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ABSTRACT
In this paper we tackle the following question: is it possible
to predict the characteristics of the evolution of an epidemic
process in a social network on the basis of the degree dis-
tribution alone? We answer this question a�rmatively for
several di↵usion processes– Push-Pull, Broadcast and SIR–
by showing that it is possible to predict with good accuracy
their average evolution. We do this by developing a space ef-
ficient predictor that makes it possible to handle very large
networks with very limited computational resources. Our
experiments show that the prediction is surprisingly good
for many instances of real-world networks. The class of real-
world networks for which this happens can be characterized
in terms of their neighbourhood function, which turns out to
be similar to that of random networks. Finally, we analyse
real instances of rumour spreading in Twitter and observe
that our model describes qualitatively well their evolution.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data mining ; G.3 [Probability and Statistics]: Stochas-
tic processes

General Terms
Algorithms
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1. INTRODUCTION
In recent years, we have witnessed the emergence of many

sophisticated web services that allow people to interact on
an unprecedented scale. The wealth of data produced by
these new ways of communication holds the promise to in-
crease our understanding of human social behaviour, but a
fundamental hurdle is posed by the sensitivity of these data.
It could be available in principle, but its access must be
severely constrained to protect the privacy of users and the
confidentiality of data. In some contexts, e.g. sociological
and epidemiological studies, the network topology for which
the di↵usion processes are to be evaluated might simply be
unknown, or impossible to be determined with any accuracy.
It is often possible, however, to gain relatively unconstrained
access to some crude statistical information about the data.
For instance, while the exact network topology of a social
graph could be unavailable, some aggregate information such
as its degree distribution can be disclosed and made public.
A broad question arises naturally: can non-trivial conclu-
sions about various social processes be inferred based only
on such limited access to the data?

We tackle this question in the case of di↵usion processes.
We study some classical models of information di↵usion (which
we henceforth refer collectively as rumour spreading1) – gos-
siping in its push and pull variants, broadcast and sir– and
ask the following question: is it possible to predict the av-
erage evolution of the epidemic as it spreads in a given real-
world network on the basis of its degree distribution alone?
Furthermore, given the size of current data sets, we want
to perform such a prediction in a space e�cient manner, to
make the prediction for very large graphs possible with lim-
ited computational resources. Note that on the basis of the
degree information alone, we can only hope to predict how
the process will evolve on average, for there can be graphs
with the same degree distribution for which the epidemic
will evolve at very di↵erent speeds.

Surprisingly, we show that our goal is achievable for a large
class of real-world networks. This is the class of real net-
works whose neighbourhood function [6] closely resembles
that of a random graph with the same degree distribution.
1We stress that, contrary to the common meaning of the
word ”rumour”, in the context of the literature on infor-
mation di↵usion processes rumour simply means a generic
information.



The above discussion gives the gist of our results. Before
describing them in detail, let us review the di↵usion models
we will be considering.

Push, Pull and SIR.
Gossip (a.k.a. random-call model) is a fundamental com-

munication primitive inspired by the dynamics of viral dif-
fusion and word-of-mouth. It comes in three guises known
as push, pull and push-pull. In each, the process starts at
time t = 0 with one source node with a message. The pro-
cess evolves in a sequence of discrete, synchronous rounds.
In the push variant, in round t � 0, every informed node
selects a neighbour uniformly at random to which the mes-
sage is forwarded. The pull variant is symmetric, i.e., in
round t � 0, every node that does not yet know the mes-
sage selects a neighbour uniformly at random and asks for
the information to be transferred, provided that the queried
neighbour has it. The push-pull variant is a combination
of both, in each round informed nodes execute a push and
uniformed ones a pull.

From a computer science perspective these models pro-
vide simple-to-implement tools for the dissemination of in-
formation across a network [12] and for this reason they have
been studied extensively in practice and theory. More gen-
erally, they provide a very simple model for the dynamics
of viral di↵usion that, in spite of their simplicity, can o↵er
some insight into more realistic processes in sociology [26],
economics [21], and epidemiology [20]. There is a rich the-
oretical literature the studies the speed of these protocols.
To draw a few paradigmatic examples from a rich body of
literature, Feige et al. [13] showed that, in any connected
network, push delivers the message to every node within
O(n log n) many rounds, where n denotes the number of
nodes. These results have been extended to push-pull over
random graphs with power law degree distribution with ex-
ponent ↵ in [14]. It has been shown that when 2 < ↵ < 3
the rumour spreads to almost all nodes in O(log log n) time,
whereas when ↵ > 3 one needs ⌦(log n) rounds. In a series
of relatively recent papers [11, 10, 15] a tight relationship
was established between the speed of di↵usion of push-pull
and the conductance of the network, denoted as ', culmi-
nating with the optimal O(log n/') bound [15]. Notice that
all these results are asymptotic while our focus here is dif-
ferent. We want to predict the expected number of informed
nodes at time t, on the basis of the degree distribution of
the network.

In this paper we also evaluate a classical di↵usion model
inspired by mathematical epidemiology studies [20, 16], the
sir process. In this process, a node in the network can be
either susceptible, infected or removed. At time t = 0 a single
node is infected and all the others are susceptible. At time
t � 0, infected nodes transmit at each step the rumour to
each susceptible neighbour, independently with probability
p. After one step, nodes that were infected in the previous
step are removed and stop the transmission. Notice that sir
generalizes broadcast, to which it is equivalent when p = 1.
For consistency with the push-pull model we will define in-
formed nodes in sir as the ones either in infected or removed
state (i.e. the ones that already received the rumour). One
of the most striking results concerning sir is that the dif-
fusion is governed by reproduction number R

0

= pd̄, where
d̄ is the average degree of the nodes. In random networks
with degree distribution of finite variance, R

0

= 1 is a crit-

ical threshold below which the process extinguishes before
infecting a negligible fraction of the nodes. For R

0

> 1, in-
stead, the process grows exponentially fast. Such threshold
e↵ect is absent in certain random graphs with scale-free (for
instance power law) degree distribution [8].

These rumour spreading processes can be regarded as the
simplest models for information (or epidemic) di↵usion. We
can now describe our results and methods more precisely.

Problem definition, methodology and results.
The goal of the paper is to develop a space-e�cient pre-

dictor that is capable of estimating as precisely as possible
the expected number of infected nodes at time t when an
epidemic spreads across a real-world social network, where
the expectation is taken over all possible runs of the di↵u-
sion process under consideration. The input to the predictor
is not the network itself but its degree distribution only.

