• Knowledge-based WSD, where exploiting the structural properties of knowl-
edge resources (Section 2.1) is key to determine the senses of words in context.
Despite lagging behind their supervised counterparts, knowledge-based ap-
proaches have the advantage of a wider coverage and increased flexibility, which
allows them to scale better in terms of scope and number of languages. Also,
in contrast to word experts, knowledge-based systems are not forced to treat
each target word in isolation: they usually construct a model based only on
the underlying resource, which is then able to handle multiple target words at
the same time and disambiguate them jointly. Crucially, however, their perfor-
mances depend strongly on the richness of the underlying resource (Cuadros
and Rigau, 2006; Navigli and Lapata, 2010).

• Unsupervised WSD, or Word Sense Induction, i.e. techniques based
on discovering senses automatically from unlabeled corpora. These method
are particularly attractive as they do not require sense-annotated data or a
predefined sense inventory: instead, they dynamically induce groups of synony-
mous words (clusters) based on their occurrences in similar contexts (Schütze,
1998; Brody and Lapata, 2009; Marco and Navigli, 2013). This however makes
both comparison and evaluation quite hard, and lexico-semantic relationships
between the clusters/word senses (otherwise provided by an external knowledge
resource) have to be established in a later phase, either automatically or by
manually mapping the clusters to a reference sense inventory.

The State of the Art

In this section we follow Raganato et al. (2017a), which present an up-to-date
comparison and comprehensive analysis of the state of the art in supervised and
knowledge-based WSD, and survey briefly some recent contributions in the field.9

As regards supervised WSD, traditional approaches, based on extracting a set of
local features from the target word and the surrounding words (Zhong and Ng, 2010;
Shen et al., 2013), are still very competitive. For instance, It Makes Sense (Zhong
and Ng, 2010, IMS) uses a Support Vector Machine classifier over a set of con-
ventional features (surrounding words, part-of-speech tags, collocations), and it is

9Inasmuch as we define WSD with respect to a pre-defined sense inventory, unsupervised
approaches, i.e. Word Sense Induction, fall outside the scope of this analysis and, more generally,
of this thesis. Thus, in this and the following sections we will focus solely on supervised and
knowledge-based WSD.
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widely used today as reference supervised system in many experimental studies and
evaluations, including those we perform in Chapter 4. In fact, in latest developments,
this basic model has been enhanced with more complex features based on word
embeddings (Taghipour and Ng, 2015a; Rothe and Schütze, 2015; Iacobacci et al.,
2016). The recent advances of neural networks have also contributed to fuel WSD
research: Kågebäck and Salomonsson (2016) present a supervised classifier based
on a bidirectional Long Short-Term Memory (LSTM) for the lexical sample task;
similar architectures have also been utilized in instance-based approaches (Yuan
et al., 2016; Melamud et al., 2016) where a latent representation is obtained for the
whole sentence containing a target word w, and then this representation is compared
with those of example sentences annotated with the candidate meanings of w.

State-of-the-art knowledge-based systems, instead, are either based on distribu-
tional similarity (Basile et al., 2014; Chen et al., 2014; Camacho Collados et al.,
2016c) or on the structural properties of lexicalized semantic networks (Agirre et al.,
2014; Moro et al., 2014b; Weissenborn et al., 2015; Tripodi and Pelillo, 2017): some
of them, such as UKB (Agirre et al., 2014) and Babelfy (Moro et al., 2014b) create
a graph representation of the input text, and then exploit different graph-based
algorithms over the given representation (e.g. PageRank) to perform WSD.

2.2.2 Entity Linking

Across the NLP literature, an important task that is usually considered very related
to WSD is Entity Linking (Erbs et al., 2011; Rao et al., 2013, EL). The goal of EL is
to identify mentions of entities within a text, and then link (disambiguate) them with
the most suitable entry in a reference knowledge base. The increasing popularity
of EL is connected to the availability of semi-structured resources (cf. Chapter 1),
especially Wikipedia –to the extent that Wikipedia-based EL is usually known as
Wikification (Mihalcea and Csomai, 2007; Milne and Witten, 2008; Ratinov et al.,
2011). Originally conceived as one of the fundamental steps within the broader task
of Information Extraction (Section 2.3), EL is another long-standing task but, unlike
WSD, lacks a standard formal definition of the problem, as well as well-established
evaluation benchmarks where EL systems can be meaningfully compared (Ling
et al., 2015), despite some recent efforts in this direction (Cornolti et al., 2013;
Usbeck et al., 2015). For instance, among the many variants of EL, Wikification
aims at linking all kinds of noun phrases to Wikipedia entities, while Named Entity
Disambiguation (Bunescu and Paşca, 2006; Cucerzan, 2007) targets only named
entities. In this thesis we follow the seminal work of Rao et al. (2013) and consider
EL as the better defined problem of solely linking named entities.10

The EL can be split in two separate (and typically consequent) subtasks:

1. Mention Extraction, i.e. identifying the boundaries of named entities
in a target text. This subtask is closely related to a classical NLP task,
Named Entity Recognition (Nadeau and Sekine, 2007, NER), where named
entity mentions are extracted and classified into a predefined set of general

10As we discuss in Section 2.2.2.3, the task of linking common noun phrases is closely related
to WSD, to the extent that they can actually be considered the same task, both formally and
operationally.



2.2 From Words to Senses 27

semantic classes (e.g. PERSON, LOCATION, ORGANIZATION). Seemingly simple,
this subtask is actually challenging and controversial per se, not only because
of name variations (e.g. abbreviations, acronyms, or spelling differences) but
also because mention boundaries can easily overlap. For instance, the noun
phrase ‘Portland, Oregon’ can be considered as a whole, or can be split into
two individual mentions, Portland for the city and Oregon for the city’s state,
with all three mentions making perfect sense;

2. Entity Disambiguation, i.e. the subtask of appropriately matching a men-
tion to an entry inside a predefined knowledge base, which is often Wikipedia
or a Wikipedia-derived knowledge base, such as Yago, Freebase, or DBpedia
(cf. Section 2.1.2). The key issue here is, of course, ambiguous mentions, either
because of polysemy (e.g. Washington being a president, a federal district,
or a U.S. state) or metonymy (e.g. Moscow referring to the government of
Russia rather than the actual city). Another issue is coreference, as two or
more mentions can often refer to the same entity (e.g. Trump, D. Trump, Mr.
President). Finally, as no standard annotation guidelines exist with respect to
EL, a number of structural issues arise (Ling et al., 2015), such as how specific
a linked entity should be (e.g. the mention World Cup can be legitimately
linked to the Wikipage FIFA World Cup, as well as to a specific occurrence
of the event, say the Wikipage 1998 FIFA World Cup), or how to deal with
entities that are absent from the knowledge base.

2.2.2.1 Evaluation and Standard Benchmarks

In contrast to WSD, where well-established benchmark are provided by the Sense-
val/SemEval competition series (cf. Section 2.2.1), EL systems are often compared
using different datasets (Ling et al., 2015). The most common benchmarks that have
been utilized over the years are: the ACE and MSNBC datasets (Cucerzan, 2007;
Ratinov et al., 2011), with entity mentions extracted from newswire text and linked
to Wikipedia; the TAC-KBP datasets (McNamee et al., 2009), which are however
only available to the task participants; and the AIDA-CoNLL test dataset (Hoffart
et al., 2011b), the largest publicly available, comprising almost 1,400 English articles
and roughly 35,000 entity mentions linked to Yago. Other notable datasets are the
Wikipedia-based CSAW (Kulkarni et al., 2009) and AQUAINT (Milne and Wit-
ten, 2008), which annotate both concepts and named entities, andKORE50 (Hoffart
et al., 2012), a small-size dataset of 50 short English texts annotated using Yago,
and built with the idea of testing against a high level of mention ambiguity.

In addition to the many datasets available, a variety of metrics have also been
used for evaluation, with little agreement on which ones are best (Ling et al., 2015).
The most common ones include: Bag-of-Concept F1 (ACE and MSNBC datasets),
where a gold bag of Wikipedia entries is evaluated against a bag of Wikipedia entities
provided by the system, micro accuracy (TAC-KBP datasets), which is simply the
percentage of correctly predicted links, and NER-style F1 (AIDA-CoNLL), where a
link is considered correct only if the mention matches the gold boundary and the
linked entity is also correct.
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2.2.2.2 Approaches to EL

The earliest approaches to EL were Wikification approaches (Mihalcea and Csomai,
2007; Cucerzan, 2007), in which the local context surrounding the mentions had a
primary role, similarly to supervised WSD (cf. Section 2.2.1). Based on a collective
notion of coherence among the selected Wikipages, Milne and Witten (2008) focused
instead on analyzing the semantic relations between the candidate entity mentions
and the unambiguous context. Despite the crucial dependence on unambiguous
words within the input context, their approach started a successful trend of EL
models based on both local and global features (Kulkarni et al., 2009; Ratinov et al.,
2011; Hoffart et al., 2011b; Mendes et al., 2011). In recent years, more sophisticated
approaches have been developed, exploiting Integer Linear Programming (Cheng and
Roth, 2013), generative models (Han and Sun, 2012), stacked generalization (He et al.,
2013b) and deep neural networks (He et al., 2013a). Another extremely promising
line of work consists in tackling EL by jointly modeling the disambiguation of entities
and closely related tasks, such as NER (Sil and Yates, 2013; Nguyen et al., 2016)
and coreference resolution (Hajishirzi et al., 2013; Durrett and Klein, 2014), where
generative models are employed to capture inter-task interactions. This key intuition,
along with the availability of knowledge resources like BabelNet, has motivated the
development of joint WSD and EL approaches, which we examine in Section 2.2.2.3.

2.2.2.3 Joint WSD and EL: Babelfy

WSD and EL are undoubtedly similar, as in both cases text fragments have to be
disambiguated according to a reference inventory. However, there are two important
differences between them: the nature of sense inventory (dictionaries and lexicons
for WSD, encyclopedic knowledge bases for EL), and the fact that in EL mentions
in context are not guaranteed to be complete but can be (and often are) partial. As
a result of these and other discrepancies, the research community has spent a lot of
time tackling WSD and EL separately, not only leading to duplicated efforts and
results, but also failing to exploit the fact that these two tasks are deeply intertwined.
Consider the following example:

He loves driving around with his Mercedes.

where the verb driving should be resolved by a WSD system with the sense of
‘operating vehicles’, and the partial mention ‘Mercedes’ should be recognized by an
EL system and linked to the automobile brand (Mercedes-Benz). In this setting,
the WSD system would clearly benefit from knowing that a brand of vehicles is
mentioned in the local context of driving and, at the same time, the EL system
would easily take advantage of the sense-level information about driving referring to
vehicles when linking the mention ‘Mercedes’.

This is where linked lexical resources like BabelNet (Section 2.1.3) play a role:
by providing a large-scale encyclopedic dictionary as common ground for WSD and
EL, they enable the design and development of unified WSD and EL models. The
first of this kind is Babelfy (Moro et al., 2014b), based on BabelNet: Babelfy is
a graph-based approach to joint WSD and EL that exploits a loose identification
of candidate meanings, and a densest-subgraph algorithm to select high-coherence
semantic interpretations. Babelfy disambiguates as follows:
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Figure 2.4. Excerpt of the semantic interpretation graph for the example sentence ‘Thomas
and Mario are strikers playing in Munich’, borrowed from Moro et al. (2014b). The edges
connecting the correct meanings (e.g. Thomas Müller for Thomas and Mario Gomez for
Mario) are in bold.

1. Given a lexicalized semantic network, such as BabelNet, a semantic signature
is computed for each concept or entity. A semantic signature is a set of
highly related vertices obtained by performing Random Walks with Restart
(RWR) (Tong et al., 2008) for each vertex v of the semantic network. RWR
models the conditional probability P (v′|v) associated with an edge (v, v′):

P (v′|v) = weight(v, v′)∑
v′′∈V weight(v, v′′) (2.1)

where V is the set of vertices in the semantic network and weight(v, v′) is
the weight associated with (v, v′). This is a preliminary step that needs to be
performed once and for all, independently of the input text;

2. Given an input text, Babelfy extracts all the linkable fragments and lists all
their possible meanings according to the sense inventory. Candidate extraction
is a high-coverage procedure based on superstring (instead of exact) matching,
and capable of handling partial mentions and overlapping fragments;

3. A graph-based semantic interpretation of the input text is generated using
the semantic signatures of all candidate meanings. Then Babelfy extracts a
dense subgraph of this representation in order to select a coherent set of best
candidates for the target mentions. An example of semantic interpretation
graph is shown in Figure 2.4. Each candidate in the graph is weighted with a
measure that takes into account both semantic and lexical coherence, exploiting
graph centrality among the candidates as well as the number of connected
fragments. This measure is used in the dense-subgraph algorithm to iteratively
remove low-coherence vertices from the semantic graph until convergence.

One of the greatest advantages of Babelfy is flexibility: it can be used seamlessly
for WSD, EL or even both at the same time. Also, the whole procedure is language-
independent, and can be extended to any language for which lexicalizations are
available inside the semantic network. In fact, Babelfy can even handle mixed text
in which multiple languages are used at the same time, or work without being supplied
with information as to which languages the input text contains (“language-agnostic”
setting). On the other hand, as in any knowledge-based approach (Section 2.2.1),
the quality of disambiguation depends crucially on the quality of the underlying
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resource, and rarely achieves the same results of supervised models (Raganato et al.,
2017a). BabelNet and Babelfy have inaugurated a new, broader way of looking
at disambiguation in Lexical Semantics, which has been further pursued by the
research community (Basile et al., 2015; Weissenborn et al., 2015) and has led to the
organization of novel shared tasks focused on multilingual WSD and EL as part of the
SemEval competition series, namely the SemEval-2013 task 12 on Multilingual
Word Sense Disambiguation (Navigli et al., 2013), and the SemEval-2015 task 13
on Multilingual All-words Word Sense Disambiguation and Entity Linking (Moro and
Navigli, 2015). Both tasks required participating systems to disambiguate a set of
target words and multi-word expressions in a test corpus with the most appropriate
sense from the BabelNet sense inventory (or, alternatively, from those of WordNet or
Wikipedia) and for 5 and 4 languages, respectively. In particular, the SemEval-2015
task 13 has been the first disambiguation task explicitly oriented to joint WSD
and EL, including features of a typical WSD task (i.e. sense annotations for all
open-class parts of speech) ad well as features of a typical EL task (i.e. annotated
named entities and non-specified mention boundaries).

2.2.3 Sense-based Vector Representations

While tasks like WSD (Section 2.2.1) and EL (Section 2.2.2) have grown popular
across the NLP community mostly over the last two decades, research efforts on
semantically representing lexical items dates back to the earlier days of NLP (Har-
ris, 1954; Salton et al., 1975) and have agglutinated a large body of work since
then, shaping a field of study now known as Distributional Semantics, in which
the meaning of a lexical unit is computed from the distribution of words around
it. Stemming from the well-known distributional hypothesis (Firth, 1957), i.e. the
fundamental idea that words occurring in the same contexts tend to have similar
meanings, the paradigm of vector space models (Turney and Pantel, 2010) took
the lead, providing both a theoretical and practical framework in which a word
is represented as a vector of numbers in a continuous metric space. Within this
framework, linguistic phenomena are framed in terms of mathematical operations
and, in particular, semantic similarity and relatedness between two words can be
directly expressed in terms of proximity between the corresponding vectors, and
computed in a quantifiable way (e.g. using cosine similarity). In recent times,
the great success of neural networks and deep learning led to the development of
embedded vector spaces (Mikolov et al., 2013c; Pennington et al., 2014), which are
compact and fast to compute from unstructured corpora, and at the same time
capable of preserving semantic regularities between linguistic items.

However, as discussed in Chapter 1, word representations have a crucial limita-
tion: they tend to encode the different meanings of a word by conflating them into a
single vector. A potential way of overcoming this limitation is to move to the sense
level and generate representations of word senses, where each distinct meaning of
a given word is associated with a distinct vector. Figure 2.5 shows an illustrative
example with the word bank: in a word-level space, the vector for bank lies exactly in
between two regions that relate to the geographical and financial meanings of bank,
respectively; this shows that components pertaining to two different semantic areas
are inherently mixed up when the word is ambiguous. Instead, in the sense-level
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Figure 2.5. Portions of a word-level vector space centered on the word bank (left) and a
sense-level vector space where two different meanings of bank have distinct representations
(right). Illustration borrowed from Camacho Collados et al. (2016b).

space, the two regions are neatly separated and the previously conflated meanings
of bank have their own vectors in the proper semantic areas.

In fact, the representation of individual word senses and concepts has recently
become very popular, thanks to several experimental results showing significant
performance improvements with respect to word representations (Chen et al., 2014;
Jauhar et al., 2015; Iacobacci et al., 2015; Rothe and Schütze, 2015; Camacho Col-
lados et al., 2016c; Pilehvar and Collier, 2016). In this respect, lexical knowledge
resources can (and have been) used to construct state-of-the-art models, including
WordNet, Wikipedia and BabelNet. Compared to corpus-based approaches, where
senses are typically not fine-grained, difficult to evaluate and statistically biased
towards frequent meanings, a key advantage of knowledge-based representations is
that they are directly linked to existing sense inventories, which makes them readily
usable in downstream applications.

2.2.3.1 Evaluation and Standard Benchmarks

The most popular benchmark for the evaluation of different semantic representation
techniques is semantic similarity, i.e. the task of measuring the semantic closeness11
of two linguistic items, which is directly computed by comparing the corresponding
vector representations. In particular, word similarity is a popular variant of semantic
similarity focused on words or multi-word expressions, which provides a series of
and well-established benchmark for English: RG-65 (Rubenstein and Goodenough,
1965) and its subsetMC-30 (Miller and Charles, 1991), WordSim-353 (Finkelstein
et al., 2002), which contains both concepts and named entities, and SimLex-
999 (Hill et al., 2014), which is composed of 999 word pairs, 666 of which are noun
pairs. As regards other languages, benchmarks for multilingual word similarity and
cross-lingual word similarity (where the words or multi-word expressions in a pair
belong to different languages) are all constructed on the basis of RG-65 and its
translations into German (Gurevych, 2005), French (Joubarne and Inkpen, 2011)

11Semantic similarity, which quantifies the likeness of meaning between two linguistic items, is
often confused with semantic relatedness, which is instead based on any semantic relation between
them. For example, car is similar to bus, but is related (and not similar) to road and driving.
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and Spanish (Camacho Collados et al., 2015a).
In a word similarity benchmark, all word pairs are associated with a similarity

score given by a human annotator, and the performance of a system is assessed on
the basis of Pearson and Spearman correlations of its similarity scores with human
judgment. In the case of sense-based representations, which are defined at either the
sense or the concept level, a conventional strategy for word similarity (Resnik, 1995;
Budanitsky and Hirst, 2006; Pilehvar et al., 2013; Camacho Collados et al., 2016c)
selects, for each pair of words w and w′, the closest pair of candidate senses:12

sim(w,w′) = max
~v1∈Lw,~v2∈Lw′

V C(~v1, ~v2) (2.2)

where Lw represents the set of word senses (or concepts) that contain w as one of
their lexicalizations. V C denotes the vector comparison measure, typically either
standard cosine similarity or Weighted Overlap (Pilehvar et al., 2013), which takes
into account the relative ranks of overlapping dimensions between the vectors.

Over the last decade, a broad spectrum of sense-based approaches have been
proposed and evaluated experimentally on the semantic similarity task. While a
comprehensive survey on sense-based representations is outside the scope of this
thesis, in the following sections we focus on two complementary approaches, based
on BabelNet (Section 2.1.3), that we utilize as tools for semantic analysis throughout
Chapters 4 and 5: SensEmbed (Section 2.2.3.2) and Nasari (Section 2.2.3.3).

2.2.3.2 SensEmbed

A possible way of constructing semantic representations of word senses is to leverage
existing architectures that already proved effective for word representations (Mikolov
et al., 2013a,c), such as the Continuous Bag Of Words (CBOW). CBOW architectures
are used to produce continuous vector representations (embeddings) for words based
on distributional information from a textual corpus: in particular, they learn to
predict a token given its context, which is typically defined by a fixed-size sliding
window around the token itself. In order to work at the sense level, the CBOW has
to be trained on a sense-annotated corpus, where sense-level information is explicitly
attached to words and multi-word expressions; this informs the CBOW that two
distinct meanings of the same ambiguous term (e.g. bank) have to be treated as
distinct tokens (e.g. bank1

n and bank2
n) and hence modeled using distinct embeddings.

This is the core idea behind SensEmbed (Iacobacci et al., 2015), a technique to
obtain continuous representations of word senses (sense embeddings) and use them
effectively for word and relational similarity (Medin et al., 1990). SensEmbed relied
on a dump of the English Wikipedia automatically disambiguated with Babelfy
(Section 2.2.2.3) in order to train a CBOW architecture, obtaining as output latent
representations for word senses linked to the sense inventory of BabelNet. By
leveraging both distributional knowledge and structured knowledge coming from
a lexicalized semantic network, SensEmbed consistently achieved state-of-the-art
performances on various similarity benchmark, proving the effectiveness of computing
embeddings at the sense level.

12Despite being widely used, the strategy of considering only the closest senses has some limitations,
as pointed out by Iacobacci et al. (2015), which propose an alternative strategy that takes into
account all the different meanings of the two words using a weighted average.
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Exploiting the knowledge resource. One of the drawbacks of training em-
beddings on sense-annotated text, as in SensEmbed, is that it generally requires
very large corpora to learn effective representations and, as previously discussed,
sense labeling can be considerably expensive on corpora of such a size. An al-
ternative approach consists in exploiting explicitly the features of the underlying
knowledge resource that provides the sense inventory. This is the key insight of
AutoExtend (Rothe and Schütze, 2015), a method to learn embeddings for sense
and synsets that decouples actual embedding learning from their extension based
on a lexico-semantic knowledge resource. The rationale of AutoExtend is that
the properties and relations of such a resource (e.g. synonymy, hypernymy) can
be formalized mathematically as training constraints. Rothe and Schütze (2015)
rely on two basic constraints: (i) words representations are expressable as sums of
their respective senses and (ii) synset representations are expressable as sums of
their respective lexicalizations.13 The learning process is then carried out using an
autoencoder architecture where word embeddings constitute the input and output
layers, and hidden layers represent the synset embeddings.

AutoExtend has been proven successful in various similarity tasks, as well as in
WSD (Rothe and Schütze, 2015); however, some empirical analysis have shown that it
tends to create clusters with a word and all its possible senses when non-predominant
senses or less common word types are involved (Mancini et al., 2017).

2.2.3.3 Nasari

A major drawback of continuous models, such as word2vec (Mikolov et al., 2013a),
SensEmbed (Iacobacci et al., 2015), and AutoExtend (Rothe and Schütze, 2015),
is the lack of interpretability: embeddings are compact representations of lexical
items where meaning is latent, with no human-readable feature describing their shape
and structure. Also, as they are essentially corpus-based techniques, the quality of a
word or sense vector depends crucially on the frequency of the corresponding word
or word sense inside the training corpus.

To address both issues, Camacho Collados et al. (2016c) propose an alternative
vector representation based on BabelNet, named Nasari. Instead of using a sense-
annotated corpus, Nasari relies entirely on the lexicalized semantic network of
BabelNet to construct a vector representation for each concept or entity (i.e. synset)
in the sense inventory for which a Wikipage is available: while SensEmbed (Section
2.2.3.2) learns representations for word senses (hence two synonyms get two different
embeddings), Nasari computes a single vector representing a whole Babel synset.
This feature, thanks to the multilingual nature of BabelNet, directly translates into
comparability across languages and linguistic levels (words, senses and concepts).

The Nasari representation of a given synset s is computed on the basis of a
sub-corpus of contextual information relative to s, which is obtained as follows: by
exploiting BabelNet’s inter-resource mappings, Nasari starts from the Wikipage
of s and gathers all Wikipages with an outgoing link to that page, as well as the

13For example, the embedding of the word bloom can be expressed as the sum of the embeddings
of its two WordNet senses bloom1

n and bloom2
n, while the embedding of the synset containing bloom2

n

(11689786n) is given by the sum of the embeddings of its three lexicalizations flower2n, bloom2
n, and

blossom1
n.
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Wikipages of all the synsets connected to s via taxonomic relations in BabelNet. All
content words inside this sub-corpus are then tokenized, lemmatized and weighted
according to the source and type of semantic connections to s; finally the sub-corpus
is turned into a vector using three different techniques that give rise to three different
types of representations:

• A lexical representation, i.e. a vector defined in the space of individual words.
In this lexical space, dimensions are explicitly associated with words, and the
sub-corpus is represented in terms of the relevance of each word inside the text,
estimated using lexical specificity (Lafon, 1980), a statistical measure based on
the hypergeometric distribution;

• An embedded representation, i.e. a sense embedding in a continuous vector
space, obtained from the lexical vector with a two-steps procedure: (1) each
dimension (i.e. word) is mapped to its embedded representation learnt from
a textual corpus using the CBOW architecture; and (2) these word represen-
tations are then combined using a weighted average. The resulting vector is
still defined at the concept level but, being based on the same architecture
as word2vec, loses its interpretability. As a trade-off, however, it lies in
the same semantic space of word embeddings, enabling a direct comparison
between words and synsets;

• A unified representation, i.e. a vector defined in the space of Babel synsets.
This vector is obtained by clustering the word dimensions of the lexical vector
based on whether they have a sense sharing the same hypernym in the BabelNet
taxonomy. Clustering sibling words turns a lexical space into a semantic space
with multilingual Babel synsets as dimensions; not only does this process
provide an implicit disambiguation of ambiguous word dimensions, but it also
makes the obtained unified representation language-independent, and hence
suitable for cross-lingual applications.

The flexibility of Nasari allowed experimental evaluations on different benchmarks
(monolingual and cross-lingual word similarity, sense clustering, WSD), where Nasari
reported consistently state-of-the-art performances (Camacho Collados et al., 2016c).

2.3 Information Extraction
Information Extraction (Grishman, 1997, IE) is a broad area of NLP that deals
with finding and extracting factual information from free text.14 In other words,
an IE system turns unstructured facual information embedded in natural language
text into structured data, i.e. facts. A fact can be described in formal terms as a
structured object capturing a real-world entity and its attributes mentioned in text,
or a real-world event, occurrence, or state, with its argument or actors (e.g. who
did what to whom, where and when). Most of the times we can represent such an

14IE is often confused with the task of Information Retrieval (IR), which is about selecting, from
a collection of textual documents, a subset that is relevant to a particular query. Despite their
analogies, the actual goal of IR is that of ranking or selecting documents, rather than deriving
structured factual information from unstructured text.
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object operatively with one or more triples of the type 〈entity, relation, entity〉. In
light of this, the definition of IE can be rephrased as the identification of instances
of a particular class of relations in a natural language text, and the extraction of
entities that are relevant arguments for that relations (Grishman, 1997).

More concretely, IE can be viewed an effective way to populate the contents of a
relational database, or more generally, of a knowledge resource (Section 2.1). Despite
its conceptual simplicity and its targeted nature, the complexity and ambiguity of
natural language make IE an extremely challenging task. Factual information can be
expressed in multiple equivalent ways, distributed across multiple sentences, or even
left implicit, and hence requiring an enormous amount of background knowledge to
discern. On the other hand, the scope of IE is typically narrower than the scope
of full text understanding (which goes far beyond the strictly factual content of
language utterances): this has enabled robust, efficient and high-coverage NLP
techniques to tackle many IE problems effectively, even with vast amounts of data.

According to Grishman (1997)’s definition of IE, we can identify two fundamental
steps in the pipeline of an IE system: the first step consists in detecting and
classifying the named entities occurring in a given text, i.e. performing Named
Entity Recognition (Nadeau and Sekine, 2007, NER); the second step, instead,
consists in finding and classifying the semantic relations among the entities detected
(e.g. born-in, spouse-of, works-for, etc.), a task known asRelation Extraction.
This latter step represents the actual gist of IE, and outputs a set of relation triples
that can be used to populate a knowledge resource.

What Kinds of Relations?

Since the core of the IE task is about extracting semantic relationships, designing a
set of target relations to be modeled is of primary importance. In fact, in traditional
approaches to IE (Section 2.3.1) an inventory of relations of interest is provided as
input, so that, once entity mentions are given, the relation extraction step can be
modeled as a standard classification task. The variety of relation types modeled
depends strictly on the application scenario: in many domain-specific settings (e.g.
biomedical documents, or airline routes), the relation inventory is relatively limited
and can be hand-crafted by human experts; in a general-purpose IE task, instead,
Wikipedia and Wikipedia-derived knowledge resources (Section 2.1.2) offer a large
supply of relation types, typically drawn from infoboxes. For example, the Wikipedia
infobox for Stanford University includes structured facts like “location =
Stanford, California” and “president = Marc Tessier-Lavigne” that can be
turned into relations like located-in and president-of. Another typical target
is the set of ontological relations from WordNet (Section 2.1.1) or WordNet-like
ontologies. The prototypical relations of this kind are the is-a (hypernymy) relation
and the instance-of relation, both crucially important under an IE objective of
extending an ontology or building it for new languages or domains.

Finally, on the other side of the spectrum are unsupervised approaches (Section
2.3.2), where no relation inventory is provided a priori. In this case the extraction
step is completely open unconstrained, and the set of covered relation types emerges
as a by-product of the extraction process itself.
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2.3.1 Traditional Approaches

Earlier IE approaches, based on a fixed set of relations and entities to extract, were
either based on purely supervised learning with engineered word-level and syntactic
features (Zhao and Grishman, 2005; Mooney and Bunescu, 2006), or weakly su-
pervised multiple-instance learning (Bunescu and Mooney, 2007), where negative
examples are automatically generated from non-annotated entity pairs within a
sentence. At the same time, given the small size of many annotated datasets for IE,
other approaches focused on bootstrapping supervised systems from a high-precision
seed patterns (Ravichandran and Hovy, 2002; Carlson and Schafer, 2008; Kozareva
and Hovy, 2010): these approaches work by extracting sentences containing the tar-
get entity pair, and then generalizing the context around these entities to learn new
relation patterns. Some contributions brought this approach to the extreme, with
self-training methods that automatically generate their own training data (Agichtein
and Gravano, 2000; Etzioni et al., 2005; Rozenfeld and Feldman, 2008; Weld et al.,
2009). One of the major issues with semi-supervised approaches, both bootstrapped
and self-supervised, is semantic drift, which occurs when erroneous patterns are
learnt and lead to erroneous triples which, in turn, generate problematic patterns
where the meaning of the original pattern is substantially altered.

One of the most well-known semi-supervised approaches to IE is undoubtedly
NELL (Carlson et al., 2010), a Web-scale self-supervised learning system which
runs continuously 24 hours a day, presented as a prototype for the “never-ending
learning” paradigm. Nell’s sophisticated architecture comprises a pool of extractors,
simultaneously trained, that harvest candidate beliefs from the Web with a variety
of methods (co-occurrence-based pattern learning, HTML and table mining, etc.).
In order to overcome semantic drifts, Nell exploits other modules, together with
occasional human supervision, that refine the extracted knowledge into confirmed
beliefs, subsequently added to Nell’s internal knowledge base and training dataset.
The whole learning process was bootstrapped with an initial hand-crafted ontology
of categories (e.g. person, sportTeam, fruit) and relations (e.g. playsInstrument,
playsForTeam), and few seed examples for each category and relation.

In recent times the availability of large-scale knowledge resources (Section 2.1)
has enabled IE models to employ a considerably larger amount of examples in
place of a handful of seeds, leading to the development of the distant supervision
paradigm (Mintz et al., 2009; Riedel et al., 2010; Hoffmann et al., 2011): distantly
supervised systems generate a lot of noisy pattern-based features using triples from
(possibly human-contributed) knowledge resources, and then combine all these fea-
tures using supervised classifiers. The way features are extracted in the first place
is similar to that of self-supervised approaches, i.e. based on extracting sentences
where the two entities of a given triple occur at the same time. The fundamental
assumption underlying this strategy is the following (distant supervision assumption):
if two entities participate in a relation, all sentences mentioning these two entities
express that relation. Although it is prone to errors, this assumption has been very
successfully applied to many IE tasks; furthermore, relaxing it leads to sophisticated
approaches based on multi-instance multi-label learning (Surdeanu et al., 2012),
where joint graphical models are required to allow relations overlaps: e.g., both
founded and CEO-of should be valid relations for the pair 〈Steve Jobs, Apple〉.
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Finally, the latest IE approaches either make use of the Statistical Relational
Learning paradigm to couple actual IE with relational inference over knowledge
bases (Wang and Cohen, 2015), or leverage end-to-end deep neural network models
to frame the relation extraction task, including Convolutional Neural Networks (Zeng
et al., 2015), Long Short-Term Memories (Miwa and Bansal, 2016), selective atten-
tion (Lin et al., 2016), and sequence-to-sequence models (Palm et al., 2017).

2.3.2 Open Information Extraction

While some of the self-contained IE approaches described in the previous section can
legitimately be viewed as unsupervised (Etzioni et al., 2005), as they do not require
training data in any form, the Open Information Extraction paradigm (Banko et al.,
2007; Banko and Etzioni, 2008; Wu and Weld, 2010, OIE) is based on a way more
radical approach: not only is it fully unsupervised, but it does not even rely on a
predefined entity or relation inventory at all. In other words, OIE consists in the
open and unconstrained extraction of an unspecified set of relations, which is not
given as input, but rather obtained as a by-product of the extraction process. The
sole input of an OIE system is a large, usually Web-scale, textual corpus.

OIE is typically performed in a single pass over massive amounts of raw text,
with no human input of any kind, in order to extract and formalize a large collection
of relation triples, or relation instances, where pairs of entity mentions are connected
by textual relation phrases (e.g. ‘is a city in’, ‘is married to’). The earliest OIE
approaches, namely TextRunner (Banko et al., 2007), O-crf (Banko and Etzioni,
2008), StatSnowBall (Zhu et al., 2009) and Woe (Wu and Weld, 2010), had two
clear limitations hampering their performances: incoherent extractions (i.e. rela-
tional phrases with no meaningful interpretation, usually due to sequence labeling
errors) and uninformative extractions (i.e. extractions omitting critical information,
mostly due to improper handling of light-verb constructions).15

In response to these limitations, a “second generation” (Etzioni et al., 2011)
of OIE systems focused on substantially improving both precision and recall of
the extraction by imposing a set of generic syntactic and lexical constraints to the
identified relation phrases. One of the most popular OIE approach of this type
is ReVerb (Fader et al., 2011), which implements a general model of verb-based
relation phrase identification based on pre-specified syntactic constraints (targeted
at avoiding incoherent extractions) and lexical constraints which eliminate very long,
rare and over-specified relation phrases by matching them against a dictionary. In
contrast to other traditional IE and OIE pipelines, where entities are extracted first,
the verb-centric strategy of ReVerb starts by identifying valid relation phrases,
and then extracts the argument pairs by finding the nearest noun phrases to the left
and to the right of the relation phrases. To date, ReVerb remains one of the OIE
approaches with the highest coverage, with almost 15 million extractions of 664,746
distinct relation phrases obtained from a filtered run on the ClueWeb09 dataset16.

A great deal of later OIE approaches have adopted more sophisticated solutions
to further improve over ReVerb and capture relations not mediated by verbs:

15For example, 〈Hamas, claimed, responsibility〉 instead of 〈Hamas, claimed responsibility for, the
Gaza attack〉.

16http://lemurproject.org/clueweb09.php

http://lemurproject.org/clueweb09.php
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Ollie (Mausam et al., 2012), based on relation-independent dependency patterns
automatically learnt via bootstrapping, KrakeN (Akbik and Löser, 2012), which
targets higher-order n-ary extractions, ClausIE (Del Corro and Gemulla, 2013), a
clause-based approach that decompose a sentence into basic constituents (clauses)
from which relation triples are derived, ReNoun (Yahya et al., 2014), which comple-
ments ReVerb by focusing on of nominal attributes, and Stanford’s openIE (Angeli
et al., 2015), which approaches OIE as entailment, and exploits linguistic structure
alongside natural logic inference. Recently, some efforts have also been put in making
OIE extractions more compact and precise (Gashteovski et al., 2017).

At the same time, an alternative research thread has looked at the similarities
between OIE and another very popular NLP task, i.e. Semantic Role Labeling
(SRL), proposing OIE approaches capable of exploiting semantic features derived
from SRL (Christensen et al., 2010; Mesquita et al., 2013), or leveraging SRL anno-
tations to construct automatically a large-scale benchmark for OIE (Stanovsky and
Dagan, 2016). Rather than being conceived as a downstream task itself, however,
OIE has also shown to be effective in producing intermediate structured features
for downstream semantics-oriented tasks (Stanovsky et al., 2015), such as word
analogy and word similarity, as well as in harvesting semi-structured knowledge for
applicative tasks like question answering (Khot et al., 2017).

Finally, as in many related areas of NLP, there has been a growing interest in
multilingual and cross-lingual OIE approaches, either based on rules over dependency
parses (Gamallo and Garcia, 2015), cross-lingual projection via Machine Transla-
tion (Faruqui and Kumar, 2015), SRL-derived predicate-argument analysis (Falke
et al., 2016), or even deep sequence-to-sequence models (Zhang et al., 2017).

All these approaches to OIE, despite being effective in their respective settings,
tend to have a common limitation in the fact that they do not address Lexical
Semantics explicitly. As in many areas of NLP, the current tendency is indeed to
model semantic phenomena, such as synonymy or lexical ambiguity, implicitly (cf.
Chapter 1). In this thesis we target precisely this issue: first, we examine some
notable exceptions of sense-aware OIE approaches in Section 3.2; then, in Chapter
5, we study how to redefine IE, and OIE in particular, at the sense level.

2.3.3 Universal Schemas

As examined in the previous sections, both the traditional, or “closed” (Section 2.3.1,
and the open (Section 2.3.2) paradigms of IE have their strenghts and weaknesses.
The former requires a pre-defined, finite and fixed schema of relation types, as well
as training data labelled according to this schema, in order to train one or more
extractors with various degrees of supervision; the latter, instead, gains tremendous
flexibility by using language itself as source of the schema (which, as a consequence,
becomes open and unbounded) but lacks the ability to generalize effectively.

An alternative approach, with the aim of taking the best of both worlds, consists
in using a universal schema, i.e. the union of all involved schemas (surface-form
predicates as in OIE, and relation types from pre-existing databases). By operating
simultaneously on relations observed in text and in pre-existing structured resources,
the Universal Schema approach enables reasoning about unstructured and structured
data in mutually supporting ways. The key underlying idea is focusing on predicting
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source data as opposed to modeling semantic equivalence among relations explicitly,
which is an arguably elusive matter even with clearly specified cases such as the
‘is-a’, or hypernymic, relation (Brachman, 1983).

Universal Schemas have been originally proposed by Riedel et al. (2013), where
they are designed and evaluated as a Knowledge Base Completion approach based
on matrix factorization: the unified, probabilistic knowledge base is represented
with a matrix with entity pairs as rows and relations (both surface-form patterns
and pre-existing relation types from structured resources) as columns. A series of
collaborative filtering models are then exploited to learn lower dimensional manifolds
for tuples, relations and entities, and to capture direct correlations between relations
(usually asymmetric implicatures). In their experimental evaluations, these models
are shown to accurately predict surface-pattern relationships not appearing explicitly
in text, substantially improving results over a traditional classifier-based IE approach.

Despite its success and numerous extensions (Rocktäschel et al., 2015; Verga
et al., 2016), as well as its relationship with some of the objectives targeted in
Chapter 5, this inherently supervised paradigm falls outside of the scope and focus
of the present thesis (cf. Section 1.1). However, from the perspective laid out in
Chapter 7, it surely opens a number of compelling avenues for future work.

2.4 Nomenclature
Throughout this thesis we largely follow the same nomenclature of WordNet and
BabelNet with respect to word senses, synsets, concepts and entities (cf. Sections
2.1.1 and 2.1.3). In particular, we use the term synset to refer to a specific language-
independent meaning encoded as set of synonyms inside a knowledge resource.
Synsets may represents concepts (such as the concept of play as a dramatic work,
from the example of Section 2.1.1, or the concept of dog as a domestic mammal) or
named entities (e.g. Microsoft, World War II, the city of Rome), and are associated
with an open-class part-of-speech tag (noun, verb, adjective, adverb)17 and a unique
identifier. Even though a synset is language-independent, it features one or more
words and multi-word expressions as external, language-specific representations,
which we refer to as lexicalizations. For example, the synset representing the
concept of play as a dramatic work can be expressed with the English lexicalizations
play, drama, dramatic play, with the German lexicalizations Theaterstück, Bühnenstück,
Bühnenwerk, or with the Italian lexicalizations dramma, opera teatrale. As explained
in Section 2.1, lexicalizations are always in a canonical form, i.e. lemma or lexeme.

We refer to the pairing of a lexicalization and its associated meaning as a word
sense or as a named entity mention, depending on whether the latter is a concept
or a named entity, respectively. Thus, the word play associated with the concept of
play as a dramatic work is a word sense, while the word Washington associated with
the U.S. state of Washington is a named entity mention.18 With both word senses
and named entity mentions we use the following notation (Navigli, 2009):

wordn
p the nth meaning of word with part of speech p

17While concepts are not exclusively nominal (e.g. the concept of driving a car, or the concept of
being honest), named entities are only associated with nominal synsets.

