(Open) Information Extraction: Where are we going?

Claudio Delli Bovi 16/10/2015

dellibovi@di.uniromal.it

http://www.sers.di.uniromal.it/~dellibovi

N

bn:17381128n

First-year PhD student

LCL group @ Sapienza

Advisor: prof. Roberto Navigli

Focus (so far): (Open) Information Extraction

DefIE: OIE from textual definitions

Delli Bovi, Telesca, Navigli: **TACL** (to appear)

DefIE: OIE from textual definitions

Delli Bovi, Telesca, Navigli: **TACL** (to appear)

KBUnify: KB disambiguation and unification Delli Bovi, Espinosa-Anke, Navigli: **EMNLP 2015**

"A process of getting **structured** data from **unstructured** information in the text"

(Jurafsky and Martin, 2009)

"Identification of instances of a particular class of **relationships** in a natural language text, and the extraction of relevant **arguments** for that relationships" (Grishman, 1997)

Machine Reading:

"I hereby offer to bet anyone a lobster dinner that by 2015 we will have a computer program capable of automatically reading at least 80% of the factual content across the entire English speaking web, and placing those facts in a structured knowledge base."

(T. Mitchell. Reading the Web: A Breakthrough Goal for AI. AI Magazine, 2005)

What?

What?

Input:

- large corpus of unstructured text
- set of semantic relations
- labelled training data

Output:

- knowledge base of triples
- \langle entity, relation, entity \rangle

What?

Input:

- large corpus of unstructured text
- set of semantic relations
- labelled training data

Output:

- knowledge base of triples
- < entity, relation, entity >

supervised learning

What?

Input:

- large corpus of unstructured text
- set of semantic relations
- high-precision seeds/examples

Output:

- knowledge base of triples
- < entity, relation, entity >

What?

How?

How?

NELL – Never Ending Language Learning (Carlson et al., 2010)

Web-scale **self-supervised learning** system, running at CMU continuously 24 hours per day

Requires an **initial ontology** with categories and relations, each with 10/15 initial **seeds**

Uses a variety of methods (including human supervision) to extract **beliefs** from the web

http://rtw.ml.cmu.edu/rtw

How?

How? **PATTY** (Nakashole et al., 2012) From patterns to pattern synsets (clusters of relation phrases that express the same relation) information (Moro and Navigli, 2013) Each pattern has syntactic generalizations and **semantic types** for its arguments: (Carlso <Person> 's [ADJ] voice * <Song> semantic Patterns are hierarchically organized in a taxonomy (Kozareva L (Fader et al., 2011)

(Bunescu and Mooney, 2006)

degree of supervision

.an, 2005)

(Open) Information Extraction

OIE is great, but...

Sparsity: many relation phrases express the same relationship (e.g. synonyms, paraphrases)

Ambiguity: arguments (and relation phrases) are ambiguous!

DefIE: OIE from textual definitions

Claudio Delli Bovi, Luca Telesca and Roberto Navigli. Large-Scale Information Extraction from Textual Definitions through Deep Syntactic and Semantic Analysis. Transactions of the Association for Computational Linguistics (TACL), 2015.

KBUnify: KB disambiguation and unification Delli Bovi, Espinosa-Anke, Navigli: **EMNLP 2015**

The idea:

instead of targeting massive and noisy corpora (like the web) and then trying to find a smart way to cope with the noise

target smaller but "denser" (and virtually noise-free) corpora of **definitional knowledge**.

The idea:

instead of targeting massive and noisy corpora (like the web) and then trying to find a smart way to cope with the noise

target smaller but "denser" (and virtually noise-free) corpora of **definitional knowledge**.

Apply OIE techniques to extract as much information as possible!