A recent paper by Goel et al. [16] shows that the well-
known random configuration model can be surprisingly good
at predicting qualitatively the shape and evolution of viral
processes in Twitter. We explore this insight further by
adopting the configuration model as the basis for our pre-
dictor. In a nutshell, our approach is, first, to develop a
provably exact and space-e�cient estimator for the configu-
ration model and, second apply it to real-world networks.

Let us recall the definition of the configuration model [37,
16]. We are given m stubs, m an even number, partitioned
into n buckets according to a given degree sequence D :=
(d

1

, d
2

, . . . , dn), where di is the number of stubs in bucket
i, i.e., the degree of node i in the graph. An undirected
(multi)graph is generated by the following random process:
a pair of stubs is chosen uniformly at random; let i and j be
the buckets these stubs belong to; an edge connecting nodes
i and j is inserted in the (multi)graph. The procedure is
repeated until there are no more free stubs. Observe that
m is even so this procedure ends. The model can be easily
generalized to the case of directed (multi)graphs.

In contrast to real social networks, random graphs gen-
erated by the configuration model have very few triangles.
And yet, as the results in [16] and in this paper show, it
can be the basis for accurate predictions of di↵usion pro-
cesses in real-world networks. A very positive feature of the
model is its simplicity, which opens the way to a rigorous
mathematical analysis. We will make use of this feature by
proving that our space-e�cient estimator is exact for the
configuration model.

By using a random graph model our problem becomes
mathematically well-defined: given a degree distribution D,
we want to estimate, for each time t, the expected number
of nodes that are informed by rumour spreading in a ran-
dom graph drawn from the configuration model with degree
distribution D, starting from a random source.

Notice now that this problem admits a trivial solution via
sampling: it is enough to generate “many” random graphs
with the given degree distribution and, for each one of them,
to simulate rumour spreading (itself a random process)“many”
times. If we accumulate the results by computing averages
for each value of t = 0, 1, . . ., by the law of large numbers
the averages will converge to the expected values. We shall
refer to this procedure as the naive estimator.

The naive estimator can be easily parallelized, as each
sample is independent, but has one clear bottleneck: space.
The scale of current social networks would force the use ex-



ternal memory – namely disk storage – unless special hard-
ware is available, resulting in prohibitive running times. More-
over, the naive predictor cannot scale e�ciently in distributed
computation paradigms like MapReduce, due to the network
communication bottleneck, as such paradigms are not suited
to run jobs that requires a large shared memory (i.e. the
graph).

In this paper, we develop a predictor along the same lines
of the naive estimator, but such that, by generating each
graph locally “on the fly”, it can keep everything in main
memory even for very large graphs. In terms of space, our
predictor needs only O(n) instead of O(n+m) space which
for real-world social graphs is a very significant improvement
(m denotes number of edges in the graph). For undirected
graphs, further optimization is possible which allows spec-
tacular savings in memory usage. To give a rough idea,
storing the entire Facebook network would require 480GB
of memory2, whereas our estimator can be run on less than
a gigabyte of memory.

The design of such space e�cient algorithms poses inter-
esting algorithmic challenges. In particular the algorithms
need to be able to sample a constantly changing distribution
in an e�cient way. To this end we develop a simple variation
of the well-known Walker’s method [35] (see Appendix A)
which proves to be practically very e�cient.

More specifically, our results are as follows. We develop a
predictor such that, given as input a degree distribution:

• It gives the correct prediction for our di↵usion pro-
cesses in the configuration model, i.e., given a degree
distribution D, for each time t, it correctly computes
the average number of nodes that are informed at time
t when the rumour starts from a random source of a
random graph with degree distribution D;

• It gives good predictions for real-life social networks,
provided that the neighbourhood function of the net-
work is not “too far” from that of random networks
with the same degree distribution. We also show the
converse: when the neighbourhood functions di↵er the
predictor performs poorly.

• It is e�cient in terms of space and, in the case of undi-
rected networks, exceptionally e�cient.

In their study of the neighbourhood function, Boldi et al.

show that the neighbourhood function of real networks is an
informative statistics able to distinguish social graphs from
the web graph [6]. More generally, as we do in this paper, it
can be used to tell apart social from non-social graphs. Seen
in this light our result is especially intriguing, as it shows
that, in the case of gossiping and sir, social networks behave
like an average instance of a random graph.

The rest of the paper is organized as follows. In Section 2
we develop the estimator for the configuration model, and
show that it is provably exact. Next section discusses how
the estimator can be improved in the undirected case. In
Section 4 we describe its performance, which is very good
for real-life directed and undirected social networks. In Sec-
tion 5 we recap and hint at possible interesting research
directions stemming from our work. Finally, in Appendix A
we describe the technical details of our sampling procedure.

2Estimated as log(n) bits per edge for this snapshot [3].

v

Figure 1: A privy node v during the execution of the algo-
rithm. Solid stubs connect v to (resp. from) other privy
nodes. Dashed stubs are free, i.e., represent edges that have
not yet been drawn. Node v has rank

in

= 1, rank
out

= 2,
free

in

= 2 and free
out

= 1.

2. MODEL FOR DIRECTED GRAPHS
In this section we develop a space e�cient estimator for

the configuration model [37]. In the introduction we have al-
ready defined the model for undirected graphs. The directed
model that we consider here is essentially identical except
that, for each vertex v, we need to specify two quantities,
the in and out degree, i.e., the pair (deg

in

(v), deg
out

(v)).
These pairs must satisfy the obvious requirement that the
sum of the in-degrees must be equal to the sum of the out-
degrees. If this requirement is satisfied the sequence is called
graphical.

It is useful to think of each vertex as having deg
in

(v) in-
stubs and deg

out

(v) out-stubs. Edges are generated by se-
lecting without replacement a random in-stub and a random
out-stub. Doing this can create parallel edges and self-loops
but they make for a negligible fraction of the total number of
edges when n ! 1 (by a balls-and-bins argument). Hence,
the error introduced this way is negligible. Note that the
e�cient and unbiased generation of simple (as opposed to
multi) graphs is an open problem [4].

Let us now switch to the estimator, which will be de-
scribed for the push process only for lack of space. The
discussion for pull, sir and broadcast (which is essentially
a special case of sir) is similar, and omitted from this ex-
tended abstract.

