(Open) Information Extraction: Where are we going?

About me

dellibovi@di.uniroma1.it

http://www.users.di.uniroma1.it/~dellibovi

Second-year PhD student

LCL group @ Sapienza

Advisor: prof. Roberto Navigli

Focus (so far): Disambiguation, (Open)

Information Extraction

bn:17381128n

Outline

BabelNet and friends: some background

Research work @ LCL Sapienza

DefIE: OIE from textual definitions

Delli Bovi, Telesca, Navigli: TACL 2015

KBUnify: KB disambiguation and unification

Delli Bovi, Espinosa-Anke, Navigli: EMNLP 2015

Outline

BabelNet and friends: some background

Research work @ LCL Sapienza

DefIE: OIE from textual definitions

Delli Bovi, Telesca, Navigli: TACL 2015

KBUnify: KB disambiguation and unification

Delli Bovi, Espinosa-Anke, Navigli: EMNLP 2015

Linguistic Computing Laboratory (LCL) @ Sapienza University of Rome

 Part of the Computer Science Department of Sapienza, focused on Natural Language Processing

- Some projects we have been involved in:
 - MultiJEDI (1.3M €): ERC Starting Grant

- LIDER (1.5 M €): EU CSA
 - Google Focused Research Award (300k \$)

Multijedi_

Multilingual joint word sense disambiguation

Project

MultiJEDI is a 5-year ERC Starting Grant (2011-2016) headed by Prof. Roberto Navigli at the Linguistic Computing Laboratory of the Sapienza University of Rome. The project has two main objectives: creating large-scale lexical resources for dozens of languages, and enabling multilingual text understanding. The project has received funding from the European Union's specific programme 'Ideas' implementing the seventh framework programme (FP7-IDEAS-ERC) under grant agreement no. 259234.

BabelNet

 To the best of our knowledge, the largest multilingual encyclopedic dictionary and semantic network (almost 14M entries in 271 languages and 380M semantic connections)

BabelNet

- To the best of our knowledge, the largest multilingual encyclopedic dictionary and semantic network (almost 14M entries in 271 languages and 380M semantic connections)
- Initially created as an integration of Wikipedia and WordNet, now BabelNet is a merger of many different resources (Wiktionary, Wikidata, OmegaWiki, VerbNet, ImageNet, ...)

BabelNet

 The integration is performed via an automatic linking algorithm and by filling in lexical gaps with the aid of Machine Translation

- The integration is performed via an automatic linking algorithm and by filling in lexical gaps with the aid of Machine Translation
- BabelNet is composed of **Babel Synsets**, concepts or entities **lexicalized** ("WordNet-style") in many languages and featuring:
 - is-a relations
 - domain and categories
- images and definitions
- translations

BabelNet and friends

Babelfy

A graph-based algorithm for multilingual joint **Word Sense Disambiguation** and **Entity Linking**, based on BabelNet

BabelNet and friends

Babelfy

A graph-based algorithm for multilingual joint **Word Sense Disambiguation** and **Entity Linking**, based on BabelNet

The Wikipedia Bitaxonomy

An iterative algorithm for the automatic creation of a "bitaxonomy" for Wikipedia pages and categories

... and much more!

BabelNet and my research

- BabelNet (especially in its early stages) was conceived as a lexico-semantic resource more than an actual knowledge base:
 - semantic connections are mostly **lexical relations** from WordNet or unspecified "**relatedness edges**" derived from Wikipedia hyperlinks

BabelNet and my research

- BabelNet (especially in its early stages) was conceived as a lexico-semantic resource more than an actual knowledge base:
 - semantic connections are mostly **lexical relations** from WordNet or unspecified "**relatedness edges**" derived from Wikipedia hyperlinks
- Construct from BabelNet a proper knowledge base with labeled relations (X is album by Y, X worked at Y, ...)
- Use Open Information Extraction!

(Open) Information Extraction

OIE is great, but...

Sparsity: many relation phrases express the same relationship (e.g. synonyms, paraphrases)

Ambiguity: arguments (and relation phrases) are ambiguous!