The tools:

- An underlying **inventory/knowledge base** (to which arguments and relation patterns will be connected)

- A **WSD/EL system** (to disambiguate concepts and entity mentions across the input text)

- A syntactic parser (to construct meaningful relation patterns and avoid sparsity)

http://lcl.uniromal.it/defie

The tools:

- An underlying **inventory/knowledge base** (to which arguments and relation patterns will be connected)

- A **WSD/EL system** (to disambiguate concepts and entity mentions across the input text)

- A syntactic parser (to construct meaningful relation patterns and avoid sparsity)

http://babelnet.org

BabelNet I4 million entries both lexicographic and encyclopedic knowledge

http://lcl.uniromal.it/defie

The tools:

- An underlying **inventory/knowledge base** (to which arguments and relation patterns will be connected)

- A **WSD/EL system** (to disambiguate concepts and entity mentions across the input text)

- A syntactic parser (to construct meaningful relation patterns and avoid sparsity)

Babelfy

unified graph-based approach to **EL** and **WSD**

unsupervised, based on **BabelNet**

http://lcl.uniromal.it/defie

The tools:

- An underlying **inventory/knowledge base** (to which arguments and relation patterns will be connected)

- A WSD/EL system (to disambiguate concepts and entity mentions across the input text)

- A **syntactic parser** (to construct meaningful relation patterns and avoid sparsity)

http://svn.ask.it.usyd.edu.au/ trac/candc

log-linear parser and supertagger based on **CCG**

(theoretically) suited to **long-distance dependencies**

I. Extracting relation instances

"Atom Heart Mother is the fifth album by English band Pink Floyd."

Textual definition d

DeflE: How it works

I. Extracting relation instances

DeflE: How it works

I. Extracting relation instances

I. Extracting relation instances

I. Extracting relation instances

Extraction 1

DeflE: How it works

http://lcl.uniromal.it/defie

I. Extracting relation instances

 $\begin{array}{l} X \rightarrow \text{is} \rightarrow Y \\ X = \text{Atom Heart Mother}_{bn}^1 \\ Y = \text{album}_{bn}^1 \end{array}$

Extraction 2

Extraction 1

$$egin{aligned} X
ightarrow ext{is}
ightarrow ext{album}_{bn}^1
ightarrow ext{by}
ightarrow Y Y = Atom Heart Mother_{bn}^1 Y = Pink Floyd_{bn}^1 \end{aligned}$$

For each relation *R*:

Substitute each domain and range argument with its **hypernym** h (using the BabelNet taxonomy) and generate a **probability distribution over semantic types** for the two sets

For each relation *R*:

Substitute each domain and range argument with its **hypernym** *h* (using the BabelNet taxonomy) and generate a **probability distribution over semantic types** for the two sets

Compute the **entropy** of R as
$$H_R = -\sum_{i=1}^n p(h_i) \log_2 p(h_i)$$

Pattern	Score	Entropy
X directed by Y	4 025.80	1.74
X known for Y	2 590.70	3.65
$\operatorname{X}{\mathit{is}}\operatorname{election}\operatorname{district}^1_{\mathit{bn}}{\mathit{of}}\operatorname{Y}$	110.49	0.83
X is composer $_{bn}^1$ from Y	39.92	2.08
X is \mathtt{street}_{bn}^1 named after Y	1.91	2.24
X is $village_{bn}^2$ founded in 1912 in Y	0.91	0.18

3. Relation taxonomization

DeflE: How it works

3. Relation taxonomization

Hypernym Generalization

DeflE: How it works

3. Relation taxonomization

Dataset:

whole set of English textual definitions in BabelNet 2.5

4 357 327 items from **5** different sources (Wikipedia, WordNet, Wikidata, Wiktionary, OmegaWiki)

BabelNet

	DeflE	NELL	PATTY	ReVerb	WiSeNet
# Relations	255 881	298	63 53	664 746	245 935
Avg. extractions	81.68	7 013.03	9.68	22.16	9.24
# Extractions	20 352 903	2 089 883	15 802 946	14 728 268	2 271 807
# Entities	2 398 982	1 996 021	I 087 907	3 327 425	I 636 307
# Edges in the taxonomy	44 412	-	20 339	-	-

Other evaluations:

- Precision and coverage of relations
- **Novelty** of information
- Quality of relation **taxonomization**
- Quality of entity linking/disambiguation
- **Impact** of definition sources

- **Other evaluations:**
- **Precision** and **coverage** of relations
- **Novelty** of information
- Quality of relation **taxonomization**
- Quality of entity linking/disambiguation
- **Impact** of definition sources

Data and output soon available for download on the website!