In what follows by sample we mean a run of rumour spread-
ing for a randomly generated graph and a random source.
Our goal is to execute each sample e�ciently in terms of
space. This is achieved by simulating rumour spreading
without storing the edges of the graph. The rough idea is
to generate edges in a piecemeal fashion when needed, i.e.,
when an edge is actually used to send the rumour across.
We observe that once the edge is used for the transmission
of the rumour it can be immediately forgotten, because both
endpoints will know the rumour afterwards. Hence, we do
not need to store it, but only the fact that its two endpoints
now have, respectively, one more out-edge and one more in-
edge. The resulting saving, as we shall see, is significant.
This approach is similar to the ones used for the analysis of
random graph processes [37].

Let us now describe the algorithm that executes samples
in a space e�cient way. For every vertex u, we shall keep
track of whether it is privy (it knows the rumour) or out-

of-the-loop (it does not know the rumour) and the following
quantities:

1. rank
in

(t, v), the number of in-neighbours at time t that
are privy;

2. rank
out

(t, v), the number of out-neighbours at time t
that are privy.



As discussed, the algorithm does not keep track of the edges
that are generated – they are e↵ectively forgotten. Instead,
for each vertex v, we will remember just how many in and
out edges respectively have been generated so far, without
knowing which edges exactly they represent. We can think
of stubs as being used or free, and keep track of the following
quantities:

1. free
in

(t, v), the number of in-edges that are still unde-
termined at time t;

2. free
out

(t, v), the number of out-edges that are still un-
determined at time t.

In the sequel, we will drop the dependency on time, when it
is clear from the context. Clearly, these quantities are some-
what redundant since deg

in

= rank
in

+ free
in

and deg
out

=
rank

out

+ free
out

. The algorithm for push actually stores, for
each node, only the values deg

out

, rank
out

, and free
in

. The
values deg

in

are only used to initialize the values free
in

:=
deg

in

, the value rank
in

is not actually used. The other quan-
tities can be simply computed from these, but it is useful to
write them explicitly for clarity of the exposition (see Fig-
ure 1). Likewise, it is useful for explanatory purposes to
think of vertices as having in and out stubs attached to
them. They are not actually stored, but they help explain-
ing the algorithm, which we do next.
Its input consists of a graphical sequence D and an inte-

ger parameter ⌧ . Its goal is to simulate one run of rumour
spreading for ⌧ rounds for a random graph taken from the
configuration model given by degree sequence D. It pro-
ceeds in a sequence of synchronous rounds t = 0, 1, 2, . . . , ⌧
(in practice, as soon as all nodes become privy we can stop
the simulation). Initially one node s, the source, is made
privy uniformly at random.

For [0  t  ⌧ ]: (Refer to Figure 2). All nodes that are
privy in the current round are processed in an arbitrary or-
der. Let u be the current privy node to be processed. One
of its out-stubs is selected uniformly at random. If the stub
is used nothing happens (this corresponds to the fact that
the rumour will be sent to another privy node). Otherwise,
the selected out-stub of u is free and becomes used. Then,
a free in-stub is selected uniformly at random. Let v be the
node to which this free in-stub belongs. Next, we increment
rank

out

(u), decrement free
in

(v) and mark one of the free in-
stubs of v as used. If v is out-of-the-loop, it becomes privy
at round t+1 (notice that v remains out-of-the-loop during
this round and may be selected several times).

We remark once again that the graphical operations con-
cerning stubs are not necessary for the algorithm but we
describe them for clarity of exposition. In particular, we
do not store the stubs explicitly, but only the quantities
deg

out

, rank
out

and free
in

. Note that the probability that a
used out-stub is selected in round t for a given vertex u is
p = rank

out

(u)
deg

out

(u) .

Time complexity.
We start by analysing the time needed to simulate a sin-

gle round of the algorithm. We make the standard assump-
tions [27] that we can sample in constant time for a uniform
distribution over [0, 1] and that basic arithmetic operations
require O(1) time.

x

y

z

Figure 2: The situation at time t. Privy nodes are dark.
Notice that stubs of out-of-the-loop nodes are all free.

The main di�culty in implementing a round is the selec-
tion of free in-stubs uniformly at random. This would be
easy if we stored the free in-stubs explicitly, which we do
not. But since we know, for each vertex, their number, we
can equivalently pick a vertex with a probability propor-
tional to the number of its free in-stubs. Performing such
random selection e�ciently is a non trivial task as the prob-
ability distribution of all nodes changes at each edge draw-
ing. This problem is known in literature as dynamic vari-
ate sampling [36, 27] and several solutions provides di↵erent
space-time trade-o↵. As we provide more details about this
operation in Appendix A, here we only summarize the most
important results.

The asymptotically optimal Mathias et al. [27] algorithm
implements such operations using O(n) space and in O(1)
time for each in-stub selection. Wong et al. [36] presented
an easy to implement O(n) size data structure that requires
O(log(n)) time per sampling. In our experiments we actually
use [36] or simple variant of the Walker [35] method that we
have developed and which provides almost constant time for
O(n) space (more details in Appendix A).

All the remaining updates and random choices (e.g., selec-
tion of out-stubs for a given node uniformly at random) can
be implemented in O(1) time per node processed. The total
number of nodes processed in one step is given by the num-
ber of informed nodes. Hence this cost is equal to the num-
ber of push messages exchanged. Let µ(⌧) be the number of
messages exchanged by the rumour spreading process in the
first ⌧ steps of the process (or up to when all nodes are in-
formed). The complexity of the algorithm is simply O(µ(⌧)).
Note that the exact estimation of the message complexity
of push and pull is a challenging problem, for which only
partial answers are known [10]. Clearly we have the trivial
upper bound of µ(⌧) = O(⌧ · n). On the other hand, note
that the simulation of push on a given graph clearly cannot
take less than µ(⌧) time, thus proving the algorithm has the
same complexity as simulating the rumour spreading process
in a graph. For the pull and sir algorithms, not presented
in this paper, similar argument shows that our algorithm
needs O(µ(⌧) + m) time to simulate the rumour spreading
process for given graph. Nevertheless, the most important
advantage of our simulation is the small space requirement,
which makes it possible to run each sample in main memory.
Simulating samples with external memory would make the
task computationally demanding.

Space complexity.
The push algorithm requires for each node in the graph

O(1) space to store the necessary information: in and out
degrees, in and out ranks and the number of in and out free
stubs. This gives O(n) space in total. To select in-stubs
uniformly at random, the algorithm employs an additional
data structure. As already mentioned with both Mathias et



al. [27] and Wong et al. [36] algorithms such data structure
requires O(1) space per element of the sampling set, thus
the total cost is again O(n). We can conclude that the al-
gorithm requires for directed graphs O(n) space. The same
conclusion holds for the pull and sir algorithms.

