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Data stream processing has recently received increasing attention as a computational paradigm for

dealing with massive data sets. Surprisingly, no algorithm with both sublinear space and passes
is known for natural graph problems in classical read-only streaming. Motivated by technological
factors of modern storage systems, some authors have recently started to investigate the compu-
tational power of less restrictive models where writing streams is allowed. In this paper, we show
that the use of intermediate temporary streams is powerful enough to provide effective space-
passes tradeoffs for natural graph problems. In particular, for any space restriction of s bits, we
show that single-source shortest paths in directed graphs with small positive integer edge weights
can be solved in O((n log3/2 n)/

√
s) passes. The result can be generalized to deal with multiple

sources within the same bounds. This is the first known streaming algorithm for shortest paths in
directed graphs. For undirected connectivity, we devise an O((n log n)/s) passes algorithm. Both
problems require Ω(n/s) passes under the restrictions we consider. We also show that the model
where intermediate temporary streams are allowed can be strictly more powerful than classical
streaming for some problems, while maintaining all of its hardness for others.

Categories and Subject Descriptors: F.2.3 [Analysis of Algorithms and Problem Complex-

ity]: Tradeoffs between Complexity Measures; G.2.2 [Discrete Mathematics]: Graph Theory

General Terms: Algorithms

Additional Key Words and Phrases: Data streaming, Graph connectivity, Shortest paths

1. INTRODUCTION

The typical data size of a wide range of applications in computational sciences can
easily reach the order of Terabytes or even Petabytes. In all such applications man-
aging massive data sets, using secondary and tertiary storage devices is a practical

C. Demetrescu, Dipartimento di Informatica e Sistemistica, Università di Roma
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and economical way to store and move data: such large and slow external memories,
however, are best optimized for sequential access, and thus naturally produce huge
streams of data that need to be processed in a small number of sequential passes.
Typical examples include data access to database systems [Golab and Ozsu 2003]
and analysis of Internet archives stored on tape [Henzinger et al. 1999]. Information
naturally occurs in the form of huge data streams also in applications that monitor
in real-time network traffic, on-line auctions, transaction logs such as Web usage
logs, telephone call records or automated bank machine operations [Gilbert et al.
2001; Golab and Ozsu 2003; Sullivan and Heybey 1998]. Among the computa-
tional models that have been proposed to deal with massive data sets, data stream
processing has therefore received an ever increasing attention in the last few years.

In the classical data stream model [Henzinger et al. 1999; Munro and Paterson
1980; Muthukrishnan 2003], input data can be accessed sequentially in the form
of a data stream, and need to be processed using a working memory that is small
compared to the length of the stream. The main parameters of the model are the
number p of sequential passes over the data and the size s of the working memory
(in bits): throughout this paper, we will refer to the class of problems solvable
within p passes using working memory s as Stream(p, s). A typical additional pa-
rameter is the per-item processing time, which should also be kept small. Despite
the heavy restrictions of the Stream model, major success has been achieved for
several data sketching and statistics problems, where O(1) passes and polylogarith-
mic working space have been proven to be enough to find approximate solutions
(see, e.g., [Alon et al. 1999; Feigenbaum et al. 2002; Gilbert et al. 2002] and the
bibliographies in [Babcock et al. 2002; Muthukrishnan 2003]). On the other hand,
many other problems seem to be far from being solved within similar bounds, in-
cluding most classical graph problems. Relevant examples are graph connectivity
and shortest paths, for which linear lower bounds on p × s are known [Henzinger
et al. 1999]. Some recent papers show that several graph problems can be solved
with one or few passes in the semi-streaming model [Feigenbaum et al. 2004; 2005;
McGregor 2005] where the working memory size is O(n · polylog n) for an input
graph with n vertices: in other words, akin to semi-external memory models [Abello
et al. 2002; Vitter 2001] there is enough space to store vertices, but not edges of
the graph. While O(n · polylog n) space seems to be a “sweet spot” for streaming
graph problems [Muthukrishnan 2003], a natural question already posed in [Hen-
zinger et al. 1999; Munro and Paterson 1980] is whether we can reduce the space
usage at the price of increasing the number of passes. Surprisingly, to the best
of our knowledge no algorithms with both sublinear space and passes are known
for natural graph problems in the Stream model. Finding effective space-passes
tradeoffs in this context appears therefore to be a challenging research direction for
both its theoretical and practical implications. Consider for instance the problem
of processing a very large graph stored on a file in secondary memory. On a stan-
dard computing platform with 1 GB of available main memory, a tradeoff algorithm
that runs in p = (n log n)/s passes1 can process a graph with 4 billion vertices and
6 billion edges stored in a 50 GB file in less than 16 passes. Using a RAID disk
with 100 MB/sec sequential access rate, this would take roughly 2.5 hours. With