18When a lexicalization is a associated with a named entity, we also use the term ‘mention’.
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The two examples above, for instance, could be represented as play1
n and Washington2

n.
As regards the Information Extraction domain, we refer to a relation instance,

or relation triple, as a tuple having the form:

t = 〈as, r, ao〉 (2.3)

with as being the subject argument, ao being the object argument, and r being
the relation pattern, or relation phrase. Depending on the specific scenario, as

and ao can be words or multi-word expressions, word senses/named entity mentions,
or synsets. For example, 〈Seattle, located in, Washington〉 and 〈Seattle1

n, located
in, Washington2

n〉 are both valid relation instances, the former having lexicalized
arguments (words and multi-word expressions) and the latter having sense-level
arguments (word senses and named entity mentions). Given a particular relation
pattern rk, the associated relation r is identified by the set of all relation instances
where r = rk.19 In the above example, the relation pattern ‘located in’ is associated
with the relation located-in, which might cover many other relation triples, such
as 〈Rome, located in, Italy〉, or 〈Melbourne, located in, Australia〉.

Given a relation r, we define the set of all subject arguments of its relation
instances as the domain D of r, i.e. D(r) = {a | a = as ∧ 〈as, r, ao〉 ∈ r}.
Similarly, we define the set of all object arguments of r as the range G of r, i.e.
G(r) = {a | a = ao ∧ 〈as, r, ao〉 ∈ r}. In some cases, the domain and range of a
relation are associated with a type signature, i.e. a semantic class that generalizes
all the element they contain. In the case of the example above, the domain and
range of the relation located-in would have these shapes:

D(located-in) = {Seattle, Rome, Melbourne, . . .}
G(located-in) = {Washington, Italy, Australia, . . .}

Suitable type signatures for the two sets would be, e.g, City and State, respectively.
Finally, we characterize in formal terms a generic knowledge base, or knowl-

edge resource, as a triple KB = 〈E,R, T 〉 where E is a set of entities, R is a set
of relation patterns, and T is a set of relation triples, each defined as in (2.3), where
as, ao ∈ E and r ∈ R. In plain words, E is the set of all distinct subject and object
arguments of all the triples included in the knowledge base (entity inventory),
R is the set of all distinct relation patterns (relation inventory), and T is the
actual content of the knowledge base. From this perspective, if we assume that each
argument pair from E participates in at most one relation instance (i.e. the distant
supervision assumption, cf. Section 2.3.2), the relations encoded in a knowledge base
define a partition of T , i.e. T = r1 ∪ r2 ∪ . . . rn with n = |R|20 and ri ∩ rj = ∅ for all
i and j. Accordingly with the definition of relation instance in (2.3), and depending
on the nature of KB, the entity inventory E might be composed of elements defined
at the lexical level (i.e. words and multi-word expressions), or elements defined at
the sense level (i.e. word senses and named entity mentions).

19In the particular case in which a relation r is identified by multiple paraphrastic relation patterns
(Section 3.2.1) r is defined as the set of all relation instances such that r ∈ Pr, with Pr being a set
of relation patterns associated with r.

20The strict equality holds under the simplifying assumption that each relation r is identified by
a unique relation pattern; if relations are defined as sets of paraphrastic relation patterns (Section
3.2.1), then n < |R|.
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Chapter 3

Related Work

El hecho es que cada escritor crea sus precursores.
Su labor modifica nuestra concepción del pasado,

como ha de modificar el futuro
[The fact is that every author creates his own precursors.

His work modifies our conception of the past,
as it will modify the future.]

Jorge Luis Borges

This chapter is devoted to reviewing in detail some literature work in the areas of
Lexical Semantics and Open Information Extraction that is closely related to the
contributions presented in this thesis. With respect to Chapter 2, where we broadly
introduced the key topics, in the present chapter we narrow our focus on a series of
specific approaches and methodologies that have been used in the past to achieve
analogous or similar objectives to those outlined in Section 1.4. Most of the research
efforts reviewed here constitute a key inspiration for the work presented throughout
Chapters 4 and 5, as well as an important reference baseline for comparison in all
the experimental evaluations therein.

We start by looking, in Section 3.1, at how sense-annotated resources have been
constructed over the years, ranging from high-quality, manually curated corpora
(Section 3.1.1) to semi-automatic (Section 3.1.2) and fully automatic (Section 3.1.3)
methods targeted at scaling up the annotation process with a variety of techniques.
We focus specifically on the latter category, where fully automatic approaches are
examined. In the second part of the chapter, instead, we move to OIE (Section 3.2),
and examine how semantic analysis at the sense level has been carried out in the
published literature on the subject. While a great deal of literature on general OIE
has been covered already in Section 2.3.2, in the present chapter we look closely
at two semantically informed OIE approaches that are very similar in spirit to the
present work, i.e. Patty (Section 3.2.1) and WiSeNet (Section 3.2.2).
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3.1 Constructing Sense-Annotated Corpora

As discussed extensively in Chapter 1, phenomena like the knowledge acquisition
bottleneck make annotating explicit sense-level information across textual data a
very expensive and time-consuming endeavor. In fact, matching lexical items to
suitable word senses and named entity mentions represents very often a tedious
effort for human annotators, which becomes even more vexed when the inventory
of concepts and named entities grows very large (as in large-scale knowledge re-
sources like Wikipedia and BabelNet), or when sense distinctions in the lexicon
are so fine-grained that telling them apart is problematic and, to a certain extent,
subjective. As a result, manually curated corpora with high-quality annotations,
such as SemCor (Miller et al., 1993), have limited size and coverage (Section 3.1.1).

To overcome this issue, several works have attempted to construct larger sense-
annotated datasets by reducing as much as possible human intervention (Section
3.1.2), or by employing fully automatic disambiguation techniques (Section 3.1.3).
Even though these techniques tend to produce noisier annotations, it has been
shown that training on them leads to better supervised or semi-supervised mod-
els (Taghipour and Ng, 2015a; Raganato et al., 2017a).

While examining these works, we distinguish them not only on the basis of the
degree of human supervision (manually curated, semi-automatic, or fully automatic),
but also on the basis of the task they are designed for (WSD, EL, or both) and on
the basis of the sense inventory they adopt (WordNet, Wikipedia, or BabelNet).1

The most prominent sense-annotated corpora covered in this section are sum-
marized in Table 3.1, with some global statistics about the size and coverage of
these corpora, together with their main features (nature of the sense annotations,
reference sense inventory). Table 3.1 shows that sense-annotated resources can
be quite heterogeneous in terms of size (total number of word tokens, and total
number of sense annotations) and coverage (total number of distinct concepts and
named entities with at least one annotation). As expected, hand-crafted resources
tend to be considerably smaller, but their average number of annotations per word
token (annotation density) is not necessarily lower compared to semi-automatically
constructed corpora. In fact, annotation density depends not only on the degree
of human supervision, but also on the nature of the corpus and on the task it is
conceived for. Fully automatic approaches, on the other hand, tend to produce cor-
pora with many more sense annotations, especially when they employ high-coverage
disambiguation systems like Babelfy (Section 2.2.2.3). However, annotation quality
aside, automatically obtained resources tend to cover a smaller number of distinct
concepts or named entities compared to human-designed resources, especially when
the latter are based on definitional knowledge. This is due to the skewed distribution
of many word senses and named entity mentions across natural language texts, and
to the structural biases affecting the majority of disambiguation algorithms.

1There have been additional works to provide sense-annotated data based on other inventories,
such as the New Oxford American Dictionary (Yuan et al., 2016), or language-specific Word-
nets (Agirre et al., 2005; Bentivogli and Pianta, 2005; Henrich et al., 2012a). However, for the sake
of compactness, in the present section we limit our analysis to the subset of most widely used sense
inventories that are considered in Chapters 4 and 5. A comprehensive survey of sense annotated
corpora with language-specific WordNets is provided by Petrolito and Bond (2014).
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Sense Inventory Type # Annotations # Senses # Tokens
SemCor WordNet Manual 226,036 33,362 802,443
SemEval (all) WordNet Manual 7,253 3,669 25,503

Princeton WN Gloss WordNet Semi-automatic 458,825 59,250 1,621,129
OMSTI WordNet Semi-automatic 911,134 33,960 30,441,386

Wikipedia Wikipedia Collaborative 71,457,658 2,891,660 1,357,105,761
Wikilinks Wikipedia Collaborative 40,323,853 2,933,659 N.A.

Babelfied Wikipedia BabelNet Automatic 113,896,864 4,239,879 501,862,251
Babelfied MASC BabelNet Automatic 286,416 23,175 592,472

Table 3.1. Features and global statistics of some sense-annotated corpora treated in this
section, including the reference sense inventory, the total number of sense annotations
(# Annotations), the total number of concepts and named entities covered (# Senses),
and the total number of word tokens (# Tokens). ‘Wikipedia’ (5th row) refers to
the English dump of November 2014, while ‘Semeval (all)’ (2nd row) refers to the
concatenated evaluation dataset from Raganato et al. (2017a).

Wikipedia-derived sense-annotated resources, including Wikipedia itself (cf. Sec-
tion 2.1.2) represent a special case: despite having undergone a radically different
construction process than expert-built resources, they can still technically be con-
sidered manually curated, since sense-level information in Wikipedia, encoded in
hyperlinks, is always provided by a human editor. However, Wikipedia-based an-
notations are not aimed at providing training data for automatic methods; thus,
only a specific subset of concepts and named entities in the large sense inventory of
Wikipedia is actually annotated in text, and, even among those, only a fraction of
the total number of corresponding mentions or lexicalizations are explicitly tagged.
As a result, both annotation density and coverage of the resulting resources are
relatively low, in spite of their larger sizes.

3.1.1 Manually Curated Corpora

3.1.1.1 SemCor

The most prominent example of a manually curated resource is arguably the English
SemCor corpus (Miller et al., 1993), one of the first sense-annotated corpora
produced for English (and, in general for any language). Over many years SemCor
stood as the largest textual resource annotated with word senses, and still constitutes
one of the most widely used reference datasets across the NLP literature for training
supervised disambiguation systems (Raganato et al., 2017a). SemCor has been
part-of-speech tagged and sense-annotated manually at Princeton University by the
WordNet Project research team, in a very early stage of the WordNet project, and
it is currently distributed under the Princeton WordNet license.

SemCor consists of a subset of the Brown Corpus (Francis and Kucera, 1979) with
approximately 800,000 words, out of which 200,000 open-class words (or multi-word
expressions) have been sense-annotated using the WordNet sense inventory. The
corpus is divided into two parts: the first portion (semcor-all) comprises 186 texts
with sense annotations from all open-class parts of speech (noun, verb, adjective,
and adverb), while in the second portion (semcor-verb) only verbal word senses



44 3. Related Work

are annotated. Given that multi-word expressions such as phrasal verbs (e.g. get
up) are also tagged, SemCor’s sense annotations are not always continuous spans of
text. Of course, closed-class words (such as prepositions and determiners) are only
tagged if they are part of a multi-word expression.

The standardized version of SemCor released by Raganato et al. (2017a) comprises
a total of 226,036 sense annotations covering 33,362 WordNet synsets, with an
annotation density of 0.28 annotations per word token (i.e. approximately one token
out of three is sense-tagged). If we consider only the first portion of SemCor, with
sense annotations for all open-class parts of speech, the annotation density increases
to 0.53, which makes SemCor one of the most densely annotated resources available.
However, despite this and the high quality of sense annotations,2 SemCor has several
limitations: first of all, only 16% of the WordNet sense inventory is covered, and
the nature of the source corpus makes SemCor’s sense-level information somewhat
outdated in the context of modern application scenarios.3

3.1.1.2 The Senseval/SemEval datasets

Another well-known example of corpus manually compiled with sense annotations is
given by the training and testing datasets used in the Senseval/Semeval competition
series (cf. Section 2.2.1.1). Most of these datasets are extensively used today as
evaluation benchmarks for WSD systems. Five of them have been standardized and
unified in the framework of Raganato et al. (2017a), including:

• Senseval-2 (Edmonds and Cotton, 2001), the first and largest benchmark
dataset, with 5,766 word tokens and 2,282 sense annotations from WordNet
1.7 for all open-class parts of speech;

• Senseval-3 task 1 (Snyder and Palmer, 2004), similar to the Senseval-2
dataset, although slightly smaller (5,541 word tokens and 1,850 sense annota-
tions). The dataset consists of three documents from three different domains
(editorial, news story, fiction);

• SemEval-07 task 17 (Pradhan et al., 2007), the smallest benchmark dataset,
with 455 sense annotations fromWordNet 2.1 for nouns and verbs only. Because
of this, this is also the most ambiguous dataset (Raganato et al., 2017a);

• The English portion of the SemEval-13 task 12 (Navigli et al., 2013), a
very large dataset comprising thirteen documents from various domains, but
including only nominal word senses from WordNet 3.0;

• The English portion of the SemEval-15 task 13 (Moro and Navigli, 2015),
the most recent WSD dataset available to date, annotated with WordNet 3.0

2Even though the original annotation of SemCor is known to be imperfect –Bentivogli and Pianta
(2005) estimated that around 2.5% of the sense tags are incorrect– SemCor is considered as one
of the sense-annotated corpora with the highest quality, and its sense annotations are generally
considered as gold labels when training supervised models.

3A typical example is the frequency distribution of word senses associated with the word pipe,
where pipe1

n refers to the tobacco pipe and pipe2
n refers to the plastic or metal tubes used to carry

water (which is arguably the most common usage of the word pipe nowadays).
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and comprising 1,022 sense annotations in four documents from three different
domains (biomedical, computing, society).

The concatenation of the above five datasets, used in the empirical comparison of
Raganato et al. (2017a), reaches 25,503 word tokens and 7,253 sense annotations
from WordNet 3.0. Even if it constitutes the smallest sense-annotated corpus we
consider, this concatenation features a very high annotation density (0.28), as all
included datasets have been originally designed as benchmarks for all-words WSD.

3.1.1.3 Other WordNet-annotated corpora

Beyond SemCor and the Senseval/Semeval datasets, a great deal of corpora annotated
with WordNet or WordNet-like inventories have been released over the last two
decades, with varying size and features (Petrolito and Bond, 2014). In this section
we mention two notable examples, both sense-annotated with respect to the English
WordNet, with a prominent role in the NLP literature:

• MASC, Manually Annotated Sub-Corpus (Passonneau et al., 2012; Ide, 2012):
an annotated portion of the American National Corpus, released with multiple
layers of annotations in a common format that others can leverage to include
additional annotations (Ide, 2012). The MASC corpus contains nineteen genres
of spoken and written language data in roughly equal amounts, including social
media material like tweets and blogs. Beside other annotation layers of various
types (token and sentence boundaries, part-of-speech tags and lemma, shallow
parse, logical structure), MASC also includes WordNet sense annotations for
1,000 occurrences of a selected set of 100 words and multi-word expressions.
The sense-annotated data are distributed separately with links to the original
documents in which they appear, without licenses or other restrictions, and
they have been either manually produced or automatically produced and then
fully hand-validated;

• OntoNotes (Hovy et al., 2006): a collaborative effort among various institu-
tions and universities toward the construction of a large semantically annotated
corpus comprising various genres of text (news, conversational speech, weblogs,
broadcasts, talk shows). The corpus is annotated with structural information
(syntax and predicate-argument structure), and also with lexico-semantic in-
formation (word senses and named entity mentions, coreference resolution).
As part of the latter, the authors have annotated the most frequent noun and
verb senses in a 300,000-words subset of the PropBank corpus, using their
multi-stage annotation procedure (Hovy et al., 2006). The released sense an-
notations are based on coarse-grained clusters of the original WordNet synsets
(OntoNotes Sense Groups) and they cover 1.5 million English words.

3.1.1.4 Wikipedia-annotated corpora

As discussed in Section 2.1.2, Wikipedia itself can be viewed as a partially sense-
annotated corpus which specifies its own encyclopedic sense inventory. In this respect,
Wikipedia stands out both in terms of annotation quality (as hyperlinks are first
generated and then validated by human editors). and corpus size (the dump of
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November 2014, as reported in Table 3.1, is more than two orders of magnitude larger
than any WordNet-annotated corpus available). However, given the fundamental
nature and structure of Wikipedia, annotation density is extremely low (0.05), and
almost half of the sense inventory is not covered at all across the corpus. In fact,
exploiting the structure of Wikipedia to turn it into a full-fledged sense-annotated
corpus is one of the main focuses of Chapter 4.

On the other hand, Wikipedia, and portions of Wikipedia (Brümmer et al.,
2016), are not the only Wikipedia-annotated resources available: beside the various
training and testing benchmarks available for Entity Linking and Wikification (cf.
Section 2.2.2), one of the most prominent resources featuring Wikipedia-based sense
annotations is Wikilinks (Singh et al., 2012). The Wikilinks corpus was constructed
by crawling the web and collecting hyperlinks (i.e. named entity mentions) linking
to Wikipages (i.e. concepts and named entities), together with their surrounding
context. With approximately 40 million mentions covering almost 3 million entities,
harvested from over 10 million web pages, Wikilinks can be seen as a large-scale,
naturally-occurring, crowd-sourced dataset where thousands of human annotators
provide gold labels for mentions of interest.

Even though its actual size in terms of number of word tokens is hard to estimate
given its heterogeneous composition, Wikilinks technically qualifies as a manually an-
notated Web-scale corpus, significantly larger than many other Wikipedia-annotated
resources. However, Wikilinks does not address the sparsity and coverage issues of
Wikipedia and, on the contrary, provides textual data with various kinds of noise,
especially due to incoherent contexts (Eshel et al., 2017). While such contextual
noise presents an interesting test case supplementing existing datasets (based instead
on mostly coherent and well-formed text), it also makes it harder for Wikilinks to
be a reliable training set for general-purpose WSD or EL systems, both in terms of
annotation coherence and well-formed underlying textual sources.

3.1.2 Semi-Automatic Approaches

3.1.2.1 The Princeton WordNet Gloss Corpus

The Princeton WordNet Gloss Corpus4 is a sense-annotated corpus of textual
definitions (glosses) drawn from the synsets of WordNet. The corpus contains
1,621,129 word tokens overall and 458,825 sense annotations, out of which 330,499
(72%) were obtained by manually linking to the context-appropriate sense in WordNet,
and the remaining part was automatically disambiguated. Even though composed
solely of textual definitions, the WordNet Gloss Corpus is twice as big as SemCor,
and features approximately the same annotation density. Moreover, thanks to the
nature of definitional text (which is not limited to the most frequently used word
types, as in corpora drawn from real-word written or spoken text), the coverage of
WordNet synset of the WordNet Gloss Corpus is almost doubled compared to other
WordNet-annotated resources, such as SemCor or OMSTI (Section 3.1.2.2).

The WordNet Gloss Corpus, a sense-annotated corpus of definitional knowledge,
has already been proved useful in various NLP tasks, including semantic similar-
ity (Pilehvar et al., 2013), domain labeling (González et al., 2012) and, of course,

4http://wordnet.princeton.edu/glosstag.shtml

http://wordnet.princeton.edu/glosstag.shtml
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knowledge-based WSD, from earlier definition-based algorithms (Lesk, 1986) to more
modern approaches (Baldwin et al., 2008; Agirre and Soroa, 2009; Camacho Collados
et al., 2015b). Motivated by the key role of definitional knowledge in WSD and
Lexical Semantics in general, we also focus on textual definitions in Section 4.3, where
we study a fully automatic algorithm to generate a multilingual sense-annotated
corpus of definitional knowledge, and in Section 5.1, where we design a full-fledged
OIE pipeline targeted at textual definitions.

3.1.2.2 OMSTI

An effective way of automatizing the construction of sense-annotated corpora in-
volves the use of parallel text, as in cross-lingual WSD (Section 2.2.1.1). However,
in order to obtain reliable sense-level information, human supervision is still needed
as, for instance, word alignments might be imperfect and propagate through sub-
sequent stages of the annotation process. This is the case of the One Million
Sense-Tagged Instances corpus (Taghipour and Ng, 2015b, OMSTI),5 a semi-
automatically constructed corpus annotated with WordNet synsets. The authors
employed a well-known alignment-based WSD approach (Ng et al., 2003; Chan
and Ng, 2005) to harvest approximately one million training samples from a large
English-Chinese parallel corpus, MultiUN (Eisele and Chen, 2010, MUN). OMSTI
has been tested experimentally as training set for supervised WSD and, coupled with
SemCor (Section 3.1.1.1), has been widely used after its public release (Taghipour
and Ng, 2015a; Iacobacci et al., 2016; Raganato et al., 2017a).6

Given a parallel corpus already preprocessed (tokenization, word segmentation)
and word-aligned, the semi-automatic annotation procedure carried out in OM-
STI (Chan and Ng, 2005) works as follow: for each synset s in the WordNet sense
inventory associated with an English word we, a hand-crafted list of English-Chinese
translations is used to check every lexicalization of s; if a lexicalization matching
wc (i.e. the Chinese word aligned with we) is found, then we is tagged with sense s.
Even though this procedure can generally be very noisy, the authors have manually
validated a subset of 1,000 randomly selected sense annotations and estimated an
accuracy of 83.7%, which would be reasonably high for fully automatic approaches
such as those presented in Section 3.1.3. This shows that semi-automatic methods
can often provide a middle ground between the two extremes of full and zero human
supervision, at least in terms of annotation quality.

The word types annotated in OMSTI include 649 nouns, 190 verbs, and 219
adjectives selected among the top 60% most frequent word types in the Brown
Corpus. The authors have extracted at most 500 random samples per word sense,
which have been used to construct a training dataset as balanced as possible. Finally,
samples for 28 adverbial word senses have been added from SemCor, together with
sense-annotated samples from the DSO corpus (Ng and Lee, 1996) which, however,
is proprietary material and was not included in the final release.

Overall, OMSTI is the largest WordNet-annotated resource reported in Table
5http://www.comp.nus.edu.sg/~nlp/corpora.html
6Even though the original release of OMSTI features SemCor already included, in the present

chapter we follow Raganato et al. (2017a) and use OMSTI when referring to the portion of
sense-annotated data from MUN only.

http://www.comp.nus.edu.sg/~nlp/corpora.html
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3.1, both in terms of size and number of sense annotations. However, given the
high-precision annotation procedure used to construct it, its annotation density is one
of the lowest (0.03) and the coverage of concepts and named entities is approximately
the same of SemCor, even though OMSTI is almost two orders of magnitude larger.

3.1.3 Fully Automatic Approaches

3.1.3.1 WordNet-annotated corpora

The earliest fully automatic approaches to the construction of WordNet-annotated
corpora were either based on bootstrapping from one-sense-per-discourse and one-
sense-per-collocation heuristics (Yarowsky, 1995), or focused on building rich Web
queries in such a way that the words occurring in the retrieved documents are, with
some probability, associated with the desired sense (Leacock et al., 1998; Mihalcea
and Moldovan, 1999; Agirre and Martínez, 2000). The latter strategy is heavily
based on exploiting monosemous words (i.e. words appearing only in one synset, cf.
Section 2.2) and their connections to the senses of an ambiguous target word via
specific lexico-semantic relations (synonymy, hypernymy, hyponymy), but it can also
be extended via topic signatures (Agirre et al., 2000), or seed examples from manually
sense-annotated corpora (Mihalcea, 2002). Despite the high precision reported by
manual assessments on random samples, larger comparative evaluations (Agirre
and Martínez, 2000, 2004) suggested that sense-annotated examples obtained from
the Web can be affected by topical biases, especially when a new sense of a given
target word is predominant on the web (e.g. mentions like ‘oasis’ and ‘nirvana’
across the Web are mostly referring to music groups not covered by WordNet).
Later approaches have improved by exploiting additional resources, such as the
automatic association of Web directories from the Open Directory Project (ODP)
to WordNet synsets (Santamaría et al., 2003), or the automatic mapping between
WordNet/GermaNet and Wiktionary (Henrich et al., 2012b).

An alternative annotation strategy that has become extremely popular over
the years is instead based on exploiting translation correspondences from parallel
text, and on projecting them using word alignments or other techniques (Ide et al.,
2001; Diab and Resnik, 2002; Ng et al., 2003; Chan and Ng, 2005; Zhong and
Ng, 2009; Lefever et al., 2011; Yao et al., 2012; Bonansinga and Bond, 2016).
All these approaches are based on the underlying intuition that polysemy can be
reduced, at least partially, by looking at the different translations of an ambiguous
English word in other languages. As discussed in Section 2.2.1.1, this experimentally
verified intuition is the fundamental idea behind cross-lingual WSD (Lefever and
Hoste, 2010, 2013), and has demonstrated his effectiveness in producing high-quality
sense-annotated data (Chan and Ng, 2005). In recent times, the development of
flexible knowledge-based WSD models like UKB (Agirre et al., 2014), that can
easily be adapted to languages other than English, has led to the fully automatic
disambiguation of large-scale parallel corpora, such as Europarl (Koehn, 2005), using
off-the-shelf knowledge-based systems (not necessarily based on word alignments)
together with a set of language-specific preprocessing pipelines (Otegi et al., 2016).
Such an approach demonstrates that not only alignment techniques can be useful
for WSD, but also vice versa: multilingual WSD can be exploited to disambiguate
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large-scale training datasets for Machine Translation, thereby encouraging machine
translation approaches explicitly aware of Lexical Semantics (cf. Chapter 1).

However, regardless of the strategy used, automatic sense-annotation methods
have a common issue when dealing with corpora in multiple languages: each language
relies on its own sense inventory (e.g. a language-specific WordNet) while an optimal
cross-lingual disambiguation approach based on parallel text would require a language-
independent annotation framework that goes beyond monolingual WordNet-like
sense inventories (Lefever et al., 2011).

3.1.3.2 Wikipedia-annotated corpora

In the same way an off-the-shelf WSD system can be used to build a WordNet-
annotated corpus automatically, automatic EL approaches (Section 2.2.2) can be
used to construct large-scale corpora annotated with Wikipedia or Wikipedia-derived
resources with no human supervision, not even collaborative (cf. Section 3.1.1).
The most prominent example of this kind is arguably the Freebase annotation
of the ClueWeb Corpora (Gabrilovich et al., 2013, FACC), which comprises
around 800 million web documents from ClueWeb09 and ClueWeb12 with 11 bil-
lion entity mentions automatically disambiguated and linked to the most suitable
Freebase entries. The automatic linking procedure of FACC was optimized for
precision over recall, and left out many low-confidence annotations. On the basis
of manual assessment over a sample of documents, the authors have estimated
FACC’s overall precision to be about 80-85%, with recall in the range of 70-75%.
Similarly to Wikilinks (Singh et al., 2012), another web-scale resource designed
to encode Wikipedia-derived information, FACC is arguably among the largest
semantic resources available, but annotation density is considerably lower, with an
average of approximately 13 sense annotations per document.

The noisy nature of Web-derived textual data, such as those in FACC and
Wikilinks, represents a challenge by itself for EL systems, and has recently inspired
researchers to investigate the task in a setting where only local and noisy context
is available; one of the latest examples is WikilinksNED (Eshel et al., 2017), a
large-scale dataset composed of 3.2 million short text fragments from the Web, which
is significantly noisier and more challenging than similar annotated corpora for EL.
In order to capture the limited and noisy local context surrounding each of the
18,000 mentions inside WikilinksNED, a recurrent neural model was designed and
trained with an ad-hoc method for sampling informative negative examples.

Other approaches have been proposed to automatically harvest named entity
mentions linked to the DBpedia ontology (Lehmann et al., 2014): the Kaist cor-
pus (Hahm et al., 2014), based on an English Wikipedia dump, comprises 6.8 million
sentences and about 157 million word tokens, with more than 98 million mentions
linked to DBpedia; the Europarl-QTLeap WSD/NED corpus (Otegi et al., 2016),
instead, is based on Europarl coupled with the QTLeap corpus (a collection of 4,000
question-answer pairs in the domain of IT troubleshooting), and includes 3.11 million
mentions in six languages linked to DBpedia (but also features NER, WSD, and
coreference information). Both contributions either employ a language-independent
pipeline (Hahm et al., 2014), or an array of language-specific pipelines (Otegi et al.,
2016) to produce large-scale resources annotated with respect to a Wikipedia-derived
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(hence language-independent) sense inventory. Even though they do solve some of
the issues of WordNet-annotated resources (Section 3.1.3.1), these corpora tend to
focus exclusively on named entities and neglect general concepts or non-nominal
senses, especially when sense annotations are harvested with automatic EL methods.

3.1.3.3 BabelNet-annotated corpora

In recent years the development of multilingual knowledge resources like BabelNet
(Section 2.1.3) has marked a clear turning point in the field, introducing compre-
hensive sense inventories suitable for both WSD and EL at the same time (Section
2.2.2.3). As we discussed throughout this section, WordNet-annotated corpora for
WSD have been around for more than two decades (Petrolito and Bond, 2014),
and Wikipedia-annotated corpora for EL have also followed the same path: as a
result, smaller (but “denser”) corpora annotated with word senses are available on
one side, and larger (but “sparser”) corpora annotated with named entity mentions
are available on the other. Although recent automatic approaches (Otegi et al.,
2016) have addressed the issue of building a multilingual sense-annotated corpus
suitable for both WSD and EL, a set of different monolingual sense inventories is
still required to encode word senses and named entity mentions in many languages.

In contrast, BabelNet enables word senses and named entity mentions in multiple
languages to be encoded using a single, unified and language-independent sense
inventory. This great advantage, however, comes with a cost: given the size of such
an encyclopedic inventory, manual or semi-automatic annotation approaches become
prohibitively difficult and time-consuming. This is why, to date, all the research
efforts in building BabelNet-annotated corpora have been fully automatic disambigua-
tion approaches based on knowledge-based WSD/EL systems like Babelfy (Moro
et al., 2014b). One of the earliest attemps of this kind is the disambiguation of
the MASC corpus (Moro et al., 2014a, Babelfied MASC),7 a resource that covers
different genres and domains, encoded in a convenient unified format that favors
the integration of different kinds of semantic annotation (Ide, 2012). The Babelfied
MASC corpus comprises 592,472 word tokens and 286,416 sense annotations, and
features the highest annotation density (0.48) among all the resources in Table 3.1.
However, MASC has a limited size, even compared with earlier WordNet-annotated
corpora like SemCor (Section 3.1.1.1), and the accuracy of its sense annotation is
estimated to be around 70% (Moro et al., 2014a).

In line with this approach, Babelfy has also been used to disambiguate a large
portion of the English and Italian Wikipedias (Scozzafava et al., 2015, Babelfied
Wikipedia)8, both publicly released in NIF and XML format. In this case, the
disambiguation approach took advantage of Wikipedia’s internal hyperlinks, which
were converted into Babel synsets via BabelNet’s inter-resource mappings and used
as gold annotations. Similarly to other Wikipedia-based approaches (Hahm et al.,
2014), this disambiguation procedure can be easily applied to Wikipedias in other lan-
guages, since Babelfy handles all the languages supported by BabelNet. With over
500 million word tokens, the Babelfied Wikipedia is the largest BabelNet-annotated
resource reported in Table 3.1, and its annotation density (0.23) is comparable to

7http://lcl.uniroma1.it/MASC-NEWS
8http://lcl.uniroma1.it/babelfied-wikipedia

http://lcl.uniroma1.it/MASC-NEWS
http://lcl.uniroma1.it/babelfied-wikipedia
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that of WordNet-annotated corpora; the accuracy of its sense annotations, estimated
manually on a sample of 1,000 Wikipages, is similar to the one reported for the
Babelfied MASC corpus: 70.5% for English and 72.3% for Italian.

Finally, a Babelnet-based multilingual disambiguation procedure has also been
tested experimentally in the history domain: within the semantic indexing pipeline of
Raganato et al. (2016a), Babelfy has been adapted to disambiguate a version of the
Bible translated in four different languages, and enable cross-lingual text retrieval
via Babel synsets. Despite the inherent difficulty of the domain, especially for
general-purpose disambiguation systems, Babelfy outperformed the MCS baseline
on a manually-annotated sample of the corpus, with overall precision of 68.8% on the
English version, obtained without any domain-specific tuning or prior translations.

All the approaches described in the present section, with their own advantages
and limitations, show that a knowledge resource like BabelNet is a key requirement
in order to produce large-scale corpora where: 1) word senses and named entity
mentions are annotated simultaneously and linked to a unified sense inventory; 2)
scaling up to multiple languages does not require ad-hoc specializations of the dis-
ambiguation pipeline, or language-specific sense inventories. However, an important
issue that still needs to be fully addressed concerns the quality of sense annotations:
given the size and scope of BabelNet’s sense inventory, obtaining gold (or even
silver) labels is unpractical, if not totally unfeasible. Fully automatic disambiguation
methods, on the other hand, have to cope with their well-known shortcomings and
structural biases (Section 2.2.1) in order to produce high-quality sense annotation
that are expendable within downstream tasks and applications.

3.2 Semantically Informed Open Information Extrac-
tion

As we discussed extensively in Section 2.3, Information Extraction is concerned with
harvesting relations between entities and subsequently encoding them as triples of
the form 〈entity, relation, entity〉 inside a knowledge base. In order to extract
relations without pre-defining them, the OIE paradigm was introduced (Section
2.3.2) and became increasingly popular: over the last two decades, the OIE commu-
nity has witnessed a wide variety of approaches targeted at extracting meaningful
and informative relation patterns in textual forms, constantly improving and over-
coming the shortfalls of earlier models. Some approaches have even investigated
how to exploit deeper semantic features, drawn from Semantic Role Labeling, to
extract relation triples with a more solid semantic structure (Christensen et al., 2010;
Mesquita et al., 2013; Stanovsky and Dagan, 2016). In fact, recent contributions
have looked extensively at the close relationship between OIE and other NLP tasks
traditionally associated with a deeper semantic analysis, such as Question Answering
and Semantic Parsing (Yao et al., 2014; Khot et al., 2017).

Notwithstanding all the efforts in connecting OIE with semantic analysis to im-
prove the extraction process, none of the techniques mentioned above actually focused
on providing a more structured semantic representation of the triples themselves,
which remain still anchored to surface text: both subject and object arguments are
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always represented by noun phrases, while relations are encoded with verb phrases,
either raw or lemmatized. In other words, beside some notable exceptions focused
on learning latent features for such relations (cf. Section 2.3.3), little or no attention
has been paid in making explicit the semantics of the extracted information.

However, taking into account Lexical Semantics is intuitively an important step
towards improving the extraction of high-quality relation triples; two of the most
prominent linguistic phenomena that cause OIE systems to produce redundant
extraction are synonymy and paraphrases. For instance, ReVerb (Fader et al.,
2011), one of the most well-known traditional OIE approaches (cf. Section 2.3.2),
extracts the following two synonymous relation instances:9

〈Natural Language Processing, is a field of, Computer Science〉
〈Natural Language Processing, is an area of, Computer Science〉

In fact, ReVerb enforces purely syntactic constraints on the aspect of a relation
phrase (using hand-crafted part-of-speech-based regular expressions), and lexical
constraints only on the number of different arguments a relation phrase appears with.
In order to reduce this kind of redundancy, relational clustering approaches have been
proposed (Kok and Domingos, 2008; Yates and Etzioni, 2009) to identify synonymous
phrases like those in the example above. While clustering definitely helps in dealing
with paraphrases and synonymy, the issue is only partially solved, as the underlying
assumption of such clustering techniques is that a relation phrases can have only
one meaning, which limits the number of distinct relation phrases associated with a
relation (Yates and Etzioni, 2009). In other words, these approaches fall short in
dealing with another major linguistic phenomenon that affects the extraction process:
lexical ambiguity. Lexical ambiguity can arise both at the level of arguments and
the level of relational phrases. The latter case is the one affecting the example above,
with the ambiguous word field that could either refer to a piece of land (field1

n in
WordNet) or to a specific branch of knowledge (field4

n). A viable way of dealing with
relation phrase ambiguity is that of ontologizing semantic relations (Pennacchiotti
and Pantel, 2006). However, the necessary use of WordNet (Section 2.1.1) to perform
this task makes the ontologization step difficult for many domains, because of
WordNet’s inherent lack of coverage of specialized concepts and named entities.

As for resolving lexically ambiguous arguments, instead, the most suitable
solution would consist in performing WSD or EL on the source prior to extracting
the relation instance. In fact, while a Named Entity Recognition module can easily
get rid of coarse-grained ambiguities, more fine-grained lexical distinctions require a
deeper analysis at the sense level, and are often influenced by the semantics of the
verb heading the relation phrase (that cannot be captured by a NER module). Let
us consider the following example:

〈Washington, is the capital of, the United States〉

In this case, the ambiguous subject argument cannot be resolved by a traditional
NER module: even if correctly labeled as a LOCATION, the mention Washington could
still refer to the state of Washington, or to the U.S. capital. Identifying the latter
as the correct meaning of Washington is a WSD problem that, the example above,

9Example borrowed from Moro and Navigli (2012).
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crucially depends on disambiguating the word capital in the relation phrase with,
e.g., the WordNet sense capital6n (the federal government of the United States).10

In this section we examine in detail two OIE approaches, Patty (Section 3.2.1)
and WiSeNet (Section 3.2.2), that adopted a radically different strategy, i.e. that
of modeling Lexical Semantics explicitly. We refer to this strategy as Semantically
Informed Open Information Extraction.

The first and foremost difference with respect to traditional OIE is that, in these
approaches, the semantics of subject and object arguments is explicitly modeled by
disambiguating their surface-text forms and linking them to knowledge resources
like Wikipedia or Yago. This crucial step enables, on the one hand, to resolve
ambiguous relation patterns (e.g., in the first example above, knowing that Natural
Language Processing is an academic discipline activates the meaning of field that
refers to a branch of knowledge); on the other hand, disambiguated arguments can be
exploited to identify synonymous relation patterns (such as as ‘is a field of’ and ‘is an
area of’) or, in some cases, taxonomize relation patterns by discovering subsumption
relationships between the corresponding domains and ranges (e.g. ‘knows’ subsumes
‘is dating’). All these techniques enable Patty and WiSeNet to extract more
accurate and structured relation triples, and at the same time generalize better than
traditional OIE techniques based only on surface-text analysis.

3.2.1 Patty

Motivated by the goal of extending WordNet’s taxonomic structure to OIE-derived
relation patterns, Patty (Nakashole et al., 2012)11 puts forward a large-scale OIE
approach to systematically harvest relation pattern from Web-scale textual corpora,
and to impose a semantically typed structure on them in order to construct a
WordNet-style subsumption taxonomy of binary relations. Similarly to Nell’s type
signatures (Carlson et al., 2010), which however are pre-specified manually, Patty
aims at extracting typed patterns such as ‘〈SINGER〉 sings 〈SONG〉’, generalizing them
with respect to syntactic variations (e.g. ‘sings [PRP] 〈SONG〉’ in place of ‘sings her
〈SONG〉’ and ‘sings his 〈SONG〉’), and finally discovering pattern subsumptions (e.g.
‘〈SINGER〉 sings 〈SONG〉’ being subsumed by ‘〈MUSICIAN〉 performs on 〈COMPOSITION〉’).

Patty addresses many of the issues pointed out in the previous section. In fact,
while generalizing patterns helps dealing with synonymy and paraphrasing, typing
patterns with semantic signatures is a way of overcoming lexical ambiguity. The
resulting new type of relation patterns, not tied to surface text as in traditional
OIE, is referred to as syntactic-ontological-lexical (SOL) pattern model. An
example of SOL pattern, borrowed from Nakashole et al. (2012), is the following:

〈PERSON〉 ’s [ADJ] voice * 〈SONG〉

This pattern matches can be extracted, for instance, from sentences like:

(a) Amy Winehouse’s soft voice in ‘Rehab’
(b) Elvis Presley’s solid voice in his song ‘All shook up’

10In fact, some recent work one fine-grained NER (Ling and Weld, 2012; Shimaoka et al., 2017)
has shown the positive impact of a more diverse and specific set of entity types, thereby gradually
blurring the boundaries between NER and actual WSD.

11http://www.mpi-inf.mpg.de/yago-naga/patty

http://www.mpi-inf.mpg.de/yago-naga/patty
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In marked contrast with surface-form OIE patterns, the SOL pattern above not only
drops ReVerb’s verb-centric assumption, as both (a) and (b) are noun phrases, but
includes lexical word features (e.g. voice), together with syntactic generalization
based on part-of-speech tags and wildcards (e.g. ADJ or *) and, crucially, ontological
type signatures represented by a pair of entity placeholders, such as 〈PERSON〉×〈SONG〉
in the example above. Nakashole et al. (2012) define the support set of a given SOL
pattern as the set of argument pairs appearing in place of the entity placeholders
in the extracted relation instances. Also, they define a given SOL pattern pa as
syntactically more general than another SOL pattern pb when when every surface-text
phrase that matches pb also matches pa. Similarly, pa is semantically more general
than pb when the support set of pa is a superset of the support set of pb. If this
relationship holds in both ways, i.e. pa is semantically more general than pb but at
the same time pb is semantically more general than pa, then the two SOL patterns
are synonymous and can be grouped together in a pattern synset.