This asymptotic analysis shows the reason why in practice
the savings are quite substantial compared to representing
the entire graph. We will see later that undirected graphs
allow for further optimizations with very interesting results.

Correctness of the algorithm.
In the introduction we discussed pros and cons of the con-

figuration model. One of the crucial properties that we
pointed out is its simplicity, which opens the way to rig-
orous mathematical reasoning. In this section, we take full
advantage of this feature by proving the correctness of the
algorithm. To proceed formally with the proof we need to
introduce the following definitions.

Let D be a fixed graphical sequence. Consider the naive
estimator, defined in the introduction: pick a random graph
from the configuration model according to D, pick a random
source inside this graph, and run rumour spreading for ⌧
rounds. This generates a sequence of privy sets Ai, i =
0, 1, . . . , ⌧ , where Ai is the set of vertices that are privy at
round i. And, let Bi, i = 0, 1, . . . , ⌧ , the analogous sequence
of privy sets generated by the algorithm for the same D.

Theorem 1. For every i = 0, 1, . . . , ⌧ , the sets Ai and Bi

have the same probability distribution.

For lack of space we can only sketch the proof. The details
will appear in the full version of the paper. The claim of the
theorem holds at the start for the sets A

0

and B
0

. They con-
tain only the source, which is selected uniformly at random
in both cases.

E↵ectively the algorithm determines an underlying graph
with degree sequence D by drawing its edges when needed
by the push process. As the algorithm keeps track, of the
number of nodes currently informed in the neighbourhood of
each node, we observe that the rumour spreading process is
correctly simulated on the underlying graph produced. How-
ever, what needs to be proved is that the underlying graph
is actually drawn with a probability given by the configura-
tion model. It is actually possible to prove this for a wider
class of algorithms. Consider an algorithm where the order
of nodes that perform push is arbitrary, i.e., we select an
arbitrary privy node with free out-stub and then we choose
the destination node by taking u.a.r. a free in-stub. By ap-
plying the deferred decision principle on the choices of the
in-stubs it is possible to prove that graphs obtained in this
way are sampled from the configuration model distribution,
which concludes the proof of Theorem 1.

3. MODEL FOR UNDIRECTED GRAPHS
The algorithm described in the previous section can be

simplified for the case of undirected graphs. In this section
we briefly sketch the main di↵erences between the two algo-
rithms, deferring the complete discussion to the full paper,
while pointing out a remarkable feature of the undirected
case namely, its economy in terms of space.
In the undirected case, each vertex only has stubs, as op-

posed to in- and out-stubs. Consequently we only need to
keep track of the rank of a node and the number of free

edges incident to it. The main di↵erence between the di-
rected and the undirected case is that it is convenient to
use the following matrix representation to store the current
state of the algorithm. We can encode the current state of
all nodes in a matrix of size O(�2), where cell (i, j) stores
the number of nodes with degree i and rank j. Note that
only the i � j cells are necessary. Because we still need to
remember whether the node is privy or out-of-the-loop, we
use two such matrices. In other words, we group nodes by
degree and rank. To perform the simulation we only need
the cardinality of these groups. This is also possible in the
directed case, but only if the network is undirected we can
achieve significant space optimization.

In particular, this is the case for graphs whose degree dis-
tribution follows a power law or heavy tail distribution, as
it is typical of real social graphs [30]. In order to give an
idea of the kinds of savings involved, let us assume that the
degree distribution follows a power law with ↵ > 1 (i.e. the
fraction f(k) of nodes with degree k is f(k) = k�↵Z(↵)�1,
where Z(↵) is a normalization constant). Information for
nodes of degree deg(v) < �, for a carefully chose threshold
�, is stored in two � ⇥ � matrices. Higher degree nodes are
treated individually in a linear array (as in the previous al-
gorithm). Let us now analyse the cost of this representation.

Definition 1. Let E(�) be the cost of the rank data struc-
ture with parameter �. E(�) = M(�) + H(�) where M(�)
is the cost of representing the matrices and H(�) is the cost
for the information of the high degree nodes.

We have M(�) = 1

2

(�)(� + 1) = O(�2), while

H(�) = n
1X

k=�+1

f(k) = O

✓
n

Z
1

k=�+1

x�↵dx

◆
= O(n�1�↵).

We can see that the minimum of E(�) is reached forM(�⇤) =

H(�⇤), which gives �⇤ = n
1

1+↵ and optimal cost O(n
2

1+↵ ).
Since ↵ > 1 the cost is always o(n). Moreover, for real
networks ↵ is typically in the (2, 4) range (see for instance
Table II in [30]). Hence, we can achieve a significant space
improvement with respect to storing the entire graph that
requires O(n+m) space.

To provide an understanding on the orders of magnitude
of the saving, we report in Table 1, a back-of-the-envelope
calculation of the number of memory cells needed by the
data structure for the best gammas. We need three cells for
each entry of the �⇤ ⇥ �⇤ matrix and three cells for each
high degree node (details are omitted from this paper). The
space requirements of each graph are estimated with their
number of edges. It is apparent that the space savings with
this optimization are very significant.

The data for Facebook (world) is referred to a snapshot of
Facebook with 7.2⇥ 108 active users and 1.4⇥ 1011 edges,
analysed by Backstrom et al. [3]. While we do not have
access to the graph, for obvious reasons, the degree distri-
bution was made available by Ugander et al. [33]. Perhaps,
this is another confirmation that the access to such statis-
tical information for the research community is easier than
the access to the graph.

Note that with [36] algorithm, the additional data struc-
ture required to sample edges in such huge graph easily fits
in less than 300 MB of memory. This justifies our claim in
the introduction that less than 1 GB of memory is su�cient
to run our algorithms on such huge graph.



Graph �⇤ #Cells used

#Edges

AstroPh 54 10,080 393,944
Dblp 91 24,111 6,418,218
Enron 44 7,581 361,622
Facebook (dataset) 84 22,266 1,456,818
Facebook (world) 2,183 1.4 ⇥ 10

7

1.4 ⇥ 10

11

Renren 85 27,726 1,410,496

Table 1: Optimal � values and cost of the compressed repre-
sentation for real undirected networks (in terms of memory
cells used).

The matrix representation can also be used for the di-
rected case, but in this case, as we need O(�3) space, the
savings appear to be modest.