1Throughout this paper, we assume that all logarithms are to the base 2.
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a streaming algorithm that requires s ≥ n log n bits without being able to trade
space for passes, we would simply not be able to solve the problem at hand (even
with infinite time) unless 16 GB of main memory are available.

Motivated by technological factors, some authors have recently started to in-
vestigate the computational power of less restrictive streaming models. Today’s
computing platforms are equipped with large and inexpensive disks highly opti-
mized for sequential read/write access to data, and among the primitives that can
efficiently access data in a non-local fashion, sorting is perhaps the most optimized
and well understood. These considerations have led Aggarwal et al. [Aggarwal et al.
2004] to introduce the “streaming and sorting” model, denoted here as StreamSort.
This model extends Stream in two ways: the ability to write intermediate tempo-
rary streams and the ability to reorder them at each pass for free. A StreamSort
algorithm alternates streaming and sorting passes: a streaming pass, while reading
data from the input stream and processing them in the working memory, produces
items that are sequentially appended to an output stream; a sorting pass consists
of reordering the input stream according to some (global) partial order and pro-
ducing the sorted stream as output. Streams are pipelined in such a way that the
output stream produced during pass i is used as input stream at pass (i + 1). As
shown in [Aggarwal et al. 2004; Ruhl 2003], the combined use of intermediate tem-
porary streams and of a sorting primitive yields enough power to solve efficiently
(within polylogarithmic passes and polylogarithmic memory) a variety of problems,
including graph connectivity, minimum spanning tree, and geometrical problems.
It remains however an open question whether problems such as shortest paths (and
even breadth first search) can be solved efficiently in this more powerful model.

Since random accesses in external memory are significantly slower than sequen-
tial passes, Grohe et al. have also proposed an abstract model that captures the
essence of external memory and stream processing [Grohe et al. 2005]. This model
restricts the size of the main memory and the number of random accesses to ex-
ternal memory, but does not restrict sequential reads. Similarly to StreamSort, the
model admits the usage of external memory for storing intermediate results. Lower
bounds for sorting the input data and for other decision problems in this model
have been proved in [Grohe et al. 2006; Grohe et al. 2005; Grohe and Schweikardt
2005]. Very recently, these results have been extended to 2-sided error randomized
algorithms [Beame et al. 2007].

⊲ Our contributions. In this paper we show that the StreamSort model can yield
interesting results even without using sorting passes at all: by just using intermedi-
ate temporary streams, we provide effective space-passes tradeoffs for natural graph
problems. Namely, if we denote by W-Stream this more restrictive model without
a sorting primitive [Ruhl 2003], we show that for any space restriction of s bits:

—Undirected connectivity can be solved in W-Stream by a deterministic algorithm
in O((n log n)/s) passes. By adapting classical communication complexity argu-
ments previously used in the Stream model, we can prove an Ω(n/s) lower bound
on the number of passes for connectivity also in W-Stream. Our algorithm is
thus optimal up to a logarithmic factor.