3.2.1.1 Methodology

Patty’s pipeline takes as input a textual corpus and comprises three stages:

1. Pattern Extraction: in order to obtain a first set of surface-text patterns
from the input corpus, Patty performs syntactic dependency parsing (de
Marneffe et al., 2006) on each sentence of the corpus to produce a word-level
dependency graph. At the same time, named entity mentions across the
sentence are detected and linked to the sense inventory of Yago2 (Hoffart
et al., 2011a) using a disambiguation procedure based on a context-similarity
prior (Suchanek et al., 2009). Then, given two disambiguated entity mentions,
the dependency graph of the sentence is traversed to get the shortest path
between them.12 To obtain the final textual pattern, the shortest path is
subsequently expanded with adverbial and adjectival modifiers;

2. Pattern Generalization: the extracted patterns are turned into SOL pat-
terns and generalized syntactically, by replacing less-frequent n-grams with
wildcards and part-of-speech placeholders, and semantically, by generalizing
their semantic types. In order to avoid too abstract and meaningless patterns,
the generalization is stopped when a SOL pattern subsumes multiple patterns
with disjoint support sets. In this phase, the statistical strength of a SOL
pattern is quantified by associating each pattern p with a confidence value,
computed as the ratio of the support-set sizes of p and pt (an untyped variant
of p where type signatures are replaced by the generic Yago type 〈ENTITY〉);

3. Taxonomy Construction: in the third stage, the generated SOL patterns
are arranged in a subsumption taxonomy. Since support sets may contain
noise in terms of spurious or incomplete entity pairs, pattern subsumption
is based on a probabilistic soft set inclusion procedure, where a certain set
can be a subset of another set to a certain degree. Also, instead of comparing

12In order to deal with noisy extraction, a set of syntactic constraints is used to capture only
relations that refer to subject-relation-object triples: for instance, only shortest paths starting with
subject-like dependencies (nsubj, rcmod, partmod) are considered.
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every SOL pattern pairwise and check whether subsumption holds, Nakashole
et al. (2012)’s approach is based on constructing a prefix-tree for frequent
patterns, which is then used to mine subsumptions and semantic equivalences
(i.e. synonymy) across patterns. Finally, the obtained taxonomy is refined
in order to obtain a directed acyclic graph defined over pattern synsets: the
Patty taxonomy.

3.2.1.2 Experimental Evaluation

Patty’s pipeline was evaluated experimentally on two different input corpora: the
New York Times archive (NYT), which includes 1.8 million articles from the years
1987 to 2007, and a June 2011 dump of the English Wikipedia (WKP), featuring
about 3.8 million articles. Entity disambiguation and typing was based on two
underlying sense inventories, Yago2 (Hoffart et al., 2011a) and Freebase (Bollacker
et al., 2008). After being run on both corpora, the Yago2-based extraction pipeline
produced 86,982 SOL patterns from the NYT corpus and 360,562 SOL patterns
from the WKP corpus, while the Freebase-based variant, which relied on Freebase’s
coarse-grained categories as semantic types, produced 809,091 and 1,631,531 SOL
patterns, respectively.

In order to evaluate the quality of the extracted patterns, Nakashole et al. (2012)
employed a manual evaluation based on several human judges, which were shown a
sampled pattern synset, its type signature, a few example relation instances, and
then asked to state whether the pattern synset indicated a valid semantic relation.
This assessment was performed both on the top 100 most confident pattern synsets,
as well as on a random sample with the same size, and showed an average precision
in the range 87%-95% on the top 100 sample, and in the range 71%-85% on the
random sample. These figures demonstrate that dealing explicitly with linguistic
phenomena like synonymy and ambiguity enables the extraction of high-quality
relation instances, which have shown to be useful also for extrinsic tasks like relation
paraphrasing with respect to DBpedia and Yago2 (Nakashole et al., 2012).

On the other hand, most of the downsides of Patty concern the taxonomy
construction step. In fact, the best experimental configuration reported by Nakashole
et al. (2012), i.e. the Yago2-based pipeline run on the WKP corpus, yields a
relatively sparse subsumption taxonomy, composed of 8,162 hypernymy edges with
a manually estimated precision of 75% (on the random sample) and 83% (on the
top 100 sample). Even though many interesting subsumptions were discovered
(e.g. ‘〈PERSON〉 winner of 〈AWARD〉’ being subsumed by ‘〈PERSON〉 was nominated
for 〈AWARD〉’ or ‘〈PERSON〉 ’s wife 〈PERSON〉’ being subsumed by ‘〈PERSON〉 ’s widow
〈PERSON〉’) the reported figures suggest that there is still room for improvement,
especially in terms of coverage. Indeed, a few follow-up contributions have addressed
this issue, and improved over the original subsumption taxonomy of Nakashole
et al. (2012). For instance, Harpy (Grycner and Weikum, 2014) puts forward
a graph-based alignment algorithm which exploits random walks to link Patty’s
relation patterns to verb senses in WordNet, obtaining a larger pattern taxonomy
and, as a by-product, fine-grained lexical types for the arguments of WordNet’s verb
senses. Similarly, the method adopted by Relly (Grycner et al., 2015) builds upon
Patty and leverages collective probabilistic programming techniques to construct
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Figure 3.1. Excerpts of the WiSeNet semantic network before (a) and after (b) the relation
ontologization stage. Figure borrowed from Moro and Navigli (2012).

a high-coverage, high-precision taxonomy of about 20,000 relation patterns with
35,000 hypernymy links, while retaining (or even improving) the manually assessed
accuracy of Patty’s hypernymy edges.

3.2.2 WiSeNet

Among other findings, the experimental evaluation of Patty (Section 3.2.1) has
demonstrated the advantages of using Wikipedia, a large-scale general-purpose
encyclopedic resource, over the noisier news-based data of the New York Times
archive; as observed by Nakashole et al. (2012), some portions of the corpus (e.g.
news about the stock market) do not express actual relational information. However,
despite being a semantically informed approach, Patty is not specifically designed
for Wikipedia, and hence does not take into account the semantic information that
is already available and encoded within the structure of Wikipedia, such as internal
hyperlinks or Wikipedia categories (Section 2.1.2).

In contrast, WiSeNet (Moro and Navigli, 2012, 2013)13 focuses on combin-
ing the advantages of a semi-structured knowledge resource like Wikipedia and
the large-scale harvesting techniques of traditional OIE systems, with the goal
of building a Wikipedia-based semantic network. Similarly to Patty, WiSeNet
explicitly addresses linguistic phenomena like synonymy and polysemy, but instead
of formalizing enhanced relation patterns that are subsequently generalized with
wildcards or coarser semantic types, relies on Wikipedia’s internal hyperlinks to
extract non-ambiguous argument pairs, and on Wikipedia categories to generate
semantic type signatures for its relation patterns. At the same time, WiSeNet is
also able to identify synonymous relation phrases and cluster them into ontologized
relation synsets. Following the line of similar approaches (Nastase and Strube, 2013),
WiSeNet aims at turning Wikipedia into a full-fledged semantic network; however,
instead of considering a pre-specified set of infobox-based semantic relations, OIE
techniques are leveraged to discover these relations automatically. Figure 3.1 exem-
plifies the final output of WiSeNet’s extraction pipeline: not only the semantic
connections among Wikipages, previously defined by unspecified hyperlinks, are
labeled with a suitable relation phrase (Figure 3.1a), but ambiguous relation phrases
are then replaced by ontologized synsets of synonymous phrases (Figure 3.1b).

13http://lcl.uniroma1.it/wisenet

http://lcl.uniroma1.it/wisenet
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3.2.2.1 Methodology

WiSeNet’s pipeline (Moro and Navigli, 2012) is based on two successive stages:

1. Relation Extraction: the objective of this first stage is that of extracting a
set of OIE-style relation instances from the input corpus (an English Wikipedia
dump) such that, for each relation instance, the left and right arguments are
disambiguated entity mentions linked to suitable Wikipages. While the output
of this stage is analogous to that of Patty’s pattern extraction step, the
methodology is substantially different: instead of using a probabilistic WSD
technique, WiSeNet identifies pairs of hyperlinked mentions inside a Wikipage;
then, instead of applying syntactic analysis, the corresponding relation phrase
is obtained by just considering the span of text between the two mentions, if
it comprises at least one verb. The output of this step is a shallow semantic
network, as displayed in Figure 3.1a;

2. Relation Ontologization: this second and final stage, instead, is focused on
ontologizing the extracted relation instances, thereby dealing with synonymy
and polysemy explicitly. This process is carried out in three steps:

• Clustering of synonymous relation phrases, by means of a distributional
method based on defining a measure of semantic similarity between two
given relation phrases % and %′. This method consists in constructing a
vector representation for the left and right arguments of % and %′, and
then computing the harmonic mean between the cosine similarity of the
corresponding left and right vector pairs. This step generates a set of
relation synsets (e.g. {is a field of, is an area of, is studied in}) from the
extracted relation instances, similarly to the pattern synsets in Patty;

• Semantic labeling of relation synsets, based on the identification of a set of
Wikipedia categories describing their arguments. This step is carried out
with a depth-first-search exploration of the Wikipedia category hierarchy
up to a fixed depth, followed by a ranking of such categories based on
the number of visits. This ranking is then used to extend the set of
categories that are originally associated with the Wikipages representing
the left and right arguments of each relation instance. As output of this
step relation synsets are ontologized, i.e. they feature disambiguated
arguments identified by one or more Wikipedia categories;

• Disambiguation of relation instances, the last ontologization step, which
deals with lexically ambiguous relation phrases with an explicit dis-
ambiguation procedure. Given a relation instance t = 〈p1, %, p2〉, this
procedure disambiguates % with the most suitable relation synset R,
(among all relation synsets containing %) by maximizing the intersection
of common Wikipedia categories between t and R. For instance, given the
triple 〈Natural Language Processing, is a field of, Computer Science〉, the
disambiguation procedure should associate ‘is a field of’ with the relation
synset R1 = {is a field of, is an area of, is studied in} instead of the relation
synset R2 = {is a field of, is cultivated with, where grows}, since R1 would
be identified by Wikipedia categories related to academic disciplines.
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Figure 3.2. The syntactic constraint introduced by Moro and Navigli (2013) with two
example dependency trees: one for the artificial phrase ‘x is located in y’ (a), and another
one for the artificial phrase ‘and x located in y’ (b). The latter parse, with x being
connected with a conj dependency to the head verb, is filtered out.

The overall output of this stage is a semantic network of Wikipages intercon-
nected with semantically typed relation synsets (Figure 3.1b).

The extraction process just described (Moro and Navigli, 2012) manages to obtain
semantically informed relation instances with high coverage, but the accuracy of
relation phrases is hampered by two main issues: first of all, since only shallow
syntactic analysis is performed at extraction time, over-specific and noisy phrases
can be retained (e.g. ‘is the name Gulliver gives his nurse in Book II of’ or ‘but then lost
to’); furthermore, measuring the similarity of relation phrases by solely exploiting the
left and right arguments might generate many false positives, as the same arguments
can be related by multiple semantic relations (e.g.‘married to’, ‘is a friend of’, ‘started
a company with’). In order to overcome these issues, an enhanced version of the
WiSeNet pipeline, based on a deeper syntactic and semantic analysis, is proposed
by Moro and Navigli (2013), with the following important improvements:

• At extraction time, a syntactic constraint based on a computationally efficient
test is used to filter out ill-formed relation phrases: given a relation phrase %,
an artificial phrase is constructed by concatenating the symbol ‘x’, % and the
symbol ‘y’; then a dependency parser is applied and, if ‘x’ and ‘y’ are marked
as subject and object, respectively, in the resulting dependency graph, then
% is retained (Figure 3.2). This constraint, in addition to a threshold on the
minimum number of relation instances extracted for each relation phrase, helps
reducing the amount of noisy extractions to a large extent;

• At ontologization time, a sophisticated soft clustering technique, based on a
shortest-path dependency kernel and on a distributed kernel-based K-medoids
algorithm (Zhang and Rudnicky, 2002), is used to synergistically cluster syn-
onymous relation phrases, while at the same time letting polysemous relation
phrases belong to more than one cluster. Crucially, the kernel-based similar-
ity measure introduced by Moro and Navigli (2013) considers three different
aspects of each relation phrase: its dependency structure, the distributional
semantics of its words, and the semantics of its arguments.

3.2.2.2 Experimental Evaluation

Both versions of WiSeNet have been evaluated experimentally using an English
Wikipedia dump of late 2012. The enhanced version (Moro and Navigli, 2013)
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additionally employed the Stanford Parser (de Marneffe et al., 2006) for dependency
parsing, and the Gigaword corpus14 to compute distributional vectors. While the
earlier version extracted as many as 16,344,622 relation instances with 10,863,122
distinct relation phrases, the enhanced pipeline reduced the number of extractions
to 2,271,807 relation instances and 245,935 distinct relation phrases. These figures
suggest that the conservative strategy based on syntactic and frequency constraints
adopted by Moro and Navigli (2013) helps dealing with data sparsity by cutting a
long tail of infrequent and possibly over-specific relation phrases: in fact, its average
number of extractions per relation phrase increases from 1.50 to 9.24.

As regards the accuracy of the extracted information, Moro and Navigli (2013)
carried out a manual assessment based on Amazon Mechanical Turk, in which both
versions of WiSeNet were compared. The pipeline was evaluated at four different
levels, each time with a different sample of 2,000 randomly extracted items:

• Level 1 (relation instances), where human judges were presented with a
relation phrase and with the two Wikipages corresponding to its left and right
arguments, and asked whether the relation instance was correct. At this level,
the enhanced version of WiSeNet reported an accuracy of 91.8%, with an
improvement of 9% with respect to the earlier version;

• Level 2 (relation phrases), in which the judges were presented with a
relation phrase and asked if they could think of a subject and object that
would fit the phrase. Consistently with the previous evaluation, the enhanced
version of WiSeNet achieved 94.5% accuracy on relation phrases, improving
over 14% with respect to the earlier version;

• Level 3 (relation synsets), where the judges were asked to examine two
synonymous relation phrases for each relation synset, and state if they could be
exchanged with each other to express the same semantic relation. In this case
both the enhanced and the original version of WiSeNet achieved comparable
results, with 85% and 82.1% accuracy, respectively;

• Level 4 (disambiguated relation instances), where, similarly to the first
evaluation, the judges were asked to examine individual relation instances.
However, in this case, all the synonymous relation phrases of the disambiguated
relation synset were shown together with the Wikipages associated with the
left and right arguments. In this setting, the accuracy decreased to 88.6% (for
the enhanced version) and 76.7% (for the original version).

Overall, WiSeNet’s experimental results, together with those of Patty. demon-
strate that the choice of modeling Lexical Semantics explicitly is beneficial (especially
in the context of a semi-structured resource), as it boosts large-scale OIE approaches
targeted to general-purpose encyclopedic text, such as Wikipedia, and enables the
extraction of high-quality relation instances from these corpora; being anchored to
an underlying knowledge resource, relation instances can leverage their explicit se-
mantic characterization to overcome many limitations of traditional OIE approaches,
typically caused by linguistic phenomena like synonymy and polysemy.

14https://catalog.ldc.upenn.edu/ldc2011t07

https://catalog.ldc.upenn.edu/ldc2011t07
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Chapter 4

Harvesting Sense Annotations
on a Large Scale

Take care of the sense
and the sounds will take care of themselves.

Lewis Carroll

This chapter tackles the first objective of this thesis, outlined in Section 1.1: that of
developing robust and reliable methods to harvest sense annotations automatically
on a large scale. These methods should be flexible and scalable enough, especially in
terms of number of languages; at the same time, they should be capable of retaining
a high annotation quality, comparable or possibly higher than previous automatic
or even semi-automatic approaches.

As we discussed throughout Section 3.1, a key step towards scalability lies in
using BabelNet (Section 2.1.3) as reference sense inventory. By bringing together
lexicographic and encyclopedic knowledge, BabelNet enables us to annotate both
named entities and concepts using a common reference inventory, which not only
improves the disambiguation process (in particular, it allows us to utilize joint
WSD/EL approaches, as shown in Section 3.1.3.3, without forcing us to treat WSD
and EL as separate annotation tasks), but also results in sense-annotated resources
not dependent on an array of separate, stand-alone inventories. This is especially
critical with multilingual corpora (Bentivogli and Pianta, 2005; Otegi et al., 2016),
where each language relies on its specific monolingual sense inventory. The BabelNet
sense inventory, instead, is inherently multilingual: beside being practical when
utilizing the final resource, this feature can be leveraged at disambiguation time to
enforce cross-language coherence among sense annotations, as we show in Sections 4.2
and 4.3. Furthermore, using BabelNet is also advantageous for flexibility purposes:
in fact, by being a merger of all the most widely-used knowledge resources in the
NLP community, BabelNet provides inter-resource mappings to most individual
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sense inventories that might be used in a specific application scenario. This means
that BabelNet-annotated corpora can be straightforwardly converted into WordNet-
annotated corpora, or Wikipedia-annotated corpora, and vice versa.1

Leveraging BabelNet as reference knowledge resource, however, comes at a cost:
the size of its encyclopedic sense inventory is prohibitively large to rely on human
supervision, not even to a limited extent, as in semi-automatic approaches (Section
3.1.2): hence, fully automatic disambiguation strategies represent the only viable
option. While previous work on automatically constructing BabelNet-annotated
corpora, discussed in Section 3.1.3.3, has demonstrated the effectiveness of exploiting
an off-the-shelf state-of-the-art WSD/EL system to disambiguate on a large scale,
the proposed approaches are still suboptimal, for two main reasons:

1. Even a state-of-the-art disambiguation system like Babelfy (Section 2.2.2.3) is
affected by a structural bias towards the most connected senses inside the under-
lying semantic network, which is typical of knowledge-based approaches (Calvo
and Gelbukh, 2015), and limits the accuracy of its disambiguation output;

2. None of the proposed approaches is designed to fully exploit the structure
and features of the target corpus. For instance, Wikipedia provides a semi-
structured scaffolding with categories and internal hyperlinks, both providing
important semantic information. Parallel corpora, on the other hand, include
useful sentence-level alignments that are neglected when disambiguating each
language separately.

In this chapter we address the two limitations above, both by studying how the
structure of the target corpus (coupled with the features of the BabelNet sense
inventory) can be exploited to improve the disambiguation process, as well as by
investigating fully automatic disambiguation strategies where the structural bias
discussed above can be fully or partially recovered. To this aim, we focus on three
disambiguation scenarios:

• Wikipedia, i.e. the most popular and widely-used semi-structured resource
of encyclopedic knowledge (Section 2.1.2). Beside its central role in many NLP
areas, Wikipedia provides a large-scale general-purpose textual corpus which
covers a wide variety of knowledge domains, while being less noisy compared
to the majority of news-based corpora. As such, Wikipedia has proven to be
a convenient target corpus both for automatic sense-annotation approaches
(Section 3.1.3.3) and for semantically informed OIE systems (Section 3.2).
Wikipedia is hence the target of the approach presented in Section 4.1;

• A large parallel text, i.e. the Europarl corpus (Koehn, 2005). Europarl
is by far the most popular multilingual corpus used for Machine Translation
(MT): in fact, it was originally designed to provide a large sentence-aligned
training benchmark for MT systems. Over the years, it has been used widely
across other NLP areas, including cross-lingual WSD (Lefever and Hoste, 2010,

1Since the BabelNet sense inventory is a superset of, e.g., the WordNet sense inventory, mapping
a set of sense annotations from the former to the latter might of course reduce the number of valid
annotations, as there might be a word sense or named entity mentions not covered by WordNet.
With the reverse procedure, instead, all sense annotations are always retained.
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2013), and also as source of sense annotations (Otegi et al., 2016). Europarl is
our case study for the approach presented in Section 4.2;

• A corpus of definitional knowledge, i.e. the whole set of textual defini-
tions drawn from BabelNet in all the available languages. In fact, definitional
knowledge constitutes not only a convenient target for harvesting sense anno-
tations (as shown in Section 3.1.2.1), but also a fundamental resource for many
sense-level approaches (Baldwin et al., 2008; Pilehvar et al., 2013; Camacho
Collados et al., 2015b). Furthermore, it brings together features of the first
scenario (less noisy text of encyclopedic nature) and of the second scenario
(multilinguality and sentence-level alignments), with the added difficulty of
having shorter sentences, and hence less context for disambiguation (cf. Section
4.3.4.2), which balances the well-formed nature of definitional text. In Section
4.3 we target this corpus using the same approach of Section 4.2 adapted to
definitional knowledge;

In each scenario we adopt a similar methodological approach: we investigate a dis-
ambiguation strategy suitable for the target corpus, and then we apply it to produce
a sense-annotated resource, which is then publicly released to the community.2

For each resource we carry out an extensive experimental evaluation, comprising
both intrinsic experiments (typically based on manual assessment over a random
sample of sense annotations) and extrinsic experiments (where we use our sense
annotations as training or development data for a variety of downstream NLP tasks).
In each specific scenario we compare our sense-annotation strategy, both intrinsically
and extrinsically, with the closest automatic or semi-automatic approaches (some of
which have been treated already in Section 3.1).

4.1 Sew: A Semantically Enriched Wikipedia
As discussed extensively through Chapters 1 and 2, Wikipedia represents an extraor-
dinary source of semantic information for innumerable tasks in NLP. In particular,
the internal hyperlinks spread out across the textual content of over 4 million
Wikipages constitute Wikipedia’s fundamental backbone: on one hand, hyperlinks
work as semantic connections between the entities described by the source and target
Wikipages, framing the whole Wikipedia as a large-scale lexicalized semantic network;
on the other, they also provide several million sense annotations of Wikipedia entities
in context. Both aspects of Wikipedia have been extensively exploited in many NLP
areas (Section 2.1.2) and, in particular, hyperlinks have also played an important
role in the automatic construction of sense-annotated corpora (Section 3.1.3.2) and
in the development of semantically informed OIE approaches (Section 3.2.2).

Unfortunately, if we consider Wikipedia as it is, the sense-level information
available as sense-annotated textual mentions is partial and incomplete, since only a
fraction of “linkable” mentions in Wikipedia are in fact hyperlinked: out of over 580
million noun lemmas across the whole corpus3, those covered by internal hyperlinks
amount to 116 millions (∼19%). Hyperlink sparseness is partly intentional: the

2We detail the structure and format of each released resource in Chapter 6.
3Estimated from the Wikipedia dump of November 2014 (Raganato et al., 2016b).



64 4. Harvesting Sense Annotations on a Large Scale

Wikipedia style guidelines suggest to link each concept at most once within a page,
and only when it is relevant and helpful in the context4. While this is advisable
from the perspective of human readers, as too much hyperlinked text would make
Wikipages less readable, it also prevents a lot of basic concepts and entities to be
modeled within the Wikipedia structure.

Being able to link and disambiguate appropriately every linkable mention across
Wikipedia would be a major step for bridging this gap and turning Wikipedia into a
full-fledged sense-annotated corpus. In the NLP community, this task of automatic
identification and linking of referenced Wikipedia entities across text is commonly
referred to as Wikification, and it has been addressed in various ways (cf. Section
2.2.2). One of the key challenges of Wikification lies in resolving mention ambiguity:
in Section 3.1.3.3, indeed, we examined some approaches based on off-the-shelf
WSD/EL systems with a Wikipedia-based (or BabelNet-based) sense inventory that
have been used to this purpose (Hahm et al., 2014; Scozzafava et al., 2015). However,
these systems are designed for general text and, although enriching Wikipedia can
be seen as the special case of ‘wikifying’ Wikipedia articles, a general-text system
does not take full advantage of the existing Wikipedia structure.

In light of all this, our objective in the present section is that of augmenting
Wikipedia with as much sense-level information as possible, by recovering potentially
linkable mentions to concepts or named entities that are not covered by original
hyperlinks. Although a few previous approaches have addressed this specific task of
detecting and annotating potentially linkable mentions in Wikipedia, mainly using
gamification (West et al., 2015) or classifiers with Wikipedia-specific features (No-
raset et al., 2014), none of these strategies fit our needs: in fact, we aim at a fully
automatic and self-contained approach, without employing human intervention or
overly tuned supervised systems. Also, we aim at covering as many mentions as
possible across the corpus, whereas Noraset et al. (2014) enforce a high-precision
setting, and West et al. (2015) focus only on hyperlinks that increase Wikipedia
navigability.

Instead, in marked contrast with previous approaches, we rely solely on the struc-
ture of Wikipedia itself, with no off-the-shelf disambiguation system. Specifically,
we exploit direct connections among Wikipedia articles and Wikipedia categories
to propagate hyperlink information across the corpus. Importantly, as we stated
at the beginning of the chapter, we use BabelNet as reference sense inventory, and
we leverage the BabelNet semantic network (Section 2.1.3) to connect pages across
Wikipedias in different languages, as well as across different lexicographic and en-
cyclopedic resources. As a result of our hyperlink propagation pipeline, we obtain
a Semantically Enriched Wikipedia, or Sew (Raganato et al., 2016b),5, i.e. a
large-scale Wikipedia-based sense-annotated corpus with more than 200 million
sense annotations of over 4 million different concepts and named entities drawn from
BabelNet. Sew covers almost 40% of the nouns in Wikipedia (compared to less than
20% covered by original hyperlinks) and also includes verbs, adjectives and adverbs.

To the best of our knowledge, Sew constitutes today the largest resource available
comprising word senses and named entity mentions together, annotated using the

4https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style#Links
5http://lcl.uniroma1.it/sew

https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style#Links
http://lcl.uniroma1.it/sew
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unified sense inventory of BabelNet. This makes it a suitable dataset for various
different tasks, e.g. Entity Linking and Semantic Similarity, that usually require
dedicated training sets. Throughout the following sections, we proceed as follows:
we first give the details of our disambiguation strategy and examine every stage
of our hyperlink propagation pipeline (Section 4.1.1); we then look at some global
statistics of the corpus in Section 4.1.2, showing that Sew stands as a prominent
sense-annotated resource not only in terms of size (i.e. number of sense annota-
tions and coverage) but also in terms of scope (i.e. lexicographic and encyclopedic
knowledge from a wide-coverage sense inventory); in our experimental evaluation of
Section 4.1.3, instead, we assess the quality of Sew’s annotations intrinsically (on a
test set of hand-labeled hyperlinks) and extrinsically in two ways:

• Using Sew as a training set for EL with IMS (Zhong and Ng, 2010), an
open-source supervised WSD system, showing that it leads to performances in
line with the state of the art on standard benchmarks (Section 4.1.3.2);

• Leveraging propagated hyperlinks to generate two simple, yet effective, Wikipedia-
based language-independent vector representations that achieve competitive
results on semantic similarity and sense clustering (Section 4.1.3.3).

Finally, we expand the latter experiment with a broader evaluation study on semantic
similarity (Section 4.1.4), where we investigate an embedded augmentation of Sew’s
original vector representations, Sew-Embed (Delli Bovi and Raganato, 2017).

4.1.1 The Hyperlink Propagation Pipeline

Sew’s hyperlink propagation pipeline takes as input a Wikipedia dump and outputs
a sense-annotated corpus, built upon the original textual content of Wikipedia,
where word senses and named entity mentions are linked to the sense inventory
of BabelNet. Some standard preprocessing is applied to the input corpus in the
first place, including tokenization, part-of-speech tagging and lemmatization. At
this preliminary stage we also discard disambiguation pages, ‘List of’ articles and
pages of common surnames,6 as they typically contain few lines of meaningful text
and tend to introduce noise in the propagation process. After preprocessing, we
apply a cascade of hyperlink propagation heuristics to each Wikipage in the input
corpus. Each propagation heuristic, when applied, identifies a list of BabelNet
synsets Sp to be propagated across a given Wikipage p; then, for each synset s ∈ Sp,
occurrences of any lexicalization of s are detected, annotated with s, and added
as new hyperlinks for p.7 All propagation heuristics share a common assumption:
given an ambiguous mention m within a Wikipage p, every occurrence of m across
p refers to the same sense (one-sense-per-page assumption) and hence it can be
annotated using the same synset. This assumption is a Wikipedia-specific version of
the one-sense-per-discourse assumption (Yarowsky, 1995) and, albeit simple, tend

6https://en.wikipedia.org/wiki/Lists_of_most_common_surnames
7Thanks to BabelNet’s inter-resource mappings, each hyperlinked Wikipage can be unambiguously

mapped to the corresponding Babel synset, and vice versa. Thus, in the present section we use the
terms ‘propagated hyperlink’ and ‘sense annotation’ interchangeably.

https://en.wikipedia.org/wiki/Lists_of_most_common_surnames


66 4. Harvesting Sense Annotations on a Large Scale

Symbol Type Scope
Original Hyperlink HL - Wikipedia

Surface Mention Propagation SP Intra-page Wikipedia
Lemmatized Mention Propagation LP Intra-page Wikipedia
Person Mention Propagation PP Intra-page Wikipedia

Wikipedia Inlink Propagation WIL Inter-page Wikipedia
BabelNet Inlink Propagation BIL Inter-page BabelNet
Category Propagation CP Inter-page Wikipedia

Monosemous Content Word MP - BabelNet

Table 4.1. Summary of the hyperlink propagation heuristics used in Sew.

to be surprisingly accurate given the nature and structure of Wikipedia.8
As we apply a heuristic h to a given Wikipage p, we characterize h as being

either intra-page (when it propagates synsets that already occur as hyperlinks within
p itself) or inter-page (when it exploits the connection of p with other Wikipages or
categories). Also, we refer to the scope of h as either Wikipedia (when all synsets
propagated by h identify a specific Wikipedia page) or BabelNet (when h propagates
synsets that may not have an associated Wikipedia page).

After all heuristics have been applied we enforce a conservative policy to remove
overlapping mentions and duplicates (i.e. multiple sense annotations associated with
the exact same fragment of text). We deal with overlaps by penalizing inter-page
annotations in favor of intra-page ones, and by preferring the longest match in case
of overlapping annotations of the same type. Similarly, we deal with duplicates
by preferring intra-page annotations over inter-page ones, consistently with the
one-sense-per-page assumption. Finally, if the mention is still ambiguous, all its
sense annotations are discarded. All the propagation heuristics composing the
pipeline of Sew are summarized in Table 4.1. Most of them are based on methods
that proved to be robust and effective in previous works for a variety of different
purposes: a one-sense-per-page assumption is used by Wu and Giles (2015) to
develop sense-aware Wikipedia-based word representations; Wikipedia categories
have been exploited for propagating semantic relations (Nastase and Strube, 2008),
learning topic hierarchies (Hu et al., 2015) and building taxonomies (Flati et al.,
2014); finally, ingoing links to Wikipedia pages played a key role in the semantic
representations of Nasari (Section 2.2.3.3).

4.1.1.1 Intra-page Propagation Heuristics

Intra-page propagation heuristics collect a list of synsets Sp from the original
hyperlinks occurring in Wikipage p (including the synset associated with p itself)
and then propagate Sp by looking for potential mentions matching any lexicalization
of a synset in Sp. Every mention discovered this way is then added to the list
of propagated hyperlinks for p if part-of-speech tags are consistent. However,

898% of the Wikipedia pages support the one-sense-per-page assumption, according to the
estimation of Wu and Giles (2015).
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as potential mentions may contain punctuation or occur in some inflected form,
propagation is performed as a two-pass procedure: a surface mention propagation
(SP) over the original text of p before preprocessing, and a lemmatized mention
propagation (LP) over tokenized and lemmatized text.9

Moreover, we designed a specific heuristic to propagate person mentions (PP).
This heuristic can be seen as a specialized version of coreference resolution restricted
to person entities: if a synset s ∈ Sp identifies a person according to the BabelNet
entity typing, we allow potential mentions to match lexicalizations of s partially
(i.e. only first name, or only last name). Each partial mention is then validated
by checking its surrounding word tokens against a pre-computed set of first and
last names, drawn from Wikipedia itself,10 and added as sense annotation only if
surrounding tokens do not match any person name. This prevents us from annotating
false positives (e.g. siblings of the person identified by s).

4.1.1.2 Inter-page Propagation Heuristics

Inter-page heuristics exploit the connections of p inside Wikipedia and BabelNet.
Once synsets to be propagated are collected in Sp, we apply the same propagation
procedure described in the previous section for intra-page heuristics. We exploited
three inter-page heuristics:

• The Wikipedia Inlink Propagation (WIL) heuristic collects ingoing links
to p inside Wikipedia, that is other Wikipages where p is mentioned and
hyperlinked, and adds the corresponding BabelNet synsets to Sp;

• The BabelNet Inlink Propagation (BIL) heuristic, similarly to WIL, lever-
ages ingoing links to the synset sp that identifies p in the BabelNet semantic
network. These might include, in particular, hyperlinks inside Wikipedias in
languages other than English, as well as connections of sp drawn from other
resources integrated in BabelNet (cf. Section 2.1.3);

• The Category Propagation (CP) heuristic propagates hyperlinks across
Wikipages that belong to the same Wikipedia categories of p. Intuitively,
Wikipages belonging to the same categories tend to mention the same entities.
This heuristic is based on three successive steps:

1. Given a Wikipedia category c, CP harvests all hyperlinks appearing in
all Wikipages associated with c at least twice, collects them into the set
the set Sc, and then ranks them by frequency count;

2. In order to filter out categories that are too broad or uninformative
(e.g. Living people) CP associates with each category c a probability
distribution over hyperlinks f c, and computes the entropy H(c) of such
distribution as:

H(c) = −
∑

h∈Sc

f c(h) log2 f
c(h) (4.1)

9A common example is the mention m =‘United States of America’: since only shallow prepro-
cessing is applied to the input text (and, in particular, no NER) a lemmatization step would reduce
m to ‘unite state of America’, which is not a valid lexicalization of the corresponding Babel synset.
Similar observations apply for song, book or movie titles.

10https://en.wikipedia.org/wiki/List_of_most_popular_given_names

https://en.wikipedia.org/wiki/List_of_most_popular_given_names
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# Annotations # Senses # Documents Sense Inventory
Wikipedia 71,457,658 2,898,503 4 313,373 Wikipedia
Sew (all) 250,325,257 4,098,049 4 313,373 BabelNet
Sew 206,475,360 4,071,902 4 313,373 BabelNet

WordNet 116,079,163 67,774 4 313,373 WordNet
Wikipedia 162,614,753 4,020,979 4 313,373 Wikipedia

Wikilinks 40,323,863 2,933,659 10,893,248 Wikipedia
FACC1 11,240,817,829 5,114,077 1,104,053,884 Freebase
OMSTI 1,357,922 31,956 62,815 WordNet
MASC 286,416 23,175 392 BabelNet

Table 4.2. Global statistics of Sew in comparison with other sense-annotated corpora.
‘Wikipedia’ (first row) refers to the English dump of November 2014, while ‘Sew (all)’
(second row) refers to the corpus before applying the conservative policy.

where f c(h) is computed as the normalized frequency count of h in Sc.
Ranking categories by their entropy values allows to discriminate between
broader categories, where a large number of less related hyperlinks appear
with relatively small counts (hence higher H), and more specific categories,
where fewer related hyperlinks occur with relatively higher counts (and
lower H);

3. Finally, given a Wikipage p, CP considers each category cp associated
with p where H(cp) is below a predefined threshold ρH ,11 and adds to Sp

all the synsets that identify hyperlinks in Scp .

In the last stage of the pipeline, after both intra-page and inter-page heuristics
have been applied, we additionally exploit a Monosemous Content Word (MP)
heuristic to propagate verb, adjective and adverb senses that are monosemous
according to the sense inventory.

4.1.2 Statistics

The experimental setup described in Raganato et al. (2016b) includes the English
Wikipedia dump of November 2014 as input corpus, and the Stanford CoreNLP
pipeline12 for preprocessing. Table 4.2 reports some global statistics: compared to
the original Wikipedia, Sew achieves 3.5 times the amount of annotations (58.03
average annotations per page against 16.57 of the original Wikipedia) and adds
1,199,546 new concepts and entities not covered by the original hyperlinks. 17.5%
ambiguous annotations are removed by the conservative policy, but the overall
coverage of senses remains almost unchanged. Table 4.2 also includes two reduced
versions of Sew with only Wikipedia (fifth row) or WordNet (fourth row) as sense
inventories, respectively. The bottom rows of Table 4.2 report global statistics
on other sense-tagged corpora mentioned in Section 3.1: Wikilinks (Singh et al.,
2012), FACC1 (Gabrilovich et al., 2013), OMSTI (Taghipour and Ng, 2015b) and

11Raganato et al. (2016b) uses a fixed ρH = 0.5, empirically validated on a small set of held-out
Wikipages, for all the experimental evaluations.

12http://stanfordnlp.github.io/CoreNLP

http://stanfordnlp.github.io/CoreNLP
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Sew (%) Only HL (%)
Nouns 227,326,282 (38.75%) 116,342,382 (19.83%)
Verbs 8,080,280 (6.71%) 1,799,680 (0.82%)
Adjectives 33,402,556 (27.87%) 9,913,634 (8.27%)
Adverbs 17,163,713 (33.95%) 245,468 (0.49%)

Total 285,972,831 (29.26%) 128,301,164 (13.13%)

Table 4.3. Coverage of content words by part of speech.

HL SP LP PP WIL BIL CP MP
Sew (all) 71,457,020 33,780,057 24,510 995 6,735,336 7,237,505 32,713,194 25,650,945 48,240,205
Sew 71,457,020 33,589,710 14,936 540 6,411,877 2,174,818 19,850,111 14,271,461 43,783,185

Table 4.4. Sense annotations by heuristic type. ‘Sew (all)’ (first row) refers to the corpus
before applying the conservative policy.

the sense-tagged MASC corpus (Moro et al., 2014a). Compared to Wikilinks, the
Wikipedia portion of Sew adds 122M annotations and 1,087,320 covered senses.
FACC1 is considerably larger than any other reported corpus and features 1.12G
annotations, which are however drawn from 1.1G documents (with an average
of 10.18 annotations per document) and restricted to named entities in Freebase.
Finally, compared to OMSTI, the WordNet portion of Sew adds over 114M sense
annotations and 35,818 covered senses.

Table 4.3 reports the coverage of Sew at the lemma level. Out of 977,203,946
lemmas in total, Sew annotates 38.75% of the nouns, 6.71% of the verbs, 27.87% of
the adjectives, and 33.95% of the adverbs. In comparison, the original Wikipedia
hyperlinks cover 19.83% of the nouns, 8.27% of the adjectives, and less than 1% of
verbs and adverbs. Overall, Sew achieves almost 30% coverage, improving more
than 16% with respect to the original Wikipedia (13.3%) and extending coverage to
non-nominal content words (verbs, adverbs, adjectives). Finally, Table 4.4 shows the
number of sense annotations by heuristic type. Each heuristic is identified by the
corresponding symbol in Table 4.1. Apart from original hyperlinks (which provide
28.55% of the annotations) and monosemous mentions (19.27%), the SP and BIL
heuristics provide 13.49% and 13.07% of annotations respectively, followed by the
CP heuristic with 10.25%. The annotations discarded after applying the conservative
policy are mostly derived from inter-page heuristics (WIL, BIL, CP), which open
up to a broader context with respect to intra-page ones (being therefore prone to
noisier propagations).

4.1.3 Experimental Evaluation

We evaluated Sew with an intrinsic and an extrinsic evaluation. In the former
(Section 4.1.3.1) we compared Sew’s sense annotations against those discovered
by 3W (Noraset et al., 2014), a Wikipedia-specific classifier designed to add au-
tomatically high-precision hyperlinks to Wikipages; in the latter we used Sew as
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Precision Recall F-score
Sew 0.934 0.468 0.623
Sew w/o SP 0.907 0.409 0.564
Sew w/o LP 0.914 0.456 0.608
Sew w/o PP 0.916 0.457 0.610
Sew w/o WIL 0.917 0.453 0.607
Sew w/o BIL 0.907 0.413 0.567
Sew w/o CP 0.916 0.415 0.571
Sew w/o MP 0.945 0.458 0.617

3W 0.989 0.310 0.471

Table 4.5. Performance on the hand-labeled evaluation set of Noraset et al. (2014).

a training set for Entity Linking (Section 4.1.3.2) and we exploited it to develop
Wikipedia-based language-independent vector representations for semantic similarity
(Section 4.1.3.3), comparing Sew against a baseline given by the original Wikipedia.

4.1.3.1 Intrinsic Evaluation: Annotation Quality

We assessed the quality of Sew’s sense annotations on a hand-labeled evaluation
set of 2,000 randomly selected Wikipages, described by Noraset et al. (2014) and
used for training, validating and testing 3W. We first ran the hyperlink propagation
pipeline on those Wikipages and then, following Noraset et al. (2014), we checked
the 1,530 solvable mentions against the gold standard. Results are reported in Table
4.5 and compared against 3W13. While obtaining a substantially higher recall, Sew
manages to keep precision above 93% and achieves an F-score of 62.3% against
47.1% of 3W. It is also worth noting that gold standard mentions, being labeled
with Wikipages, do not take parts of speech into account and hence include several
adjective mentions (e.g. American, German) labeled as nouns (United States,
Germany) whereas Sew annotates them with the corresponding adjectival senses
(American1

a, German1
a). If we account for these cases, Sew achieves 64.4% F-score,

showing a precision (96.5%) comparable to a supervised system tuned for high
precision, while at the same time granting a much higher coverage, with an average
of 31.3 new annotations per page (Section 4.1.2) against an estimate of 7 added by
3W. It is worth noting that the purpose of this evaluation is not that of overcoming
3W (which could easily be tuned to work at a lower precision and boost its recall, cf.
Figure 1 by Noraset et al. (2014)) but rather that of showing how a self-contained
vanilla approach behaves against a supervised high-precision upper bound.

We used the same gold standard to perform an ablation test on our propagation
heuristics: for each heuristic h, we discarded the hyperlinks propagated by h and then
repeated the experiment. Results (Table 4.5) show that significant contributions
in terms of F-score come from both intra-page propagations (SP, +5.89%) and
inter-page ones (BIL and CP, +5.2% and +5.3% respectively).

13We used the recommended setting of 3W with threshold at 0.934.
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SemEval-2013 SemEval-2015 MSNBC AIDA-CoNLL
IMS+Sew 0.810 0.882 0.789 0.726
IMS+HL 0.775 0.758 0.695 0.712
MFS 0.802 0.857 0.620 0.535

UMCC-DLSI 0.548 - - -
Babelfy 0.874 - - -

DFKI - 0.889 - -
SUDOKU - 0.870 - -

Wikifier - - 0.812 0.724
M&W - - 0.685 0.823

Table 4.6. Results in terms of F-score on various standard benchmarks for WSD and EL.