4. EVALUATION
In this section we evaluate the predictive power of our

model in real social networks. We have executed the follow-
ing experiments whose goal is to compare the actual process
with the prediction of our estimator. Given a specific real
network G we use it to compute the ground truth by means
of the naive estimator described in the introduction: for
0  t  ⌧ , we compute the expected number of privy nodes
at time t by simulating the rumour spreading process on the
graph r times. The same approach is used to determine the
output of the predictor.

The number r of samples necessary for a certain preci-
sion can be determined by standard statistics techniques.
Roughly, the variance of the process can be determined em-
pirically through sampling. Knowing the variance, a stan-
dard application of the central limit theorem, provides an
estimation of the number of samples necessary. Concretely,
in the pull process for instance, a confidence interval of
±0.5% of the nodes in the graph, with probability 0.95, re-
quires for the ground truth approximately between 300 and
5,000 samples depending on the network. On the other hand
between 1,000 and 5,000 samples are needed for the predic-
tor. However, to show the most accurate results possible,
we have used a number of samples that greatly exceed these
numbers, as in most graphs we employed 10,000 samples.

All the di↵usion processes analysed can spread the infor-
mation only to nodes connected to the starting node. For
this reason, to be able to measure the accuracy of the esti-
mator in a reliable way, we restrict the analysis to the largest
strongly connected component in each graph. Otherwise, de-
pending on the starting node, the number of informed nodes
at the end of the process would vary greatly in a way that
is not related to the actual rumour spreading process.

Accuracy measures.
The literature on prediction accuracy is vast and several

di↵erent measures have been defined (see [17] for instance).
In this paper, we report results for two well-known measures:
the L

2

distance and the Mean Absolute Percentage Error,
or mape [17].

To introduce formally the accuracy measures employed let
us begin with the following definition.

Definition 2. For t = 0, . . . , ⌧ , let st 2 R be the average
number of nodes informed time step t in the rumour spread-
ing process (i.e., the ground truth). Similarly, at the same
time let pt 2 R be the average number of nodes informed as
predicted by the algorithm.

Note that for consistency of notation, for sir, we define
st and pt as the number of nodes currently in state infected
or removed at time t – i.e. the nodes that have received
the rumour – in the ground-truth and in the prediction,
respectively.

Given these definitions, the well-known L
2

distance of the
two series is defined as

L
2

(S, P ) =

vuut
TX

t=1

|st � pt|2.

The L
2

distance intuitively measures how far the two curves
are from each other in the plane. An L

2

value of 0 shows a
perfectly correct prediction (i.e., st = pt for all t) while the
maximum error is unbounded. As the two curves st and pt
range in [0, n], the L

2

distance clearly depends on the size
of the graph and is not well suited to compare directly the
prediction error across di↵erent graphs (we can expect larger
errors on larger graphs). If we consider, however, the two
curves scaled down by n, i.e., the fraction of nodes informed
in each time step, both pt

n and st
n will range in [0, 1] and

the L
2

distance applied to the two scaled vectors will be
not dependent on the size of the graph any more. Notice
that this measure is exactly equivalent to dividing the L

2

distance of the two (unscaled) curves by n. For this reason,
in this section we report the L

2

distance value normalized
by the number of nodes.

To complement our analysis we assess the prediction er-
ror with another widely-used measure, the Mean Absolute
Percentage Error, or mape [17], which is defined as follows

mape(S, P ) =
1
T

TX

t=1

����
st � pt

st

����.

The measure intuitively assesses the average percentage
of the prediction error with respect to the ground truth and
contrary to the L

2

distance it does not require normaliza-
tion.

While easy to interpret, the use of mape (or any other
measure based on averages such as RMSPE, GMRAE to
name a few [17]) requires a certain care in our context.

Observe that in push and pull st converges to n for t !
1, but it never reaches this value because the probability
that there is an uninformed (out-of-the-loop) node is always
non-zero. To see why this is problem, consider the trivial
prediction: pt = n uniformly for all t. For large enough t,
st is arbitrary close to n (in connected graphs) and thus the
mape of the trivial prediction converges to 0 as T tends to
infinity. Similar considerations apply to sir where st.

In order to overcome this problem we need to compute
mape for a fixed, and finite, interval [0, T ]. Intuitively, we
want to measure the mape only for the part of the curve
that is informative – i.e. when the process is still evolv-
ing. For this reason we report mape for the range [1, T (✏)]
where T (✏), in the push and pull case, is defined as the
largest time for which the ground truth has at most (1� ✏)n
informed nodes. Similarly for sir, where the ground-truth
curve st converges for t ! 1 to certain value � in [0, n] we
define T (✏) as the largest time in which at most (1 � ✏)�
nodes informed. We estimate � by executing the process for
a large ⌧ number of steps after which a negligible fraction of
nodes are still actively infected in expectation. By choosing
✏, for instance in the interval [1%, 5%], we can evaluate the
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Figure 3: Prediction on directed random graph. Results for
pull are very similar to push

prediction for the interesting part of the trajectory of the
process. In Table 3 we report values for mape using ✏ = 2%.

Random graphs.
In this section we report the performance of our predic-

tor for the configuration model. Figure 3 exemplifies the
results obtained for directed graphs: confirming Theorem 1
the prediction is essentially perfect (the results in the undi-
rected case are similar). The plots show the outcome of a
simulation for which the degree sequence was extracted from
a Slashdot snapshot [24]. In both this picture and the follow-
ing the time represents the number of steps in the process.
Both prediction and the actual process have been averaged
over 100 random graphs for which we run 100 times the ru-
mour spreading process. We obtained the following L

2

/n
values for the three processes: 0.0014 for push, 0.0345 for
pull and 0.0095 for sir. Note that we observed that the
pull and sir process exhibits an higher variance than push
and this is reflected by the higher L

2

norm. Intuitively, this
is determined by the large dependence on the degree of the
source node in the first steps of the process with respect to
the push process. Finally, we need to state that in a series
of experiments we have observed that the evolution of the
process depends strongly on the degree distribution when
n and m are fixed – the results will be included in the full
version of the paper.