—Single-source shortest paths in directed graphs with positive integer edge weights
up to C can be solved in W-Stream by a randomized Monte Carlo algorithm
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in O((C n log3/2 n)/
√

s) passes. The result can be generalized to deal with ρ ·
√

s/ logn sources within the same bounds for any ρ ∈ (0, 1). This is the first
known algorithm for shortest paths on directed graphs in a streaming model.
We remark that previous results on distances in streaming models are based on
the computation of graph spanners, and these yield approximate distances in
undirected graphs only [Feigenbaum et al. 2005]. We also note that the lower
bound for connectivity implies an Ω(n/s) lower bound on the number of passes
also for single-source (and thus multiple-sources) shortest paths.

We remark that for these problems we have exactly the same lower bounds on
p × s in both Stream and in W-Stream. The only known upper bounds in Stream
assume s = Θ(n logn). On the other hand, our W-Stream algorithms adapt to the
available working memory, yielding a full range of possible space/passes tradeoffs.
This motivates us to conclude the paper with some observations related to the
computational power of W-Stream.

A first natural question is whether the use of temporary streams always makes
W-Stream more powerful than Stream in a multi-pass setting. In this paper, we give
a negative answer, by providing examples of problems that are as hard in W-Stream
as in Stream for a given space restriction, regardless of the number of passes. One
such example is the classical element distinctness problem, where the challenge is
to determine whether a given input stream contains any duplicates. This hardness
result can be proved using classical tools from communication complexity. We
remark that this kind of arguments can be applied to both Stream and W-Stream,
but not to StreamSort.

Intuitively, however, the use of intermediate temporary storage should make W-
Stream more powerful than Stream, at least for some problems. We exemplify two
different ways in which this is indeed the case. We first observe that, from a classical
space complexity perspective, intermediate streams can be thought of as part of the
algorithm’s working memory. So clearly there can be problems impossible to solve
in Stream with a given space restriction, but solvable in W-Stream in a finite number
of passes. The recognition of context-free languages is one prominent example. As a
second observation, we note that in W-Stream the size of intermediate streams can
vary from pass to pass, while in Stream the same input stream is read at each pass.
Counting the total number of processed stream items, rather than the number of
passes, may therefore be a more accurate measure for comparing algorithms in the
two models. Based on this observation, we show that there are problems for which
the number of processed items in W-Stream can be asymptotically smaller than in
Stream.

⊲ Notation. Throughout this paper, we will refer to the class of problems solvable
in W-Stream within p passes using a working memory of s bits as W-Stream(p, s).
Similarly, Stream(p, s) will denote the class of problems solvable in Stream within
p passes and space s. When dealing with algorithms for graph problems, we will
assume that the input graph is given as an adjacency stream [Bar-Yossef et al. 2002],
i.e., as a stream Σ of edges in arbitrary order, with |Σ| = m.

⊲ Organization of the paper. The remainder of this paper is organized as follows.
In Section 2 we study the undirected connectivity problem, describing an almost
optimal W-Stream deterministic algorithm. Section 3 addresses the shortest paths
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Fig. 1. Example of the effects of one pass of the connectivity algorithm

problem, presenting a randomized algorithm to find distances from a given set of
sources to all the other vertices of a weighted directed graph. Section 4 discusses
some aspects of the computational power of the W-Stream model. Concluding
remarks are given in Section 5.

2. UNDIRECTED GRAPH CONNECTIVITY

In this section we show that using intermediate temporary streams we can achieve
the first effective space/passes tradeoffs for a fundamental graph problem, namely
the undirected connectivity problem (UCON) which, given an undirected graph G =
(V, E) with n vertices and m edges, asks whether G is connected.

By a classical communication complexity argument based on a reduction from the
bit-vector disjointness problem (see [Henzinger et al. 1999]), UCON requires Ω(n/s)
passes in Stream when the space restriction is s, i.e., UCON 6∈ Stream(o(n/s), s).
The same communication complexity argument can be adapted to W-Stream, as
we will discuss in Section 4, yielding the following theorem:

Theorem 2.1. In W-Stream, UCON requires p = Ω(n/s) passes with a space
restriction s.