4.1.3.2 Extrinsic Evaluation #1: Entity Linking

In the first extrinsic experiment we used Sew as Entity Linking training set for It
Makes Sense (Zhong and Ng, 2010, IMS), a supervised system originally designed
for all-words WSD, and based on Support Vector Machines. As a baseline, we
considered IMS with the same features and parameters, but trained only on the
original Wikipedia hyperlinks. Results are shown in Table 4.6 in terms of F-score:
IMS+Sew and IMS+HL represent IMS trained on Sew and its baseline, respectively.
We included for each dataset a Most Frequent Sense (MFS) baseline, as well as
the results reported by other state-of-the-art EL systems in the literature: Babelfy
(Section 2.2.2.3) and the best performing system reported by Navigli et al. (2013)
for SemEval-2013; the two best performing systems reported by Moro and Navigli
(2015) for SemEval-2015; finally, Wikifier (Cheng and Roth, 2013) and Wikipedia
Miner (Milne and Witten, 2008, M&W) for MSNBC and AIDA-CoNLL.

In each dataset, IMS trained on Sew consistently outperforms its baseline version,
suggesting that our propagated hyperlinks lead to more accurate supervised models.
Furthermore, the IMS model trained on Sew outperforms the best and second-best
systems reported in the SemEval 2013 and 2015 tasks respectively, putting IMS (a
WSD model based on local features, that is not even designed for EL) in line with
more recent EL approaches, significantly outperformed only by systems that are
specifically designed to exploit Wikipedia information (Wikifier, M&W).

4.1.3.3 Extrinsic Evaluation #2: Semantic Similarity

Another interesting test-bed for Sew is provided by word similarity, where several
successful approaches make explicit use of Wikipedia, such as Nasari (Section
2.2.3.3). Others, like SensEmbed (Section 2.2.3.2), report state-of-the-art results
when trained on an automatically disambiguated version of Wikipedia. In order to
text experimentally whether Sew constitutes a preferable starting point than the
original Wikipedia, with its increased hyperlink connections (in the former case) and
its increased sense-tagged mentions (in the latter case), we designed two sense-based
explicit vector representations for nominal concepts and entities, built upon Sew:

• A Wikipage-based representation (WB-Sew) where each synset s in the sense
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WB-Sew SB-Sew WB-HL SB-HL
RC LS RC LS RC LS RC LS

WS-Sim r 0.65 0.64 0.50 0.57 0.58 0.58 0.53 0.52
ρ 0.69 0.70 0.56 0.57 0.59 0.61 0.49 0.51

SL-666 r 0.38 0.38 0.26 0.34 0.32 0.32 0.28 0.31
ρ 0.40 0.41 0.33 0.36 0.31 0.32 0.27 0.27

Table 4.7. Results on word similarity in terms of Pearson (r) and Spearman (ρ) correlation.

WB-Sew WB-HL Word2Vec Polyglot
RC LS RC LS original retrofitted

EN r 0.673 0.674 0.619 0.614 - - 0.51
ρ 0.608 0.620 0.592 0.592 0.73 0.77 0.55

FR r 0.808 0.811 0.773 0.778 - - 0.38
ρ 0.755 0.759 0.693 0.681 0.47 0.61 0.35

DE r 0.639 0.639 0.584 0.580 - - 0.18
ρ 0.689 0.695 0.637 0.615 0.53 0.6 0.15

ES r 0.811 0.804 0.757 0.740 - - 0.51
ρ 0.815 0.812 0.764 0.759 - - 0.56

Table 4.8. Pearson (r) and Spearman (ρ) correlation results for multilingual word similarity
on the RG-65 dataset.

inventory is represented by a vector vs where dimensions are Wikipages. We
computed, for each Wikipage p, the corresponding component of vs as the
frequency of s appearing as hyperlink in p;

• A synset-based representation (SB-Sew) where each Wikipage p is represented
by a vector vp where dimensions are Babel synsets. For each synset s, the
corresponding component of vp is computed as the frequency of s appearing
as hyperlink in p.

We estimated frequencies using both raw counts (RC) and lexical specificity (LS), as
in Camacho Collados et al. (2016c), and we considered the two largest word similarity
benchmarks (cf. Section 2.2.3) for testing: the similarity portion of WordSim-353
(WS-Sim) and the noun subset of SimLex-999 (SL-666). In both cases we used
Weighted Overlap (Pilehvar et al., 2013) as similarity measure. Table 4.7 reports the
performance of WB-Sew and SB-Sew in comparison with baseline vectors (WB-HL
and SB-HL) computed using only the original Wikipedia hyperlinks, and shows
a consistent improvement over the baseline in both datasets. On WordSim-353,
in particular, WB-Sew obtains higher correlation figures than those reported by
state-of-the-art approaches like ADW (Pilehvar et al., 2013) (r = 0.63 and ρ = 0.67)
and ESA (Gabrilovich and Markovitch, 2007) (r = 0.40 and ρ = 0.47). On the
other hand, both approaches lag behind the state of the art on the noun portion
of Simlex-999 (Camacho Collados et al., 2016c). Finally, WB-Sew consistently
improves over SB-Sew in both our benchmarks, suggesting that a synset-based
vector space might be affected by mappings errors across BabelNet.
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WB-Sew SB-Sew WB-HL SB-HL
RC LS RC LS RC LS RC LS

500-pair 0.67 0.67 0.71 0.67 0.67 0.65 0.23 0.19
SemEval 0.63 0.64 0.63 0.64 0.56 0.56 0.29 0.24

Table 4.9. F-score results on Wikipedia sense clustering.

Since both WB-Sew and SB-Sew are defined with respect to a multilingual sense
inventory, and hence are inherently language-independent, we also tested our best
performing model (WB-Sew) on multilingual word similarity. As reported in Table
4.8, WB-Sew consistently beats the baseline and shows a considerable improvement
on French, German and Spanish over Word2Vec (Mikolov et al., 2013a), both the
original model14 and the model retrofitted into WordNet (Faruqui et al., 2015), as
well as over the language-specific pre-trained embedding models from the Polyglot
project (Al-Rfou’ et al., 2013). It is worth noting that the availability of training
data is a crucial factor in the evaluation of the data-driven models in Table 4.8:
this is why Word2Vec still manages to keep the lead on English, while WB-Sew
cannot take direct advantage of the increased underlying data.

Finally, we tested WB-Sew and SB-Sew on the Wikipedia sense clustering
task (Dandala et al., 2013), considering both benchmark datasets (500-pair and
SemEval). We followed the same clustering approach proposed by Camacho Colla-
dos et al. (2016c), with empirically validated thresholds of 0.1 (WB-Sew) and 0.5
(SB-Sew). F-score results reported in Table 4.9 are consistent with the experiment
on word similarity (Table 4.7) and show that both vector representations improve
consistently over their baseline counterparts, with F-scores close to the state of the
art reported by Nasari (72% on 500-pair and 64.2% on SemEval).

4.1.4 A Broader Evaluation Study: Sew-Embed

Both WB-Sew and SB-Sew, developed for the second extrinsic evaluation (Section
4.1.3.3), consist of high-dimensional sparse vectors, not immediately comparable
with many existing approaches, especially those based on word embeddings, and less
flexible to use within downstream applications. This is why we broadened the scope
of the experiment by participating in the SemEval 2017 task 2 on multilingual and
cross-lingual word similarity (Camacho Collados et al., 2017), where we studied an
alternative low-dimensional representation based on Sew. Specifically, we considered
WB-Sew, and designed an embedded augmentation of its explicit high-dimensional
vectors, obtained by plugging in an arbitrary word (or sense) embedding model, and
computing a weighted average in the continuous vector space. Regardless of the
particular model used, the resulting vector representation, Sew-Embed (Delli Bovi
and Raganato, 2017), is still defined at the concept level, and hence immediately
expendable in a multilingual or cross-lingual setting. The workflow of our procedure
to generate Sew-Embed is depicted in Figure 4.1 with an illustrative example.

14Following Camacho Collados et al. (2016c), we consider the pre-trained Word2Vec vectors
obtained from the Google News corpus (EN), and from a 1-billion-token sample of Wikipedia (DE
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Figure 4.1. Illustrative example, borrowed from Delli Bovi and Raganato (2017), of
Sew-Embed’s embedded representation (b) for the BabelNet entity Lorenzo de Medici
(bn:00052034n) obtained from the corresponding explicit representation (a).

Methodology In order to compute the embedded augmentation of an explicit
WB-Sew vector vs (Figure 4.1a), we followed Camacho Collados et al. (2016c) and
exploited the compositionality of word embeddings (Mikolov et al., 2013c), i.e. the
fact that the representation of an arbitrary compositional phrase can be expressed
as the combination (typically the average) of its constituents’ representations. In
particular, we considered each dimension p (i.e. Wikipage, cf. Section 4.1.1) of vs

and mapped it to the embedding space E provided by an external pre-trained model
to obtain an embedded vector ep. The way this mapping was carried out depended
on the specific external model utilized:

• In case of a word embedding model we considered the Wikipage title as
lexicalization of p, and then retrieved the associated pre-trained embedding. If
the title is a multi-word expression, and no embedding is available for the whole
expression, we exploited compositionality again and averaged the embedding
vectors of its individual tokens;

• In case of a sense or concept embedding model we instead exploited BabelNet’s
inter-resource mappings, and mapped p to the target sense inventory of E, for
which the corresponding embedding vector could be retrieved.

The embedded representation es of s (Figure 4.1b) was then computed as the
weighted average over all the embedded vectors ep associated with the dimensions of
vs:

es =
∑

p∈vs
ωp ep∑

p∈vs
ωp

(4.2)

where ωp is the lexical specificity weight of dimension p. In contrast to a simple
average, in (4.2) we exploited the ranking of each dimension p (represented by ωp)
and hence gave more importance to the higher weighted dimensions of vs.

Experimental Setup In our experimental setup, i.e. the monolingual and cross-
lingual benchmark of the Semeval 2017 Task 2 (Camacho Collados et al., 2017), we

and FR).
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EN FA DE IT ES
r ρ Mean r ρ Mean r ρ Mean r ρ Mean r ρ Mean

Sew-Embedw2v 0.56 0.58 0.57 0.38 0.40 0.39 0.45 0.45 0.45 0.57 0.57 0.57 0.61 0.62 0.62
Sew-EmbedNasari 0.57 0.61 0.59 0.30 0.40 0.34 0.38 0.45 0.42 0.56 0.62 0.59 0.59 0.64 0.62
WB-Sew 0.61 0.67 0.64 0.51 0.56 0.53 0.51 0.53 0.52 0.63 0.70 0.66 0.60 0.66 0.63
Nasari 0.68 0.68 0.68 0.41 0.40 0.41 0.51 0.51 0.51 0.60 0.59 0.60 0.60 0.60 0.60

Table 4.10. Results on the multilingual word similarity benchmarks (subtask 1) of Semeval
2017 task 2, in terms of Pearson correlation (r), Spearman correlation (ρ), and the
harmonic mean of r and ρ.

considered two versions of Sew-Embed: one based on the pre-trained English word
embeddings of Word2Vec15 used as comparison system in Section 4.1.3.3 (Sew-
Embedw2v), and another one based on the embedded concept vectors of Nasari
(Sew-EmbedNasari). Both versions relied on a back-off similarity value of 0.5 (i.e.
the middle point in the similarity scale) when no candidate sense is found for either
one of the two target words. In both benchmarks we compared Sew-Embed against
the explicit vectors of WB-Sew and by Nasari.16

Evaluation Table 4.10 shows the overall performance on multilingual word simi-
larity for each monolingual dataset. Both Sew-Embedw2v and Sew-EmbedNasari

show correlation figures in the same ballpark as the Nasari baseline for Italian, Farsi,
and Spanish; instead, they lag behind in English and German. Most surprisingly,
however, the explicit representations based on Sew reach the best result overall in 4
out of 5 benchmarks: this might suggest that many word pairs across the test sets
are actually being associated with synsets that are well connected in Sew, and hence
the corresponding sparse vectors are representative enough to provide meaningful
comparisons. In general, the performance decrease on German and Farsi for all
comparison systems is connected to the lack of coverage: both Sew and Sew-Embed
use the back-off strategy 70 times for Farsi (14%) and 54 times (10.8%) for German.

Table 4.11 reports the overall performance on cross-lingual word similarity
for each language pair. All approaches based on Sew seem to perform globally
better in a cross-lingual setting: on average, the harmonic mean of r and ρ is 2.2
points below the Nasari baseline (compared to 3.2 points in Table 4.10). This
suggests the potential of Wikipedia as a bridge to multilinguality: in fact, even
though Sew was constructed automatically on the English Wikipedia, semantic
information transfers rather well via inter-language links and has a considerable
impact on the cross-lingual performance. Again, the best figures are consistently
achieved by WB-Sew: the improvement in terms of harmonic mean of r and ρ is
especially notable in benchmarks that include a less-resourced language such as Farsi
(+11.75% on average compared to the Nasari baseline). This improvement does
not occur with Sew-Embed, since in that case sparse vectors are eventually mapped
to an embedding space trained specifically on an English corpus.

Overall, Sew-Embed reached the 4th and 3rd positions in the global rankings
15https://code.google.com/archive/p/word2vec
16For an extensive comparison including all participating systems in the task, the interested

reader is referred to the task description paper (Camacho Collados et al., 2017).

https://code.google.com/archive/p/word2vec
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DE-ES DE-FA DE-IT EN-DE EN-ES
r ρ Mean r ρ Mean r ρ Mean r ρ Mean r ρ Mean

Sew-Embedw2v 0.52 0.54 0.53 0.42 0.44 0.43 0.52 0.52 0.52 0.50 0.53 0.51 0.59 0.60 0.59
Sew-EmbedNasari 0.47 0.55 0.51 0.35 0.45 0.39 0.47 0.55 0.51 0.46 0.55 0.50 0.59 0.63 0.61
WB-Sew 0.57 0.61 0.59 0.53 0.58 0.56 0.59 0.64 0.61 0.58 0.62 0.60 0.61 0.63 0.61
Nasari 0.55 0.55 0.55 0.46 0.45 0.46 0.56 0.56 0.56 0.60 0.59 0.60 0.64 0.63 0.63

EN-FA EN-IT ES-FA ES-IT IT-FA
r ρ Mean r ρ Mean r ρ Mean r ρ Mean r ρ Mean

Sew-Embedw2v 0.46 0.49 0.48 0.58 0.60 0.59 0.50 0.53 0.52 0.59 0.60 0.60 0.48 0.50 0.49
Sew-EmbedNasari 0.41 0.52 0.46 0.59 0.65 0.62 0.44 0.54 0.48 0.58 0.64 0.61 0.42 0.52 0.47
WB-Sew 0.58 0.63 0.61 0.64 0.71 0.68 0.59 0.65 0.62 0.63 0.70 0.66 0.59 0.65 0.62
Nasari 0.52 0.49 0.51 0.65 0.65 0.65 0.49 0.47 0.48 0.60 0.59 0.60 0.50 0.48 0.49

Table 4.11. Results on the cross-lingual word similarity benchmarks (subtask 2) of Semeval
2017 task 2, in terms of Pearson correlation (r), Spearman correlation (ρ), and the
harmonic mean of r and ρ.

of subtask 1 and 2 respectively (with scores 0.552 and 0.558, not including the
Nasari baseline). Thus, perhaps surprisingly, the embedded augmentation yielded
a considerable decrease in terms of global performance in both subtasks, where
the original explicit representations of WB-Sew achieved a global score of 0.615 in
subtask 1, and a global score of 0.63 in subtask 2.17 Intuitively, multiple factors
might have influenced this negative result:

• Dimensionality reduction: converting an explicit vector (with around 4
million dimensions) into a latent vector of a few hundred dimensions leads
inevitably to losing some valuable information, and hence to a decrease in the
representational power of the model. Such a phenomenon was also shown by
Camacho Collados et al. (2016c), where the lexical and unified representations
of Nasari tend to outperform the embedded representation on several word
similarity and sense clustering benchmarks;

• Lexical ambiguity: while the original concept vectors of Sew are defined
in the unambiguous semantic space of Wikipedia pages, we constructed their
embedded counterparts via the word-level representations of their lexicalized
dimensions; hence, when moving to the word level, Sew-Embed conflates the
different meanings of an ambiguous word or expression;

• Non-compositionality. the compositional properties of word embeddings fall
short in many cases, such as idiomatic expressions or named entity mentions
(e.g. Wall Street, or New York). The explicit vectors of Sew, instead, do
not require the compositional assumption and always consider a multi-word
expression as a whole.

Apart from the points above, multiple other factors (e.g. design choices, hyperpa-
rameters) should be taken into account when dealing with embedded representations,
as they can greatly influence their performances on distributional similarity (Levy

17The global score is computed as the average harmonic mean of Pearson and Spearman correlation
on the best four (subtask 1) and six (subtask 2) individual benchmarks (Camacho Collados et al.,
2017).
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et al., 2015a). Either way, even though the embedded representations of Sew did
not match up to the accuracy of explicit ones on experimental benchmarks, they still
constitute a convenient alternative in terms of compactness and flexibility (thanks to
their reduced dimensionality), and also in terms of comparability, as they are defined
in the same vector space of many popular Word2Vec-based representations.

Final Remarks. From the comprehensive experimental evaluation we carried
out for Sew, two important points emerge: (1) when resources like Wikipedia
are leveraged to harvest sense annotations, the semi-structured knowledge they
already encode, either implicitly or explicitly, is extremely valuable, to the extent
that it can substitute off-the-shelf disambiguation systems when cleverly used; (2)
The availability of large amounts of sense level information can greatly boost both
performance and flexibility, enabling vanilla approaches, like those in Sections 4.1.3.3
and 4.1.4, to compete with more sophisticated state-of-the-art systems. These vanilla
approaches are not meant to overcome full-fledged models, of course, but to show
how using Sew we can set robust performance baselines for multiple tasks and
datasets, from Entity Linking to Word Similarity.

4.2 EuroSense: Sense Annotations from Parallel Text
With the automatic construction and evaluation of a high-quality Wikipedia corpus,
i.e. Sew, Section 4.1 demonstrated how a disambiguation strategy can greatly take
advantage of semi-structured knowledge encoded in the target corpus. However,
despite the popularity and wide use of Wikipedia, such a semi-structured corpus
represent a special, isolated case. In our second disambiguation scenario, we shift to
a different setting: a parallel corpus, i.e. a corpus available in multiple languages,
where the various translations of its textual content are aligned pairwise at the
sentence level (bitext). Although explicit semantic information is in this case absent
from the corpus structure, solely composed of unstructured text, parallel corpora
have a key feature: manually established sentence alignments, by means of which
equivalent language-specific translations are related. This is why, apart from its
prominent role in MT, parallel data have been exploited widely across the NLP
community to, e.g., perform cross-lingual WSD (Lefever and Hoste, 2010, 2013;
Gonen and Goldberg, 2016), develop cross-lingual word embeddings (Hermann and
Blunsom, 2014; Gouws et al., 2015; Coulmance et al., 2015; Vyas and Carpuat, 2016;
Vulić and Korhonen, 2016; Artetxe et al., 2016) and multi-sense embeddings (Ettinger
et al., 2016; Šuster et al., 2016), and also harvest sense annotations (Section 3.1).

Given their extensive use across various NLP areas, parallel corpora exist in
many flavors, covering multiple topics and comprising textual content of different
natures (Tiedemann, 2012; Steinberger et al., 2014; Lison and Tiedemann, 2016). As
stated at the beginning of the present chapter, here we focus on Europarl (Koehn,
2005)18, one of the largest and most popular resources, as well as a reference train-
ing dataset in the area of MT. Extracted from the proceedings of the European
Parliament, the latest release of the Europarl corpus comprises parallel text for 21
European languages, with more than 743 million tokens overall.

18http://opus.lingfil.uu.se/Europarl.php

http://opus.lingfil.uu.se/Europarl.php
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Consistently with the key objective of this chapter, our aim is to augment Eu-
roparl with sense-level information for multiple languages, thereby constructing a
large-scale sense-annotated multilingual corpus that would constitute a valuable
resource for both WSD and MT. However, in marked contrast with previous cross-
lingual disambiguation approaches (cf. Sections 3.1.2.2 and 3.1.3.1), we do not rely
on pre-computed word alignments against a pivot language, as that would require
us to integrate an additional external module into the pipeline, with the consequent
increase of preprocessing errors propagating and affecting the disambiguation pro-
cess (Taghipour and Ng, 2015b). Instead, we consider all available languages at the
same time in a joint disambiguation procedure, that is subsequently refined using
distributional similarity. This disambiguation strategy is substantially different from
that of Section 4.1: in this case we do not have semi-structured semantic information
at our disposal, and a cascade of simple propagation heuristics would no be sufficient
to disambiguate with reasonably high quality. This is why, in this scenario, we
follow previous approaches (Moro et al., 2014a; Scozzafava et al., 2015) and exploit
Babelfy to harvest as many sense annotations as possible. The way we integrate
Babelfy into our disambiguation pipeline, however, differs from previous work in
two important respects:

• We leverage parallel data to implicitly enforce cross-lingual semantic coherence
throughout the disambiguation process (Section 4.2.1). Crucially, this is made
possible by the multilingual sense inventory of BabelNet, where synsets are
lexicalized in multiple languages;

• We design a refinement procedure, based on distributional semantic similarity,
in order to contrast the structural bias of Babelfy towards the MFS (Section
4.2.2). This refinement step increases the accuracy of sense annotations at the
expense of a reduced coverage, since sense annotations that are less semantically
related with the global semantics of a target sentence are discarded;

By applying the disambiguation pipeline described above to the Europarl corpus,
we obtain as a result EuroSense (Delli Bovi et al., 2017),19 a multilingual sense-
annotated corpus with almost 123 million sense annotations of more than 155
thousand distinct concepts and named entities drawn from the multilingual sense
inventory of BabelNet, and covering all the 21 languages of the Europarl corpus.

Our methodological approach is analogous to that of Section 4.1. We first detail
the two stages of EuroSense’s disambiguation pipeline in Sections 4.2.1 and 4.2.2;
as output of the former we obtain a first, high-coverage variant of the corpus, while
the latter generates the final, refined version of EuroSense, more suitable for high
precision applications. Then, in Section 4.2.3, we look at some global statistics
about the corpus, and finally Section 4.2.4 presents its experimental evaluation: as
with the previous disambiguation scenario, in this case we also evaluate EuroSense
intrinsically (with a manual assessment on a randomly extracted sample of sentences)
and extrinsically (as training set for all-words Word Sense Disambiguation).

19http://lcl.uniroma1.it/eurosense

http://lcl.uniroma1.it/eurosense
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Figure 4.2. Illustrative example of EuroSense’s disambiguation strategy on a target set
of aligned sentences.

4.2.1 Stage 1: High-Coverage Joint Multilingual Disambiguation

The objective of this first stage is to obtain an intermediate high-coverage version
of EuroSense, where we harvest as many sense annotations as possible by using
Babelfy on all the available translations of the Europarl corpus. The resulting sense
annotations, which we use as input for the subsequent stage of the disambiguation
pipeline (Section 4.2.2), are also publicly released, together with the final version of
EuroSense:20 in fact, in a number of downstream high-recall applications, such
as general-purpose Open Information Extraction (cf. Section 3.2), covering a large
number of word senses and named entity mentions could be a key requirement.

Gathering Multilingual Text. As a preprocessing step, we part-of-speech tag
and lemmatize each monolingual version of Europarl using TreeTagger (Schmid,
1995)21. At both stages the pipeline, we aim at performing disambiguation at the
sentence level. However, instead of considering each sentence in isolation, language
by language, we first identify all available translations of a given sentence and
then gather these together into a single multilingual text. To this aim, we utilize
Europarl’s sentence-aligned bitexts, relying on English as pivot language: our
incremental procedure considers each bitext and, whenever two sentences of different
languages are associated with the same English translation, they are put together
and aligned. As a result, we reshape the Europarl corpus and turn into a single
multilingual text, where each English sentence is directly aligned to all its available
translations.

20We detail structure and format of all the released data in Section 6.
21Pre-trained TreeTagger models are released for a wide variety of languages, and cover already X

of the 21 languages of Europarl. We instead rely on the internal preprocessing pipeline of Babelfy
for those languages not supported by TreeTagger.
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Joint Disambiguation. We then disambiguate this multilingual text jointy using
Babelfy. Our underlying idea is based on the fact that knowledge-based disam-
biguation systems like Babelfy work better with richer context, even when they
use no supervision: at disambiguation time, Babelfy considers the content words
across the target text in order to construct an associated semantic graph, whose
richness in terms of nodes and edges depends strictly on the number of content words
(cf. Section 2.2.2.3). Thus, given that Babelfy is capable of handling text with
multiple languages at the same time, this multilingual extension effectively increases
the amount of context for each sentence, and directly helps in dealing with highly
ambiguous words in any particular language, as the translations of these words may
be less ambiguous in some different language. Moreover, given the multilingual
nature of our sense inventory, Babelfy’s approach based on semantic coherence
favors naturally sense assignments that are consistent across languages (i.e. those
having fewer distinct senses shared by more translations of the same sentence).22

This process is depicted in the illustrative example of Figure 4.2, where, for instance,
the Babel synset representing the State of the Union address (bn:14473459n) occurs
in the majority of sentences, with different language-specific lexicalizations (state
of the Union, État de’Union, Estado de la Unión). For those languages where a
lexicalization of the State of the Union synset is not available (German and Italian in
the example of Figure 4.2), Babelfy disambiguates only a part of the mention, but
still selects a context-relevant meaning (i.e. ‘Union’ as the association of Northern
American states, rather than the abstract concept of ‘union’ as a generic collection
of entities). This procedure, however, is not perfect, and Babelfy’s structural
bias towards the Most Frequent sense might also affect sense assignments that are
coherent across languages: e.g., in Figure 4.2, the synset of climate intended as the
weather situation (bn:00019780n) is incorrect despite occurring in every sentence.

4.2.2 Stage 2: High-Precision Similarity-Based Refinement

At this stage we aim at improving the sense annotations obtained in the previous
step (Section 4.2.1). In order to get a handle on Babelfy’s MFS bias and improve
disambiguation accuracy we adopt a refinement based on distributional similarity,
which is not affected by the MFS. This refinement allows us to discard low-confidence
sense annotations, and to correct the output of Babelfy in a number of cases. As a
result of this final stage, we obtain the refined high-precision version of EuroSense.

Isolating Low-Confidence Disambiguations. Let D be the set of word senses
and named entity mentions connected to the corresponding Babel synset (disam-
biguated instances henceforth) in a target multilingual sentence. First of all, for each
disambiguated instance d ∈ D we compute a coherence score C(d). The coherence
score of d is given by the number of semantic connections between the synset associ-
ated with d and the synset associated with any other disambiguated instance in D,

22This is due to the fact that each target content word, regardless of the language, is included in
the same graph-based representation of the sentence.
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normalized by the total number of disambiguated instances:

C(d) = |Disambiguated instances connected to d|
|Disambiguated instances| − 1 (4.3)

We set a coherence score threshold to 0.125 (i.e. one semantic connection out of
eight disambiguated instances) using a held-out validation set of manually annotated
sentences, and identify L ⊆ D as the set of disambiguated instances below this
threshold (namely the low-confidence disambiguations).23

Similarity-Based Refinement. In order to refine the disambiguated instances
in L, we exploit the embedded vector representations of Nasari (Section 2.2.3.3),
and associate an additional score (NASARI score) with all those instances in L for
which a Nasari vector can be retrieved.24 First, we calculate the centroid µ of all
the Nasari vectors associated with the disambiguation instances in H = D \ L (i.e.
the high-confidence disambiguations):

µ =
∑

d∈H
~d

|H|
(4.4)

where ~d is the Nasari vector associated with a disambiguated instance d. µ
represents the vector of maximum coherence, as it corresponds to the point in the
vector space which is closer to all synsets associated with H on average. Once we
have µ, we consider each disambiguated instance l ∈ L, retrieve all the candidate
senses of its surface form, and calculate a Nasari score for each candidate sense.
The Nasari score N(s) of a candidate sense s is given by the cosine similarity
between its associated Nasari vector ~s and the centroid µ:

N(s) = cos(~s, µ) (4.5)

As with the coherence score, we empirically set a Nasari score threshold to 0.75 (i.e.
the upper quarter of the similarity scale). Each l ∈ L is then re-disambiguated with
the sense ŝ obtaining the highest N(s), provided that N(s) exceeds the threshold:

ŝ = argmax
s∈Sl

Ns (4.6)

where Sl is the set containing all the candidate senses for l. If no candidate sense
s ∈ Sl achieves a value of N(s) beyond the threshold, we discard l as a whole.

In the example of Figure 4.2, the synset of climate intended as the weather
situation (bn:00019780n), incorrectly selected by Babelfy in the previous stage,
is now replaced with the synset of climate intended metaphorically as mood of a
situation or event (bn:00019781n). At the same time, the synset of place intended
as a physical or geographical location (bn:00019780n) is discarded, as no alternative
sense of place and lugar is found to be close enough to µ.

23L includes also those instances for which Babelfy did not provide a disambiguation. In fact,
Babelfy associates with each disambiguated instance an internal confidence score (Babelfy score):
when this score goes below 0.7, an MFS back-off strategy is activated by default for that instance,
replacing the original output of Babelfy.

24Nasari computes a vector for each Babel synset that includes a Wikipage (cf. Section 2.2.3.3):
hence we can retrieve a Nasari vector with virtually all nominal disambiguated instances in L.
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Total EN FR DE ES

Full

# Annotations 215,877,109 26,455,574 22,214,996 16,888,108 21,486,532
# Lemma Types 567,378 60,853 30,474 66,762 43,892

# Senses 247,706 138,115 65,301 75,008 74,214
Average coherence score 0.19 0.19 0.18 0.18 0.18

Refined

# Annotations 122,963,111 15,441,667 12,955,469 9,165,112 12,193,260
# Lemma Types 453,063 42,947 23,603 50,681 31,980

# Senses 155,904 86,881 49,189 52,425 52,859
Average coherence score 0.29 0.28 0.25 0.28 0.27

Table 4.12. Global statistics on EuroSense before (full) and after refinement (refined)
for all the 21 languages. Language-specific figures are also reported for the 4 languages
of the intrinsic evaluation (Section 4.2.4.1).

4.2.3 Statistics

Table 4.12 reports some global statistics on EuroSense regarding both its high-
coverage (cf. Section 4.2.1) and high-precision (cf. Section 4.2.2) versions. Joint
multilingual disambiguation with Babelfy generated more than 215M sense an-
notations of 247k distinct concepts and entities, while similarity-based refinement
retained almost 123M high-confidence instances (56.96% of the total), covering al-
most 156k distinct concepts and entities. 42.40% of these retained annotations were
corrected or validated using distributional similarity. As expected, the distribution
over parts of speech is skewed towards nominal senses (64.79% before refinement and
81.79% after refinement) followed by verbs (19.26% and 12.22%), adjectives (11.46%
and 5.24%) and adverbs (4.48% and 0.73%). We note that the average coherence
score increases from 0.19 to 0.29 after refinement, suggesting that distributional
similarity tends to favor sense annotations that are also consistent across different
languages. Table 4.12 also includes language-specific statistics on the 4 languages of
the intrinsic evaluation, where the average lexical ambiguity ranges from 1.12 senses
per lemma (German) to 2.26 (English).

Interestingly enough, if we consider all the 21 languages, the total number of
distinct lemmas covered is more than twice the total number of distinct senses: this
is a direct consequence of having a unified, language-independent sense inventory
(BabelNet), a feature that sets EuroSense apart from previous multilingual sense-
annotated corpora (Otegi et al., 2016). Finally we note from the global figures on
the number of covered senses that 109 591 senses (44.2% of the total) are not covered
by the English sense annotations: this suggests that EuroSense relies heavily on
multilinguality in integrating concepts or named entities that are tied to specific
social or cultural aspects of a given language (and hence would be under-represented
in an English-specific sense inventory).

4.2.4 Experimental Evaluation

As in the previous disambiguation scenario (Section 4.1) we assessed the quality of
EuroSense’s sense annotations both intrinsically, by means of a manual evaluation
on four samples of randomly extracted sentences in different languages (Section
4.2.4.1), as well as extrinsically, by augmenting the training set of a supervised
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all-words WSD system (Zhong and Ng, 2010) and showing that it leads to consistent
performance improvements over two standard WSD benchmarks (Section 4.2.4.2).

4.2.4.1 Intrinsic Evaluation: Annotation Quality

We carried out a manual evaluation on 4 different languages (English, French, German
and Spanish) with 2 human annotators per language. We sampled 50 random
sentences across the subset of sentences in EuroSense featuring a translation in
all 4 languages, totaling 200 sentences overall. For each sentence, we evaluated all
sense annotations both before and after the refinement stage, along with the sense
annotations obtained by a baseline that disambiguates each sentence in isolation
with Babelfy. Overall, 5818 sense annotations were manually verified across the
three configurations (1518 in English, 1564 in French, 1093 in German and 1643 in
Spanish). In every language the two judges agreed in more than 85% of the cases,
with an inter-annotator agreement in terms of Cohen’s kappa (Cohen, 1960) above
60% in all evaluations (67.7% on average).

Evaluation Setup. For each sentence in the sample, each annotator was shown
the text of the sentence, together with every sense annotation paired with the
corresponding BabelNet synset. The annotator had to decide independently, for each
sense annotation, whether it was correct (score of 1), or incorrect (score of 0). The
disambiguation source (i.e. whether the annotation came from Babelfy, Nasari,
or the Babelfy baseline) was not shown. In some special cases where a certain
sense annotation was acceptable but a more suitable synset was available, a score of
0.5 was allowed. One recurrent example of these indecisive annotations occurred on
multi-word expressions: being designed as a high-coverage all-word disambiguation
strategy, Babelfy can output disambiguation decisions over overlapping mentions
when confronted with fragments of text having more than one acceptable disam-
biguation. For instance, the multi-word expression ‘Commission of the European
Union’ can be interpreted both as a single mention, referring to the specific sense
European Commission1

n (executive body of the European Union), and as two mentions,
one (Commission) referring to the sense Parliamentary committee1

n (a subordinate
deliberative assembly), and the other (European Union) referring to the the sense
European Union1

n (the international organization of European countries). In all cases
where one part of a certain multi-word expression was tagged with an acceptable
meaning, but a more accurate annotation would have been the one associated with
the whole multi-word expression, we allowed annotators to assign a score of 0.5 to
valid annotations of nested mentions and a score of 1 only to the complete and correct
multi-word annotation. Another controversial example of indecision is connected
to semantic shifts due to Wikipedia redirections, which lead to sense annotations
that are lexically acceptable but wrong from the point of view of semantic roles. For
instance, the term painter inside Wikipedia redirects to the Wikipage Painting,
while the term Basketball player redirects to the Wikipage Basketball. These
redirections are also exploited by Babelfy as acceptable disambiguation decisions25
and, as such, they are also allowed a score of 0.5.

25This policy is very often used in Entity Linking and Wikification (cf. Section 2.2.2).
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EN FR DE ES
Prec. Cov. Prec. Cov. Prec. Cov. Prec. Cov.

Babelfy 76.1 100.0 59.1 100.0 80.4 100.0 67.5 100.0

EuroSense (full) 80.3 100.0 67.9 100.0 84.6 100.0 76.7 100.0
EuroSense (refined) 81.5 75.0 71.8 63.5 89.3 53.8 82.5 62.9

Table 4.13. Precision (Prec.) and coverage (Cov.) percentage (%) of EuroSense,
manually evaluated on a random sample in 4 languages. Precision is averaged between
the two judges, and coverage is computed assuming each content word in the sense
inventory to be a valid disambiguation target.

SemEval-2013 SemEval-2015
IMSSemCor 65.3 69.3
IMSOMSTI 65.0 69.1
IMSEuroSense 66.4 69.5
UKB 62.9 63.3
Babelfy 66.4 70.3

SOTA 67.3 71.9
MFS 63.0 67.8

Table 4.14. Results in terms of F-score on all-words WSD.

Table 4.13 shows that joint multilingual disambiguation improves precision
consistently over the baseline, from an increase of 4.2% in English to 9.2% in Spanish.
Even if the nature of source text (i.e parliamentary proceedings) played a significant
role, this strategy proved effective in improving the disambiguation performance
of Babelfy compared to previously reported results (cf. Section 3.1.3.3). The
similarity-based refinement boosts precision even further (with a 3.9% average
increase), at the expense of a reduced coverage, which drops by 36.2% on average.26
Over the 4 languages, sense annotations appear to be most reliable for German,
consistently with its lower lexical ambiguity on the corpus (cf. Section 4.2.3).

4.2.4.2 Extrinsic Evaluation: Word Sense Disambiguation

We carried out an extrinsic evaluation of EuroSense by mapping its refined sense
annotations for English to WordNet, and using them as a training set for the same
supervised WSD system used in Section 4.1.3.2: It Makes Sense (Zhong and Ng,
2010, IMS). Following Taghipour and Ng (2015b), we started with SemCor (Section
3.1.1.1) as initial training dataset, and then performed a subsampling of EuroSense
up to 500 additional training examples per word sense. Crucially, instead of sampling
randomly as in Taghipour and Ng (2015b), we sorted sense annotations by decreasing
coherence score, and considered the top occurrences of each word sense. We then

26Both Babelfy and the baseline always attempt an answer for every possible disambiguation
target, hence they achieve maximum coverage in each configuration. Note that in Table 4.13 we
consider coverage (i.e. number of content words covered) in place of recall, since the number of
‘correct’ answers is not clearly defined in many cases, e.g. with overlapping mentions (as discussed
in Section 4.2.4.1).
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trained IMS on this augmented training set and tested on the two most recent
standard benchmarks for all-words WSD: SemEval-2013 and SemEval-2015, from the
standardized framework of Raganato et al. (2017a). As baselines we considered IMS
trained on SemCor only and on OMSTI (Section 3.1.2.2). As shown in Table 4.14,
where we also include two knowledge-based systems, Babelfy and UKB (Agirre
et al., 2014), the MFS baseline, and the current state of the art (SOTA) on both
datasets (Raganato et al., 2017a), IMS trained on the EuroSense-augmented
training set consistently outperforms all baseline models, showing competitive results
even against IMS trained on semi-automatic sense annotations (Taghipour and Ng,
2015b). Even though the F-score increase is not statistically significant in these
specific benchmarks, it demonstrates that our fully automatic method can perform
on par with semi-automatic approaches in extracting high-quality sense annotations.

Final Remarks. Our experimental evaluation shows, once again, that exploiting at
best the features of the target text is crucial to achieve high-quality disambiguation in
a fully automatic fashion. Specifically, with EuroSense we explored the effectiveness
of multilinguality in the disambiguation process: instead of relying on external
translations or pre-computed alignments, however, we let semantic coherence across
languages emerge naturally at disambiguation time, thanks to the flexibility of a
language-independent sense inventory and its multilingual lexicalizations. In contrast
to the disambiguation pipeline of Section 4.1, building EuroSense required using
two external tools, Babelfy and Nasari, and a structured pipeline to cope with
their respective shortcomings. The proved benefits of this solution are: (1) the
release of two different versions of EuroSense, complementary with respect to the
downstream applications they are most suitable for; (2) the fact that each sense
annotations is associated with multiple confidence scores (Section 4.2.2) enabling to
further tune EuroSense for a specific task, application, or use.

4.3 SenseDefs: A Multilingual Disambiguation of Tex-
tual Definitions

In this third and final disambiguation scenario our target is definitional text. We
focus on a large definitional corpus that shares some features with the Wikipedia
corpus of Section 4.1 (i.e. the encyclopedic nature), as well as some features with
the parallel corpus of Section 4.2 (i.e. equivalent sentences in multiple languages),
with, however, an important difference: the short and concise nature of definitions.

Why Definitions? In addition to lexicography, where their use is of paramount
importance, textual definitions (or glosses) drawn from dictionaries or encyclopedias
have been widely used in various NLP tasks and applications. Definitional knowl-
edge is effective inasmuch as it conveys the crucial semantic information and the
distinguishing features of a given subject (definiendum): this means that, on the one
hand, a definition often provides a fair amount of discriminative power that can be
leveraged to automatically represent and disambiguate the definiendum; on the other,
definitions are usually concise and encode “dense”, virtually noise-free information
that can be best exploited with knowledge acquisition techniques. To date, some of
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the areas where the use of definitional knowledge has proved to be key in achieving
state-of-the-art results are Word Sense Disambiguation (Lesk, 1986; Banerjee and
Pedersen, 2003; Navigli and Velardi, 2005; Agirre and Soroa, 2009; Faralli and Navigli,
2012; Fernandez-Ordonez et al., 2012; Chen et al., 2014; Basile et al., 2014; Camacho
Collados et al., 2015b), Taxonomy and Ontology Learning (Velardi et al., 2013;
Flati et al., 2016; Espinosa Anke et al., 2016c), Information Extraction (Richardson
et al., 1998; Delli Bovi et al., 2015b), Plagiarism Detection (Franco-Salvador et al.,
2016), and Question Answering (Hill et al., 2016). In fact, textual definitions are
today widely available in knowledge resources of various kinds, ranging from lexicons
and dictionaries, such as WordNet (Section 2.1.1) or Wiktionary, to encyclopedic
Wikipedia-derived knowledge bases (Section 2.1.2). Interestingly enough, sources
of definitional knowledge also include Wikipedia: despite its purely encyclopedic
nature, and although the format of a Wikipedia article does not include an explicit
gloss or definition, the first sentence of each article is generally regarded as the
definition of its subject.