Real networks.
Let us now discuss the predictions of the model for real

networks. We consider both graphs whose nodes and edges
represent people and human relationships (henceforth social
graphs) and graphs whose nodes do not represent human be-
ings (non-social). Our social graphs can be roughly divided
into several groups by their origin:

• Friendship and trust networks: to this group belong
snapshots of the undirected trust network of Epin-
ions [31]; the undirected friendship networks of Face-
book [34] (New Orleans community) and Renren [18];
and the directed friendship networks of Pokec [32],
LiveJournal [9] and Slashdot [24];

• Collaboration networks: here belong the undirected
co-authorship networks in astrophysics (AstroPh [23])
and computer science (DBLP [7]); and the directed
communication network of Wikipedia’s users (Wiki-
Talk [22]);

Graph |V | |E| deff cc �
AstroPh 17903 393944 5.05 0.63 1.01 ⇥ 10

�2

DBLP 805021 6418218 7.35 0.65 4.41 ⇥ 10

�3

Epinions 32223 443506 5.34 0.24 4.00 ⇥ 10

�2

Enron 33696 361622 4.82 0.51 4.52 ⇥ 10

�3

EuAll 34203 151132 4.35 0.26 9.38 ⇥ 10

�2

Facebook 59691 1456818 5.14 0.24 2.13 ⇥ 10

�2

LiveJournal 3828682 65349587 6.70 0.31 2.40 ⇥ 10

�4

Pokec 1304537 29183655 5.85 0.12 3.45 ⇥ 10

�2

Renren 33294 1410496 4.26 0.20 3.22 ⇥ 10

�2

Slashdot 71307 841201 4.77 0.07 2.33 ⇥ 10

�2

Wiki-Talk 111881 1477893 3.97 0.18 1.60 ⇥ 10

�1

Amazon 241761 1131217 25.5 0.40 4.27 ⇥ 10

�3

BerkStan 334857 4523232 16.21 0.64 1.55 ⇥ 10

�4

Google 434818 3419124 13.99 0.64 4.56 ⇥ 10

�4

NotreDame 53968 296228 14.27 0.55 1.29 ⇥ 10

�4

Stanford 150532 1576314 16.31 0.64 1.47 ⇥ 10

�4

RoadNet 1957027 5520776 503.44 0.05 2.04 ⇥ 10

�3

Table 2: Properties of the graphs analysed. For all graphs we
consider only the biggest (strongly) connected component.
Light and dark grey cells represents, respectively, social and
non-social networks.

• Email networks: undirected mail exchange networks of
Enron [24] and of a research institution (EuAll [23]);

For what concerns the non-social graphs we evaluated:

• Web networks: here we have directed snapshots of the
Notre Dame university (NotreDame [1]), Stanford uni-
versity (Stanford [24]) and Google [24] websites and a
crawl of the pages of Stanford and Berkley university
(BerkStan [24]).

• Product networks: here belong a directed product co-
purchasing network form Amazon websites (Amazon [21]).

• Road networks: here we consider a directed graph rep-
resenting the connections of the roads of California
(RoadNet [24]).

All graphs analysed are available online or on request. For
each graph, we considered only the largest (strongly) con-
nected component. Table 2 reports some statistics for these
graphs: deff , cc and � indicate, respectively, an estimation
of the 90-th percentile e↵ective diameter [23], the clustering
coe�cient and conductance [24], obtained with the SNAP
graph library.3 The conductance was estimated with the
method of Andersen et al. [2], removing orientations in the
case of directed networks.

In what follows, for lack of space, we report results that
exemplify our main conclusions. The full data sets are avail-
able on request and will be publicly distributed with our
code and appear in the full paper.

The main qualitative conclusion that our experiments war-
rant is that the accuracy of the prediction of the estimator
follows a very di↵erent trend in the two main categories
of network analysed. For all instances of what we dubbed
social graphs the prediction matches qualitatively well the
evolution of the process in the actual graphs. Remarkably,
the prediction is especially accurate for friendship and trust
networks (Epinions, Facebook, LiveJournal, Renren, Slash-
dot) – i.e., ones that could be considered to be more “gen-
uine” social networks (See Figure 6 for some examples). For
3Available at snap.stanford.edu/snap, the same website
provided many of the graphs used.



push sir Neighbourhood F.

Graph L
2

/n mape L
2

/n mape L
2

/n mape
AstroPh 0.549 0.208 0.647 0.470 0.508 0.222

DBLP 1.32 0.614 0.698 0.521 0.564 0.263

Epinions 0.536 0.032 0.256 0.286 0.314 0.100

Enron 2.74 0.062 0.327 0.316 0.212 0.056

EuAll 2.05 0.093 0.576 0.368 0.342 0.069

Facebook 0.476 0.105 0.448 0.316 0.428 0.182

LiveJournal 0.688 0.216 0.467 0.423 0.632 0.455

Pokec 0.356 0.005 0.631 0.137 0.359 0.188

Renren 0.490 0.042 0.235 0.147 0.249 0.099

Slashdot 0.378 0.019 0.048 0.044 0.118 0.035

WikiTalk 1.17 0.029 0.061 0.070 0.094 0.024

Amazon 5.24 15.9 0.023 67.3 2.87 4.70

BerkStan 3.61 0.187 0.755 51.3 1.89 0.104

Google 4.05 0.648 2.15 225.4 1.78 2.67

NotreDame 4.79 0.267 2.03 19.3 1.41 0.338

Stanford 4.07 0.162 0.401 11.3 1.70 0.200

RoadNet 23.9 67.9 2.623 24412.2 14.8 48.9

Table 3: Accuracy of the algorithms presented (mape is cal-
culated for ✏ = %2). We report the results of undirected
algorithm for undirected graph and directed algorithm for
directed graphs. Light and dark grey cells represents, re-
spectively, social and non-social networks. Notice the much
higher prediction errors for non-social graphs. Results for
pull are very similar to push and omitted for lack of space.

other social graph classes, the prediction error is comparably
larger, but still is qualitatively close to the ground-truth. In
particular for some instances of collaboration networks such
as DBLP and the mail networks (EuAll, Enron) it works
rather well.

In sharp contrast, the prediction in non-social graphs (web
graphs, product networks and road networks) is very inaccu-
rate. Figure 6 exemplifies these findings in the case of push.
Similar results are obtained for pull and sir (omitted from
this extended abstract). In all the reported experiments in-
volving sir we report the experiments where the parameter
p was set such that the reproduction number R

0

= pd̄ is
1. Similar results are obtained for other parameter settings.
Table 3 reports the mape and L

2

errors for all our networks.
For each network we have averaged over 10,000 samples,

except for LiveJournal for which 1,000 samples were used
due to running time constraints. The number of steps simu-
lated was ⌧ = 3,000, after which the all processes simulated
change by only a negligible fraction in expectation.

Discussion.
The sharp distinction in the prediction accuracy between

social and non-social graphs is intriguing as it suggests that
the two classes of graphs behave di↵erently with respect to
the rumour spreading process. The former shows a close
similarity to the evolution of the rumour spreading processes
in the configuration model graphs while the latter does not.
Is there some specific property of these type of networks that
makes our prediction accurate?