Outline

BabelNet and friends: some background

Research work @ LCL Sapienza

DefIE: OIE from textual definitions

Delli Bovi, Telesca, Navigli: TACL 2015

KBUnify: KB disambiguation and unification

Delli Bovi, Espinosa-Anke, Navigli: EMNLP 2015

The idea:

instead of targeting massive and noisy corpora (like the web) and then trying to find a smart way to cope with the noise

target smaller but "denser" (and virtually noise-free) corpora of **definitional knowledge**.

The idea:

instead of targeting massive and noisy corpora (like the web) and then trying to find a smart way to cope with the noise

target smaller but "denser" (and virtually noise-free) corpora of **definitional knowledge**.

Apply OIE techniques to extract as much information as possible!

The tools:

- An underlying inventory/knowledge base (to which arguments and relation patterns will be connected)
- A WSD/EL system (to disambiguate concepts and entity mentions across the input text)
- A **syntactic parser** (to construct meaningful relation patterns and avoid sparsity)

The tools:

- An underlying <u>inventory/knowledge base</u> (to which arguments and relation patterns will be connected)
- A WSD/EL system (to disambiguate concepts and entity mentions across the input text)
- A syntactic parser (to construct meaningful relation patterns and avoid sparsity)

http://babelnet.org

BabelNet

14 million entries

both lexicographic and encyclopedic knowledge

The tools:

- An underlying inventory/knowledge base (to which arguments and relation patterns will be connected)
- A WSD/EL system (to disambiguate concepts and entity mentions across the input text)
- A syntactic parser (to construct meaningful relation patterns and avoid sparsity)

http://babelfy.org

Babelfy

unified graph-based approach to **EL** and **WSD**

unsupervised, based on **BabelNet**

The tools:

- An underlying inventory/knowledge base (to which arguments and relation patterns will be connected)
- A WSD/EL system (to disambiguate concepts and entity mentions across the input text)
- A <u>syntactic parser</u> (to construct meaningful relation patterns and avoid sparsity)

http://svn.ask.it.usyd.edu.au/trac/candc

log-linear parser and supertagger based on **CCG**

(theoretically) suited to long-distance dependencies

1. Extracting relation instances

"Atom Heart Mother is the fifth album by English band Pink Floyd."

Textual definition *d*

1. Extracting relation instances

Syntactic-Semantic

Graph S_d^{sem}

1. Extracting relation instances

$$\mathbf{R_1:} \quad X o \mathtt{is} o Y$$

(Atom Heart Mother, album)

$$\textbf{R_2:} \quad X \rightarrow \texttt{is} \rightarrow \underset{\texttt{bn:00002488n}}{\textbf{album}} \rightarrow \texttt{by} \rightarrow Y \qquad \qquad \overset{\texttt{(Atom Heart Mother, Pink Floyd)}}{} \\ \vdots \\ \texttt{(Can't Get Enough, Barry White)}$$

2. Relation typing and scoring

2. Relation typing and scoring

For each relation R:

Substitute each domain and range argument with its hypernym h (using the BabelNet taxonomy) and generate a probability distribution over semantic types for the two sets

Compute the **entropy** of R as $H_R = -\sum_{i=1}^{n} p(h_i) \log_2 p(h_i)$

2. Relation typing and scoring

Total number of For each relation R: extracted instances for R Compute the **score** of R as $\frac{|S_R|}{(H_R+1) \ length(r)}$ Domain and range Length of the entropy of R relation pattern of R

DeflE: How it works

2. Relation typing and scoring

Pattern	Score	Entropy
X directed by Y	4 025.80	1.74
X known for Y	2 590.70	3.65
\mathbf{X} is election district $_{bn}^{1}$ of \mathbf{Y}	110.49	0.83
\mathbf{X} is composer $^1_{bn}$ from \mathbf{Y}	39.92	2.08
X is street $_{bn}^1$ named after Y	1.91	2.24
X is $village_{bn}^{2}$ founded in 1912 in Y	0.91	0.18

3. Relation taxonomization

DeflE: How it works

3. Relation taxonomization

Hypernym generalization

DefIE: How it works

3. Relation taxonomization

Hypernym generalization

Substring generalization

Dataset:

whole set of English textual definitions in BabelNet 2.5

4 357 327 items from 5 different sources (Wikipedia, WordNet, Wikidata, Wiktionary, OmegaWiki)