⊲ Algorithm. We now describe a deterministic algorithm that solves the more
general problem of finding the connected components of G using p = O((n log n)/s)
passes and space s in the W-Stream model.

Given an undirected graph G = (V, E), let C(G) = (V, E′) be the undirected
graph on the same vertex set such that (u, v) ∈ E′ if and only if v is the repre-
sentative vertex of the connected component of G that contains u. We note that
C(G) represents explicitly the connected components of G as stars around compo-
nent representatives. If L is a list of edges, we denote by GL = (VL, L) the graph
induced by edges in L. Thus, GΣ = G.

The algorithm works as follows. Each intermediate stream Σi produced by the
algorithm is divided into two consecutive parts Ai and Bi such that GBi is a
collection of stars, and GAi ∪ GBi has the same connected components as G. At
the beginning, A0 = Σ and B0 = ∅, and thus GA0

= G and GB0
= ∅. At the end,

GAp = ∅ and GBp = C(G) is the desired result. The generic pass i of the algorithm
works in four phases:
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(1) Read a prefix H of edges from Ai and store in main memory M each newly
encountered vertex until either M gets full, or all edges of Ai have been read.
Let GH = (VH , H) ⊆ GAi be the graph induced by the edges in the prefix H of
Ai read in this phase. As edges are streamed in, also form in M the connected
components of GH , e.g., by building a spanning forest. No output items are
produced during this phase.

(2) Read all remaining edges from Ai (if any). Let c(v) be the representative vertex
of the connected component of GH that contains v, if v ∈ VH , and let c(v) = v
otherwise. For each input item (u, v) read from Ai such that c(u) 6= c(v), write
(c(u), c(v)) as output item to Ai+1.

(3) Read all edges from Bi. For each input edge (u, v) read from Bi, write (u, c(v))
as output edge to Bi+1.

(4) No edges remain to be read from input stream. For each vertex v in VH that
does not appear in Ai+1, write (v, c(v)) as output edge to Bi+1.

The algorithm repeats the generic pass described above until Ai gets empty. We
note that phase 1 is a memory loading phase, which stores VH in main memory along
with a sparse certificate of connectivity of GH (e.g., a spanning forest). Phase 2
produces an output graph GAi+1

obtained from GAi by contracting each connected
component of GH into its representative vertex. Vertices that are in GAi , but
disappear from GAi+1

due to the contraction are put in GBi+1
by connecting them to

their component representatives in GH . These representatives may be later replaced
by newer representatives in successive executions of phase 3 so as to maintain the
invariant that GBi is a collection of stars. The example of Figure 1 illustrates the
effects of one pass of the algorithm.

⊲ Analysis. To prove the correctness of the algorithm, it suffices to check that
the following invariant is maintained at each pass.

Invariant 2.2. For each i ∈ {0, . . . , p}, GBi is a collection of stars, and GAi ∪
GBi has the same connected components as G.

Proof. We prove our claim by induction on the number of passes performed by
the algorithm. The base for i = 0 is straightforward, since GAi = G and GBi = ∅.
We assume by inductive hypothesis that the invariant holds at pass i, and we show
that it also holds at pass (i + 1). First, observe that GBi+1

is obtained in phases 3
and 4 as union of stars from GBi and stars that represent the connected components
of GH . If the stars produced in the two phases are not disjoint, the union may not
be a collection of stars. For this reason, if a star in GBi intersects a component of
GH , its center is replaced in phase 3 by its representative in GH . Thus, GBi+1

is a
collection of stars. To prove that GAi+1

∪GBi+1
has the same connected components

as G, observe that each connected component of GH ⊆ GAi ⊆ GAi∪GBi is replaced
by a star in GAi+1

∪GBi+1
, and thus connectivity information is maintained.

Assuming that the main memory M has a size of s bits, we now show that the
algorithm terminates in at most p = O((n log n)/s) passes.