Related Work. Disambiguating definitions has attracted a considerable amount
of interest over the years. Among others, WordNet has definitely been the most
popular and the most exploited target resource in this respect, as WordNet glosses
have still been used successfully in recent work (Khan et al., 2013; Chen et al., 2015).
A first attempt to disambiguate WordNet glosses automatically was proposed as
part of the eXtended WordNet project (Novischi, 2002).27 However, this attempt’s
estimated coverage did not reach 6% of the total number of sense-annotated instances.
Moldovan and Novischi (2004) proposed an alternative disambiguation approach,
specifically targeted at the WordNet sense inventory and based on a supervised
model trained on SemCor (Section 3.1.1.1); another disambiguation task focused
on WordNet glosses was presented as part of the Senseval-3 workshop (Litkowski,
2004). However, the best reported system obtained precision and recall figures
below 70%, which is arguably not enough to provide high-quality sense-annotated
data for current state-of-the-art NLP systems. In addition to annotation reliability,
another issue that arises when producing a corpus of textual definitions is coverage.
In fact, reliable corpora of sense-annotated definitions produced to date, such as
the Princeton WordNet Gloss Corpus (Section 3.1.2.1), have usually been obtained
employing human annotators and, we discussed extensively in previous sections,
human supervision is increasingly expensive and time-consuming as the size of the
sense inventory grows larger. Furthermore, new encyclopedic knowledge about the
world is constantly being harvested, and WordNet’s definitions fail to capture many
up-to-date concepts and entities. With a view to tackling this problem, a great
deal of research has recently focused on the automatic extraction of definitions from
unstructured text (Navigli and Velardi, 2010; Benedictis et al., 2013; Espinosa Anke
and Saggion, 2014; Espinosa Anke et al., 2015; Dalvi et al., 2015); as a consequence,
disambiguating definitional text has to be framed necessarily as a large-scale task.

Motivation. Irrespective of the nature of the knowledge source, an accurate
semantic analysis of textual definitions is made difficult by the short and concise

27http://www.hlt.utdallas.edu/~xwn

http://www.hlt.utdallas.edu/~xwn
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nature of definitional text, a crucial issue for automatic disambiguation systems that
rely heavily on local context. Furthermore, the majority of approaches making use
of definitions are restricted to corpora where each concept or entity is associated
with a single definition; instead, definitions coming from different resources are often
complementary and might give different perspectives on the definiendum. Moreover,
equivalent definitions of the same concept or entity may vary substantially according
to the language, and be more precise or self-explanatory in some languages than
others. In fact, the way a certain concept or entity is defined in a given language
is sometimes strictly connected to the social, cultural and historical background
associated with that language, a phenomenon that also affects the lexical ambiguity
of the definition itself. This difference in the degree of ambiguity when moving across
languages is especially valuable in the context of disambiguation, as we demonstrated
in the previous disambiguation scenario (Section 4.2).

In light of this, in the present section we adapt the disambiguation pipeline
designed for EuroSense to a definitional setting. The underlying disambiguation
idea is, indeed, almost the same: bringing together definitions drawn from different
resources and different languages, and exploiting their cross-lingual and cross-resource
complementarities at disambiguation time. As in the case of EuroSense, a large-
scale high-quality disambiguation requires us to use off-the-shelf techniques which, for
flexibility and scalability purposes, are based on a single multilingual disambiguation
model. In fact, while language- and resource-specific techniques can certainly be
used for disambiguation, the number of models required would add up to the order
of hundreds, without even considering the need for large amounts of sense-annotated
data for each language and resource. Therefore, we first gather a target corpus of
textual definitions in multiple languages from BabelNet (section 4.3.1); then we
apply the two-stage disambiguation pipeline described in Sections 4.2.1 and 4.2.2
to each group of definitions referring to the same definiendum (Section 4.3.2). As
a result we obtain SenseDefs (Camacho Collados et al., 2016a)28 a multilingual
corpus of textual definitions featuring over 38 million definitions in 263 languages,
with almost 250 million sense annotations for both concepts and named entities
drawn from the BabelNet sense inventory. Following the same methodology of
Sections 4.1 and 4.2, we examine some global statistics about the corpus in Section
4.3.3, and then we carry out an experimental evaluation in Section 4.3.4, including
both intrinsic and extrinsic experiments.

4.3.1 Gathering Definitional Knowledge across Resources and Lan-
guages

We construct a target corpus of definitional knowledge by collecting all textual
definitions associated with every concept or named entity inside BabelNet, for all
the languages available. Being a merger of various different knowledge resources (cf.
Section 2.1.3), BabelNet provides a very heterogeneous set of definitions. Specifically,
the definitional knowledge inside BabelNet comes from the following sources:

• WordNet: being hand-crafted by expert annotators, definitional knowledge
28http://lcl.uniroma1.it/disambiguated-glosses

http://lcl.uniroma1.it/disambiguated-glosses
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from WordNet is among the most accurate available and includes non-nominal
parts of speech rarely covered by other resources (e.g. adjectives and adverbs).
However, given its considerably smaller scale, WordNet provides less than 1%
of the overall number of definitions in BabelNet, and covers only the English
language;

• Wikipedia: Wikipages do not provide explicit glosses or definitions, however,
according to the style guidelines of Wikipedia,29 a Wikipage should begin
with a short declarative sentence defining what (or who) the subject is and
why it is notable. Following previous literature, we also consider the first
sentence of a Wikipage as a valid definition of the corresponding concept or
entity. Furthermore, text snippets drawn from the associated disambiguation
pages can also be regarded as definitions.30 Wikipedia provides the largest
proportion of definitional knowledge by far (∼ 77%), including many definitions
in languages other than English;

• Wikidata: Wikidata is the second largest individual contribution to SenseDefs
(more than 8 million items and ∼ 22% of the total), even though, given its
strictly computational nature, it often provides minimal definition phrases
containing only the superclass of the definiendum.

• Wiktionary, OmegaWiki: beyond WordNet, Wikipedia and Wikidata, the
remaining definitions (∼ 1% of the total) are provided by two collaborative
multilingual dictionaries: Wiktionary and OmegaWiki. Wiktionary31 is a
Wikimedia project designed to represent lexicographic knowledge that would
not be well suited for an encyclopedia (e.g. verbal and adverbial senses). It is
available for over 500 languages typically with a very high coverage, including
domain-specific terms and descriptions that are not found in WordNet. Similar
to Wiktionary, OmegaWiki32 is a large multilingual dictionary based on a
relational database, designed with the aim of unifying the various language-
specific Wiktionaries into a unified lexical repository.

Overall, the corpus of definitional knowledge obtained from BabelNet comprises
more than 38 million definitions associated with more than 8 million synsets, both
concepts and named entities (see Section 4.3.3). The key feature of this corpus, that
we will leverage at disambiguation time, is the fact that BabelNet’s inter-resource
and inter-language mappings enable us to combine multiple definitions (drawn from
different resources and in different languages) of the same concept or named entity.
Thus, if we re-arrange the corpus by grouping all the definitions by definiendum, we
can view it as a collection of around 8 million multilingual definitional texts.

29https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style
30The release format of SenseDefs (cf. Section 6.3) specifies two distinct attribute values for

definitions extracted from the first sentence of Wikipedia articles (WIKI) and definitions extracted
from disambiguation pages (WIKIDIS).

31https://www.wiktionary.org
32http://www.omegawiki.org

https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style
https://www.wiktionary.org
http://www.omegawiki.org
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4.3.2 The Disambiguation Pipeline on a Running Example

As highlighted at the beginning of the section, definitional knowledge is not easy
to analyze automatically at the sense level. Since many definitions are short and
concise, the lack of sufficient and/or meaningful context might negatively affect the
performance of an off-the-shelf disambiguation system that works at the sentence
level (i.e. targeting individual definitions one by one). In light of this, we consider
the input corpus arranged as described in Section 4.3.1; while with EuroSense we
considered, for each English sentence, a multilingual text given by all its translation,
in this case we consider, for each definiendum, a multilingual text given by all its
definitions. In this way, we can associate a much richer context with each target
definition, and this context is semantically meaningful (since it is composed of other
definitions describing the same concept or entity).

Following the EuroSense pipeline, we perform an initial preprocessing step on all
definitions, which consists of tokenization, part-of-speech tagging and lemmatization
for a subset of languages using standard NLP tools (Camacho Collados et al., 2016a).
Then we apply stage 1 (Section 4.2.1) and stage 2 (Section 4.2.2) of the pipeline
to obtain the full, high-coverage version and the refined, high-precision version of
SenseDefs. Let us go through the stages of the disambiguation pipeline using the
running example from Camacho Collados et al. (2016a).

Running Example. As an example, consider the following definition of castling
in chess (castling1

n) as provided by WordNet:

Interchanging the positions of the king and a rook. (4.7)

The context in this example is limited and it might not be obvious for an automatic
disambiguation system that the concept being defined relates to chess: for instance,
an alternative definition of castling1

n where ‘chess’ is explicitly mentioned would
definitely help the disambiguation process. When provided solely with the English
WordNet definition of (4.7), Babelfy disambiguates rook incorrectly as “rookie,
inexperienced youth” (rook7

n). Instead, as additional definitions from other resources
and languages are included, Babelfy exploits the added context to construct a
richer semantic graph, and disambiguates rook with its correct chess-related sense
(rook1

n) in the first stage of the pipeline. Multilingual joint disambiguation, however,
is still not enough to provide a high-confidence disambiguation for the word king,
which was then incorrectly disambiguated using the MCS back-off strategy (king1

n).
This error is subsequently corrected with the refinement step, as the chess-related
sense of king (king8

n) achieves higher semantic similarity with the disambiguated
instances in H (cf. Section 4.2.2) compared to its predominant sense. In fact, thanks
to the augmented context in the first stage, many chess-related senses have been
disambiguated with high confidence, including rook1

n, but also, e.g., enroque1
n from

the Spanish Wikipedia definition, or Schach1
n from the German Wikidata definition

(both of which are, incidentally, monosemic cases).
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# Definitions # Sense Annotations
Full Refined Full Refined

Wikipedia 29,792,245 28,904,602 223,802,767 143,927,150
Wikidata 8,484,267 8,002,375 22,769,436 17,504,023
Wiktionary 281,756 187,755 1,384,127 693,597
OmegaWiki 115,828 106,994 744,496 415,631
WordNet 146,018 133,089 843,882 488,730

Total 38,820,114 37,334,815 249,544,708 163,029,131

Table 4.15. Total number of definitions and sense annotations by knowledge resource in
the full and refined versions of SenseDefs.

4.3.3 Statistics

Table 4.15 shows some global statistics of the full and refined versions of SenseDefs,33
divided by resource. The output of the full version is a corpus of 38,820,114 dis-
ambiguated glosses, corresponding to 8,665,300 BabelNet synsets and covering 263
languages and 5 different resources (Wiktionary, WordNet, Wikidata, Wikipedia
and OmegaWiki). It includes 249,544,708 sense annotations (6.4 annotations per
definition on average). The refined version of the resource includes fewer, but more
reliable, sense annotations and a slightly reduced number of glosses containing at
least one sense annotation. As noted in Section 4.3.1, Wikipedia is the resource
with by far the largest number of definitions and sense annotations, including almost
30 million definitions and over 140 million sense annotations in both versions of
the corpus. Additionally, Wikipedia also features textual definitions for the largest
number of languages (over 200).

Statistics by language. Figures 4.3 displays the number of definitions and sense
annotations, respectively, divided by language. As expected, English provides the
largest contribution (5.8 million glosses and 37.9 million sense annotations in the
refined version), followed by German and French. Even though the majority of sense
annotations overall concern resource-rich languages, the language rankings in Figure
4.3a and 4.3b do not coincide exactly: this suggests, on the one hand, that some
languages (such as Vietnamese and Spanish, both with higher positions in Figure
4.3b compared to Figure 4.3a) actually benefit from a cross-lingual disambiguation
strategy; on the other hand, it also suggests that there is still room for improvement,
especially for some other languages (such as Swedish or Russian) where the tendency
is reversed, and the number of annotations is lower compared to the amount of
definitional knowledge available.

Table 4.16 shows the number of annotations divided by part-of-speech tag and
disambiguation source. In particular, the full version comprises two disambiguation
sources: Babelfy and the MFS back-off (used for low-confidence annotations). The
refined version, instead, removes the MCS back-off, either by discarding or correcting

33Consistently with Section 4.2, we refer to the output of the fist stage of the pipeline as the full
version of SenseDefs, and to the final output of the pipeline as the refined version.
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Figure 4.3. Total number of textual definitions (a) and sense annotations (b) in SenseDefs
by language (top 15 languages).

the annotation with Nasari (cf. Section 4.2.2). Additionally, 17% of the sense
annotations obtained by Babelfy (without the MFS back-off) are also corrected
or discarded. Assuming the coverage of the full version to be 100%, as in Section
4.2.4.1, the coverage of our system after the refinement step is estimated to be 65.3%.
As shown in Table 4.16, discarded annotations mostly consist of verbs, adjectives
and adverbs, which are often harder to disambiguate as they are very frequently not
directly related to the definiendum. In fact, the coverage figure on noun instances is
estimated to be 73.9% after refinement.

All Nouns Verbs Adjectives Adverbs

Full
Babelfy 174,256,335 158,310,414 4,368,488 10,646,921 930,512

MFS 75,288,373 56,231,910 8,344,930 9,256,497 1,455,036
Total 249,544,708 214,542,324 12,713,418 19,903,418 2,385,548

Refined
Babelfy 144,637,032 140,111,921 1,326,947 3,064,416 133,748
Nasari 18,392,099 18,392,099 - - -
Total 163,029,131 158,504,020 1,326,947 3,064,416 133,748

Table 4.16. Total number of definitions and sense annotations by part-of-speech tag
(columns) and by source (rows) in the full and refined versions of SenseDefs.
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#Ann. Prec. Rec. F1 IAA
ROA κ

EN
Babelfy 671 84.3 69.6 76.1 94.6 71.7
SenseDefsfull 714 80.0 70.2 74.8 94.2 70.1
SenseDefsrefined 745 83.1 76.1 79.5 95.3 71.9

ES
Babelfy 678 85.8 59.3 70.2 91.4 51.1
SenseDefsfull 737 82.6 62.1 70.9 92.4 66.2
SenseDefsrefined 725 86.6 64.0 73.6 95.1 63.3

FR
Babelfy 516 84.3 49.8 62.6 97.2 85.7
SenseDefsfull 568 81.3 52.8 64.0 96.7 86.4
SenseDefsrefined 579 87.1 57.7 69.4 95.1 65.8

IT
Babelfy 540 81.7 53.5 64.7 94.5 74.3
SenseDefsfull 609 73.9 54.5 62.8 92.4 78.0
SenseDefsrefined 618 77.5 58.1 66.4 94.7 83.0

Table 4.17. Precision (Prec.) and recall (Rec.) percentage (%) of SenseDefs, manually
evaluated on random samples of 120 textual definitions in 4 languages (English, Spanish,
French, and Italian). Precision is averaged between the two judges, and recall is computed
assuming each content word in a sentence should be associated with a distinct sense.

4.3.4 Experimental Evaluation

In line with the previous sections, we carried out both an intrinsic and an extrinsic
evaluation of SenseDefs. The former consists of two experiments: a manual
assessment on four samples of randomly extracted definitions in different languages
(Section 4.3.4.1), and an automatic evaluation on the manually annotated portion
of the Princeton Gloss Corpus (Section 4.3.4.2). The latter, instead, evaluates
SenseDefs on the Wikipedia sense clustering task (Section 4.3.4.3).

4.3.4.1 Intrinsic Evaluation #1: Annotation Quality

We evaluated sense annotation quality in SenseDefs on four different languages:
English, French, Italian and Spanish. To this end, we first randomly sampled 120
definitions for each language. Then, two annotators validated the sense annotations
given by SenseDefs (both full and refined) and by the same Babelfy baseline used
in Section 4.2.4.1. The evaluation setup is the same as the one in Section 4.2.4.1.
However, in this case we excluded those sense annotations coming from the MFS
back-off, in order to assess explicitly the output of our disambiguation pipeline. We
also calculated the Inter Annotator Agreement (IAA) between the two annotators of
each language by means of Relative Observed Agreement (ROA), i.e. the proportion
of equal answers, and Cohen’s kappa (Cohen, 1960, κ). Finally, the two annotators
in each language adjudicated the answers which were judged with opposite values.

Table 4.17 shows the results of this manual evaluation. In the four languages, our
refined version of the corpus achieved the best overall results. SenseDefs achieved
over 80% precision in three of the four considered languages, both in its full and
refined versions. In the Italian sample the precision dropped to 73.9% and 77.5%,
respectively, probably due to lower coverage in BabelNet. Finally, it is worth noting
that, for all the examined languages, both the full and refined versions of SenseDefs
provided more annotations than using the baseline on isolated definitions.
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#WN Annot. Prec. MFS-Prec.
SenseDefsfull 162,819 76.4 66.1
SenseDefsrefined 169,696 76.4 65.2

Babelfy 130,236 69.1 65.6
IMS 275,893 56.1 55.2

Table 4.18. Overall precision (Prec.) percentage (%) and number of compared WordNet
annotations (#WN Annot.) on the Princeton Gloss Corpus (Section 3.1.2.1). On the
rightmost column, precision of the MFS baseline (MFS-Prec.) on the same sample.

4.3.4.2 Intrinsic Evaluation #2: WordNet Glosses

We performed an additional intrinsic evaluation where we compared the WordNet
annotations given by SenseDefs with the manually-crafted annotations of the
disambiguated glosses from the Princeton Gloss Corpus (Section 3.1.2.1). Similarly
to the previous manual evaluation, we included a baseline based on Babelfy
disambiguating the definitions sentence-wise in isolation, and a supervised baseline
based on the pre-trained models of IMS (Zhong and Ng, 2010) on OMSTI.34 As in
our previous experiment, we did not consider the sense annotations for which the
MFS back-off strategy was activated on any of the comparison systems. Finally, we
included the MFS result on each of the subsets of sense annotations provided the
systems. Table 4.18 shows the precision of SenseDefs, Babelfy and IMS on the
Princeton Gloss Corpus. SenseDefs achieved a precision of 76.4% in both versions.
Even though results are not directly comparable,35 IMS reported a considerably
lower precision than our pipeline’s, and also lower compared to its performance on
standard benchmarks (Raganato et al., 2017a). This result highlights the difficulty of
dealing with definitional text, even for supervised systems: in fact, most definitions
do not provide enough local context for an accurate disambiguation at the sentence
level.

4.3.4.3 Extrinsic Evaluation: Sense Clustering

In our extrinsic experiment we evaluated the refined version of SenseDefs on the
Wikipedia sense clustering task (Dandala et al., 2013). Specifically, we exploited
SenseDefs to enhance the vectorial representations of Nasari, by enriching the
semantic network used in the original implementation. Since refined sense annotations
tend to identify synsets that are highly semantically related to the definiendum, they
can actually be viewed as semantic connections between these synsets and the synset
identified by the definiendum, and hence utilized as additional edges. We performed
this enrichment step, ran again the original Nasari pipeline to generate the vectors,
and then evaluated these on the Wikipedia sense clustering task, following the
original experiment by Camacho Collados et al. (2016c).

Table 4.19 shows the accuracy and F-score results of our enhanced version of
Nasari (Nasari+SenseDefs). As a comparison we included the Support Vector

34http://www.comp.nus.edu.sg/~nlp/corpora.html#onemilwsd
35Since our pipeline annotates with BabelNet synsets, the set of candidate senses is often larger

than IMS and the MFS baseline (both based on WordNet).

http://www.comp.nus.edu.sg/~nlp/corpora.html#onemilwsd
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500-pair SemEval
Accuracy F-score Accuracy F-score

Nasari+SenseDefs 86.0 74.8 88.1 64.7
Nasari 81.6 65.4 85.7 57.4
SB-Sewbest - 71.0 - 64.0
SVM-monolingual 77.4 - 83.5 -
SVM-multilingual 84.4 - 85.5 -
Baseline 28.6 44.5 17.5 29.8

Table 4.19. Accuracy and F-score results on Wikipedia sense clustering.

Machine classifier of Dandala et al. (2013), which exploits information fromWikipedia
in English (SVM-monolingual) and in four different languages (SVM-multilingual),
together with a naive baseline that clusters every Wikipage pair. We also report
the results obtained by the original English lexical vectors of Nasari, and those
obtained by the best configuration of SB-Sew (cf. Section 4.1.3.3). As shown in
Table 4.19, the enrichment produced by SenseDefs proved to be highly beneficial,
with a significant improvement on the original results reported by Camacho Collados
et al. (2016c), and the best overall performance on the task.

Final Remarks. With this experimental evaluation we assessed the flexibility
and effectiveness of the disambiguation pipeline we designed in Section 4.2 on a
heterogeneous multilingual corpus of definitional text. With the broadened intrinsic
evaluation on the WordNet glosses (Section 4.3.4.2), in particular, we saw that the
extremely limited local context of most definitions is a crucial problem also for trained
and tuned supervised systems in English. This suggest once again that, when adding
multiple languages into the picture (including languages for which sense-annotated
data are not available), using an array of language-specific supervised models to
carry out a reliable disambiguation procedure on each monolingual subset of the
corpus becomes unpractical. The pipeline we propose, instead, employs a single
model for which adding additional languages contributes to creating a richer context
for disambiguation. Differently from the parallel text scenario of Section 4.2, in this
case a further advantage is given by the fact that multiple definitions of a given
synset can be put together from different resources even when a single language is
considered (as in the example of Section 4.3.2). In general, while parallel text is
useful to enforce cross-language semantic coherence (but new translations of the
same sentences are less likely to provide novel and complementary information), in
the present case additional definitions from other languages might be completely
different in describing the definiendum. As a result, the precision figures reported
by our pipeline in the intrinsic evaluation, consistently with the previous case
(Section 4.2.4.1), are higher on average compared with those estimated in previous
literature for fully automatic systems, which very rarely go beyond 75% (cf. Section
3.1.3.3); moreover, both SenseDefs and EuroSense can be further tuned using
the confidence scores associated with each sense annotation.
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# Languages # Annotations # Senses # Tokens Accuracy
Sew 1 206,475,360 4,071,902 1,357,105,761 93.4%
EuroSense 21 122,963,111 155,904 48,274,313 81.5%
SenseDefs 263 163,029,131 10,870,032 71,109,002 79.7%
Babelfied Wikipedia 3 113,896,864 4,239,879 501,862,251 70.5%
Babelfied MASC 1 286,416 23,175 592,472 72.4%

Table 4.20. Global statistics on the sense-annotated corpora treated in this section,
including the number of languages covered, the total number of sense annotations, the
total number of concepts and named entities covered, the total number of word tokens,
and the estimated accuracy of sense annotations for English.

As a general summary, Table 4.20 puts together some global statistics about the
three sense-annotated resources presented in this section, i.e. Sew, EuroSense,
and SenseDefs,36, and compares them with the two BabelNet-annotated corpora
examined in Section 3.1.3.3, i.e. the Babelfied Wikipedia and the Babelfied MASC.
As we already discussed, all the three resources provide sense annotations with higher
quality compared to previous approaches, as estimated in their respective intrinsic
evaluations.37 Among the resources presented in this chapter, Sew stands out in
terms of size and total number of annotations, being constructed from the largest
source corpus (a Wikipedia dump). However, annotation density (0.15) is lower
than EuroSense (2.55) and SenseDefs (2.29), and the sense-annotated corpus
is currently available only for English. As regards EuroSense and SenseDefs,
instead, they both represent the largest available resources of their kinds (parallel
text and definitional text, respectively) providing sense annotations for concepts and
named entities in multiple languages. Since both of them have been constructed using
the same disambiguation pipeline, they show comparable accuracy and coverage. In
both cases, however, there is still room for improvement: in Section 7 we come back
to the disambiguation strategies presented in this chapter, and discuss some open
problems and perspective of future work to further improve their performances.

36We considered the final version of the three resources at the end of their disambiguation pipelines:
the refined versions of EuroSense and SenseDefs, and Sew after applying the conservative policy.

37In the case of SenseDefs we averaged the precision figures obtained in the two intrinsic
experiments of Sections 4.3.4.1 and 4.3.4.2.
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Chapter 5

Sense-Aware Extraction of
Relational Knowledge

Any fool can know.
The point is to understand.

Albert Einstein

In this chapter we address the second objective outlined in Section 1.1: that of
reframing the task of Open Information Extraction at the sense level, and exploring
the benefits of sense-aware techniques at the various stages of the extraction process.
As anticipated in Chapter 1, our focus is on Open Information Extraction, rather
than traditional (“closed”) Information Extraction. The motivation for this choice
is two-fold: on the one hand, being completely unsupervised, OIE tackles explicitly
issues like the knowledge acquisition bottleneck, and complies perfectly with the
long-term goal of the present work; on the other, the fact that semantic relations
modeled by OIE are not pre-specified or encoded formally in a database, but instead
bound to their surface-text realizations (Section 2.3.2), makes them particularly
susceptible to many linguistic phenomena studied in Lexical Semantics (e.g. poly-
semy, synonymy). Thus, OIE is one of the NLP areas where sense-level information
appears to have greater impact and really make a substantial difference.

In fact, we examined in Section 3.2 some recent approaches that have started
moving in this direction: Patty (Section 3.2.1) and WiSeNet (Section 3.2.2).
These methods demonstrate how the choice of modeling Lexical Semantics explicitly
(e.g. with a more structured semantic representation of relation patterns and relation
instances) is not only feasible but also tremendously effective, as it enables the
extraction of high-quality relation instances on a large scale. Also, being anchored
to an underlying knowledge resource, these relation instances can easily leverage
their explicit semantic characterization to generalize better and overcome many
limitations of traditional approaches.
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Even though Patty and WiSeNet have laid the foundations of sense-aware
knowledge extraction, they suffer from a number of shortcomings on a practical
ground, mostly connected with the fact that a deeper semantic analysis is made
difficult by these systems’ attempts to cope with data sparsity and noisy extractions,
even with encyclopedic Wikipedia text as target corpus (cf. Sections 3.2.1.2 and
3.2.2.2). For instance, WiSeNet’s identification of argument pairs is limited to
hyperlinked Wikipedia entities, while relation phrases are clustered but not taxono-
mized; on the other hand, Patty’s subsumption taxonomy for relations is solely
based on soft set inclusion principles, and only a relatively small subset of its large
collection of relation patterns can be taxonomized with high confidence.

In addition, both Patty and WiSeNet produce their own, isolated OIE-derived
knowledge bases: even if such knowledge bases are equipped with explicitly ‘seman-
tified’ arguments and a partial ontological structure, there is no way of discovering
whether, e.g., they have extracted the same relation triple or, for that matter, they
have discovered the same semantic relation. Broadly speaking, any kind of interac-
tion among OIE-derived knowledge bases generally requires manual inspection, even
when they have been constructed from the same input corpus.

In the present chapter we address these and other limitations of previous ap-
proaches by taking Semantically Informed OIE to the next level, and showing how
sense-level information can be leveraged to extract, ontologize, align and unify
relational knowledge. Our analysis consists of three parts, organized as follows:

1. In Section 5.1 we investigate how to integrate a sense-aware approach
into a full-fledged OIE pipeline by moving to the denser, virtually noise-
free setting of definitional text. In this scenario, we show that a comprehensive
semantic analysis yields unambiguous relation triples, as well as ‘semantified’
relations that can be effectively arranged in a relation taxonomy;

2. Section 5.2, instead, addresses the issue of merging and harmonizing
OIE-derived knowledge bases. We show that a sense-aware semantic
analysis enables to interconnect not only lexical knowledge, but also relational
knowledge, even when drawn from a set of very heterogeneous resources;

3. Finally, in Section 5.3 we demonstrate that OIE-derived knowledge, when
properly ‘semantified’, can be leveraged in the more constrained IE setting
of supervised hypernym discovery. In fact, working at the sense level in
this scenario enables very heterogeneous knowledge to be utilized seamlessly
as training data.

Throughout the three stages of our analysis, as in Chapter 4, we rely on BabelNet
(Section 2.1.3) as a fundamental backbone and reference sense inventory. Indeed, we
share with Chapter 4 the goal of developing sense-aware approaches that are both
flexible and scalable. With the present chapter, not only do we employ BabelNet as
sense inventory for disambiguation, but we also make explicit use of the structured
knowledge it provides in a number of different circumstances: for instance, we
exploit taxonomic information for concepts and named entities in Section 5.1, while
we take advantage of BabelNet’s inter-resource mappings in Sections 5.2 and 5.3.
Moreover, we utilize extensively BabelNet-powered tools like Babelfy (Section
2.2.2.3), Nasari (Section 2.2.3.3), and SensEmbed (Section 2.2.3.2).
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5.1 DefIE: Open Information Extraction from Defini-
tions

As we discussed in Section 3.2, Semantically Informed OIE has shown that integrating
a deeper linguistic analysis into an OIE pipeline, traditionally limited to surface-text
dependencies, is key for obtaining high-quality extractions. Indeed, relation triples
with explicit semantic information are able to generalize over synonymous relation
phrases, as well as to reduce lexical ambiguities. However, ambiguity issues have
not yet been addressed in their entirety. While arguments are typed and linked in
both Patty (Section 3.2.1) and WiSeNet (Section 3.2.2), relation phrases are still
bound to surface text and lack actual semantic content. Furthermore, attaching a
clear ontological structure to a set of extracted pattern is not trivial, and typically
requires additional processing steps, such as pattern subsumption mining (Nakashole
et al., 2012), statistical inference mapping (Dutta et al., 2014), graph-based align-
ment (Grycner and Weikum, 2014), or collective probabilistic programming (Grycner
et al., 2015), in order to obtain satisfactory results.

A limiting factor for the performance of Semantically Informed OIE approaches,
emerged throughout Section 3.2, is that noise and sparsity in the input text make
it difficult to enforce a comprehensive semantic analysis at both extraction and
ontologization time. In fact, in most cases, the semantic characterization of a relation
(or relation synset) is completely dependent on the semantics of its argument set, and
only a sufficient number of extractions would provide reliable semantic types. An
appropriate modeling of semantic types (e.g. selectional preferences) constitutes a
line of research by itself, rooted in earlier works (Resnik, 1996) and focused on either
class-based (Clark and Weir, 2002), or similarity-based (Erk, 2007), approaches.
However, these methods do not fit our needs, as they model the semantics of verbs
rather than arbitrary patterns. More recently some strategies based on topic model-
ing have also been proposed, either to infer latent relation semantic types from OIE
relations (Ritter et al., 2010), or to directly learn an ontological structure from a
starting set of relation instances (Movshovitz-Attias and Cohen, 2015). However,
the knowledge they generate is often hard to interpret and integrate with existing
knowledge resources without human intervention (Ritter et al., 2010).

In light of all the above, our strategy is to leverage a full syntactic and semantic
analysis, similarly to previous Semantically Informed OIE approaches, while moving
from large-scale open and noisy texts to smaller corpora of dense definitional knowl-
edge. In this setting, which is virtually noise-free and mostly composed of concise
prescriptive text, we are not forced to impose a series of constraint to cope with noisy
data or difficult extractions (due to, e.g., relative clauses or coreference), and we are
able to design a full-fledged OIE pipeline aimed at extracting as much information
as possible by unifying syntactic analysis and joint WSD/EL on textual definitions.
As a trade-off, such a system is quasi-OIE, as it is limited to text having definitional
nature. In fact, this definition-specific sense-aware quasi-OIE approach, named
DefIE (Delli Bovi et al., 2015b),1 takes as input a corpus of textual definitions and
harvests fully disambiguated relation instances (i.e. relation instances where both
the argument pairs and the relation phrases include sense-level information), which

1http://lcl.uniroma1.it/defie
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are then integrated automatically into a high-quality taxonomy of semantic relations.
By running DefIE on the same definitional corpus we built for SenseDefs in
Section 4.3.1, which comprises 4.3 million textual definitions, we obtain a large-scale
OIE-derived knowledge base with over 20 million relation instances, 250,000 dis-
tinct relations and almost 2.4 million concepts and entities involved, showing very
competitive accuracy and coverage in comparison with state-of-the-art OIE systems
based on much larger corpora, including Patty and WiSeNet.

The following sections are organized as follows: we first give the details of DefIE
pipeline, which comprises three successive stages: relation extraction (Section 5.1.1),
relation refinement via typing and scoring (Section 5.1.2), and relation taxonomiza-
tion (Section 5.1.3). We then carry out an extensive experimental evaluation of
DefIE (Section 5.1.4), where we assess the quality, coverage and novelty of the
extracted knowledge, and we study the impact of the various components of the
pipeline on the overall performance of DefIE. In Section 5.1.4.6 we explore the
effectiveness of DefIE in providing semantic labels to unlabeled edges across the
semantic network of BabelNet; finally, we investigate in Section 5.1.4.7 how to further
improve DefIE’s extractions by utilizing the sense annotations from SenseDefs
(Section 4.3), which are computed from the same definitional corpus.

5.1.1 Relation Extraction

The first stage of the DefIE pipeline is the extraction stage, where the input corpus
is processed definition-wise, and a set of semantic relations is obtained as output. As
stated at the beginning of this section, each semantic relation built by DefIE at this
stage is composed of fully disambiguated relation instances, i.e. relation instances2
where both as, ao and (ideally all) the content words appearing in r identify word
senses or named entity mentions linked to the sense inventory of BabelNet.

Compared to the approaches in Section 3.2, where Lexical Semantics is mostly
modeled in the ontologization phase, DefIE addresses polysemy and synonymy
directly at extraction time, by performing WSD/EL on each target definition. In
fact, incorporating explicit sense-level content in the relation patterns makes them
less ambiguous without resorting to their arguments’ semantics; at the same time, it
also generalizes over specific lexicalizations of their content words, merging together
many synonymous relation patterns without ad-hoc clustering strategies.

The extraction process is depicted in Figure 5.1. Each definition is first parsed
and disambiguated (Figure 5.1a-b), and then syntactic and semantic information
is combined into a structured graph representation (Figure 5.1c, Section 5.1.1.1).
Rather than using plain syntactic dependencies, DefIE injects explicit semantics
into the dependency graph of a target definition, in order to generate a unified
syntactic-semantic graph.3 Finally, this syntactic-semantic graph is used to extract
relation patterns as shortest paths between concept or entity pairs (Section 5.1.1.2).

2We refer to the definition of relation instance given in equation (2.3) of Section 2.4.
3Similar graphs have been proposed for a number of tasks (Lao et al., 2012; Moro et al., 2013),

showing the effectiveness of unifying syntactic and semantic information, but, to the best of our
knowledge, never applied in an OIE setting. They also share some similarities with the recent
Abstract Meaning Representation formalism (Banarescu et al., 2013), which however provides a
purely semantic structure abstracting away from many syntactic idiosyncrasies.
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Figure 5.1. Example of syntactic-semantic graph construction from the textual definition
d = “Atom Heart Mother is the fifth album by English band Pink Floyd”. Semantic nodes
and regular syntactic nodes in Gsem

d are marked in grey and white, respectively.

5.1.1.1 Constructing Syntactic-Semantic Graphs

The first and foremost step of the extraction process consists in parsing and dis-
ambiguating a given definition d to obtain syntactic information, i.e. a dependency
graph Gd (Figure 5.1a), and semantic information, i.e. a sense mapping Sd from
surface text to word senses and named entities mentions drawn from BabelNet
(Figure 5.1b). In Delli Bovi et al. (2015b) parsing is carried out using C&C (Clark
and Curran, 2007), a log-linear parser based on Combinatory Categorial Grammar,
or CCG4, while disambiguation is based on Babelfy (Section 2.2.2.3).

The information extracted by parsing and disambiguating d is then unified into a
syntactic-semantic graph Gsem

d where concepts and named entities identified in d are
arranged in a graph structure encoding their syntactic dependencies (Figure 5.1c).
Given a dependency graph Gd for d, semantic information from the sense mappings
Sd could be incorporated directly in the vertices of Gd by attaching available matches
between words and senses to the corresponding vertices. Dependency graphs, how-
ever, encode dependencies solely on a word basis, while our sense mappings may
include multi-word expressions (e.g. Pink Floyd1

n, Atom Heart Mother1n). In order to
extract consistent information, subsets of vertices referring to the same concept or
entity are merged to a single semantic node, which replaces the subgraph covered in
the original dependency structure. In Figure 5.1, Pink Floyd1

n covers two distinct
and connected vertices in the dependency graph Gd, one for the noun Floyd and one
for its modifier Pink, and in the actual semantics of the sentence, encoded in Gsem

d ,
these two vertices are merged to a single node referring to Pink Floyd1

n (the English
rock band), instead of being assigned single-word interpretations.

Practically speaking, the procedure for building Gsem
d takes as input a typed

dependency graph Gd and a sense mapping Sd, both extracted from a given definition
d. Gsem

d is first populated with the vertices of Gd referring to disambiguated content
words, merging those vertices covered by the same sense s ∈ Sd into a single node
(e.g. Pink Floyd1

n and Atom Heart Mother1n in Figure 5.1c). Then, the remaining
vertices and edges are added as in Gd, discarding non-disambiguated adjuncts and
modifiers (e.g. the and fifth in Figure 5.1c).

4CCG rules are especially suited to longer definitions and various linguistic phenomena (Steedman,
2000), such as coordinating conjunctions, that appear often across definitional text.
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Algorithm 1 Relation Extraction

procedure ExtractRelationsFrom(D)
1: T := ∅
2: for each d in D do
3: Gd := dependencyParse(d)
4: Sd := disambiguate(d)
5: Gsem

d := buildSemanticGraph(Gd, Sd)
6: for each 〈si, sj〉 in Sd do
7: 〈si, rij , sj〉 := shortestPath(si, sj)
8: T := T ∪ {〈si, rij , sj〉}
9: filterPatterns(T, ρ)
return T ;

5.1.1.2 Identifying Relation Patterns

After constructing a syntactic-semantic graph Gsem
d for a definition d, DefIE

considers every pair of identified concepts or named entities across the graph and
extract the relation pattern r between them as the shortest path between the two
corresponding vertices in Gsem

d . This enables us to exclude less relevant information,
typically carried by adjuncts or modifiers. The shortest path is computed using the
Floyd-Warshall algorithm (Floyd, 1962). and the only syntactic constraint that we
enforce on the resulting path is that it must include at least one verb node, as in
ReVerb (Fader et al., 2011). This condition filters out meaningless single-node
patterns (e.g. two concepts connected with a preposition) and, given the prescriptive
nature of d, is unlikely to discard semantically relevant attributes compacted in noun
phrases. As an example, consider the two sentences “Mutter is the third album by
German band Rammstein” and “Atom Heart Mother is the fifth album by English band
Pink Floyd’”. In both cases, two valid shortest-path patterns are extracted:

X → is → album1
n → by → Y

with X =Mutter3n, Y =Rammstein1
n in the first sentence and X =Atom Heart Mother1n,

Y =Pink Floyd1
n in the second one, and:

X → is → Y

with X =Mutter3n, Y =album1
n in the first sentence and X =Atom Heart Mother1n,

Y =album1
n in the second one. Thanks to joint WSD and EL (Section 5.1.1.1),

DefIE discovers general knowledge (e.g. that Mutter3n and Atom Heart Mother1n are
instances of the concept album1

n) and, at the same time, relational facts (encoded in
both cases with the relation pattern ‘is album1

n by’).
A pseudo-code for DefIE’s extraction stage is shown in Algorithm 1. Each

d ∈ D is first parsed and disambiguated to produce a syntactic-semantic graph
Gsem

d (Section 5.1.1.1); then all the named entity/concept pairs 〈si, sj〉 are examined
to detect relation instances as shortest paths. Finally, all relations for which the
number of extracted instances is below a fixed threshold ρ is filtered out.5

5In all the experiments of Section 5.1.4 we set ρ = 10, empirically validated on a small held-out
set of manually annotated definitions.



5.1 DefIE: Open Information Extraction from Definitions 103

Relation pattern of r score(r) Hr

X directed by Y 4,025.80 1.74
X known for Y 2,590.70 3.65

X is election district1n of Y 110.49 0.83
X is composer1n from Y 39.92 2.08

X is street1n named after Y 1.91 2.24
X is village2

n founded in 1912 in Y 0.91 0.18

Table 5.1. Some examples of relation scoring and corresponding entropy Hr (third column).

5.1.2 Relation Typing and Scoring

After the extraction stage, we further characterize and refine the semantics of
DefIE’s relations by computing semantic type signatures for each r ⊂ T , i.e. by
attaching a proper semantic class to both its domain and range (cf. Section 2.4).
Since every element in the domain and range of r is disambiguated, we retrieve the
corresponding Babel synsets and collect their direct hypernyms from the taxonomy
of BabelNet (Section 2.1.3). We then select the hypernym covering the largest subset
of arguments as the representative semantic class for the domain (or range) of r. By
leveraging the distribution of direct hypernyms over domain and range arguments
of r, we estimate the quality of r and associate a confidence value with its relation
pattern r. Intuitively we want to assign higher confidence to relations where the
corresponding distributions have low entropy.6 For each relation r, we compute:

Hr = −
n∑

i=1
p(hi) log2 p(hi) (5.1)

where hi(i = 1, ..., n) are all the distinct argument hypernyms over the domain and
range of r, and probabilities p(hi) are estimated from the proportion of arguments
covered in such sets. The lower Hr, the better semantic types of r are defined. As a
matter of fact, however, some valid but over-general relations (e.g. ‘is a’, ‘is used
for’) have inherently high values of Hr. To obtain a balanced score, we therefore
consider two additional factors, i.e. the number of extracted instances for r and the
length of the associated pattern r, obtaining the following empirical measure:

score(r) = |r|
(Hr + 1) length(r) (5.2)

The +1 term accounts for cases where Hr = 0. As shown in the examples of
Table 5.1, relations with rather general patterns (such as ‘known for’) achieve higher
scores compared to very specific ones (e.g. ‘is village2

n founded in 1912 in’) despite
higher entropy values. We validated our measure on the samples of Section 5.1.4.1,
computing the overall precision for different score thresholds. The monotonic decrease
of sample precision in Figure 5.2a shows that our measure captures the quality of
extracted patterns better than Hr (Figure 5.2b).