IE and OIE: some background

DeflE: OIE from textual definitions Delli Bovi, Telesca, Navigli: TACL (to appear)

KBUnify: KB disambiguation and unification

Claudio Delli Bovi, Luis Espinosa-Anke and Roberto Navigli. **Knowledge Base Unification via Sense Embeddings and Disambiguation**. *Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing* (EMNLP), pages 726–736, Lisbon, Portugal, 17-21 September 2015.

KB-Unify: Knowledge base unification via sense embeddings and disambiguation

http://lcl.uniromal.it/kb-unify

KB-Unify: Knowledge base unification via sense embeddings and disambiguation

http://lcl.uniromal.it/kb-unify

http://lcl.uniromal.it/kb-unify

The tools:

- A **WSD/EL system** (to disambiguate unlinked resources)

- A unified **sense inventory S** (to make the various resources "speak to each other")

- A unified **vector space** V_s (to associate a vector with each item of **S**)

http://lcl.uniromal.it/kb-unify

The tools:

- A **WSD/EL system** (to disambiguate unlinked resources)

- A unified **sense inventory S** (to make the various resources "speak to each other")

- A unified **vector space** V_s (to associate a vector with each item of **S**)

http://lcl.uniromal.it/kb-unify

The tools:

- A **WSD/EL system** (to disambiguate unlinked resources)

- A unified **sense inventory S** (to make the various resources "speak to each other")

- A unified **vector space** V_s (to associate a vector with each item of **S**)

SensEmbed

(lacobacci et al., 2015)

Sense-based embedding model

Popular word2vec architecture (**skipgram**) trained on a **sense-annotated corpus**

A bird's-eye view

A bird's-eye view

use **BabelNet mappings** to

redefine each linked resource

disambiguate each unlinked resource using Babelnet as sense inventory (more on this later!)

http://lcl.uniromal.it/kb-unify

http://lcl.uniromal.it/kb-unify

Two basic intuitions:

I. Among all triples in target knowledge base, some of them (even if ambiguous) will be **easier to disambiguate**;

e.g. \langle Armstrong, works for, NASA \rangle

http://lcl.uniromal.it/kb-unify

Two basic intuitions:

I. Among all triples in target knowledge base, some of them (even if ambiguous) will be **easier to disambiguate**;

e.g. \langle Armstrong , works for , NASA \rangle

2. In general, the disambiguation strategy should vary according to the **degree of specificity** of each relation.

http://lcl.uniromal.it/kb-unify

Group the set of unlinked tripes by relation For each relation r:

- Extract and disambiguate a subset of high-confidence seed argument pairs for r;
- Estimate the **specificity** of r by looking at the distribution of its disambiguated seeds in the vector space V_s ;
- Disambiguate the remaining argument pairs of r with Babelfy either **triple-by-triple** (if r is general) or **all at once** (if r is specific).

http://lcl.uniromal.it/kb-unify

% Identifying seed argument pairs

\langle Armstrong ,

works for ,

MASA >

http://lcl.uniromal.it/kb-unify

Solution Identifying seed argument pairs

http://lcl.uniromal.it/kb-unify

% Identifying seed argument pairs

Ranking relations by specificity

$$\mu_k = \frac{1}{|\mathbf{v}_k|} \sum_{v \in \mathbf{v}_k} \frac{v}{\|v\|} , \ k \in \{D, G\}$$

Domain/Range Centroids

$$\sigma_k^2 = \frac{1}{|\mathbf{v}_k|} \sum_{v \in \mathbf{v}_k} \left(1 - \cos\left(v, \mu_k\right)\right)^2$$

Domain/Range Variances

http://lcl.uniromal.it/kb-unify

Ranking relations by specificity

High Gen(r) (> δ_{spec}) $Gen(r) = \frac{\sigma_D^2 + \sigma_G^2}{2} \quad \mathbf{v}_D$ \mathbf{v}_G Low $Gen(r) \ (\leq \delta_{spec})$ Specificity threshold: δ_{spec} \mathbf{v}_D \mathbf{V}_G

 $\mu_{k} = \frac{1}{|\mathbf{v}_{k}|} \sum_{v \in \mathbf{v}_{k}} \frac{v}{\|v\|} , \ k \in \{D, G\}$