Theorem 2.3. In W-Stream, UCON can be solved with p = O((n log n)/s)
passes when the space restriction is s.
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Proof. Without loss of generality, we assume that the input graph G contains
no self-loops. Indeed, self loops can be easily removed with a preprocessing phase
that takes O(n/s) passes. Notice that during pass i, all vertices of VH that are not
representatives of connected components of GH disappear from GAi+1

(phase 2).
Since GH is induced by a set of edges, each connected component of GH contains
at least two vertices. Thus, there are at least |VH |/2 vertices in GAi that disappear
from GAi+1

, so in at most p ≤ 2n/|VH | passes GAp gets empty. Since phase 1 fills
memory M with vertices and a spanning forest of GH until it gets full, and storing
each vertex label requires log n bits of space, then |VH | = Θ(s/ logn). This implies
that p = O((n log n)/s).

The crucial point in the analysis is the choice of GH , which is the largest graph
induced by a prefix of the stream such that a sparse certificate of its connected
components fits in s bits of memory. If GH is dense, we may contract at each
pass a number of edges much larger than s. This makes the number of passes
proportional to the number of nodes of the graph, instead of the number of edges.

3. SHORTEST PATHS

Let G = (V, E, w) be an edge-weighted directed graph with n vertices and m edges.
In the single-source shortest paths problem (SSSP), we wish to find distances from a
given source t to all the other vertices in G. A more general version of the problem
is the multiple-sources shortest paths problem (MSSP), where the goal is to find
distances from a given set of sources to all the other vertices in G. In this section,
we assume that each edge (u, v) ∈ E is represented in the input stream Σ as a triple
(u, v, wuv), where wuv is the weight of the edge. In the following, we assume that
each vertex label and each edge weight can be represented with log n bits. We say
that the weight of a path is the sum of the weights of its edges. The distance distxy

between two vertices x and y of the graph is the weight of a minimum weight path
connecting them.

We first observe that, since UCON can be reduced to SSSP, then the lower bound
for UCON given in Theorem 2.1 also holds for SSSP (and thus for MSSP):

Theorem 3.1. In W-Stream (and thus in Stream), SSSP requires p = Ω(n/s)
passes when the space restriction is s.

This implies that, if we want to achieve sublinear space s = o(n), then p = ω(1)
passes are required. One may wonder whether p = O(1) passes would be enough to
solve the problem using s = O(n) space. Unfortunately, as showed by Feigenbaum
et al. in [Feigenbaum et al. 2005] a higher lower bound can be proven in the Stream
model: the lower bound implies that finding vertices up to distance d = O(1) from
a given source in less than d passes requires Ω(n1+1/2d) space. Since p is constant
and W-Stream can be simulated in Stream at the price of increasing the size of the
working memory by a factor of p (see [Ruhl 2003]), it is not difficult to see that
this result also holds in W-Stream. This confirms that space efficient algorithms
for SSSP in both Stream and W-Stream always require multiple passes.

We also remark that finding efficient streaming algorithms for the simpler prob-
lem of breadth-first traversal of a graph has been posed as an open problem even
in the StreamSort model [Aggarwal et al. 2004].



8 · Demetrescu et al.

In the remainder of this section, we devise the first algorithm for single-source
shortest paths in directed graphs in a streaming model. In particular, we prove the
following theorem:

Theorem 3.2. In W-Stream, MSSP from ρ ·
√

s/ log n sources, for any ρ ∈
(0, 1), can be solved with p = O((C ·n · log3/2 n)/

√
s) passes in directed graphs with

positive integer edge weights up to C under a space restriction of s bits. Distances
produced by the algorithm are correct with probability at least 1 − 1/nβ for any
positive constant β. The size of each intermediate stream is O(m + n ·

√

s/ log n).

Notice that, for C = o(
√

s/ log3/2 n) we can get both p and s sublinear in n.