6For instance, if both sets have a single hypernym covering all arguments, then r arguably
captures a well-defined semantic relation and should be assigned high confidence.
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Figure 5.2. Average precision vs. score(r) (a) and Hr (b) on the sample of Section 5.1.4.1.

5.1.3 Relation Taxonomization

In the last stage of the pipeline, the set of extracted and refined relations is arranged
automatically in a relation taxonomy. The process is carried out by comparing
relations pairwise, looking for hypernymic relationships between the corresponding
patterns; the final taxonomy is then built by connecting with an edge those relation
pairs for which such a relationship is found. We adopt two straightforward methods
to detect hypernymic relationships, both of which examine noun nodes across each
relation pattern r, and consider for taxonomization only those relations whose
patterns are identical except for a single noun node.7

Hypernym Generalization. A way of identifying hypernym/hyponym noun
nodes across relation patterns is to analyze the sense-level information attached to
them. Given two relation patterns ri and rj , differing only in the noun nodes ni

and nj , we retrieve the hypernym sets, H(ci) and H(cj), of the associated synsets,
ci and cj . Hypernym sets are obtained by iteratively collecting the superclasses of ci

and cj from the semantic network of BabelNet, up to a fixed height. For instance,
given ci = album1

n, H(ci) = {work of art1n, creation2
n, artifact1n}. Once we have H(ci)

and H(cj), we just check whether cj ∈ H(ci) or ci ∈ H(cj) (Figure 5.3a). According
to which is the case, we conclude that rj is a generalization of ri, or vice versa.

7The simplifying assumption we exploit here is that two given relation patterns may be in a
hypernymy-hyponymy relationship only when their plain syntactic structure is equivalent (e.g. ‘is
N1 by’ and ‘is N2 by’, with N1 and N2 being two distinct noun nodes).

Figure 5.3. Hypernym (a) and substring (b) generalization of relation patterns.
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DefIE Nell Patty ReVerb WiSeNet Freebase DBpedia
# Relations 255,881 298 1,631,531 664,746 245,935 1,894 1,368
Avg. Extractions 81.68 7,013.03 9.68 22.16 9.24 127,727.99 24,451.48
# Rel. Instances 20,352,903 2,089,883 15,802,946 14,728,268 2,271,807 241,897,882 33,449,631
# Senses 2,398,982 1,996,021 1,087,907 3,327,425 1,636,307 66,988,232 10,338,501

Table 5.2. Comparative statistics on the relation extraction process, including the number
of distinct relations (# Relations), the average number of extractions per relation
(Avg. Extractions), the number of relation instances (# Rel. Instances), and the
number of distinct concepts or named entities involved (# Senses).

Substring Generalization. The second procedure focuses on the noun (or com-
pound) represented by the node. Given two relation patterns, ri and rj , we apply
the following heuristic: from one of the two nouns, be it ni, any adjunct or modifier
is removed, retaining the sole head word n̂i. Then, n̂i is compared with nj and, if
n̂i = nj , we assume that the relation rj is a generalization of ri (Figure 5.3b).

5.1.4 Experimental Evaluation

General statistics on DefIE’s extraction process are shown in Table 5.2, and com-
pared with other prominent OIE approaches, each of which is considered in the
setting detailed below (Experimental Setup). Even though no direct quality compar-
ison is possible at this stage, as these OIE approaches are run on different source
corpora and evaluated differently, the reported figures highlight some interesting
differences in the nature of each extraction process. In particular, DefIE extracts
20,352,903 relation instances, out of which 13,753,133 feature a disambiguated
pattern, with an average of 3.15 disambiguated relation instances extracted from
each definition. The resulting knowledge base comprises 255,881 distinct semantic
relations, 94% of which also have disambiguated content words in their patterns.
DefIE extracts a considerably larger amount of relation instances compared to
similar approaches, despite the much smaller amount of text used. For example,
we managed to harvest over 5 million relation instances more than Patty, using
a much smaller corpus (single sentences as opposed to full Wikipedia articles) and
generating a number of distinct relations that was six times less than Patty’s. As a
result, we obtained an average number of extractions that was substantially higher
than those of other OIE methods, which reflects the fact that DefIE, by stripping
away syntactic modifiers (Section 5.1.1.1) and replacing synonymous words with
their synset identifiers, generalizes over relation patterns. Furthermore, our semantic
analysis captured 2,398,982 distinct arguments (either concept or named entities),
outperforming almost all open-text systems examined.

Experimental Setup. All the manual evaluations carried out in the following
sections were based on two human judges, with an inter-annotator agreement, as
measured by Cohen’s kappa coefficient (Cohen, 1960), above 70% in all cases. In
these evaluations we compared DefIE with the following approaches:

• Nell (Carlson et al., 2010) with beliefs updated to November 2014;
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Top 100 Top 250 Rand 100 Rand 250
DefIE 0.93± 0.01 0.91± 0.02 0.79± 0.02 0.81± 0.08
Patty 0.93± 0.05 N/A 0.80± 0.08 N/A

Table 5.3. Precision of relation patterns.

• Patty (Nakashole et al., 2012) with Freebase types and pattern synsets from
the English Wikipedia dump of June 2011 (cf. Section 3.2.1.2);

• ReVerb (Fader et al., 2011), using the set of normalized relation instances
from the ClueWeb09 dataset;

• WiSeNet (Moro and Navigli, 2012, 2013) with relational phrases from the
English Wikipedia dump of December 2012 (cf. Section 3.2.2.2).

In addition, we also compared DefIE’s knowledge base with human-contributed
resources, namely Freebase (Bollacker et al., 2008) and DBpedia (Lehmann et al.,
2014), both from the dumps of April/May 2014.

5.1.4.1 Quality of the Relations

Relation Precision. We first assessed the quality and the semantic consistency
of our relations using manual evaluation, along the lines of previous approaches
(Sections 3.2.1.2 and 3.2.2.2). We ranked our relations according to their score
(Section 5.1.2) and then created two samples (of size 100 and 250 respectively) from
the top scoring relations. In order to evaluate the long tail of less confident relations,
we created another two samples of the same size with randomly extracted relations.
We presented these samples to the human judges, accompanying each relation with
a set of 50 argument pairs and the corresponding textual definitions from BabelNet.
For each item in the sample we asked whether it represented a meaningful relation
and whether the extracted argument pairs were consistent with this relation and the
corresponding definitions. If the answer was positive, the relation was considered as
correct. Finally we estimated the overall precision of the sample as the proportion
of correct items. Results are reported in Table 5.3 and compared to those obtained
by our closest competitor, Patty.8 In Patty the confidence of a given pattern was
estimated from its statistical strength (cf. Section 3.2.1). As shown in Table 5.3,
DefIE achieved a comparable level of accuracy in every sample. An error analysis
identified most errors as related to the vagueness of some short and general patterns,
e.g. ‘take’, ‘make’. Others were related to parsing (e.g. in labeling the head word of
complex noun phrases) or disambiguation.

Information Novelty. We used the same samples to estimate the novelty of the
extracted information in comparison to currently available resources. We examined
each correct relation pattern and looked manually for an equivalent relation in the
knowledge bases of both our OIE competitors and human-contributed resources.

8Nakashole et al. (2012) only report Patty’s precision figures on the samples of size 100.
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Nell Patty ReVerb WiSeNet Freebase DBpedia
Top 100 0.571 0.238 0.214 0.155 0.571 0.461
Rand 100 0.942 0.711 0.596 0.635 0.904 0.880

Table 5.4. Novelty of the extracted information.

Gold Standard DefIE WiSeNet Patty

163
131 129 126

ReVerb Freebase DBpedia
122 69 39

Table 5.5. Coverage of semantic relations.

For instance, given the relation ‘born in’, Nell and ReVerb have the equivalent
relations ‘personborninlocation’ and ‘is born in’, while Freebase and DBpedia
have ‘Place of birth’ and ‘birthPlace’ respectively. We then computed the
proportion of novel relations among those previously labeled as correct by the human
judges. Results are shown in Table 5.4 for both the top 100 sample and the random
sample of the same size. The high proportion of relations not appearing in existing
resources (especially across the random samples) suggests that DefIE is capable of
discovering information not obtainable from available knowledge bases, including very
specific relations (‘is blizzard in’, ‘is Mayan language spoken by’, ‘is government-owned
corporation in’), as well as general but unusual ones (‘used by writer of’).

Relation Coverage. To assess the coverage of DefIE we first tested our extracted
relations on a public dataset described in Nakashole et al. (2012), and consisting
of 163 semantic relations manually annotated from five Wikipages about musicians.
Following the line of previous works (Nakashole et al., 2012; Moro and Navigli, 2013),
for each annotation we sought a relation in DefIE’s knowledge base carrying the
same semantics. Results are reported in Table 5.5. Consistently with the results
in Table 5.4, the proportion of novel information places DefIE in line with its
closest competitors, achieving a coverage of 80.3% with respect to the gold standard.
Examples of relations not covered by DefIE’s competitors are ‘hasFatherInLaw’ and
‘hasDaughterInLaw’. Furthermore, relations holding between entities and general
concepts (e.g. ‘critizedFor’, ‘praisedFor’, ‘sentencedTo’), are captured only
by DefIE and ReVerb (which, however, lacks any argument semantics). To
complement this experiment, we also assessed manually the coverage of resources
based on human-defined semantic relations, by extracting three random samples
of 100 relations from Freebase, DBpedia and Nell and looking for semantically
equivalent relations in our knowledge base. In this setting, DefIE reports a coverage
of 83%, 81% and 89% respectively, failing to cover mostly relations that refer to
numerical properties (e.g. ‘numberOfMembers’). Finally, we tested the coverage over
individual relation instances: we selected a random sample of 100 triples from the two
closest competitors exploiting textual corpora, i.e. Patty and WiSeNet and, for
each selected triple, we sought an equivalent relation instance in DefIE’s knowledge
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Hyp. Gen. Substr. Gen. Patty (Top) Patty (Rand)
Precision 0.87± 0.03 0.90± 0.02 0.85± 0.07 0.62± 0.09
# Edges 44,412 20,339
Density 1.89× 10−6 7.64× 10−9

Table 5.6. Precision and coverage of the relation taxonomy.

base. This experiment showed a coverage greater than 65% over both samples
(66% and 69% on Patty and WiSeNet, respectively) which, given the dramatic
reduction of corpus size, indicates that definitional knowledge can be extremely
valuable for relation extraction approaches. Of course, these manual assessments are
necessarily carried out on a small scale and affected by subjectivity: intuitively, many
relations and relation instances still remain out of reach for approaches limited to
definitional knowledge. However, these results might suggest that, even in large-scale
OIE-derived resources, a substantial amount of knowledge is likely to come from a
rather smaller subset of definitional sentences within the source corpus.

5.1.4.2 Quality of the Relation Taxonomy

We evaluated DefIE’s relation taxonomy by manually assessing the accuracy of both
taxonomization procedures described in Section 5.1.3. We compared the results with
those of Patty, the only system among our closest competitors that generates a
taxonomy of relations. The setting for this evaluation was the same of that of Section
5.1.4.1. However, as we lacked a confidence measure in this case, we just extracted
a random sample of 200 hypernym edges for each generalization procedure. We
presented these samples to our human judges and, for each hypernym edge, we asked
whether the corresponding pair of relations represented a correct generalization. We
then estimated the overall precision as the proportion of correct edges. Results are
reported in Table 5.6, along with Patty’s results; as Patty’s edges are ranked by
confidence, we considered both its top confident 100 subsumptions and a random
sample of the same size. Even thought no conclusive quality comparison can be
made, as DefIE and Patty are run on different data, Table 5.6 shows that DefIE
outperforms Patty in terms of precision, and generates more than twice the number
of edges overall. As mentioned in Section 3.2.1.2), Harpy (Grycner and Weikum,
2014) enriches Patty’s taxonomy with 616,792 hypernym edges, but its alignment
algorithm also includes transitive edges and still yields a sparser taxonomy compared
to ours, with a graph density of 2.32× 10−7.

5.1.4.3 Quality of Entity Linking and Disambiguation

We evaluated the disambiguation quality of DefIE by comparing Babelfy against
other state-of-the-art EL systems (cf. Section 2.2.2). To set a level playing field,
we selected a random sample of 60,000 glosses from the input corpus of textual
definitions, and ran the relation extraction step (Section 5.1.1) using a different
competitor in the disambiguation step each time. We then used the mappings in
BabelNet to express each output using a common dictionary and sense inventory.
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# Relations # Triples # Entities Sem. Nodes
Babelfy 96,434 233,517 79,998 2.37
TagME 2.0 88,638 226,905 89,318 1.67
WAT 24,083 56,503 38,147 0.39
DBpedia Spotlight 67,377 140,711 38,254 1.45
Wikipedia Miner 39,547 88,777 37,036 0.96

# Relations # Relation instances
Babelfy 82.3% 76.6%
TagME 2.0 76.0% 62.0%
WAT 84.6% 72.6%
DBpedia Spotlight 70.5% 62.6%
Wikipedia Miner 71.7% 56.0%

Table 5.7. Coverage (top) and precision (bottom) for different disambiguation systems.

The coverage obtained by each competitor was assessed by looking at the number of
distinct relations extracted in the process, the total number of relation instances
extracted, the number of distinct concepts or entities involved, and the average
number of semantic nodes within the relation patterns. For each competitor, we also
assessed the precision obtained by evaluating the quality and semantic consistency
of the relation patterns, in the same manner as in Section 5.1.4.1, both at the level
of semantic relations (on the top 150 relation patterns) and at the level of individual
relation instances (on a randomly extracted sample of 150 triples). Results are shown
in Table 5.7 for Babelfy and the following systems: TagME (Ferragina and Scaiella,
2012),9, WAT (Piccinno and Ferragina, 2014), DBpedia Spotlight (Mendes et al.,
2011),10, and Wikipedia Miner (Milne and Witten, 2013),11. As shown in top
part of Table 5.7, Babelfy outperforms all its competitors in terms of coverage
and, due to its unified WSD/EL approach, extracts semantically richer patterns
with 2.37 semantic nodes on the average per sentence. This reflects on the quality of
semantic relations, reported in the bottom part of Table 5.7, with an overall increase
of precision in terms of both relations and relation instances; even though WAT
shows slightly higher precision over relations, its considerably lower coverage yields
semantically poor patterns (0.39 semantic nodes on the average) and impacts on
the overall quality of relations, where some ambiguity is necessarily retained. As an
example, the pattern ‘is station in’, extracted from WAT’s disambiguation output,
covers both railway stations and radio broadcasts. Babelfy produces, instead, two
distinct relation patterns for each sense, tagging station as railway station1

n for the
former and station5

n for the latter.

5.1.4.4 Impact of Definition Sources

Given the heterogeneous input corpus in our experimental setup, we carried out an
empirical analysis to study the impact of each source of textual definitions in isolation.
The leftmost column of Table 5.8 shows the composition of the input corpus with

9tagme.di.unipi.it
10spotlight.dbpedia.org
11wikipediadataminer.cms.waikato.ac.nz

tagme.di.unipi.it
spotlight.dbpedia.org
wikipediadataminer.cms.waikato.ac.nz
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# Definitions # Relations # Relation instances Avg. Extractions
Wikipedia 3,899,087 251,954 19,455,992 77.58
Wikidata 364,484 5,414 1,033,732 191.01
WordNet 41,356 2,260 128,200 56.73
Wiktionary 39,383 2,863 143,990 50.52
OmegaWiki 13,017 1,168 45,818 39.45

Table 5.8. Impact of each definition source on relation extraction.

# Wikipages # Sentences # Extractions Precision
All 14,072 225,867 39,684 61.8%
Top 100 10,334 161,769 13,687 59.0%

Table 5.9. Extraction results of DefIE over non-definitional text.

respect to each of these definition sources. The distribution is rather skewed, with
the vast majority of definitions coming from Wikipedia (almost 90% of the input
corpus). We ran the relation extraction step (Section 5.1.1) on each subset of the
input corpus. Results, as shown in Table 5.8, are consistent with the composition
of the input corpus: by relying solely on Wikipedia’s first sentences, the extraction
algorithm discovered 98% of all the distinct relations identified across the whole
input corpus, and 93% of the total number of extracted instances. Wikidata provides
more than 1 million extractions (5% of the total) but definitions are rather short and
most of them (44.2%) generate only is-a relation instances. The remaining sources
(WordNet, Wiktionary, OmegaWiki) account for less than 2% of the extractions.

5.1.4.5 Impact of the Approach vs. Impact of the Data

DefIE is explicitly designed to target textual definitions. Hence, the result it
achieves is due to the mutual contribution of two key features: an OIE approach
and the use of definitional data. In order to decouple these two factors and study
their respective impacts, we carried out two experiments: in the first we applied
DefIE to a sample of non-definitional text; in the second we applied our closest
competitor, Patty, on the same definitional corpus used as input for DefIE in the
previous experiments.

Extraction from non-definitional text. We selected a random sample of
Wikipages from the English Wikipedia dump of October 2012. We processed
each sentence as in Section 5.1.1, and extracted instances of those relations produced
by DefIE in the original definitional setting; we then automatically filtered out those
instances where the arguments’ hypernyms did not agree with the semantic types of
the relation. We evaluated manually the quality of extractions on a sample of 100
items (as in Section 5.1.4.1) for both the full set of extracted instances and for the
subset of extractions from the top 100 scoring relations. Results are reported in Table
5.9: in both cases, precision figures show that relation quality drops consistently in
comparison to Section 5.1.4.1, suggesting that DefIE by itself is less accurate when
moving to more complex sentences (with, e.g., subordinate clauses or coreferences).
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# Relation instances # Relations # Edges
Patty (definitions) 3,212,065 41,593 4,785
Patty (Wikipedia) 15,802,946 1,631,531 20,339
DefIE 20,807,732 255,881 44,412

Table 5.10. Performance of Patty on definitional text.

Source Label Target
enzyme1

n catalyzes reaction1
n of chemical1n

album1
n recorded by rock group1

n

officier1n commanded brigade1
n of army unit1n

bridge1
n crosses over river1n

academic journal1n covers research1
n in science1

n

organization1
n has headquarters3n in city1

n

Table 5.11. Examples of labeled edges in BabelNet derived from DefIE.

Patty on textual definitions. We implemented a version of Patty based on
Babelfy for disambiguation. We then ran it on our corpus of BabelNet definitions
and compared the results against those originally obtained by Patty on the entire
Wikipedia corpus (cf. Section 3.2.1.2) and those obtained by DefIE. Figures are
reported in Table 5.10 in terms of number of extracted relation instances, distinct
relations and hypernym edges in the relation taxonomy, show that the dramatic
reduction of corpus size affects the support sets of Patty’s relations, worsening
both coverage and generalization capability.

5.1.4.6 Preliminary Study: Knowledge Resource Enrichment

As a preliminary study, we explored the application of DefIE to the enrichment
of existing resources. We focused on BabelNet as a case study. In BabelNet’s
semantic network, nodes representing concepts and entities are only connected via
lexicographic relationships from WordNet (hypernymy, meronymy, etc.), Wikidata
relations, or unlabeled edges derived from Wikipedia hyperlinks (cf. Section 2.1.3).
DefIE has the potential to provide useful information to both augment unlabeled
edges with labels and explicit semantic content, and create additional connections
based on novel semantic relations. Some examples are shown in Table 5.11. We
carried out a quantitative analysis using all disambiguated relations with at least
10 extracted instances. For each relation pattern r, we first examined the pair of
semantic classes associated with its type signatures and looked in BabelNet for an
unlabeled edge connecting the pair. Then we examined the whole set of extracted
relation instances in r and looked in BabelNet for an unlabeled edge connecting the
arguments as and ao. We found that only 27.7% of the concept pairs representing
relation type signatures are connected in BabelNet (as of version 2.5), and most of
these connections are unlabeled. By the same token, more than 4 million distinct
argument pairs (53.5%) do not share any edge in the semantic network and, among
those that do, less than 14% have a labeled relationship. These proportions suggest
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that DefIE’s relations (but, more in general, properly ‘semantified’ OIE-derived
relations) are able to enrich substantially the underlying knowledge resource in terms
of both connectivity and labeling of existing edges.

5.1.4.7 DefIE on SenseDefs

Since most of the pipeline of DefIE builds upon sense-level information, having high-
quality disambiguations when processing a textual definitions is of utmost importance:
poor context of particularly short definitions may introduce disambiguation errors
at preprocessing time, which tend to propagate and then reflect on the extraction
of both relations and relation instances. While the relation extraction stage, as
described in Section 5.1.1, assumes a generic input corpus of definitional knowledge,
and processes it definition by definition, in the experimental evaluation we relied,
instead, on the heterogeneous input corpus of definitions drawn from BabelNet
that we built to develop SenseDefs (Section 4.3). With SenseDefs we indeed
showed that exploiting the nature of the target corpus leads to a more structured
and effective disambiguation strategy. In order to investigate the impact of this
strategy on the relational knowledge extracted by DefIE, we adapted its pipeline
to consider SenseDefs as target corpus, and evaluated the results obtained at the
end of the pipeline in terms of quality of relation and relation instances.

We first selected a random sample of 150 textual definitions from the high-
coverage version of SenseDefs. We generated a baseline for the experiment by
discarding all disambiguated instances from the sample, and treating the sample
itself as an unstructured collection of textual definitions which we used as input for
DefIE, letting the original pipeline of the system perform the disambiguation step.
Then we carried out the same procedure using a modified implementation of DefIE
that takes into account SenseDefs’s disambiguated instances of a target definition
instead of disambiguating it from scratch. In both cases, we evaluated the output
in terms of both relations and relation instances. Following previous experiments
(Section 5.1.4), we employed two human judges, and performed the same evaluation
procedure described therein over the set of distinct relations extracted from the
sample, as well as the set of extracted relation instances.

Results reported in the top part of Table 5.12 show a slight but consistent
improvement on coverage that results from using SenseDefs in place of the original
corpus of definitions, in terms of extracted relations, extracted triples, and number
of glosses with at least one extraction. Similarly, SenseDefs also improves the
estimated precision of such extractions, as shown in the bottom part of Table 5.12.
The joint disambiguation of glosses across resources and languages enabled the
extraction of 6.5% additional instances from the sample (2.26 extractions on the
average from each definition) and, at the same time, increased the estimated precision
of relation and relation instances over the sample by about 1%.

Final Remarks. The gist of DefIE lies in its comprehensive syntactic-semantic
analysis targeted to textual definitions. In contrast to many competitors, where
syntactic constraints are necessary in order to keep precision high when dealing with
noisy data (cf. Section 3.2), DefIE shows comparable (or greater) performances by
exploiting a dense, noise-free definitional setting to generate a large OIE-derived
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# Definitions # Relation Instances # Relations
DefIE + SenseDefs 150 340 184
DefIE 146 318 171

Relation Relation Instances
DefIE + SenseDefs 0.872 0.780
DefIE 0.865 0.770

Table 5.12. Extractions (top) and precision (bottom) of DefIE on the evaluation sample.

knowledge base, in line with prominent OIE systems, derived from a much smaller
amount of input data. The target corpus of definitions used by DefIE comprises
less than 83 million tokens overall, while other OIE systems exploit massive corpora
like Wikipedia (typically more than 1.5 billion tokens), ClueWeb (more than 33
billion tokens), or the Web itself. Crucially, the experiments in Sections 5.1.4.4
and 5.1.4.5 demonstrate that the performances of DefIE result from the interplay
between a fully sense-aware quasi-OIE approach and a target text composed of
definitional knowledge: in fact, from the strict point of view of OIE, its extraction
pipeline is improvable in many ways. Rather than improving OIE per se, however,
our objective is that of showing how reframing OIE at the sense level can effectively
compensate the unavailability of large amounts of data. A clear example of this is
given by relation taxonomization: while the approach of Patty is that of discovering
subsumptions between semantic relations by looking at the shape of their support
sets (Section 3.2.1), DefIE enforces a very restrictive assumption and focuses on
very basic cases where the explicit semantic characterization of a relation pattern
can be leveraged (Section 5.1.3). Hence, the accuracy of the former depends crucially
on having a sufficient number of extractions for a given relation, whereas the latter
works perfectly even with very rare relation patterns and depends, instead, on the
quality of disambiguation. On the other hand, however, the latter also relies on the
well-formed nature of definitional text, whereas in open text the restrictiveness of
its assumption could significantly hinder recall.

5.2 KB-Unify: Sense-Aware Knowledge Base Unifica-
tion

Another important limitation of most OIE systems to date is the lack of interop-
erability. As we examined in Section 2.3.2, these systems can be very different in
nature; still, they have been developed with their own type inventories, and no
portable ontological structure. This issue is actually broader than OIE: distantly
supervised approaches (Mintz et al., 2009; Riedel et al., 2010, 2013; Surdeanu et al.,
2012; Fan et al., 2014), where noisy extractions are complemented with structured
knowledge, and systems like Nell (Carlson et al., 2010), which combines a hand-
crafted taxonomy of entities and relations with self-supervised large-scale extraction
from the Web, require additional processing for linking and integration (Dutta et al.,
2014). Even Semantically Informed OIE approaches, like Patty and WiSeNet
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(Section 3.2), produce their own, isolated OIE-derived knowledge bases. In order to
discover whether two OIE systems are able to extract a specific kind of semantic
relation (e.g. ‘is a’, or ‘located in’), as we did in the experimental evaluation of
DefIE (Section 5.1.4.1), manual inspection is required, even if the source textual
corpus used as input was the same for the two systems.

This is also why, in recent years, a research thread focused on Knowledge Base
Completion (Nickel et al., 2012; Bordes et al., 2013; West et al., 2014) has emerged,
where the aim is to integrate new knowledge into an already existing knowledge
base (KB). However, beside some notable exceptions (Section 2.3.3), the majority
of integration approaches nowadays are not designed to deal with many different
resources at the same time.

Integrating Knowledge Bases. On the other hand, we discussed in Chapter 1
how the integration of knowledge drawn from different sources has received much
attention over the last decade (Gurevych et al., 2016). However, while great effort
has been put into aligning knowledge at the concept level, most approaches do not
tackle the problem of integrating heterogeneous knowledge at the relation level,
nor do they exploit effectively the huge amount of information harvested with
OIE systems, even when this information is unambiguously linked to a structured
resource (cf. Section 3.2). Yet, as the number of knowledge resources increases, some
approaches have started addressing the task of aligning KBs: Dutta et al. (2014)
describe a method for linking arguments in NELL triples to DBpedia by combining
First Order Logic and Markov Networks; Grycner and Weikum (2014) semantify
PATTY’s pattern synsets and connect them to WordNet verbs; Lin et al. (2012)
propose a method to propagate Freebase types across ReVerb and deal with the
problem of unlinkable entities. All these approaches achieve very competitive results
in their respective settings but, like KB completion approaches, they limit the task
to one-to-one alignments. A few contributions have also tried to broaden the scope
and include different resources at the same time: Riedel et al. (2013) propose a
universal schema that integrates structured data with OIE data by learning latent
feature vectors for entities and relations (Section 2.3.3); Knowledge Vault (Dong
et al., 2014) uses a graph-based probabilistic framework where prior knowledge from
existing resources (e.g. Freebase) improves Web extractions by predicting their
reliability. Finally, a recent trend of research focuses on learning embedding models
for structured knowledge and their application to tasks like relation extraction
and KB completion (Socher et al., 2013; Weston et al., 2013; Bordes et al., 2013;
Neelakantan et al., 2015).

Motivation. The latter integration approaches described above are very effective
but still unfit to our scenario, as they are inherently based on surface-text techniques;
in accordance with the objectives of this thesis, our aim is instead to bring Lexical
Semantics into play. In this respect, sense-aware OIE approaches have shown their
benefits over surface-text extraction, especially when we restrict the target to well-
formed definitional text (Section 5.1). Following this thread, in the present section
we address the issue of merging and harmonizing KBs (with a special focus on
OIE-derived KBs) at the sense level: we aim at showing that a sense-aware strategy
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enables to interconnect not only lexical knowledge but also relational knowledge,
even when drawn from a set of very heterogeneous KBs. The approach we propose,
named KB-Unify (Delli Bovi et al., 2015a),12, is based on the key idea of bringing
together knowledge from an arbitrary number of OIE systems, regardless of whether
these systems provide links to some general-purpose inventory, come with their own
ad-hoc structure, or have no structure at all. Knowledge from each source, in the
form of 〈subject, predicate, object〉 triples, is disambiguated and linked to the sense
inventory of BabelNet (Section 2.1.3). This enables us to discover alignments at the
sense level between relations from different KBs, and to generate a unified, fully
disambiguated KB of entities and semantic relations. We detail the pipeline of
KB-Unify in Section 5.2.1; then, in Section 5.2.2 we test KB-Unify experimentally
on a set of four heterogeneous KBs.

5.2.1 Disambiguating and Unifying Knowledge Bases

KB-Unify takes as input a set of KBs K = {KB1, ...,KBn} and outputs a single,
unified and fully disambiguated KB, denoted as KB∗.13 Depending on the nature of
each KBi, entities in Ei might be disambiguated and linked to an external inventory
(e.g. the argument Washington linked to the Wikipage George Washington), or
unlinked and only available as ambiguous mentions. We can thus partition K into a
subset of linked resources KD, and one of unlinked resources KU . In order to align
very different and heterogeneous KBs at the semantic level, KB-Unify exploits:

• A unified sense inventory S, which acts as a superset for the inventories of
individual KBs. We choose BabelNet for this purpose: by merging complemen-
tary knowledge from different resources (e.g. Wikipedia, WordNet, Wikidata
and Wiktionary, among others), BabelNet provides a wide coverage of enti-
ties and concepts whilst at the same time enabling convenient inter-resource
mappings for KBi in KD. For instance, each Wikipage (or Wikidata item)
has a corresponding synset in BabelNet, which enables a one-to-one mapping
between BabelNet’s synsets and entries in, e.g., DBpedia or Freebase (cf.
Section 2.1.3);

• A vector space model VS that enables a semantic representation for every item in
S. Current distributional models, like word embeddings (Mikolov et al., 2013c),
are not suitable to our setting: they are constrained to surface word forms,
and hence they inherently retain ambiguity of polysemous words and entity
mentions. We thus leverage SensEmbed (Iacobacci et al., 2015), a sense-level
approach to embeddings. SensEmbed is trained on a large BabelNet-annotated
corpus and produces continuous representations for individual word senses
(sense embeddings), according to the sense inventory of BabelNet (cf. Section
2.2.3.2).

Figure 5.4 illustrates the workflow of KB-Unify’s unification approach. Entities
coming from any KBi ∈ KD can be directly (and unambiguously) mapped to the
corresponding entries in S via BabelNet inter-resource linking (Figure 5.4a): in

12http://lcl.uniroma1.it/kb-unify
13Throughout this section we refer to the definition of KB specified in Section 2.4.

http://lcl.uniroma1.it/kb-unify
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Figure 5.4. Unification algorithm workflow.

Figure 5.5. Disambiguation algorithm workflow.

the above example, the argument Washington linked to the Wikipage George
Washington is included in the BabelNet synset bn:00040239n with the word
sense Washington4

n. In contrast, unlinked (and potentially ambiguous) arguments
need an explicit disambiguation step (Figure 5.4b) connecting them to appropriate
entries, i.e. synsets, in S: this is the case, in the above example, for the ambiguous
argument Washington that has to be linked to either the president, the city or the
state. Therefore, our approach comprises two successive stages:

• A disambiguation stage, where all KBi ∈ K are linked to S, either by
inter-resource mapping (Figure 5.4a) or disambiguation (Figure 5.4b, Sections
5.2.1.1-5.2.1.3), and all Ei are merged into a unified set of entities E∗. As a
result of this process we obtain a set KS comprising all the KBs in K redefined
using the common sense inventory S;

• An alignment stage (Section 5.2.1.4, Figure 5.4c) where, for each pair of
KBs KBS

i ,KB
S
j ∈ KS , we compare every relation pair 〈ri, rj〉, ri ∈ RS

i and
rj ∈ RS

j , in order to identify cross-resource alignments and merge relations
sharing equivalent semantics into relation clusters (relation synsets). This
process yields a unified set of relation synsets R∗. The overall result is
KB∗ = 〈E∗, R∗, T ∗〉, where T ∗ is the set of all disambiguated triples redefined
over E∗ and R∗.

Disambiguating a Knowledge Base. In the disambiguation phase (Figure 5.4a
and b), all KBi ∈ KU are linked to the unified sense inventory S and added to
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Figure 5.6. Example of disambiguation for high-confidence argument pairs with the relation
triple 〈Armstrong, works for, NASA〉. For clarity, only the most prominent BabelNet
senses for both arguments are shown.

the set of redefined KBs KS . As explained before, while each KB in KD can be
unambiguously redefined via BabelNet inter-resource links and added to KS , KBs in
KU require an explicit disambiguation step. Given KBi ∈ KU , our disambiguation
module (Figure 5.4b) takes as input its set of unlinked triples Ti and outputs a set
TS

i ⊆ Ti of disambiguated triples with subject-object pairs linked to S. The triples
in TS

i , together with their corresponding entity sets and relation sets, constitute the
redefined KBS

i which is then added to KS . However, disambiguating the content
of KB (i.e. a set of relation instances) is not a trivial task: as we show in Sections
4.2 and 4.3, off-the-shelf disambiguation systems, including knowledge-based ones,
require a rich and meaningful context to provide high quality disambiguations. Hence,
applying a straightforward approach that disambiguates every triple in isolation
might lead to very imprecise results, due to the lack of available context for each
individual triple. We thus devise a disambiguation strategy, illustrated in Figure
5.5, that comprises three successive steps:

1. We identify a set of high-confidence seeds from Ti (Section 5.2.1.1), i.e. triples
〈ed, r, eg〉 where subject ed and object eg are highly semantically related, and
disambiguate them using the senses that maximize their similarity in VS ;

2. We use the seeds to generate a ranking of the relations in Ri according to their
degree of specificity (Section 5.2.1.2). We represent each r ∈ Ri in VS and
assign higher specificity to relations whose arguments are closer in VS ;

3. We finally disambiguate the remaining non-seed triples in Ti (Section 5.2.1.3)
starting from the most specific relations, and jointly using all participating
argument pairs as context.

5.2.1.1 Identifying Seed Arguments

The first stage of the disambiguation pipeline aims at extracting reliable seeds from Ti,
i.e. triples 〈ed, r, eg〉 where subject ed and object eg can be confidently disambiguated
without additional context. In order to do this we leverage the embeddings associated
with each candidate sense for ed and eg. We consider all the available senses for
both ed and eg in S, namely sd = {s1

d, ..., s
m
d } and sg = {s1

g, ..., s
m′
g }, and the
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corresponding sets of sense embeddings vd = {v1
d, ..., v

m
d } and vg = {v1

g , ..., v
m′
g }. We

then select, among all possible pairs of senses, the pair 〈s∗d, s∗g〉 that maximizes the
cosine similarity between the corresponding embeddings 〈v∗d, v∗g〉:

〈v∗d, v∗g〉 = argmaxvd∈vd, vg∈vg

vd · vg

‖vd‖ ‖vg‖
(5.3)

For each disambiguated triple 〈s∗d, r, s∗g〉, the cosine similarity value associated with
〈v∗d, v∗g〉 represents its disambiguation confidence ζdis. We rank all such triples
according to their confidence, and select those above a pre-specified confidence
threshold δdis. The underlying assumption is that, for high-confidence subject-object
pairs, the embeddings associated with the correct senses s∗d and s∗g will be closest
in VS compared to any other candidate pair. Intuitively, the more the relation r
between ed and eg is semantically well defined, the more this assumption is justified.
As an example, consider the triple 〈Armstrong, works for, NASA〉 in Figure 5.6:
among all the possible senses for Armstrong (the astronaut Neil Armstrong, the
jazz musician Louis Armstrong the cyclist Lance Armstrong, etc.) and NASA (the
space agency, the racing organization, the Swedish band, etc.) we expect the vectors
corresponding to the astronaut sense of Armstrong and to the space agency sense of
NASA to be closest in the vector space model VS .

5.2.1.2 Relation Specificity Ranking

The assumption that, given an ambiguous subject-object pair, correct argument
senses are the closest pair in the vector space (Section 5.2.1.1) is easily verifiable for
general relations (e.g. ‘is a’, ‘is part of’). However, as a semantic relation becomes
specific, its arguments are less guaranteed to be semantically related (e.g. ‘is a
professor in the university of’) and a disambiguation approach based exclusively on
similarity is prone to errors. On the other hand, specific relations tend to narrow
down the scope of possible entity types occurring as subject and object. In the above
example, ‘is a professor in the university of’ requires entity pairs with professors as
subjects, and cities (or states) as objects. Our disambiguation strategy should thus
vary according to the specificity of the relations taken into account. In order to
consider this observation in our disambiguation pipeline, we first need to estimate
the degree of specificity for each relation in the relation set Ri of the target KB
to be disambiguated. Given Ri and a set of seeds from the previous step (Section
5.2.1.1), we apply a specificity ranking policy and sort relations in Ri from the most
general to the most specific. We compute the generality Gen(r) of a given relation
r by looking at the spatial dispersion of the sense embeddings associated with its
seed subjects and objects. Let vD (vG) be the set of sense embeddings associated
with the domain (range) seed arguments of r. For both vD and vG, we compute the
corresponding centroid vectors µD and µG as:

µk = 1
|vk|

∑
v∈vk

v

‖v‖
, k ∈ {D,G} (5.4)

Then, the variances σ2
D and σ2

G are given by:

σ2
k = 1
|vk|

∑
v∈vk

(1− cos (v, µk))2 , k ∈ {D,G} (5.5)
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We finally compute Gen(r) as the average of σ2
D and σ2

G. The result of this procedure
is a relation specificity ranking that associates each relation r with its generality
score Gen(r). Intuitively, we expect more general relations to show higher variance
(hence higher Gen(r)), as their subjects and objects are likely to be rather disperse
throughout the vector space; instead, arguments of very specific relations are more
likely to be clustered together in compact regions, yielding lower values of Gen(r).

5.2.1.3 Disambiguation with Relation Context

In the third step, both the specificity ranking and the seeds are exploited to dis-
ambiguate the remaining triples in Ti. To do this we leverage Babelfy (Section
2.2.2.3). As we observed in Section 5.2.1.2, specific relations impose constraints on
their subject-object types and tend to show compact domains and ranges in the
vector space. Therefore, given a triple 〈ed, r, eg〉, knowing that r is specific enables
us to put together all the triples in Ti where r occurs, and use them to provide an
enriched and meaningful context for disambiguation. If r is general, instead, its
subject-object types are less constrained, and additional triples do not guarantee to
provide semantically related context (on the contrary, they could introduce noise).

At this third and final stage, the disambiguation pipeline takes as input the set
of triples Ti, along with the associated disambiguation seeds (Section 5.2.1.1), the
specificity ranking (Section 5.2.1.2), and a specificity threshold δspec. Ti is first par-
titioned into two subsets: T spec

i , comprising all the triples for which Gen(r) < δspec,
and T gen

i = Ti \ T spec
i . We then employ two different disambiguation strategies:

• For each distinct relation r occurring in T spec
i , we first retrieve the subset

T spec
i,r ⊂ T spec

i of triples where r occurs, and then disambiguate T spec
i,r as a

whole with Babelfy. For each triple in T spec
i,r , context is provided by all the

remaining triples along with the disambiguated seeds extracted for r.

• We disambiguate the remaining triples in T gen
i one by one in isolation with

Babelfy, providing for each triple only the predicate string r as additional
context.

5.2.1.4 Cross-Resource Relation Alignment

After disambiguation (Figure 5.4a and b) each KB in K is linked to the unified
sense inventory S and added to KS . However, each KBS

i ∈ KS still provides its
own relation set RS

i ⊆ Ri. Instead, in the unified KB∗, relations with equivalent
semantics should be considered as part of a single relation synset even when they
come from different KBs. Therefore, at this stage, an alignment procedure is applied
to identify pairs of relations from different KBs having equivalent semantics. We
exploit the fact that each relation r is now defined over entity pairs linked to S,
and we generate a semantic representation of r in the vector space VS based on
the centroid vectors of its domain and range. Due to representing the semantics
of relations on this common ground, we can compare them by computing their
domain and range similarity in VS . We first consider each KBS

i ∈ KS and, for each
relation ri in RS

i , we compute the corresponding centroid vectors µri
d and µri

g using
formula (5.4). Then, for each pair of KBs 〈KBS

i ,KB
S
j 〉 ∈ KS ×KS , we compare all
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KU KD

Nell ReVerb Patty WiSeNet
# Relations 298 1,299,844 1,631,531 245,935
# Triples 2,245,050 14,728,268 15,802,946 2,271,807
# Entities 1,996,021 3,327,425 1,087,907 1,636,307

Table 5.13. Statistics on the input KBs.

relation pairs 〈ri, rj〉 ∈ RS
i ×RS

j by computing the cosine similarity between domain
centroids sD and between range centroids sG:

sk = µri
k · µ

rj

k

‖µri
k ‖ ‖µ

rj

k ‖
(5.6)

where µr
k denotes the centroid associated with relation r and k ∈ {D,G}. The

average of sD and sG gives us an alignment confidence ζalign for the pair 〈ri, rj〉. If
confidence is above a given threshold δalign then ri and rj are merged into the same
relation synset. Relations for which no alignment is found are turned into singleton
relation synsets. As a result of this alignment procedure we obtain the unified set of
relations R∗.