Several properties are known to distinguish friendship graphs
from non-social networks: diameter (look at Table 2), assor-
tativity [28]4, and compressibility [7], some of which has
been already reported to influence epidemic processes [5].

But the key to interpret the results is the neighbourhood
function [6]. The neighbourhood function fG(t) of a graph

4For an illuminating discussion on the correct way to define
and use this concept see [25].

G = (V,E), for t 2 1, . . . n, is a defined as the number of
ordered node pairs (u, v) such that v can be reached from u
by a directed path of length at most t. This function, and
in particular its so-called index of dispersion [6], has been
shown to be able to tell apart social graphs from the web
graph. Hence it is a good candidate to explain the di↵erent
behaviour observed in our experiments.

Moreover, consider the sir process with probability of
transmission 1 (i.e., the broadcast). It is possible to prove
that the expected number st of nodes informed at time t,
for a u.a.r. chosen source node, is linearly related to the
neighbourhood function fG(t) of the graph, more precisely

st =
fG(t)

n .
Hence, if we observe that a real network G has a neigh-

bourhood function that closely resemble that of an average
instance of configuration model graphs with the same de-
gree distribution, this would imply that our prediction for
the broadcast process in such network is accurate. The op-
posite is also true, the broadcast process in a graph with
a neighbourhood function very di↵erent (in a way that has
to be formally specified) with respect to the configuration
model graphs will be predicted inaccurately by our model.
Notice that this mathematical implication holds only for the
broadcast model. However, in any of the process evaluated
(push, pull and sir with arbitrary probability) it is still
possible to notice that the expected number of nodes in-
formed st, starting from a random source, is upper-bounded
by the neighbourhood function, more precisely st  fG(t)

n .
It is hence possible to expect a close relationship between

the similarity of the neighbourhood function of a graph with
that of configuration model graphs and the precision of our
prediction method in such graph. We tested this hypothesis
with the following experiment. For each real graph G, we
computed the neighbourhood function fG(t) of the graph
and the average neighbourhood function over random con-
figuration model graphs with the same degree distribution as
G. Then we measured the distance between the two func-
tions (for instance with the L

2

norm) and compared this
distance with our prediction error.

The main message is exemplified by Figure 7. On the left
hand side we see what happens for the Slashdot network:
its neighbourhood function is very close to that of a random
network and the prediction of the average number of infected
nodes (in this case by sir) is very accurate. In contrast, on
the right, we see that when the neighbourhood functions are
far apart the prediction is o↵. Notice that for the random
networks we use the average of the neighbourhood function
over 10 instances of the configuration model. In both real
and random graphs we compute the neighbourhood function
using the method of Boldi et al. [6].

Table 3 reports the full data of our experiments. The
results show a clear and strong correlation between the dis-
tance of the two functions and the approximation error. The
last two columns in the table report the distance of the two
neighbourhood functions for our real networks. Notice that
the distance is much higher in non-social graph than in so-
cial graph (for instance L

2

/n is at most ⇠ 0.6 in the former
and at least ⇠ 1.4 in the latter).

To further validate the hypothesis, for the 17 real graphs
in our dataset, we tested the Pearson correlation coe�cient
between the L

2

/n distance of fG(t) and cG(t) in a graph
G and the mape error of the prediction. This coe�cient
is 0.98, 0.98, 0.97 for push, pull and sir, respectively. We
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Graph Ground-Truth Estimated Error

AstroPh 4.45 5.53 0.24

DBLP 5.74 6.90 0.20

Enron 2.53 2.64 0.04

Epinions 3.18 3.38 0.06

EuAll 2.61 2.06 0.21

Facebook 5.13 5.60 0.09

LiveJournal 6.17 6.11 0.01

Pokec 10.03 13.57 0.35

Renren 5.12 5.55 0.08

Slashdot 2.83 2.69 0.05

WikiTalk 1.79 1.69 0.06

Table 4: Accuracy of the prediction of the average structural
virality of sir in our social graphs. Notice the small relative
with the ground-truth.

checked that the correlation remains strong even considering
only graph in the single category (social or non-social). For
instance in the case of sir, the coe�cient is 0.84 and 0.99 in
social and non-social graphs, respectively. Figure 4 shows
the correlation for social graphs only. Notice that all these
Pearson coe�cients are significant with p-value lower than
0.5%.

Finally, we also checked that these observations are not
explained by simpler graph statistics such the clustering co-
e�cient or the diameter. We did not found any statistically
significant correlation between mape error and conductance
or clustering coe�cient. On the other hand, the e↵ective
diameter has a strong positive correlation with the mape
over the entire dataset but this correlation becomes non-
significant (p-value > 0.5% in sir) when looking at single
network classes (i.e., only for social or non-social networks).

This result can suggest that, despite its simplicity, the
configuration model qualitatively matches real social graphs
in terms of their neighbourhood function and hence it justi-
fies the good prediction of our model in such networks and
conversely the poor results for non-social graphs.

Structural virality.
We run an additional experiment to verify the predictive

power of our model in real networks. In their study Goel et
al. [16] introduce a scalar quantity called structural virality
and argue that to some extent it captures the shape of a
di↵usion process. Consider a di↵usion tree T where an edge
(u, v) is present if u informed v. The virality of the tree T

is defined as

v(T ) =
1

n(n� 1)

X

i,j

dij ,

where dij is the distance in the tree of the nodes i and j.
They find this measure to be close in the case of real twitter
propagations and sir in the configuration model.

This measure can be computed e�ciently on-the-fly in our
framework without a↵ecting the computational complexity
of our algorithms. In particular we run the following exper-
iment for the sir model on our social networks. The results
show that the average virality predicted by our model is
close to the one observed in the ground-truth process. In
our social graphs (see Table 4) the relative error with the
ground-truth in the estimation of the virality is between
⇠ 1% in Livejournal to ⇠ 35% in Pokec. This shows that
the model is able to predict qualitatively well not only the
average number of informed nodes at each time step but also
the viral structure of the di↵usion.