	DefIE	NELL	PATTY	ReVerb	WiSeNet
# Relations	255 881	298	1 631 531	664 746	245 935
Avg. extractions	81.68	7 013.03	9.68	22.16	9.24
# Extractions	20 352 903	2 089 883	15 802 946	14 728 268	2 271 807
# Entities	2 398 982	1 996 021	1087907	3 327 425	1636307
# Edges in the taxonomy	44 412	_	20 339	-	-

Other evaluations:

- **Precision** and **coverage** of relations
- **Novelty** of information
- Quality of relation taxonomization
- Quality of entity linking/disambiguation
- **Impact** of definition sources

Where from here?

- Relation clustering (as in PATTY and WiSeNet)
- Multilinguality
- Relational **learning** and KB completion
- Harvest definitions from the web
- Adapt to "general" text

Outline

BabelNet and friends: some background

Research work @ LCL Sapienza

DefIE: OIE from textual definitions

Delli Bovi, Telesca, Navigli: TACL 2015

KBUnify: KB disambiguation and unification

Delli Bovi, Espinosa-Anke, Navigli: EMNLP 2015

The tools:

- A **WSD/EL system** (to disambiguate unlinked resources)
- A unified sense inventory **S** (to make the various resources "speak to each other")
- A unified **vector space V**_s (to associate a vector with each item of **S**)

The tools:

- A WSD/EL system (to disambiguate unlinked resources)

Babelfy

- A unified <u>sense inventory S</u> (to make the various resources "speak to each other")

Babelnet

- A unified **vector space V**_s (to associate a vector with each item of **S**)

The tools:

- A **WSD/EL system** (to disambiguate unlinked resources)
- A unified sense inventory **S** (to make the various resources "speak to each other")
- A unified <u>vector space V_s</u> (to associate a vector with each item of **S**)

SensEmbed

(Iacobacci et al., 2015)

Sense-based embedding model

Popular word2vec architecture (skip-gram) trained on a sense-annotated corpus

A bird's-eye view

A bird's-eye view

use **BabelNet mappings** to redefine each linked resource

disambiguate each unlinked resource using BabelNet as sense inventory (more on this later!)

Two basic intuitions:

 Among all triples in target knowledge base, some of them (even if ambiguous) will be easier to disambiguate

Disambiguation

Two basic intuitions:

1. Among all triples in target knowledge base, some of them (even if ambiguous) will be easier to disambiguate

```
〈 Armstrong , works for , NASA 〉
```

In general, the disambiguation strategy should vary according to the degree of specificity of each relation

Disambiguation

Group the set of unlinked triples by relation

For each relation **r**:

- Extract and disambiguate a subset of high-confidence seed argument pairs for r;
- Estimate the specificity of r by looking at the distribution of its disambiguated seeds in the vector space V_s;
- Disambiguate the remaining argument pairs of **r** with Babelfy either **triple-by-triple** (if **r** is general) or **all at once** (if **r** is specific).

80

Identifying seed argument pairs

 $\mathbf{v}_q = \{ v_q^1 \}$

80

Identifying seed argument pairs

80

Identifying seed argument pairs

Ranking relations by specificity

$$\mu_k = \frac{1}{|\mathbf{v}_k|} \sum_{v \in \mathbf{v}_k} \frac{v}{\|v\|} , \ k \in \{D, G\}$$

Domain/Range **Centroids**

$$\sigma_k^2 = \frac{1}{|\mathbf{v}_k|} \sum_{v \in \mathbf{v}_k} (1 - \cos(v, \mu_k))^2$$

Domain/Range **Variances**

Ranking relations by specificity

$$\mu_k = \frac{1}{|\mathbf{v}_k|} \sum_{v \in \mathbf{v}_k} \frac{v}{\|v\|} \;, \; k \in \{D,G\} \qquad \underbrace{\frac{\sigma_D^2 + \sigma_G^2}{2}}_{\mathbf{v}_D} \qquad \underbrace{\mathbf{v}_D} \qquad \underbrace{\mathbf{v}_D}_{\mathbf{v}_D} \qquad \underbrace{\mathbf$$