Domain/Range Centroids

$$\sigma_k^2 = \frac{1}{|\mathbf{v}_k|} \sum_{v \in \mathbf{v}_k} \left(1 - \cos\left(v, \mu_k\right)\right)^2$$

Domain/Range Variances

Disambiguation with Relation Context

A bird's-eye view

|†| Relation alignment

†† Relation alignment

For each relation pair $\langle r_i, r_j \rangle$:

†† Relation alignment

For each relation pair $\langle r_i, r_j \rangle$:

Compare domain and range centroids pairwise:

$$s_k = rac{\mu_k^{r_i} \cdot \mu_k^{r_j}}{\|\mu_k^{r_i}\| \, \|\mu_k^{r_j}\|}$$

Relation Centroid Similarity

†† Relation alignment

Fix a similarity threshold δ_{align} :

Range Centroids

 $\frac{1}{2}(s_D + s_G) \ge \delta_{align}$? Align r_i and r_j and merge them in the same cluster

†† Relation alignment

Fix a similarity threshold δ_{align} :

Range Centroids

 $\frac{1}{2}(s_D + s_G) < \delta_{align}$? Leave r_i and r_j in separate clusters

http://lcl.uniromal.it/kb-unify

Experimental setup:

http://lcl.uniromal.it/kb-unify

Disambiguation

For each ranked relation compute Gen(r) against the average argument similarity \overline{s} :

http://lcl.uniromal.it/kb-unify

Specificity ranking

For each ranked relation compute Gen(r) against the average argument similarity \overline{s} :

http://lcl.uniromal.it/kb-unify

LQ Specificity ranking

For each ranked relation compute Gen(r) against the average argument similarity \overline{s} :

$\square_{\mathbf{Q}}$ Cross-resource relation alignment

Samples of **150 candidate alignments** for different alignment thresholds δ_{align} manually evaluated (in terms of **paraphrasing**) by two human judges

http://lcl.uniromal.it/kb-unify

$\square \mathbf{C} \mathbf{Cross-resource\ relation\ alignment}$

Some examples:

PATTY-WISENET			NI	ELL-PATTY	ζ_{align}
portrayed	's character	0.84	worksfor	was hired by	0.72
debuted in	first appeared in	0.86	riveremptiesintorive	r tributary of	0.89
PATTY-REVERB		ζ_{align}	NELL-WISENET		ζ_{align}
language in	is spoken in	0.81	animaleatfood	feeds on	0.72
mostly known for	plays the role of	0.70	teamhomestadium	play their home games at	0.88
NELL-REVERB		ζ_{align}	REVE	CRB-WISENET	ζ_{align}
bookwriter	is a novel by	0.88	has a selection of	offers	0.82
personleadscity	is the mayor of	0.60	had grown up in	was born and raised in	0.85

DeflE: A full-fledged OIE pipeline targeted to textual definitions, with explicit semantic characterization of both arguments and relation patterns

DeflE: A full-fledged OIE pipeline targeted to textual definitions, with explicit semantic characterization of both arguments and relation patterns

KB-Unify: An approach to knowledge base disambiguation and unification based on a shared sense inventory and a sense-based vector space model

Take-home message(s):

Web-scale OIE is absolutely great, but...

I. **Definitional knowledge is important**: sometimes it is worth it to just step back and analyze from where valuable information is extracted (**quality vs. quantity**)

2. Making sense of the output is important: semantic analysis can be used to let different OIE outputs "speak to each other" and benefit from mutual enrichment

OOOSAARK PLUS (FEELER GAUGE WIKIPEDIA + ←→ C minutairekin.ers/whi/Sport_Nus Merce Barringhe Manne montail SPARK PLUG Line & & Woom and & are minutail Line & & & Woom and & are minutail	WIKIPEDIA (CAN'T CONTACT THE DATABASE SERVER:
WIKIPEDIA	OOO MESSAGE WITH MIKE 1979 MIKE 1979: I REPLACED MY SPARK PLUGS AND NOW MY OAR IS RUNNING WEIRD. ME: WHAT IS A SPARK PLUG ?? ME: HELP ME: WHAT IS A CAR??

WHEN WIKIPEDIA HAS A SERVER DUTAGE, MY APPARENT IQ DROPS BY ABOUT 30 POINTS.