⊲ Overview of the algorithm. A typical issue in streaming settings where edges
are given in arbitrary order is that following a path seems to require in the worst
case as many passes as its length. Finding long paths may therefore require lots of
passes. To overcome this difficulty, we argue that, if we were able to find long paths
as the concatenation of short paths built “in parallel” within the same passes, this
would result in a substantial reduction of the worst-case number of passes required
to follow a path of arbitrary length. Similarly to previous algorithms for path
problems in parallel and dynamic settings (see, e.g., [Henzinger and King 1995;
Ullman and Yannakakis 1991]), the main idea of our algorithm is to perform many
short searches from a random subset of vertices of the graph “in parallel”. This
yields short distances in the graph. To find longer distances, the algorithm stitches
together short paths. Using a probabilistic argument, we can prove that distances
obtained in this way are correct with high probability.

3.1 Finding distances up to ℓ

Let A = {c1, c2, . . . , c|A|} be a subset of vertices of the graph and let ℓ > 0 be an
integer parameter. As a first ingredient for solving SSSP in W-Stream, we describe
a procedure shortDist(A, ℓ) that finds the distances from each source cj ∈ A to

all other vertices that are up to distance ℓ from cj in p = O(n |A| log n
s + ℓ) passes

in a graph with positive integer edge weights.
Our procedure is a multi-source, bounded depth, streamed implementation of

Dijkstra’s algorithm [Cormen et al. 2001], where the “priority queue” is maintained
implicitly on intermediate streams. Let {γ1, γ2, · · · , γq} be a partition of the input
stream Σ0 = Σ into the minimum number q of sub-sequences γi such that:

—all edges in a sub-sequence γi share the same end vertex yi, i.e.,

γi = (a, yi, wayi) (b, yi, wbyi) · · · (z, yi, wzyi)

—the concatenation of sub-sequences γi yields Σ0, i.e.,

Σ0 = γ1 γ2 · · ·γq

Notice that, if the edges in the input stream Σ were ordered by their end vertex,
there would exist a unique sub-sequence γi per vertex. In general, the same end
vertex may be shared by more than one sub-sequence, i.e., it may be ya = yb with
a 6= b.
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Each intermediate stream Σh, with h > 0, created by the algorithm has the form

Σh = γ1 δ1 γ2 δ2 · · · γq δq

where

δi = (di1, fi1) (di2, fi2) · · · (di|A|, fi|A|).

For each pair (dij , fij) ∈ δi, dij is an upper bound to the distance distcjyi from
cj ∈ A to yi and flag fij is true if and only if yi is settled w.r.t. cj , i.e., distcjyi has
been correctly determined by the algorithm.

In a preliminary pass, the algorithm lets fij = false for each i and j; it also lets
dij = 0 if cj = yi, and dij = +∞ otherwise. The goal of successive passes is to
progressively decrease each dij to the weight of a minimum weight path from cj to
yi that goes through one of the edges in γi.

The core loop of algorithm shortDist alternates extraction and relaxation passes.
During an extraction pass, the algorithm loads in main memory, for each cj ∈ A, a
pool Pcj of at most k = s/(|A| · log n) vertices v together with their exact distance
distcjv from cj (after the first extraction pass, each pool Pcj includes only vertex
cj and distcjcj = 0). During a relaxation pass, the algorithm improves the distance
upper bounds dij using edges in γi that emanate from Pcj . In more details:

—Extraction pass. Let dj(v) = mini:v=yi{dij} be the priority of v w.r.t. cj . For each
cj ∈ A, load in Pcj up to k unsettled vertices with the same minimum priority
w.r.t. cj, if it does not exceed ℓ. For each vertex v in Pcj , it holds distcjv = dj(v).
When all Pcj ’s get empty, the algorithm halts.

—Relaxation pass. For each i = 1, 2, . . . , q, decrease each dij in the output δi to
the weight of a minimum weight path from cj to yi that goes through one of
the edges in γi that emanate from Pcj . Also, make vertices in each Pcj settled
w.r.t. cj by letting fij ← true in the output stream for each yi ∈ Pcj .