5.2.2 Experimental Evaluation

We carried out an extensive experimental evaluation to assess the effectiveness of
KB-Unify’s unification pipeline. In particular, we evaluate the disambiguation
pipeline in Section 5.2.2.1; then, in Section 5.2.2.2 we test our assumption on relation
specificity on a manually verified sample of specificity rankings, and in Section 5.2.2.3
we evaluate the cross-resource alignment step of Section 5.2.1.4. The input set of
KBs for this experimental evaluation was the following:

• We selected Patty (Section 3.2.1) and WiSeNet (Section 3.2.2) as linked
resources. We used Patty with Freebase types and pattern synsets derived
from Wikipedia, and WiSeNet 2.0 with Wikipedia relational phrases;

• We selected Nell (Carlson et al., 2010) and ReVerb (Fader et al., 2011) as
unlinked resources. We used KB beliefs updated to November 2014 for the
former, and the set of relation instances from ClueWeb09 for the latter.

Comparative statistics in Table 5.13 show that the input KBs are rather different in
nature: Nell is based on 298 predefined relations and contains beliefs for about 2
million entities. The distribution of entities over relations is however very skewed,
with 80.33% of the triples being instances of the ‘generalizations’ relationship. In
contrast, ReVerb contains a highly sparse relation set (1,299,844 distinct relations)
and more than 3 million distinct entities. Patty features the largest (and, together
with WiSeNet, sparsest) set of triples, with 1,631,531 distinct relations and less
than 10 triples per relation on average.
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Figure 5.7. Precision (left) and coverage (right) of disambiguated seeds at different values
of δdis for (a) the whole set of triples in Patty and (b) the subset of ambiguous triples.
Green circles represent the different values of δdis considered.

5.2.2.1 Evaluating Knowledge Base Disambiguation

We tested KB-Unify’s disambiguation pipeline experimentally in terms of both
disambiguated seed quality and overall disambiguation performance. To this aim,
we created a development set by extracting a subset of 6 million triples from the
largest linked KB in our experimental setup, i.e. Patty. Triples in Patty are
automatically linked to YAGO, which is in turn linked to WordNet and DBpedia.
Since both resources are also linked by BabelNet, we mapped the original triples to
the BabelNet sense inventory and used them to tune our disambiguation module.
We also provide two baseline approaches: (1) direct disambiguation on individual
triples with Babelfy alone (without the seeds) and (2) direct disambiguation of
the seeds only (without Babelfy). We tuned our disambiguation algorithm by
studying the quality of the disambiguated seeds extracted from the surface-text
triples of Patty. Figure 5.7 shows precision and coverage for increasing values of the
confidence threshold δdis. We computed precision by checking each disambiguated
seed against the corresponding linked triple in the development set, and coverage as
the ratio of covered triples. We analyzed results for both the whole set of triples in
Patty (Fig. 5.7a) and the subset of ambiguous triples (Fig. 5.7b), i.e. those triples
whose subjects and objects have at least two candidate senses each in the BabelNet
sense inventory. In both cases, precision of disambiguated seeds increases rapidly
with δdis, stabilizing above 90% with δdis > 0.25. Coverage displays the opposite
behavior, decreasing exponentially with more confident outcomes, from 6 million
triples to less than a thousand (for seeds with confidence δdis > 0.95). As a result,
we chose δdis = 0.25 as optimal threshold value for the subsequent experiments.
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SensEmbed Baseline
ζdis 0.5-0.7 0.7-0.9 0.9-1.0 0.5-0.7 0.7-0.9 0.9-1.0

Patty .980 .980 1.000 .793 .780 1.000
WiSeNet .958 .960 .973 .726 .786 .791

Nell .955 .995 1.000 .800 .770 .885
ReVerb .930 .940 .950 .775 .725 .920

Table 5.14. Disambiguation precision for all KB.

δspec = 0.8 δspec = 0.5 δspec = 0.3
all only seeds all only seeds all only seeds

Patty 62.15 26.60 52.49 24.06 40.75 21.41
WiSeNet 60.00 37.46 54.44 22.26 53.58 16.62

Nell 76.97 62.98 50.95 20.71 44.70 4.36
ReVerb 41.20 38.57 25.14 23.70 13.37 12.75

Table 5.15. Coverage results (%) for all KBs.

Manual Evaluation. In addition, we manually evaluated the disambiguated seeds
extracted from both linked KBs (Patty and WiSeNet) and unlinked KBs (Nell
and ReVerb). For each KB, we extracted up to three random samples of 150 triples
according to different levels of confidence ζdis: the first sample included extraction
with 0.5 ≤ ζdis < 0.7, the second with 0.7 ≤ ζdis < 0.9, and the third with ζdis ≥ 0.9.
Each sample was evaluated by two human annotators: for each disambiguated
triple 〈ed, r, eg〉, we presented the annotators with the surface-text arguments ed, eg

and the relation string r, along with the two Babel synsets corresponding to the
disambiguated arguments s∗d, s∗g, and we asked whether the association of each subject
and object with the proposed Babel synset was correct. We then estimated precision
as the average proportion of correctly disambiguated triples. For each sample we
compared disambiguation precision using SensEmbed, as in Section 5.2.1.1, against
the first baseline with Babelfy alone. Results, reported in Table 5.14, show that
our approach consistently outperforms the baseline and provides high precision over
all samples and KBs. We then evaluated the overall disambiguation output after
specificity ranking (Section 5.2.1.2) and disambiguation with relation context using
Babelfy (Section 5.2.1.3). We analyzed three configurations of the disambiguation
pipeline, namely δspec ∈ {0.8, 0.5, 0.3}. We ran the algorithm over both linked and
unlinked KBs of our experimental setup, and computed the coverage for each KB as
the overall ratio of disambiguated triples. Results are reported in Table 5.15 and
compared to the coverage obtained from the disambiguated seeds only: context-aware
disambiguation substantially increases coverage over all KBs. Table 5.15 also shows
that a restrictive δspec results in lower coverage values, due to the increased number
of triples disambiguated without context.

Automatic Evaluation. We also evaluated the quality of disambiguation on a
publicly available dataset (Dutta et al., 2014). This dataset provides a gold standard
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KB-Unify Dutta et al. Baseline
all only seeds (α = 0.5)

Precision .852 .957 .931 .749
Recall .875 .117 .799 .608
F-score .864 .197 .857 .671

Table 5.16. Disambiguation results over the gold standard of Dutta et al. (2014).

of 1200 triples from Nell whose subjects and objects are manually assigned a proper
DBpedia URI. We again used BabelNet’s inter-resource links to express DBpedia
annotations with KB-Unify’s sense inventory and then checked, for each annotated
triple in the dataset, the corresponding triple in the disambiguated version of Nell
with δdis = 0.25 and δspec = 0.8. We then repeated this process considering only the
disambiguated seeds instead of the whole disambiguation pipeline (second baseline).
In line with Dutta et al. (2014), we computed precision, recall and F-score for each
setting. Results are reported in Table 5.16 and compared against those of Dutta
et al. (2014) and against our first baseline with Babelfy alone. KB-Unify achieves
the best result, showing that a baseline based on straightforward disambiguation
is negatively affected by the lack of context for each individual triple. In contrast,
the baseline approach that relies only on the disambiguated seeds affords very high
precision, but suffers from dramatically lower coverage.

5.2.2.2 Evaluating Specificity Ranking

We evaluated the specificity ranking (Section 5.2.1.2) generated by KB-Unify for
all KBs of the experimental setup. First of all, we empirically validated our scoring
function Gen(r) over each resource: for each relation we computed the average
similarity among all its domain arguments s̄D and among all its range arguments
s̄G.14 We then plotted the average s̄ of s̄D and s̄G against Gen(r) for each relation
r (Figure 5.8). The overall trend shown by the four plots of Figure 5.8 suggests
that, as observed in Section 5.2.1.2, the average similarity among domain and range
arguments decreases for increasing values of Gen(r), indicating that more general
relations allow less semantically constrained subject-object types.

We then used human judgment to assess the quality of our specificity rankings.
First, each ranking was split into four quartiles, and two human annotators were
presented with a sample from the top quartile (i.e. a relation falling into the most
general category) and a sample from the bottom quartile (i.e. a relation falling into
the most specific category). We shuffled each relation pair, showed it to our human
judges, and then asked which of the two relations they considered to be the more
specific. Ranking precision was computed by considering those pairs where human
choice agreed with the ranking. In addition, we also considered the agreement with
a randomly shuffled version of each ranking, as a baseline comparison. Finally, we
computed inter-annotator agreement on each ranking (except for Nell, due to the

14For both domain and range of r, we considered the disambiguated seed arguments from the
previous step, and computed the cosine similarities of the corresponding sense embeddings pairwise;
we then calculated the average of these similarities over the whole set.
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Figure 5.8. Average argument similarity against Gen(r) for all the input KBs in the
experimental setup.

Nell ReVerb Patty WiSeNet
Precision Gen(r) .660 .715 .625 .750
Precision (random) .504 .483 .525 .497
Cohen’s kappa - .430 .620 .600

Table 5.17. Specificity ranking evaluation.

small sample size) with Cohen’s kappa (Cohen, 1960). Results for each ranking and
baseline are reported in Table 5.17, while some examples of general and specific
relations for each KB are shown in Table 5.18. Disagreement between human choice
and ranking is higher in Nell (where the set of relations is quite small compared
to other KBs) and in Patty (due to a sparser set of relations, biased towards very
specific patterns). Inter-annotator agreement is instead lower for ReVerb, where
unconstrained Web harvesting often results in ambiguous relation strings.

5.2.2.3 Evaluating Relation Alignment

Due to the lack of available gold standards and test-beds, we evaluated the cross-
resource relation alignment procedure of KB-Unify (Section 5.2.1.4) by exploiting
human judgment once again. Given the results of Section 5.2.2.1, we considered the
top 10k frequent relations for each KB and ran the algorithm over each possible pair
of KBs with two different configurations: δalign = 0.7 and δalign = 0.9. From each
pair of KBs 〈KBi,KBj〉 we obtained a list of candidate alignments, i.e. pairs of
relations 〈ri, rj〉 where ri ∈ KBi and rj ∈ KBj . From each list we then extracted a
random sample of 150 candidate alignments. We showed each alignment15 〈ri, rj〉 to

15In the case of relation synsets, such as Patty and WiSeNet, we selected up to three random
relation phrases from each synset.
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Nell

High Gen(r) agent created
at location

Low Gen(r) person in economic sector
restaurant in city

ReVerb

High Gen(r) is for
is in

Low Gen(r) enter Taurus in
carry oxygen to

Patty

High Gen(r) located in
later served to

Low Gen(r) starting pitcher who played
league coach for

WiSeNet

High Gen(r) include
is a type of

Low Gen(r) lobe-finned fish lived during
took part in the Eurovision contest

Table 5.18. Examples of general and specific relations for all KBs.

two human annotators, and asked whether ri and rj represented the same relation.
The problem was presented in terms of paraphrasing: for each pair, we asked
whether exchanging ri and rj within a sentence would have changed that sentence’s
meaning. In line with Section 5.2.2.2 we computed precision based on the agreement
between human choice and automatic alignments. Results are reported in Table
5.19. Our alignment algorithm shows the highest precision in the pairings with
δalign = 0.9. Alignment reliability decreases for lower δalign, as relation pairs where
ri is a generalization of rj (or vice versa) tend to have similar centroids in VS . The
same holds for pairs where ri is the negation of rj (or vice versa). Even though
one could certainly utilize measures based on relation string similarity (Dutta et al.,
2015) to reduce wrong alignments in these cases, by relying on a purely semantic
criterion we removed any prior assumption on the format of input KBs. Some

Patty-WiSeNet Patty-ReVerb Nell-ReVerb
δalign 0.7 0.9 0.7 0.9 0.7 0.9

Prec. .68 .80 .58 .74 .61 .75
# Align. 128k 1.2k 47k 643 2.6k 88

Patty-Nell WiSeNet-Nell WiSeNet-ReVerb
δalign 0.7 0.9 0.7 0.9 0.7 0.9

Prec. .66 1.00 .70 .84 .59 .87
# Align. 2.6k 57 381 34 9.9k 169

Table 5.19. Cross-resource alignment evaluation.
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Patty-WiSeNet ζalign

portrayed ’s character 0.84
debuted in first appeared in 0.86

Patty-ReVerb ζalign

language in is spoken in 0.81
mostly known for plays the role of 0.70

Nell-ReVerb ζalign

bookwriter is a novel by 0.88
personleadscity is the mayor of 0.60

Nell-Patty ζalign

worksfor was hired by 0.72
riveremptiesintoriver tributary of 0.89

Nell-WiSeNet ζalign

animaleatfood feeds on 0.72
teamhomestadium play their home games at 0.88

ReVerb-WiSeNet ζalign

has a selection of offers 0.82
had grown up in was born and raised in 0.85

Table 5.20. Examples of cross-resource relation alignments and corresponding δalign.

examples of alignments are shown in Table 5.20.
To conclude, we report statistics regarding the unified KB∗ produced from the

initial set of resources in our experimental setup. We validated our thresholds for
high-precision, and selected δdis = 0.25, δspec = 0.8 and δalign = 0.8. Our alignment
algorithm produced 56,673 confident alignments, out of which 2,207 relation synsets
were derived, with an average size of 16.82 individual relations per synset. As
a result, we obtained a unified KB∗ comprising 24,221,856 disambiguated triples
defined over 1,952,716 distinct entities and 2,675,296 distinct relations.

Final Remarks. The rationale behind KB-Unify is that of bringing the semantic
integration of lexical knowledge, pioneered by large-scale knowledge resources like
BabelNet (Section 2.1.3) to the next level, by extending this approach and applying
it to relational knowledge. To this aim, a fundamental first step is having an array
of input KBs where relations arguments are disambiguated and linked to the same
sense inventory, which requires us to design a disambiguation module that deals with
OIE-derived knowledge extracted at the level of surface text. Despite the inherent
difficulty of the disambiguation target (i.e. a set of possibly unrelated relation triples),
we showed that devising a strategy to provide a richer and meaningful disambiguation
context is key to obtain high quality disambiguation, a methodology that proved
his effectiveness for both EuroSense (Section 4.2) and SenseDefs (Section 4.3).
Indeed, KB-Unify achieves state-of-the-art disambiguation in our experimental
setting (Section 5.2.2.1), and provides a general, resource-independent representation
of semantic relations, suitable for any kind of KB. In this respect, the generality of
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flexibility of KB-Unify is another prominent feature of our approach, even if, as we
show in Section 5.2.2.3, it might lead to suboptimal relation alignments when the
support set of a relation is not large enough.16 On the other hand, exploiting directly
the semantic characterization of a relation phrase would lead, in our setting, to a loss
of generality, because it assumes each and every relation to be somehow anchored
to a textual representation. This is however not the case for many non-open IE
systems, including Nell, where the relation inventory is hand-crafted by humans
and not necessarily bound to surface text: since KB-Unify models the semantics of
a relation using its arguments only, it is capable of handling this kind of relations
seamlessly. Of course, there is still room for improvement in many (if not all) stages
of the KB unification pipeline. For instance, one relevant aspect that we left mostly
underinvestigated is the evaluation of the relation alignment step. Among other
experiments, a thorough comparison between KB-Unify’s purely distributional
alignment module and, e.g. Universal Schema approaches (cf. Section 2.3.3) where
relation alignments can be seen as implicitly learnt from the training data, is out of
the scope of the present section,17 but would constitute an important step forward for
assessing the competitiveness of KB-Unify as a knowledge integration framework.

5.3 TaxoEmbed: Sense-Aware Hypernym Discovery

As we discussed in Section 5.2.2, one of the key design choices of KB-Unify is the
generality of its unification approach, which makes no assumptions on the shape
and features of a semantic relation inside a target KB, and hence can be seamlessly
applied to ‘closed’ IE systems or, for that matter, manually curated knowledge
resources (where semantic relations, pre-specified by human experts, are often not
tied to any textual realization). In the present section we consider an IE scenario
that lies at the opposite end of the spectrum compared to OIE: hypernym discovery,
which consists in the extraction of only one specific kind of semantic relation, i.e.
the hypernymic (‘is a’) relation.18

Why Hypernyms? Hypernymy, i.e. the capability for generalization, lies at
the core of human cognition. Unsurprisingly, identifying hypernymic relations
has been pursued in NLP for approximately the last two decades, as successfully
identifying this lexical relation contributes to improvements in Question Answering
applications (Prager et al., 2000; Yahya et al., 2013) and Textual Entailment or
Semantic Search systems (Hoffart et al., 2014; Roller and Erk, 2016). Moreover,

16Using only the semantic characterization of the arguments to ontologize relation is also a feature
of Patty, and we showed that it leads to sparser results when compared with approaches that
instead leverage directly the semantic characterization of a relation pattern (cf. Section 5.1).

17Beside its supervised nature, the Universal Schema paradigm focuses on modeling asymmetric
implicature between relations rather than explicit (and symmetric) relation alignment, as in KB-
Unify. This makes a direct and fair comparison difficult at this stage.

18In most of the literature on the subject, including standard evaluation benchmarks (Bordea
et al., 2015, 2016), this task has actually been formulated as hypernym detection, i.e. the binary
task consisting of, given a pair of words, deciding whether a hypernymic relation holds between
them. The alleged simplification of this setting (Levy et al., 2015b; Camacho Collados, 2017) has
led to reformulate the problem as hypernym discovery, i.e. given the search space of a domain’s
vocabulary, and given an input concept, discover its best (set of) candidate hypernyms.
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hypernymic relations are the backbone of almost any ontology, semantic network
and taxonomy, including all the structured knowledge resources we examined in
Section 2.1, and represent a key concern also for general-purpose IE systems: for
instance, Nell (Carlson et al., 2010) not only relies crucially on hand-crafted
taxonomized concepts and their relations within its learning process, but also
extracts and encodes a large amount of is-a relation triples among its confident
beliefs (cf. Section 5.2.2). Similarly, pattern-based OIE systems, including Patty
(Section 3.2.1), WiSeNet (Section 3.2.2), and DefIE (Section 5.1), are capable of
implicitly extracting hypernyms; however, as we discussed at the beginning of Section
5.2, finding a semantic relation that models hypernymy inside an OIE-derived KB
necessarily requires manual inspection. In the same section, on the other hand, we
also showed with KB-Unify that using semantic analysis explicitly provides a way
to disambiguate, harmonize and unify OIE-derived knowledge, thereby making it
better expendable in downstream applications.

Hypernymy in the Vector Space. Extracting hypernymic relations is the first
and foremost step of taxonomy learning approaches. Apart from taxonomy learning,
on which the scientific literature is broad and comprehensive (Wang et al., 2017),
work stemming from distributional semantics has put forward a notion of linguistic
regularities found in vector representations such as word embeddings (Mikolov
et al., 2013c). In this area, supervised approaches, arguably the most popular
nowadays, learn a feature vector between term-hypernym vector pairs and train
classifiers to predict hypernymic relations (Carmona and Riedel, 2017). These pairs
may be represented either as a concatenation of both vectors (Baroni et al., 2012),
difference (Roller et al., 2014), dot-product (Mikolov et al., 2013b), or including
additional linguistic information for LSTM-based learning (Shwartz et al., 2016).
These approaches, however, tend to be less precise and seem to perform best in
discovering broader semantic relations (Shwartz et al., 2016): a strategy to overcome
this is proposed by Fu et al. (2014), where the fundamental idea is that of learning
a hypernymic transformation matrix over a word embeddings space. Fu et al. (2014)
show empirically that the hypernymic relation that holds for the pair 〈dragonfly,
insect〉 differs from the one of, e.g., 〈carpenter, person〉. Their system addresses
this discrepancy via k-means clustering on the input space (tuned using a held-out
development set), and then learns a piece-wise linear projection for each cluster.

Motivation. All the embedding approaches described above operate inherently at
the surface level. This is partly due to the way evaluation is conducted, which is often
limited to very specific domains with no integrative potential, such as taxonomies in
food, science or equipment from Bordea et al. (2015), or restricted to lists of word
pairs. Apart from the lexical ambiguity issues arising with IE systems in general,
a specific drawback of surface-level taxonomy learning is that additional steps and
error-prone procedures are required to identify semantic clusters (Fu et al., 2014).
On the other hand, however, hypernym extraction at the sense level, to date, is
performed almost exclusively by sense-aware OIE approaches (cf. Sections 3.2 and
5.1). In addition to not being usable explicitly without manual inspection, as we
discussed earlier, hypernyms extracted with OIE techniques tend to be noisier, given
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the high-coverage nature of these systems and their broader scope. Therefore, in line
with all the approaches presented in this chapter, our strategy in the present section
is that of reframing the supervised distributional approach of Fu et al. (2014) at the
sense level: this allows us, on the one hand, to improve their domain adaptation
procedure by leveraging the structured semantic knowledge in BabelNet (Section
2.1.3); on the other, it provides us with a flexible sense-level framework where
we can rely on both manually-curated and OIE-derived hypernymic knowledge as
training data. This approach, named TaxoEmbed (Espinosa Anke et al., 2016a),19
is based on the sense embeddings of Iacobacci et al. (2015), and it is designed
to discover hypernymic relations by exploiting linear transformations in the sense
embedding space. Unlike previous approaches, TaxoEmbed leverages this intuition
to learn a specific sense-aware transformation matrix for each domain of knowledge,
using sense-level training data drawn from heterogeneous sources of hypernymic
information. Being based on the sense inventory of BabelNet, TaxoEmbed performs
jointly hypernym extraction and disambiguation, from which expanding existing
ontologies becomes a trivial task. After explaining in detail the approach in Section
5.3.1, we carry out an extensive experimental evaluation in Section 5.3.2, showing
that TaxoEmbed can effectively replicate the Wikidata is-a branch, and capture
previously unseen relations in other reference taxonomies. Most notably, the best
configuration of TaxoEmbed in our experiments considers two training sources:
(1) Manually curated pairs from Wikidata (Vrandečić, 2012), and (2) hypernymy
relations from KB-Unify (Section 5.2).

5.3.1 The TaxoEmbed pipeline

TaxoEmbed’s approach can be described as a three-stage pipeline: in the first
step, we take advantage of a clustering algorithm to associate each Babel synset in
the training set with a a domain cluster C (Section 5.3.1.1); then, we expand the
training set by exploiting all the different English lexicalizations provided by BabelNet
for each synset (Section 5.3.1.2); finally, we learn a cluster-wise linear projection
matrix over all term-hypernym pairs in the expanded training set (Section 5.3.1.3).
Throughout this process, we rely on SensEmbed as reference sense embedding space
for TaxoEmbed, as we did for KB-Unify. As regards our initial training set, instead,
we first leverage the portion of the hypernym branch of Wikidata (Vrandečić, 2012)
included in BabelNet; as usual, in order to construct a training setW compliant with
TaxoEmbed’s sense inventory, we use BabelNet’s inter-resource mapping to map
each Wikidata item to the corresponding Babel synset. Beside W , we also construct
a second training dataset, denoted as K, by leveraging OIE-derived knowledge from
KB-Unify: specifically, we consider the unified KB generated in the experimental
evaluation of Section 5.2.2, and identify the relation synset containing Nell’s is-a
relation;20 we then draw from the unified KB all the corresponding triples in which
the arguments have a disambiguation confidence greater or equal than 0.9 (cf. Section
5.2.1.1). Initially, |W| = 5,301,867 and |K| = 1,358,949.

19http://wwwusers.di.uniroma1.it/~dellibovi/taxoembed
20This relation is encoded in the KB of beliefs as ‘generalizations’ (cf. Section 5.2.2).

http://wwwusers.di.uniroma1.it/~dellibovi/taxoembed
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5.3.1.1 Domain Clustering

In contrast to Fu et al. (2014), where semantic clusters are induced via k-means,
with k tuned on a development set, TaxoEmbed aim at learning a function sensitive
to a predefined knowledge domain, under the assumption that vectors clustered with
this criterion are likely to exhibit similar semantic properties. First, we allocate each
Babel synset into its most representative domain, which is achieved by exploiting
the set of thirty four domains available in the Wikipedia featured articles page21.
We associate a given synset b with an appropriate domain using Nasari (Section
2.2.3.3): following Camacho Collados et al. (2016c), we build a lexical vector for
each Wikipedia domain by concatenating all Wikipages representing a given domain
d into a single text. Then, we calculate the similarities between the Nasari lexical
vector corresponding to b and all the domain vectors, and select the domain d̂ with
the highest similarity score:

d̂ = argmaxd∈DWO(~d,~b) (5.7)

where D is the set of all thirty-three domains, ~d is the vector of the domain d ∈ D,
~b is the vector of the BabelNet synset b, and WO refers to the Weighted Overlap
measure (Pilehvar et al., 2013) we used for comparison. In order to have a reliable
set of domain labels, all the synsets with maximum similarity score below a specified
threshold are not annotated with any domain. We fix the threshold to 0.35, which
provides a fine balance between precision (estimated around 85%) and recall in our
development set, and obtain almost 2 million synsets labeled with a domain.

5.3.1.2 Training Data Expansion

Prior to training our model, we benefit from the fact that a given Babel synset
may be associated with a fixed number of lexicalizations (cf. Section 2.1.3). We
take advantage of this synset representation to expand each term-hypernym synset
pair. For each term-hypernym pair, defined at the level of Wikidata entities,
the corresponding Babel synsets are used to retrieve all the associated English
lexicalizations; in this way, each term-hypernym pair 〈t, h〉 in the training data is
expanded into a set of |Lt|.|Lh| training pairs at the sense level,22 where Lt and Lh

denote the set of lexicalizations available for t and h, respectively.
This expansion step yields the considerably larger setsW∗ and K∗, where |W∗| =

18,291,330 and |K∗| = 15,362,268 (3 and 11 times bigger than their initial versions,
respectively). These figures are higher than those reported in recent hypernym
detection approaches, which exploited Chinese semantic thesauri along with manual
validation of hypernym pairs (Fu et al., 2014) to obtain a total of 1,391 instances,
or entity pairs from various knowledge resources (Shwartz et al., 2016), where the
maximum reported split for training data (70%) amounted to 49,475 pairs.

21https://en.wikipedia.org/wiki/Wikipedia:Featured_articles
22In other words, each pair 〈x, y〉 drawn from 〈t, h〉 is such that x consists of the synset st

associated with t paired with one of the lexicalizations in st, and y consists of the synset sh

associated with h paired with one of the lexicalizations in sh.

https://en.wikipedia.org/wiki/Wikipedia:Featured_articles
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5.3.1.3 Learning a Hypernym Detection Matrix

As discussed at the beginning of this section, the gist of TaxoEmbed lies in the
capability of embedded vector space models to capture semantic relations (Mikolov
et al., 2013b; Fu et al., 2014; Tan et al., 2015). However, instead of learning a
global linear transformation function for a broad relation like hypernymy, learning a
function sensitive to a given domain of knowledge has been proven more effective (Fu
et al., 2014). Hence, TaxoEmbed follows an analogous strategy: given a specific
domain d and the sense-level training set T (obtained from the previous step), we
isolate the subset of T with pairs 〈x, y〉 ∈ Cd × Cd, where Cd denotes the cluster of
senses having the corresponding Babel synsets labeled with the domain d.

Then, for each domain-wise partition T d of the expanded training set T , we
construct a hyponym matrix Xd = [~x1 . . . ~xn] (with all xi ∈ Cd) and a hypernym
matrix Yd = [~yi . . . ~yn] (with all yi ∈ Cd). BothXd andYd comprise the SensEmbed
vectors corresponding to the training pairs 〈xi, yi〉 ∈ Cd × Cd, 0 ≤ i ≤ n.

Under the intuition that there exists a matrix Ψ such that ~yd = Ψ~xd, we learn a
transformation matrix for each domain cluster Cd by minimizing:

min
ΨCd

|T d|∑
i=1
‖ΨC~xi − ~yi‖2 (5.8)

Then, for any unseen Babel synset s labeled with the domain d, TaxoEmbed is able
to compute a ranked list of the most probable hypernym vectors of s, using cosine
similarity as comparison measure:

argmax~v∈S,xj∈Ls

~v ·ΨCd ~xj

||~v||||ΨCd ~xj ||
(5.9)

with S denoting the vector space of SensEmbed, and xj ∈ Ls ⊂ Cd representing
the j-th lexicalization of s. At this point, TaxoEmbed associates with each Babel
synset a ranked list of candidate hypernym vectors, each of which is associated with
another Babel synset. This procedure allows us to cast the hypernym extraction
task as a ranking problem, where TaxoEmbed is only provided with the hyponym
term, and the most probable hypernym(s) must be discovered at testing time.

5.3.2 Experimental Evaluation

We evaluated experimentally the performance of TaxoEmbed by conducting several
experiments, both automatic and manual. In Section 5.3.2.1 we assessed Tax-
oEmbed’s ability to discover valid hypernyms for a given unseen term within a
held-out evaluation dataset of 250 Wikidata term-hypernym pairs. In Section 5.3.2.2,
instead, we evaluated the extent to which TaxoEmbed is able to correctly identify
hypernyms outside of Wikidata. In both experiments, the evaluation benchmarks
were defined at the sense level, i.e. composed of test pairs 〈t, h〉 where both t and h
are Babel synsets.

5.3.2.1 Evaluating Hypernym Identification

Experimental Setup. For each domain, we retained 5k, 10k, 15k, 20k and 25k
term-hypernym training pairs from W to generate five different configurations of
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TaxoEmbed, and evaluated the resulting five TaxoEmbed models on 250 test pairs
for each of the 10 domains. We also experimented with two additional configuration
of TaxoEmbed, which include 1k and 25k extra OIE-derived training pairs from
K per domain. The resulting two models are denoted by 25k+Kd

1k and 25k+Kd
25k,

respectively. Moreover, in order to validate the empirically grounded intuition
of Fu et al. (2014), we introduced three non domain-sensitive configurations of
TaxoEmbed: one configuration with 25k pairs from W and 50k additional pairs
randomly sampled from K (25k+Kr

50k), and two configurations with only random
pairs coming from W (100kr

wd) and K (100k+r
kbu).

Baseline. We included a distributional supervised baseline based on word analo-
gies (Mikolov et al., 2013c), whic works as follows: first, it calculates the difference
vector of each training SensEmbed vector pair 〈~x, ~y〉 of a given domain d; then,
it averages all these difference vectors to obtain a global vector vd for the domain
d; finally, given a test term t it calculates the vector closest to the sum of ~t (the
corresponding term vector) and vd:

ĥ = argmax~h∈Scos(vd + ~t,~h) (5.10)

We trained this baseline using 25k domain-filtered pairs from W.

Evaluation metrics. We computed the following metrics for each domain and for
all the configurations above: Mean Reciprocal Rank (MRR), Mean Average Precision
(MAP), and R-Precision (R-P). These measures provide insights on different aspects
of the outcome of the task, e.g. how often valid hypernyms were retrieved in the
first positions of the rank (MRR), and if there were more than one valid hypernym,
whether this set was correctly retrieved, (MAP and R-P).23

Results and Discussion. The outcome of all our experiments are summarized
in Table 5.21. Results suggest that the performance of TaxoEmbed increases as
training data expands, corroborating previous findings (Mikolov et al., 2013b). The
improvement of TaxoEmbed over the baseline is consistent across most evaluation
domain clusters and metrics, with domain-filtered data from K contributing positively
in about two thirds of the evaluated configurations. As regards individual domains,
the biology domain seems to be the easiest to model, likely due to the fact that
fauna and flora are areas where hierarchical division of species is a field of study
in itself, which traces back to Aristotelian times (Mayr, 1982), and therefore has
been constantly refined over the years. This is the only domain in which training
with no semantic awareness gives good results. We argue that this is due to the fact
that a vast amount of synsets are allocated into the biology cluster (60% of the
total, and up to 80% hypernyms). This produces the so-called lexical memorization
phenomenon (Levy et al., 2015b), as the system memorizes prototypical biology-
related hypernyms like taxon as valid hypernyms for many concepts. Another
remarkable case involves the education and media domains, which experience the
highest improvement with training data from K (5 and 6 MRR points, respectively).

23Bian et al. (2008) provide an in-depth analysis of all these metrics.
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art biology education geography health

Train MRR MAP R-P MRR MAP R-P MRR MAP R-P MRR MAP R-P MRR MAP R-P
5k 0.12 0.12 0.12 0.63 0.63 0.59 0.00 0.00 0.00 0.08 0.07 0.07 0.08 0.08 0.07
15k 0.21 0.20 0.18 0.84 0.72 0.79 0.22 0.22 0.21 0.15 0.14 0.14 0.08 0.07 0.07
25k 0.29 0.27 0.26 0.84 0.83 0.81 0.33 0.32 0.30 0.23 0.22 0.21 0.09 0.09 0.08
25k+Kd

1k 0.29 0.28 0.26 0.84 0.80 0.79 0.32 0.29 0.27 0.22 0.22 0.21 0.09 0.09 0.08
25k+Kd

25k 0.26 0.24 0.22 0.70 0.63 0.56 0.38 0.36 0.33 0.15 0.13 0.12 0.11 0.11 0.10
25k+Kr

50k 0.28 0.26 0.24 0.82 0.77 0.72 0.36 0.33 0.30 0.17 0.16 0.16 0.12 0.11 0.10
100kr

wd 0.00 0.00 0.00 0.84 0.81 0.77 0.00 0.00 0.00 0.01 0.01 0.01 0.07 0.06 0.06
100kr

kbu 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.12 0.12 0.11

Baseline 0.13 0.12 0.10 0.58 0.57 0.57 0.10 0.10 0.09 0.12 0.09 0.05 0.07 0.13 0.14
media music physics transport warfare

Train MRR MAP R-P MRR MAP R-P MRR MAP R-P MRR MAP R-P MRR MAP R-P
5k 0.28 0.28 0.27 0.10 0.10 0.09 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01
15k 0.14 0.13 0.12 0.08 0.07 0.07 0.36 0.35 0.34 0.25 0.23 0.21 0.01 0.01 0.01
25k 0.46 0.45 0.43 0.30 0.28 0.26 0.41 0.40 0.38 0.46 0.43 0.39 0.05 0.05 0.04
25k+Kd

1k 0.43 0.42 0.41 0.32 0.30 0.28 0.39 0.38 0.37 0.47 0.44 0.40 0.04 0.04 0.01
25k+Kd

25k 0.52 0.51 0.49 0.26 0.25 0.23 0.37 0.36 0.34 0.48 0.45 0.41 0.04 0.03 0.03
25k+Kr

50k 0.46 0.45 0.43 0.29 0.28 0.25 0.31 0.30 0.29 0.52 0.49 0.46 0.05 0.04 0.04
100kr

wd 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.01
100kr

kbu 0.08 0.07 0.07 0.01 0.01 0.00 0.00 0.00 0.00 0.10 0.10 0.10 0.00 0.00 0.00

Baseline 0.57 0.43 0.52 0.03 0.03 0.03 0.05 0.04 0.04 0.29 0.25 0.21 0.04 0.04 0.04

Table 5.21. Overview of the performance of TaxoEmbed using different training data
samples.

In fact, one of the main sources for is-a relations in KB-Unify is Nell, which
contains a large amount of relation triples between North American academic entities
(professors, sports teams, alumni, donators; as well as media celebrities). Many
of these entities are missing in Wikidata, and relations among them encoded in
Nell are likely to be correct because in most cases these are unambiguous entities
occurring in the same communicative contexts.

5.3.2.2 Evaluating Extra Coverage

Experimental Setup. For this experiment we used two configurations of Tax-
oEmbed: the first one includes 25k domain-wise training pairs from W (TaxE25k),
and the second one includes also 1k pairs from K (TaxE25k+Kd). In order to evaluate
these configurations on instances not included in Wikidata, we constructed a test set
with 200 randomly extracted Babel synsets (20 per domain) for which no hypernym
is available in Wikidata. Using this benchmark we compared TaxoEmbed against
a number of taxonomy learning and IE systems, namely Yago(Hoffart et al., 2011a;
Mahdisoltani et al., 2015), WiBi (Flati et al., 2016) and DefIE (Section 5.1). Then,
three annotators assessed manually the validity of the hypernyms extracted by each
system. Yago and WiBi can be viewed as upper bounds for TaxoEmbed, due to
the nature of their hypernymic relations. In fact, both include a great number of
manually-encoded taxonomies (e.g. exploiting WordNet and Wikipedia categories);
Yago derives its taxonomic relations from an automatic mapping between WordNet
and Wikipedia categories. WiBi, on the other hand, exploits a number of different
Wikipedia-specific heuristics, Wikipedia categories, and the syntactic structure of
Wikipedia-derived definitions (cf. Section 5.1). Finally, we included DefIE as
comparison system by considering the knowledge base obtained for its experimental
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art biology education geography health

P R F P R F P R F P R F P R F
TaxE25k 0.45 0.45 0.45 0.40 0.40 0.40 0.60 0.60 0.60 0.35 0.35 0.35 0.45 0.45 0.45
TaxE25k+Kd 0.50 0.50 0.50 0.40 0.40 0.40 0.55 0.55 0.55 0.35 0.35 0.35 0.45 0.45 0.45
DefIE 0.63 0.35 0.45 0.36 0.20 0.25 0.57 0.20 0.29 0.66 0.40 0.50 0.25 0.15 0.18
Yago 0.88 0.75 0.81 0.62 0.25 0.36 0.94 0.80 0.86 0.79 0.75 0.77 0.28 0.10 0.15
Wibi 0.70 0.70 0.70 0.58 0.50 0.54 0.94 0.80 0.86 0.75 0.75 0.75 0.66 0.50 0.57

media music physics transport warfare

P R F P R F P R F P R F P R F
TaxE25k 0.10 0.10 0.10 0.45 0.45 0.45 0.15 0.15 0.15 0.35 0.35 0.35 0.25 0.25 0.25
TaxE25k+Kd 0.10 0.10 0.10 0.40 0.40 0.40 0.15 0.15 0.15 0.25 0.25 0.25 0.45 0.45 0.45
DefIE 0.81 0.45 0.58 0.71 0.50 0.58 0.42 0.15 0.22 0.54 0.30 0.38 0.60 0.30 0.40
Yago 0.76 0.65 0.70 0.84 0.55 0.67 0.80 0.40 0.53 0.93 0.70 0.80 0.81 0.65 0.72
Wibi 0.90 0.90 0.90 0.89 0.85 0.87 0.68 0.55 0.61 0.87 0.70 0.77 0.66 0.50 0.57

Table 5.22. Precision, recall and F-Measure outside Wikidata.

evaluation (Section 5.1.4) and identifying the hypernymic relations using a simple
heuristic based on the relation pattern ‘is a’.24

Results and Discussion. Table 5.22 shows the results of TaxoEmbed and all
its comparison systems in detecting hypernyms outside Wikidata. As expected,
Yago and WiBi achieve the best overall results. Nonetheless TaxoEmbed, which
relies solely on distributional information, performs competitively when compared
to DefIE, improving recall over the latter in most domains, and even surpassing
Yago in technical areas like biology or health. On the other hand, TaxoEmbed
does not perform particularly well on media and physics. Overall, TaxoEmbed
is able to discover novel hypernymic relations not captured by any other system
(e.g. therapy for radiation treatment planning in the health domain, or decoration for
molding in the art domain).

Final Remarks. TaxoEmbed, to best of our knowledge, is the first supervised
hypernym discovery framework defined entirely at the sense level. As we validated
experimentially throughout this section, this strategy allowed TaxoEmbed, on the
one hand, to improve its domain adaptation procedure by exploiting the structured
knowledge of BabelNet (Section 5.3.1.1) and, on the other, to expand effectively its
training set by including heterogeneous OIE-derived knowledge from KB-Unify
(Section 5.3.1.2). Moreover, even though all our experiments were carried out on
test pairs also at the sense level, TaxoEmbed can be utilized to discover hypernyms
at the word level by: (1) considering all the available senses of a given term inside
BabelNet, or (2) exploiting the fact that SensEmbed defines a shared vector space
for word and senses (cf. Section 2.2.3.2) and considering the embedding associated
with the term directly. In either case, one distinguishing feature of TaxoEmbed is
its approach based on casting the hypernym extraction task as a ranking problem (cf.
Section 5.3.1.3): this feature enabled a flexible evaluation framework, never applied,

24For all the reasons put forward in this section, this procedure is not exhaustive, and might miss
some hypernymic relation instances extracted with different kinds of relation phrases: however, due
to the nature of the definitional corpus targeted by DefIE, where sparsity and noise are limited,
this heuristic arguably provides an accurate estimate.
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to date, in the context of evaluating hypernym detection or taxonomy learning
systems (Camacho Collados, 2017), and allowed us to combine highly demanding
metrics for the quality of the candidate given at a certain rank, as well as other
measures which consider the rank of the first valid retrieved candidate.

On the other hand, a current limitation of this framework, which was not
addressed in the present section, is that its novel evaluation paradigm makes it
difficult to carry out an extensive comparison between TaxoEmbed and most
hypernym detection approaches published in the field. To this aim, a shared SemEval
task specifically targeted to hypernym discovery has actually been organized, and it
is ongoing at the time of writing.25

25https://competitions.codalab.org/competitions/17119

https://competitions.codalab.org/competitions/17119
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Chapter 6

Release

走る馬にも鞭。
[Continue to spur a running horse.]