Real rumours.
Finally, we have also analysed some real instances of ru-

mour spreading in Twitter. We have collected the tweets
for selected hashtags that are related to instances of viral
information di↵usions.5 For each of the rumours we tried to
fit the prediction of the sir model on a configuration model
graph with power law distribution to the real data with a
linear transformation. Figure 5 shows the fraction of nodes
informed in the actual twitter process (with respect to the
peak value) and in the fitted sir one. Similar to the exper-
iments in [16] we run sir on a configuration model graph
with power law distribution (we used the Snapshot degree
distribution as a reference). In all instances we used the
same sir estimation obtained with parameter R

0

= 1 and
optimized the linear transformation for the lowest L

2

error.
Notice that the parameters of the linear transformation

that best fit the process varies from rumour to rumour (as
the number of informed nodes and the speed of the di↵usion
can be vastly di↵erent) so this result is clearly not to be in-
tended that a single instance of sir can predict all instances
of rumour di↵usions in Twitter. The takeaway observation
however is that the sir model on configuration model graph
qualitatively matches the evolution of some viral rumours in
real networks, as previously observed by S. Goel et al. [16],
thus further validating our approach.

5. CONCLUSIONS
In this paper we have developed a space e�cient estima-

tor that is able to predict with good accuracy the average
growth of rumour spreading in a given social network. The
results are especially accurate for friendship and trust net-
works. Remarkably, in our opinion, the only information
that the predictor needs is the degree distribution of the net-
work. The estimator is based on the configuration model,
for which it was formally proven to be correct. We would
like to remark that we will make the code and our results
available online when the paper is published. This could fa-
cilitate to explore the following further avenues of research
that our work points to.
5For instance tweets related to important world-wide events,
e.g., tweets containing hashtag #conclave in the latest Pope
election.
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(b) Slashdot
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(c) DBLP
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(d) Amazon

Figure 6: Prediction for the push model. Epinions and Slashdot exemplify the very good prediction obtained for friendship
and trust networks; the performance for DBLP is typical of email networks and the worst instances of collaboration networks;
finally, Amazon shows the typical result for non social networks.
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(a) Slashdot - Neighbourhood
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(b) Slashdot - Prediction
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(c) Stanford - Neighbourhood
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(d) Stanford - Prediction

Figure 7: Neighbourhood function and prediction for sir in social and non-social graphs. Notice how the social graph
Slashdot shows both a Neighbourhood function close to the average one in configuration model graphs and good prediction.
The web graph Stanford shows a substantially di↵erent neighbourhood function with respect to configuration model and a
poor prediction.

0.00

0.25

0.50

0.75

1.00

0 100 200
Time

Fr
ac

tio
n 

of
 p

riv
y 

no
de

s

Actual diffusion
Prediction

(a) #conclave

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
Time

Fr
ac

tio
n 

of
 p

riv
y 

no
de

s

Actual diffusion
Prediction

(b) #EuropeLeague

Figure 5: Fitting of sir model prediction with selected
hashtags di↵usion from Twitter in March 2013. The data
contains tweets with keywords “#conclave signaling” (2108
tweets) and ”#EuropeLeague Steaua“ (2351 tweets).

The first question is whether it is possible to come up
with much more compact predictors, for instance based on
systems of di↵erential equations [29]. Another interesting
direction is to consider a similar approach but for other dif-
fusive processes. For which processes can we predict their
growth based only on limited information? In addition, it
would be interesting to apply similar techniques to the in-
fluence maximization [19] in networks for which the topol-
ogy is unavailable. Finally, it could be worthwhile trying
to develop similar predictors based on more nuanced graph
models, that would allow for more accurate predictions and
to extend successfully the approach to larger classes of real
networks.
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APPENDIX
A. SAMPLING

The most crucial and time consuming operation in our
algorithms is drawing an element form a set with a prob-
ability proportional to some dynamic integer value. This
problem is known in literature as dynamic variate sampling
and several solutions are known [36, 27]. More precisely, we
are interested in a data structure that, for a sequence of N
non-negative weights summing up to M , provides two op-
erations: get (that retrieves an element) and update (that
modifies its associated weight)6. Ideally, we would like to
have a data structures that require O(N) space while pro-
viding O(1) amortized time for get and update.

A well-known data structure based on binary trees [36]
provides O(N) space and O(log(N)) time for both get and
update. While slower than optimal, this data structure, has
the clear advantage of having very low hidden multiplicative
constants, making possible to retain almost all the mem-
ory saving described in the previous sections. Nevertheless,
there are solutions that use slightly more space but support
both operations in o(logN) time.

6In our context, M = m is the number of edges m and N
is the number of equivalences classes of nodes (N = n for
directed graphs, N = o(n) for undirected ones).



Dynamic sampling.
For the case in which weights are fixed, the well known

Walker’s alias method [35] provides an elegant and optimal
solution. The algorithm requires an O(N)-time preprocess-
ing step that has to repeated for each update operation.
However, for the case of monotone decreasing weights, which
applies to directed graph algorithms, we can define a sim-
ple and e�cient variants of the algorithm based on rejection
sampling. Each element is associated with an additional
reject probability, given by the amount weight reduced by
the previous extractions. Every time an element i is drawn,
we reject it with rejecti probability and repeat the sampling.

It is easy to show that this reproduces the right distri-
bution, and that the extraction per get operation can be
constrained to O(1) in expectation. Suppose, in fact, that
overall the reject probability is less than 1

2

, then each get
operation would require less than 2 samples in expectation.
We can then repeat the O(N) time preprocessing every time
the total weight has been decreased by half. The total cost
for O(M) get and updates is then O(M) plus N log(M) for

the initializations. In our algorithms this gives O(1+ log(m)

d )
amortized cost per get, where d is the average degree. This is
practically O(1) because d is in general larger or comparable
to log(m).

This algorithm while easy to implement and very e�cient,
cannot be applied to the case where the matrix data struc-
ture is used. In such case, weights can increase as well –
nodes can be moved to a new class. However, for this case,
Matias et. al [27] algorithm provide a constant time so-
lution which uses space O(N). This general purpose data
structure can be applied to all our algorithms proving that
O(1) time and O(N) is achievable as stated in the previous
sections. Although optimal in the asymptotic sense, this
data structure is rather complex to implement. While we
have not conducted a thorough experimental evaluation, we
found that the simpler data structures discussed previously
behave quite well in practice, and are easy to implement.

B. REFERENCES

[1] R. Albert, H. Jeong, and A. L. Barabasi. The
diameter of the world wide web. Nature, 1999.

[2] R. Andersen, F. Chung, and K. Lang. Local graph
partitioning using pagerank vectors. In FOCS, 2006.

[3] L. Backstrom, P. Boldi, M. Rosa, J. Ugander, and
S. Vigna. Four degrees of separation. In WebSci, 2012.

[4] M. Bayati, J. Kim, and A. Saberi. A sequential
algorithm for generating random graphs.
Algorithmica, 2010.
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