Domain/Range **Variances**

Disambiguation with Relation Context

A bird's-eye view

represent each relation in the

†† Relation alignment

†† Relation alignment

For each relation pair $\langle r_i, r_j \rangle$:

$$r_i$$
 Relations r_j \downarrow \downarrow $\mu_D^{r_i}$ $\mu_G^{r_j}$ Centroids $\mu_D^{r_j}$ $\mu_G^{r_j}$

†† Relation alignment

For each relation pair $\langle r_i, r_j \rangle$:

Compare domain and range centroids pairwise:

$$s_k = rac{\mu_k^{r_i} \cdot \mu_k^{r_j}}{\|\mu_k^{r_i}\| \, \|\mu_k^{r_j}\|}$$

Relation Centroid Similarity

†† Relation alignment

Fix a similarity threshold δ_{align} :

Domain Centroids

Range Centroids

 $\frac{1}{2}\left(s_D+s_G\right) \geq \delta_{align}$? Align r_i and r_j and merge them in the same cluster

†† Relation alignment

Fix a similarity threshold δ_{align} :

Range Centroids

$$\frac{1}{2}\left(s_D+s_G\right)<\delta_{align}$$
? Leave r_i and r_j in separate clusters

Evaluation

Experimental setup:

Linked Resources K_D: Unlinked Resources K_∪: **REVERB** WISENET NELL **PATTY** 1,631,531 relations 1,299,844 298 245,935 relations relations relations 15,802,946 2,271,807 2,245,050 14,728,268 triples triples triples triples

Disambiguation

Specificity ranking

For each ranked relation compute Gen(r) against the average argument similarity \bar{s} :

Specificity ranking

For each ranked relation compute Gen(r) against the average argument similarity \bar{s} :

Specificity ranking

For each ranked relation compute Gen(r) against the average argument similarity \bar{s} :

Cross-resource relation alignment

Samples of 150 candidate alignments for different alignment thresholds δ_{align} manually evaluated (in terms of paraphrasing) by two human judges

Cross-resource relation alignment

Some examples:

I	PATTY-WISENET	ζ_{align}	Nı	ELL-PATTY		ζ_{align}
portrayed	's character	0.84	worksfor		was hired by	0.72
debuted in	first appeared in	0.86	riveremptiesintorive	r	tributary of	0.89
PATTY-REVERB ζ_a		ζ_{align}	NELL-WISENET			ζ_{align}
language in	is spoken in	0.81	animaleatfood		feeds on	0.72
mostly known for	plays the role of	0.70	teamhomestadium	play their	home games at	0.88
Nell-ReVerb ζ_{align}		REVERB-WISENET			ζ_{align}	
bookwriter	is a novel by	0.88	has a selection of		offers	0.82
personleadscity	is the mayor of	0.60	had grown up in	was born	and raised in	0.85

Where from here?

- Less "naïve" relation alignment procedure
- Iterative algorithm for disambiguation and alignment (EM-style)
- Unify OIE-based KBs with hand-curated resources (Wikidata, DBpedia, etc.)

. . .

DefIE: A full-fledged OIE pipeline targeted to textual definitions, with explicit semantic characterization of both arguments and relation patterns

DefIE: A full-fledged OIE pipeline targeted to textual definitions, with explicit semantic characterization of both arguments and relation patterns

KB-Unify: An approach to knowledge base disambiguation and unification based on a shared sense inventory and a sense-based vector space model

Take-home message(s):

Web-scale OIE is absolutely great, but...

Take-home message(s):

Web-scale OIE is absolutely great, but...

1. **Definitional knowledge is important**: sometimes it is worth just stepping back and analyze from where valuable information is extracted (**quality vs. quantity**)

Take-home message(s):

Web-scale OIE is absolutely great, but...

- 1. **Definitional knowledge is important**: sometimes it is worth just stepping back and analyze from where valuable information is extracted (**quality vs. quantity**)
- 2. **Making sense of the output is important**: semantic analysis can be used to let different OIE outputs "speak to each other" and benefit from mutual enrichment

Thank you!

WHEN WIKIPEDIA HAS A SERVER OUTAGE, MY APPARENT IQ DROPS BY ABOUT 30 POINTS.