Yamamoto Jin’emon

In this chapter we showcase all the resources and tools that have been released
publicly in association with the contributions presented in Chapters 4 and 5. First
of all, the backbone of every approach in terms of reference sense inventory and
knowledge resource, i.e. BabelNet (Section 2.1.3) and its API, which we utilized
to retrieve all the semantic information about synsets, their lexicalizations in the
various languages, their connection inside the semantic network, as well as all the
inter-resource mappings from and to WordNet, Wikipedia, Wikidata, DBpedia,
Freebase, etc. The BabelNet data and API are freely available for research purposes
and licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0
License.1 Of course, all the data drawn from external resources (including Wikipedia,
Wikidata, WordNet, etc.) are released under the terms of the respective owners’
licenses.2. As regards the programmatic use of the BabelNet, we relied on the Java
API for the majority of our implementations and experimental evaluations; however,
the BabelNet API provides an HTTP RESTful service (accessible through an HTTP
interface that returns JSON) along with the Java package, which makes it usable
within any other programming language. In addition, starting from version 2.0
onward, BabelNet has been integrated in the so-called Linguistic Linked Open Data
(LLOD) cloud, a part of the Linked Open Data cloud made up of interlinked linguistic
resources (Chiarcos et al., 2011). This integration was achieved by encoding the
knowledge in BabelNet using the Lemon RDF model (McCrae et al., 2011), and
then providing a public SPARQL endpoint3. For any further detail about the use of

1http://creativecommons.org/licenses/by-nc-sa/3.0
2http://babelnet.org/licenses
3http://babelnet.org/sparql

http://creativecommons.org/licenses/by-nc-sa/3.0
http://babelnet.org/licenses
http://babelnet.org/sparql


138 6. Release

BabelNet, a comprehensive guide is available on the BabelNet website.4
All the tools based on BabelNet that we exploited throughout this thesis, including

Babelfy (Section 2.2.2.3),5 Nasari (Section 2.2.3.3),6 and SensEmbed (Section
2.2.3.2),7 are all publicly available under the terms of the same license of BabelNet.
In particular, Babelfy is equipped with an API along the lines of the BabelNet
one, which includes a Java package and an HTTP RESTful service. The Babelfy
API allows a programmatic use of Babelfy where the user can specify in detail the
format of the input text, providing token-specific information such as part-of-speech
tag, lemma, language, or even sense labels (which will be used by Babelfy as
constraints when building the semantic graph). All the details for these use cases
are reported in the online guide in the Babelfy website.8

Consistently with the above, most of the released material presented in this
chapter complies with the same license, and is publicly available on dedicated websites.
It is worth noting that all these contributions, together with the resource and tools
we used, do not represent a collection of individual contributions per se, but rather
a series of research efforts revolving around the common vision of the MultiJEDI9
project, a 5-year ERC starting grant (2011-2016) with the objective of enabling
multilingual text understanding. In fact, MultiJEDI led to the development of
BabelNet in the first place, and defined the common thread that bundles together
all the knowledge-based approaches that rely on it.

In the following sections we go over the released material in the same order the
corresponding contributions have been treated across Chapters 4 and 5, i.e. Sew
(Section 6.1), EuroSense (Section 6.2), SenseDefs (Section 6.3), and finally the
released material associated with DefIE, KB-Unify and TaxoEmbed (Section
6.4). In each case, we give the details of the release and its format.

6.1 Sew

Sew (Raganato et al., 2016b)10 is a sense-annotated corpus automatically built from
Wikipedia, described in Section 4.1. In Sections 4.1.2 and 4.1.3 we considered a
version of Sew obtained from an English Wikipedia dump of November 2014, which
we subsequently used in the experimental evaluation. That specific version of Sew is
the one we release publicly: it is available both as complete (i.e. comprising all the
sense annotations gathered by the hyperlink propagation pipeline before applying
the conservative policy, including overlapping mentions) and as conservative (i.e.
the corpus after the final stage of the pipeline, hence after applying the conservative
policy). The former setting, with more than 44 million additional sense annotations,
is suitable for high-coverage applications; the latter, designed to retain only the most
confident propagations and no overlapping mention, is the one we used for both the
intrinsic and extrinsic evaluations (cf. Section 4.1.3).

4http://babelnet.org/guide
5http://babelfy.org
6http://lcl.uniroma1.it/nasari
7http://lcl.uniroma1.it/sensembed
8http://babelfy.org/guide
9http://multijedi.org

10http://lcl.uniroma1.it/sew

http://babelnet.org/guide
http://babelfy.org
http://lcl.uniroma1.it/nasari
http://lcl.uniroma1.it/sensembed
http://babelfy.org/guide
http://multijedi.org
http://lcl.uniroma1.it/sew
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Figure 6.1. Excerpt from the XML sample of a Wikipage in Sew. The complete sample is
available (in both XML and human-readable form) at: http://lcl.uniroma1.it/sew/
sample/sample.html.

Format. Each Wikipage is stored in an individual XML file, named with the cor-
responding Wikipage title. The file contains a wikiArticle tag with the attributes
language (ISO code of the language) and title (the actual title of the Wikipage).
In turn, the wikiArticle tag contains two main tags:

• text: the plain-text, one sentence per line, of the Wikipage as a whole,
excluding infoboxes, image captions, references and categories;11

• annotations: the complete list of sense annotations. Each sense annotation
is encoded with an annotation tag having the following attributes:

– babelNetID: the unique sense identifier as provided by BabelNet;
– mention: the surface form of the mention as it appears in the plain-text

of the Wikipage;
– anchorStart: the token-based starting index (inclusive) of the sense

annotation;
– anchorEnd: the token-based ending index (exclusive) of the sense anno-

tation;
– type: the symbol associated with the propagation heuristic from which

this sense annotation has been obtained (as reported in Table 4.1).

11This text has been escaped using XML entities. In order to retrieve the actual human-readable
character, many functions can be used to unescape it (e.g., in Java, the class StringEscapeUtils
provided by the apache-commons-lang API).

http://lcl.uniroma1.it/sew/sample/sample.html
http://lcl.uniroma1.it/sew/sample/sample.html
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An excerpt of a sample XML file is given in Figure 6.1. All the sense annotations
released with Sew are licensed under the same license of BabelNet, except for the
original Wikipedia hyperlinks (marked with the type ‘HL’), which are compliant
with Wikipedia and released under the Creative Commons Attribution-ShareAlike
3.0 Unported License (CC-BY-SA).12

In addition to the two versions of Sew, we also release the vector representations
used in the experimental evaluations of Sections 4.1.3.3 and 4.1.4. As regards the
sparse representations, both WB-Sew and SB-Sew (cf. Section 4.1.3.3) are available
in two different versions, one where frequencies are estimated using raw counts (file
ending with ‘rc.tsv’) and using lexical specificity (file ending with ‘ls.tsv’). Both
versions consist in tab-separated files with a single vector for each line. The format
is as follows:

ENTITY \t \t COMPONENT:VALUE \t ... \t COMPONENT:VALUE

where ENTITY is either the Babel synset (WB-Sew) or the Wikipage (SB-Sew) being
represented by the vector, and the COMPONENT:VALUE pairs constitute the non-zero
dimensions of the vector. Each COMPONENT is either a Wikipage (WB-Sew) or a
BabelNet synset (SB-Sew).

As regards the dense representations, both versions of Sew-Embed studied
experimentally are available (cf. Section 4.1.4). Each version is encoded in a plain-
text file with a single vector in each line, following the standard space-separated
format of most released embedding representations:

SYNSET VALUE1 VALUE2 ... VALUEn

where SYNSET is the Babel synset being represented by the vector, and VALUE1 . . .
VALUEn constitute the numerical components of the vector. Each vector has 400
dimensions (i.e. n = 400) as both the external representations used are based
on a 400-dimensional vector space (cf. Section 4.1.4). When a SYNSET is not
covered by Sew-Embed is represented by an all-zero vector. Both sparse and dense
representations are available under the same license of BabelNet (Creative Commons
Attribution-Noncommercial-Share Alike 3.0 License).

6.2 EuroSense
EuroSense (Delli Bovi et al., 2017)13 is a multilingual sense-annotated resource
automatically built via the joint disambiguation of the Europarl parallel corpus in
21 languages, described in Section 4.2. We release two versions of EuroSense: a
high-coverage version (i.e. the one obtained from the first stage of the EuroSense
pipeline, described in Section 4.2.1), and a high-precision version (i.e. the one
obtained at the end of the pipeline, described in Section 4.2.2). Similarly to Sew,
the former version includes almost 93 million additional sense annotations (including
overlapping mentions) and hence it is suitable for high-coverage applications, while
the latter, refined with distributional semantic similarity, is oriented towards high-
precision. The high-precision version of EuroSense is the one utilized in the
extrinsic evaluation (Section 4.2.4.2).

12https://creativecommons.org/licenses/by-sa/3.0/
13http://lcl.uniroma1.it/eurosense

https://creativecommons.org/licenses/by-sa/3.0/
http://lcl.uniroma1.it/eurosense
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Figure 6.2. Excerpt from the XML sample of a sentence in the high-precision version of
EuroSense.

Format. Both versions are stored in XML files with UTF-8 encoding. Each file
contains a list of sentence tags, with an incremental id (starting from 0) as attribute.
Each sentence contains a list of text tags, corresponding to the tokenized texts of
the sentence in a given language (the ISO code of the language is encoded in the
lang attribute), and an annotations tag, which includes all the sense annotations
provided for that sentence. Each annotation includes a Babel synset identifier and
has four (or six) attributes:

- lang: the language of the sense annotation (as ISO code);

- type (only in the high-precision version): whether the disambiguation was
performed by ‘BABELFY’ or ‘NASARI’;

- anchor: the exact surface-form match found in the sentence of the correspond-
ing lang;

- lemma: the normalized form (lemma) of the annotation’s anchor;

- coherenceScore: the coherence score associated with the annotation;

- nasariScore: the Nasari score associated with the annotation. This at-
tribute is set to ‘--’ when the annotation has type ‘BABELFY’.

An excerpt of a sample XML file is given in Figure 6.2. Both versions of EuroSense
are available under the same license of BabelNet (Creative Commons Attribution-
Noncommercial-Share Alike 3.0 License).

6.3 SenseDefs
SenseDefs (Camacho Collados et al., 2016a)14 is a multilingual large-scale corpus of
automatically disambiguated definitions coming from BabelNet, described in Section
4.3. Since SenseDefs was obtained by adapting the same disambiguation pipeline
used for EuroSense (Section 4.2), the released resource is also available in two
versions, complete and high-precision, obtained after the first and after the final
stage of the pipeline, respectively.

14http://lcl.uniroma1.it/disambiguated-glosses

http://lcl.uniroma1.it/disambiguated-glosses
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Figure 6.3. Excerpts from the English XML sample of SenseDefs showing two definitions
for “Palaeochiropteryx” and “Abraham Lincoln” drawn from, respectively, Wikipedia and
WordNet. The former is taken from the complete version of SenseDefs, while the latter
from the high-precision version.

Format. The release of SenseDefs is fist split according to the specific source
of the definitions (WordNet, Open Multilingual WordNet, Wiktionary, Wikipedia,
Wikipedia disambiguation pages, OmegaWiki, and WikiData). For each subset of
the corpus, definitions are further divided by language, with each language being
encoded in an individual XML file named with the corresponding ISO code. Each
file contains a list of definition tags, with the respective id (e.g. page titles in
Wikipedia, or offsets in WordNet) as attribute. Then, each definition contains
the plain-text of the original definition (as available in the given resource), as well as
the set of sense annotations. A sense annotation comprises a Babel synset identifiers
enclosed in an annotation tag with the following attributes:

- source: whether the annotation was disambiguated by ‘BABELFY’, the ‘MCS’
back-off strategy (only in the complete version), or ‘NASARI’ (only in the
high-precision version);15

- anchor: the exact surface-form match found in the text of the definitions;

- bfScore: the internal confidence score used by Babelfy to enable/disable
the back-off strategy on the annotation;

- coherenceScore: the coherence score associated with the annotation;

- nasariScore: the Nasari score associated with the annotation (only in the
high-precision version).

An excerpt of a sample XML file is given in Figure 6.3. Both versions of SenseDefs
are available under the same license of BabelNet (Creative Commons Attribution-
Noncommercial-Share Alike 3.0 License).

15When the annotation has source ‘MCS’, both the bfScore and the coherenceScore attributes
are set to ‘--’.
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6.4 OIE-derived Resources

In Chapter 5 we studied three diverse but effective approaches to the extraction of
relational knowledge at the sense level. Even though none of these approaches was
directly designed to generate a full-fledged knowledge resource, but rather they were
focused on either defining a prototypical sense-aware extraction pipeline (Section 5.1),
or on establishing a robust and general sense-aware framework (Sections 5.2 and 5.3),
we still utilized them to produce relational knowledge tailored to the experimental
evaluation of their performances. Hence, along the lines of the resources presented
in the previous sections, we also released most of this evaluation material for the
use and scrutiny of the research community. These experimental data can be used
as a comparison when developing alternative or more sophisticated systems for the
tasks we address, as relational knowledge for a variety of downstream NLP systems
to build upon, or as a way to replicate our results.

DefIE

DefIE (Delli Bovi et al., 2015b)16 is a full-fledged sense-aware OIE pipeline designed
for definitional knowledge, described in Section 5.1. For the purpose of its broad
experimental evaluation in Section 5.1.4, we considered the output of DefIE over
an input corpus composed of the whole set of textual definitions in BabelNet 2.5,
which we used for all our experiments. We release the following:

• The complete set of semantic relations extracted from the input corpus with
more than 10 relation instances, which is available as plain-text file with the
following format:

RELATION ID \t RELATION PATH \t RELATION STRING

where RELATION ID is a unique identifier for the relation, RELATION PATH is
the corresponding path in the syntactic-semantic graph and RELATION STRING
is the lemmatized relation pattern;

• Contains the complete set of extracted relation triples for the relations above.
as plain-text file. The format is the following:

SUBJECT \t RELATION ID \t OBJECT

where RELATION ID is the relation identifier and SUBJECT (OBJECT) refer to
the Babel synset identifier of the subject (object) of the triple;

• The subject and object semantic type distributions for each semantic relation
(cf. Section 5.1.2), as plain-text file formatted as follows:

RELATION ID_X \t DOMAIN CLASS ID_PROBABILITY \t ...
RELATION ID_Y \t RANGE CLASS ID_PROBABILITY \t ...

16http://lcl.uniroma1.it/defie

http://lcl.uniroma1.it/defie
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where RELATION ID is the relation identifier, DOMAIN CLASS ID (RANGE CLASS
ID) are Babel synset identifiers associated to domain (range) semantic classes
and PROBABILITY is the corresponding probability value. For each distribution,
semantic classes are sorted by decreasing probability value;

• The relation taxonomy derived from the extracted set of semantic relations (cf.
Section 5.1.3), as plain-text file. Each lines of the file encodes a single edge of
the taxonomy graph in the following format:

HYPONYM RELATION ID \t HYPERNYM RELATION ID

where HYPONYM RELATION ID and HYPERNYM RELATION ID denote the relation
identifiers of the hyponym and hypernym relation, respectively.

KB-Unify

KB-Unify (Delli Bovi et al., 2015a)17 is a sense-aware framework for integrating
the output of different OIE systems into a single unified and fully disambiguated
knowledge repository, described in Section 5.2. We carried out its experimental
evaluation in Section 5.2.2, after running its unification pipeline of a set on four
individual OIE-derived KBs (cf. Section 5.2.2). We release the following:

• A disambiguated version of the two unlinked KBs in the experimental setup,
i.e. Nell and ReVerb, obtained as output of the disambiguation module (cf.
Section 5.2.2.1). They are both available as plain-text files with the following
format:

〈ARGUMENT 1, ARGUMENT 2〉 \t RELATION 1 \t ... \t RELATION N

where ARGUMENT 1 and ARGUMENT 2 are either Babel synset identifiers (if the
corresponding triple was disambiguated) or the original argument strings
(otherwise). RELATION 1 to RELATION N denote all the original relation strings
in which the two arguments occurred in the original KBs;

• All the cross-resource relation alignments obtained as output of the alignment
procedure (Section 5.2.1.4), one plain-text file per KB pair. Each file encodes
an alignment on each line as tab-separated string containing the two relation
identifiers and the corresponding alignment confidence. Each individual KB is
also included separately in the package;

• The unified KB obtained as a final result of KB-Unify’s unification pipeline.
We include several versions of the unification output constructed with different
thresholds for the alignment confidence, as well as reduced versions of these
outputs obtained by considering only the top 10k semantic relations from each
individual KB. Each version of the unified KB comprises two files, one with the
complete set of relation synsets (including singletons) and another one with
the complete set of relation triples. The former encodes one relation synset
per line, using a tab-separated string where an incremental relation identifier
is associated with the following string:

17http://lcl.uniroma1.it/kb-unify

http://lcl.uniroma1.it/kb-unify


6.4 OIE-derived Resources 145

{ [KB1]:R1 \t [KB2]:R2 ... \t [KBN]:RN }

where KB1. . .KBN denote the individual source KBs of relations R1. . .RN respec-
tively. The latter file, instead, contains all the relation triples, one per line,
encoded as tab-separated strings in the same way as in the DefIE release.

Finally, we release the evaluation data used in all the experiments of Section 5.2.2
for replication purposes, including the random samples, the corresponding gold
standards, and the guidelines provided to the annotators for each task.

TaxoEmbed

TaxoEmbed (Espinosa Anke et al., 2016a)18 is a supervised distributional framework
for domain-specific hypernym discovery at the sense level, described in Section 5.3.
Its performance was evaluated experimentally in Section 5.3.2, where we trained a
variety of TaxoEmbed models on a large heterogeneous training set drawn from
both Wikidata and KB-Unify (cf. Section 5.3.1). In order to enable the research
community to replicate our results, we release the complete training dataset of
TaxoEmbed, available as a package comprising two files (one for the Wikidata pairs,
and another one for the OIE-derived pairs), together with the domain labels obtained
using Nasari (cf. Section 5.3.1.1) and the SensEmbed vector space. All the data
are expressed with respect to the BabelNet sense inventory (i.e. with Babel synset
identifiers). Finally, we also release the Python implementation of TaxoEmbed
used in our experiments, available from an open-source BitBucket repository.19

18http://wwwusers.di.uniroma1.it/~dellibovi/taxoembed
19https://bitbucket.org/luisespinosa/taxoembed

http://wwwusers.di.uniroma1.it/~dellibovi/taxoembed
https://bitbucket.org/luisespinosa/taxoembed
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Chapter 7

Conclusion

We can only see a short distance ahead
but we can see plenty there that needs to be done.

Alan M. Turing

In this thesis we looked closely at the intersection between two prominent areas of
Natural Language Processing: Information Extraction, i.e. the automatic extraction
and formalization of machine-readable knowledge from natural language text (cf.
Section 2.3), and Lexical Semantics, the field of study concerned with establishing
and modeling the meaning of lexical items in a computational way. We saw that
one crucial issue that bundles them together is lexical ambiguity. Broadly speaking,
dealing with ambiguity is indeed one of the long-standing challenges in NLP, as
various types of ambiguity (lexical, structural, pragmatic) can arise at many different
levels within the process of understanding natural language utterances; when it
comes to identify, extract and encode effectively factual content, which is the focus of
IE, ambiguity at the lexical level is a particularly striking problem. Let us consider
once again the second example of Section 3.2:

〈Washington, is the capital of, the United States〉

In this case both the subject argument and the relation phrase are ambiguous, and
resolving these ambiguities is crucial for encoding this piece of factual knowledge
correctly. Among the various techniques for automatically linking and disambiguat-
ing lexical items (Sections 2.2.1 and 2.2.2), we saw that a promising strategy of
dealing with this problem on a large scale consists in leveraging knowledge resources
(Section 2.1): in fact, efforts in creating, developing, managing, integrating and
interconnecting structured knowledge using a variety of lexico-semantic resources
(lexicons, dictionaries, encyclopedias, databases, knowledge graphs) are widespread
in the research community (Gurevych et al., 2016).
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The key role of knowledge resources in NLP is what enabled us to draw an
important connection between the challenge of lexical ambiguity and the knowledge
acquisition bottleneck phenomenon, which we discussed in Chapter 1. In fact, on
the one hand, we showed that extracting information from open text (Information
Extraction) is one of those tasks where facing lexical ambiguity is of the utmost
importance; on the other, a key step towards developing large-scale high-quality
disambiguation systems consists in populating and enriching knowledge resources
(i.e. overcoming the knowledge acquisition bottleneck), especially with the kinds of
syntagmatic relations that are usually encoded implicitly in open and unstructured
text. In the example above, having a lexicalized semantic network at our disposal,
where the concept of capital as official seat of a country’s government is connected
(i.e. has a semantic relation) with the entity Washington as the U.S. capital, would
be decisive to resolve all lexical ambiguities in that relation instance.

In light of the above, our main objective in this thesis (Section 1.1) was that of
addressing both problems in a synergistic way, by developing a principled approach
to open-text knowledge extraction based on explicit semantic analysis at the sense
level. To this aim, we operatively considered a two-fold objective: (1) developing
reliable methods to harvest sense-level information on a large scale, and (2) intro-
ducing sense-aware techniques into the well-established OIE paradigm for extracting
relational knowledge. In tackling both tasks we adopted a knowledge-based strategy
and leveraged a wide-coverage, multilingual knowledge base and semantic network,
i.e. BabelNet (Section 2.1.3), as a fundamental backbone. In fact, resources like
BabelNet, where lexicographic and encyclopedic knowledge is seamlessly integrated,
represent a first important step in the direction of large-scale sense-level approaches
designed to scale up in terms of scope and languages (Delli Bovi and Navigli, 2017).
Throughout Chapters 4 and 5 we relied on BabelNet not only as a wide-coverage
sense inventory for the disambiguation tools and sense-aware methods we used or
developed, but we also took advantage of the scaffolding of structured lexico-semantic
information it provides in a variety of ways. From this perspective, the contributions
we put forward in this thesis build upon BabelNet, in the attempt to:

1. Overcome the knowledge acquisition bottleneck with respect to sense-level
information, by constructing and delivering to the research community a
series of large-scale corpora of various kinds (encyclopedic text, parallel text,
definitional text), all equipped with sense annotations from the BabelNet sense
inventory. In fact, even though WordNet and Wikipedia have been the de facto
standards in terms of reference sense inventories for WSD and EL, respectively,
we saw in Section 3.1 that BabelNet takes the best of both worlds, enabling
sense-annotated corpora suitable for both WSD and EL, and based on a unified
sense inventory that extends to all the languages covered by Wikipedia;

2. Extending the key idea behind BabelNet (i.e. integrating and unifying comple-
mentary information from many individual resources using semantic analysis)
from lexical knowledge to relational knowledge, both because the semantic
network of BabelNet fails to cover explicitly a great deal of relational knowl-
edge (cf. Section 2.1.3), and because most repositories of semantic relations
to date, especially when derived from IE or OIE approaches, are designed as
stand-alone contributions with their own structures and type inventories.
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7.1 Wrapping Up

As discussed in Chapter 1, the main focus of this thesis is on OIE, inherently un-
supervised, as strategy to extract relational knowledge. Thus, in contrast to other
paradigms geared towards the same goal (e.g. Knowledge Base Completion), our
starting point was solely open and unstructured text in natural language. This is
why our first and foremost task, addressed in Chapter 4, was that of developing
robust, flexible and reliable methods to automatically obtain sense-level information
on a large scale. Given our choice of BabelNet as underlying knowledge resource, we
saw in Section 3.1 that the size and scope of the sense inventory do not allow any
degree of human intervention: on the other hand, while off-the-shelf disambiguation
systems have proven to be a viable way of harvesting sense annotations, there is
still large room for improvement in fully automatic pipeline based on them, as we
discussed at the beginning of Chapter 4. Throughout that chapter, which tackles
the first objective of Section 1.1, we showed how exploiting at best the shape and
features of the target corpus is key to achieve our goal. We considered three different
disambiguation scenarios, where we adopted a similar methodological approach:
fist, we investigated a disambiguation pipeline suitable for the target text; then, we
applied it to produce and release to the community a full-fledged sense-annotated
resource; finally, we carried out an extensive evaluation, both intrinsic and extrinsic,
to assess the sense annotation quality of such resource.

We started in Section 4.1 with a semi-structured resource (i.e. Wikipedia) as dis-
ambiguation target, and developed Sew (Raganato et al., 2016b), a Wikipedia-based
sense-annotated corpus which, to date, constitutes the largest BabelNet-annotated
resource available. With the broad and comprehensive experimental evaluation of
Section 4.1.3, which also includes a dedicated study on vector representations (Delli
Bovi and Raganato, 2017), we demonstrated that, in the special case of Wikipedia,
a large amount of high-quality sense annotations can be obtained automatically
without employing off-the-shelf disambiguation systems at all. Furthermore, our
extrinsic experiments showed that having this unprecedented number of sense an-
notations can greatly boost simple vanilla approaches, enabling them to perform
on par with more sophisticated state-of-the-art systems in their respective tasks,
thereby setting new performance baselines in the field.

In Sections 4.2 and 4.3, instead, we shifted our focus to a parallel corpus, where
we brought together equivalent translations of the same English sentences, and
to a definitional corpus, where we gathered all the textual definitions associated
with a given definiendum from different resources and languages. In both cases,
we could not rely on semi-structured knowledge already embedded in the corpus
(as in Section 4.1), and we designed a two-stage pipeline using two external tools:
Babelfy (Section 2.2.2.3), a state-of-the-art graph-based WSD/EL system, and
Nasari (Section 2.2.3.3), a vector representation for all the nominal concepts and
entities in BabelNet. The gist of this disambiguation pipeline was exploiting at best
an enriched multilingual context to harvest as many sense annotations as possible
with Babelfy, which implicitly enforced cross-language semantic coherence, and
then refining the disambiguation output using distributional semantic similarity
to correct the structural bias of Babelfy. By applying this pipeline on the two
corpora mentioned above, we obtained two resources, EuroSense (Delli Bovi et al.,
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2017) and SenseDefs (Camacho Collados et al., 2016a), which constitute the
largest sense-annotated parallel corpus and the largest sense-annotated definitional
corpus, respectively. Also, compared to sense-annotated corpora obtained using
only Babelfy (and without taking into account the features of the target text),
our disambiguation pipeline improved considerably the estimated accuracy of sense
annotations, as shown in Table 4.20. An additional advantage of this pipeline,
compared to the Wikipedia-specific methods used to construct Sew, is that using a
two-stage process enabled us to release two versions of the corresponding resource,
each suitable to certain sets of applications, and to associate one or more confidence
scores to each sense annotation (see Sections 6.2 and 6.3), which can be used to
further tune the resource for a specific task, application, or use.

Chapter 5, instead, is devoted to the second objective of Section 1.1: once
equipped with reliable automatic methods to harvest sense-level information from
open text, we were able to reframe the OIE paradigm at the sense level, studying
where and how sense-aware methods can effectively enhance the process of extracting
relational knowledge. Even though there have been previous attempts to inject
semantic features into OIE systems, including approaches dealing explicitly with
phenomena like lexical ambiguity and synonymy (Section 3.2), we showed that they
still have a number of practical limitations, mostly connected with the need to
cope with data sparsity and noisy extractions, which prevent them to enforce a
deeper semantic analysis. We addressed this issue in Section 5.1, where we designed
a full-fledged OIE pipeline targeted at the denser, virtually noise-free setting of
definitional text, and we integrated a fully sense-aware approach into the extraction
process. The resulting quasi-OIE system, DefIE (Delli Bovi et al., 2015b), exploited
a comprehensive semantic analysis to extract unambiguous relation triples, with ‘se-
mantified’ relation patterns that could be effectively arranged in a relation taxonomy
without devising complex alignments or subsumption strategies (cf. Section 3.2.1).
With the broad experimental evaluation of DefIE (Section 5.1.4) we showed that a
fully sense-aware OIE pipeline on a considerably smaller corpus results in comparable
(or greater) performances than standard OIE pipelines on massive, even Web-scale,
noisy corpora, in addition to all the advantages of anchoring the extracted knowledge
to the semantic network of BabelNet. The results obtained with DefIE suggest
that, when extracting factual information from open text, it might be convenient to
analyze the target corpus at hand, and perhaps try to isolate knowledge-rich pieces
of text (e.g. definitions), instead of blindly process massive amounts of noisy data
and then devise sophisticated strategies to refine incorrect extractions.

Another issue of current OIE systems, pointed out at the beginning of Chapter
5, is the fact that they tend to produce isolated repositories of relational knowledge,
typically featuring their own internal structure and type inventories (cf. Section
2.3.1), and with very few attempts of integration or interoperability among them.
This issue becomes even more critical for OIE systems, where the relation inventory
is not specified in advance and there is no way of establishing, without manual
inspection, whether two systems have extracted the same piece of information, or
whether they have discovered the same semantic relation. Not even sense-level
approaches, such as Patty (Section 3.2.1), WiSeNet (Section 3.2.2), or DefIE
(Section 5.1), deal with the problem. This situation motivated the development
of KB-Unify (Delli Bovi et al., 2015a), a sense-aware framework for integrating
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the outputs of different OIE systems into a single, unified and fully disambiguated
knowledge repository: in Section 5.2, where we described the unification pipeline
of KB-Unify and its experimental evaluation, we demonstrated that semantic
analysis at the sense level can be used to interconnect relational knowledge, even
when derived from very heterogeneous sources, such as the human-crafted semantic
relations of Nell and the relation synsets generated by Patty and WiSeNet.
Since the unification procedure operated at the sense level, we devised an ad-hoc
disambiguation strategy for a collection of relation triples (Section 5.2.1.3) where,
similarly to the disambiguation approaches of Chapter 4.1, providing a rich ad
meaningful context for disambiguation was key to obtain high-quality results.

Finally, in Section 5.3 we shifted the focus from OIE, based on the unconstrained
extraction of an unspecified number of semantic relations, to the opposite end of the
IE spectrum, i.e. hypernym discovery, which is concerned with extracting only one
specific kind of semantic relation: hypernymy. Apart from the prominent role of
hypernymic information in the field, we were motivated by the fact that the IE and
OIE systems treated in the previous sections were also capable of extracting valu-
able hypernymic information. Thanks to KB-Unify, then, this information could
be ‘semantified’ and integrated with hypernymic knowledge drawn from different
sources (e.g. Wikidata) and used to train a supervised hypernym discovery model
at the sense level. This was indeed the gist of TaxoEmbed (Espinosa Anke et al.,
2016a), a sense-level framework for supervised hypernym discovery that relied on the
vector space of SensEmbed (Iacobacci et al., 2015) to learn a domain-specific linear
transformation from hyponyms to hypernyms. By redefining hypernym discovery
at the sense level, TaxoEmbed was able to leverage an heterogeneous training set
with both human-curated hypernymic knowledge from Wikidata and OIE-derived
hypernymic knowledge from KB-Unify, thereby achieving its best performance in
our experimental evaluation (Section 5.3.2).

7.2 Future Work and Perspectives

Notwithstanding the key contributions presented in this thesis, showcased in Section
1.3 and then further discussed in Section 7.1, all the proposed approaches do not
represent conclusive solutions to the tasks they address, but rather constitute a leap
forward that opens up avenues for future work. In fact, in some cases they contributed
to reshape the landscape of their field of study by putting forward resources that
were not available before, while at the same time setting new performance baselines
on standard evaluation benchmarks thanks to these resources (cf. Chapter 4). In
other cases they opened a new perspective on their fields (cf. Chapter 5), shedding
a light on some aspects that were previously overlooked or neglected, and proposing
new ways and new methodologies to confront with the problem at hand.

First of all, a number of short- and medium-term improvements can be envisaged
for each contribution presented in this thesis, some of which are currently under
investigation. As regards Sew (Section 4.1), for instance, there are additional
ways of exploiting Wikipedia-derived knowledge to propagate sense annotations: in
particular, an aspect that was not completely captured by the propagation pipeline
described in Section 4.1.1 is multilinguality. The pipeline was developed and applied



152 7. Conclusion

only on the English Wikipedia, but it does not actually carry language-specific
features1 and could be extended to other languages. Furthermore, an array of
propagation heuristics can be developed on the basis of the fact that the various
monolingual Wikipedias can be seen altogether as a massive comparable corpus,
where two Wikipages referring to the same entity not only come from the same
topic, but they actually describe the same subject. Speaking of multilinguality,
the disambiguation pipeline used in Sections 4.2 and 4.3 (which, instead, relies
heavily on multilinguality) can also be improved in this respect: when constructing
a multilingual context for Babelfy, for both EuroSense and SenseDefs, all the
languages were treated equally, neglecting the fact that Babelfy, as any other
off-the-shelf system, does not perform equally well on all languages. As noted in
Section 2.2.1, the performance of a knowledge-based system depends strictly on
the quality of the underlying resource, and hence ultimately on the structured
knowledge available for a given language in that resource. This means that, while
the performance of less-resourced languages might be improved by propagating
disambiguation decisions from more confident languages, the vice versa could also
happen, especially when a large amount of languages is considered as the same
time, as in SenseDefs.2 Therefore, in order to effectively create and maintain a
positive synergistic effect, the mutual interaction among languages at disambiguation
time should be further studied and controlled. Finally, a shortcoming of all the
sense-annotated resources in Chapter 4 is that verbal senses are very rarely captured:
Sew manages to annotate only monosemous verbs from WordNet with a specific
heuristic, as all the Wikipedia-based propagation hyperlinks are only associated with
nominal senses (in fact, the Wikipedia sense inventory itself is strictly nominal). On
the other hand, the disambiguation pipeline of EuroSense and SenseDefs utilizes
Babelfy to disambiguate verbs in the first stage, but in the refinement step only
nominal senses are considered3. Disambiguating verbal senses with high accuracy is
a well-known problem in WSD (Raganato et al., 2017a): verbs represent the word
class with the highest average polysemy, and where many sense-level distinctions
are extremely fine-grained. Nevertheless, they often constitute a crucial component
to model, bearing most of the semantic content of a sentence.

Similarly, the approaches presented in Chapter 5 are not flawless and improvable
in many ways. The competitive performances of DefIE (Section 5.1) result from
the effective interplay between the characteristics of the target text and the less-
constrained extraction procedure, designed to “trust” the underlying data. As shown
in Section 5.1.4.5, applying the same quasi-OIE pipeline to non-definitional text
causes extraction accuracy to drop substantially. To broaden the scope of DefIE
there are two viable options: enforcing syntactic and semantic constraints to cope
with noisy extractions, as in Patty and WiSeNet (cf. Section 3.2), or designing a
general-purpose pipeline where DefIE is coupled with a definition extraction module,

1Apart from the preprocessing phase (tokenization, part-of-speech tagging and lemmatization)
which, however, is available for many languages nowadays, and the number of languages covered will
likely be increasingly large in the future, thanks to project like The Universal Dependencies (Nivre
et al., 2016).

2In fact, Table 4.17 showed that, while our disambiguation pipeline consistently achieved the
highest F-score figures, in some cases the Babelfy baseline reported a higher precision.

3In fact, Nasari relies on Wikipedia to construct its vector representations (cf. Section 2.2.3.3).
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designed to spot and isolate definitional knowledge across the target text (Navigli and
Velardi, 2010; Benedictis et al., 2013; Espinosa Anke and Saggion, 2014; Espinosa
Anke et al., 2015; Dalvi et al., 2015). Also, the quality of DefIE’s extractions depend
crucially on the quality of disambiguation: as we discussed above, disambiguation
systems to date tend to struggle with verbal senses which, instead, are usually the
head component in OIE-derived relation phrases (cf. Section 2.3.2). Finally, as
regards KB-Unify and TaxoEmbed (Sections 5.2 and 5.3), the unification pipeline
proposed in Section 5.2.1, albeit effective, represents only a first attempt towards this
largely unexplored task. First of all, the disambiguation and alignment stages, which
KB-Unify performs as two successive steps, represent two tightly interconnected
processes: in some cases, cross-resource alignment could still be carried out at the
word level (e.g. when the subject and object arguments are less ambiguous); at the
same time, some cross-resource alignments could also be exploited at disambiguation
time, to further enrich the context of an ambiguous relation triple with knowledge
from aligned resources. In other words, a potentially more effective solution would be
that of performing disambiguation and alignment jointly. In addition, the alignment
procedure also suffers from a structural disadvantage: as we showed in Patty
(Section 3.2.1), modeling the semantics of a relation using only the semantics of its
arguments can lead to false positives, i.e. very different relations that are defined on
very similar argument sets (e.g. ‘is the mother of’ vs. ‘is the father of’, or ‘is a city in’
vs. ‘is the capital city of’). On the other hand, only considering features of the relation
phrase is also suboptimal, since very similar relation phrases might identify very
different semantic relations (e.g. ‘played as’, ‘played with’, ‘played in’, ‘played the’).
The specific case of hypernymic relations is even more critical, since they can be
identified with a plethora of different patterns and, at the same time, the generality
of these relations makes it unpractical to study the shape of their arguments sets in
the vector space, especially when such diverse sets are replaced by a single centroid,
as KB-Unify does: this shortcoming, in turn, reflects on TaxoEmbed, where many
valuable OIE-derived training pairs, not aligned with Nell’ ‘is a’ relation in the first
place (cf. Section 5.3.1), might not have been captured.

Long-Term Perspectives. From a broader standpoint, the advancements de-
scribed in this thesis, along with many other research efforts that are pushing forward
the computational study of Lexical Semantics, pave the way for a greater, more
general reshaping and adaptation of the field’s landscape. When the deep learning
tsunami hit the shores of NLP, the general feeling was that in five years’ time
the next big step of deep neural networks would have been full natural language
understanding (Manning, 2015): however, the impressive results achieved by these
architectures in other areas of AI, such as Computer Vision, seemed difficult to
replicate in the domain of NLP. Among many other important reasons, this difficulty
is also connected with the lack of large-scale labeled datasets for many NLP tasks;
in this respect, Lexical Semantics is one of the most problematic areas, also due to
phenomena like the knowledge acquisition bottleneck. In fact, for the very same
reasons, not even wide-coverage multilingual semantic resources, including BabelNet,
are enough to solve Lexical Semantics, as discussed in Chapter 1. With this thesis,
we point at two promising avenues, strongly connected but also complementary to a
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certain extent, that we believe should be further explored in future work:

1. Establishing a unified, consistent and effective framework to develop
data-driven sense-level models on a large scale: this goal requires, first
of all, to have reliable and scalable automatic methods to construct high-quality
sense-annotated corpora. Starting from those developed in Chapter 4, with
their strengths and weaknesses, but also including other recent approaches
geared towards the same task (Pasini and Navigli, 2017), a general-purpose
disambiguation pipeline would be a major next step, coupled with an adequate
evaluation framework that provides a level playing field for both training and
testing purposes (Usbeck et al., 2015; Raganato et al., 2017a). Then, of course,
we would need to develop scalable supervised models. For instance, in the
domain of WSD (Section 2.2.1), this would translate into challenging the well-
established word expert paradigm (which requires casting a new classification
problem for each and every target word type) and at the same time going beyond
language-specific models. Efforts in this direction are under way (Raganato
et al., 2017b), but investigating whether and how these data-driven models
can scale to extremely large training datasets and vocabularies, or whether
structured semantic knowledge from resources like BabelNet can be effectively
exploited for this purpose, still constitutes an important open problem;

2. Developing a principled approach to extract, ontologize, align and
unify relational knowledge: this goal consists, on the one hand, in de-
signing large-scale sense-level IE/OIE approaches to extract and ontologize
relational knowledge from open text, a research thread, started with Patty
and WiSeNet (Section 3.2) and brought forward by DefIE (Section 5.1),
which also relies on the availability of sense-annotated data (see the point
above). On the other hand, semantic analysis is also needed to integrate,
harmonize and unify effectively IE/OIE-derived knowledge, as we showed
with KB-Unify (cf. Section 5.2), where we moved our fist steps towards
the construction of a BabelNet-like repository for relational knowledge. How-
ever, while we restricted ourselves mainly to OIE-derived resources in the
experimental evaluation, the unification framework we designed is capable of
handling any kind of resource. On a wider perspective, the ultimate task we
are envisioning with such a framework is that of unifying closed and open
IE, an ambitious research objective for which integration approaches such as
Universal Schemas (Section 2.3.3) have already started paving the way. In
this respect, the long-term goal is that of developing models that are able to
autonomously spot and extract a semantic relation across natural language
text, and then decide whether such relation should be classified as one of the
relations already encoded in a given type inventory, or rather considered as a
novel, unseen relation to be modeled separately.

As a final remark, a key aspect of both the perspectives treated above is multilin-
guality. In fact, whenever we refer to ‘large-scale’ approaches, we implicitly consider
the capability of including multiple languages into the picture, a requirement that
is becoming increasingly important nowadays. Focusing on frameworks that are as
language-independent as possible has been one of the major concern throughout this
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thesis, reflected in the central role of BabelNet in all the approaches we studied. The
sense-annotated resources developed in Chapter 4 are either already multilingual
(Sections 4.2 and 4.3), or easily extendable to multiple languages (Section 4.1);
similarly, the sense-aware approaches of Chapter 5, being defined at the level of
language-independent Babel synsets, are also open to a multilingual extension that
wuould not require, e.g., off-the-shelf Machine Translation systems (Faruqui and
Kumar, 2015). As a matter of fact, KB-Unify and TaxoEmbed do not rely on
any language-specific module, and are already capable of working with relation
triples or term-hypernym pairs regardless of the specific language they are encoded
in. By coupling these frameworks with multilingual corpora, such as EuroSense
or SenseDefs, we are indeed laying the foundations for the development of wide-
coverage systems targeted at the multilingual extraction of relational knowledge
at the sense level. These systems should be able to build upon multilingual lexico-
semantic resources, harvesting relation instances that are lexically unambiguous and
seamlessly ontologized, and at the same time building, brick by brick, a multilingual
repository of relational knowledge on top of lexical resources, with sets of multilingual
paraphrases and synonymous patterns representing the same underlying semantic
relation. Similarly to resources like BabelNet, these language-independent relations
could then be ontologized into a lexicalized semantic network and connected with
semantic links representing, e.g., hypernymy (‘is a university in’ and ‘is an educational
institution in’), subsumption (‘knows’ and ‘has a romantic relationship with’), inference
(‘is awarded with’ and ‘is nominated for’), or even statistical co-occurrence (‘works in’
and ‘lives in’). With such a semantic resource as a backbone for data-driven models,
the deep learning tsunami could hit once again the shores of Natural Language
Understanding, but this time with its full force.
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