We remark that all the vertices that are in each pool Pcj at the end of an extraction
pass have exactly the same distance from cj. All these vertices would be extracted
from the priority queue in consecutive iterations of a classical implementation of
Dijkstra’s algorithm with source cj . When the algorithm is over, for each cj and
each vertex v that is settled w.r.t. cj , the distance distcjv is implicitly encoded in
the output stream as mini:v=yi{dij} and can be easily made explicit with a simple
post-processing in O((n log n)/s) passes.

⊲ Analysis. We now discuss the number of passes required by algorithm shortDist.

Lemma 3.3. Algorithm shortDist(A, ℓ) runs in p = O(n |A| log n
s + ℓ) passes

using s bits of working memory and intermediate streams of size O(m · |A|).
Proof. The algorithm keeps in the working memory up to k = s/(|A| · log n)

vertices in each of the |A| pools Pcj . Since storing each vertex label requires log n
bits, the algorithm uses at most k · |A| · log n = s bits of main memory. The bound
on the size of intermediate streams follows from the fact that each of them contains
m + q · |A| items and q can be as high as m in the worst case.

To bound the number of passes, consider the vertex cj ∈ A such that Pcj is the
last pool to get empty. Let P1, P2, · · · , Pt, be the content of pool Pcj after successive
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extraction passes. We say that Pi is full if it contains exactly k vertices, and it is
incomplete otherwise. Notice that, since each vertex appears in at most one Pi,
there can be at most (n/k) full Pi’s. We now bound the number of incomplete Pi’s.
Note that in each set Pi, all vertices have the same distance from cj . Denote this
distance by d(Pi). Set Pi can be incomplete only if d(Pi) < d(Pi+1), or i = t. Since
d(Pt) ≤ ℓ and edge weights are positive integers, there can be at most ℓ passes
i such that d(Pi) < d(Pi+1), and thus at most ℓ Pi’s can be incomplete. Hence,
the total number t of Pi’s cannot exceed (n/k + ℓ). Since the algorithm generates
a new Pi every two passes in the core loop, then it performs a total number of

p = O(t) = O(n/k + ℓ) = O(n |A| log n
s + ℓ) passes.

Notice that for A = {t} algorithm shortDist solves SSSP up to distance ℓ =
O((n log n)/s) from a given source t in O((n log n)/s) passes. By Theorem 3.1,
this bound is optimal in W-Stream up to a log factor.

⊲ Reducing the size of intermediate streams. In this section we show how to
reduce the size of intermediate streams to O(m + n · |A|). The main idea is to
preprocess the input stream so as to reduce the number q of groups γi before
starting the shortDist algorithm. To this aim, we simply partition the input
stream Σ into max{1, m/(n · |A|)} subsequences of size ≤ n · |A| each, and we
reorder edges (x, y, wxy) in each subsequence by end vertex y. This can be done in
O((n · |A| · log n)/s) passes by using a W-Stream variant of the sorting algorithm
described in [Munro and Paterson 1980].

The preprocessing can thus be performed within the same asymptotic number
of passes as shortDist. Notice that the number of groups γi in each reordered
subsequence cannot be larger than n. Hence, the total number q of groups γi

in the whole preprocessed stream given as input to shortDist will not exceed
n ·max{1, m/(n · |A|)} = max{n, m/|A|}. The size of each intermediate stream in
shortDist will therefore be m + q · |A| ≤ m + max{n · |A|, m} = O(m + n · |A|) as
claimed.

3.2 Finding all distances from a given source

We now describe an algorithm sssp(G, t) that solves SSSP with source t in a
graph G = (V, E, w) with n vertices and positive integer edge weights up to C

in O((C n log3/2 n)/
√

s) passes, assuming a space restriction of s bits in the W-
Stream model. Algorithm sssp(G, t) works as follows:

(1) Pick a subset A ⊆ V of
√

s/ logn vertices, including source t. All vertices but
t are chosen uniformly at random.

(2) Find distances up to ℓ = (α C n log3/2 n)/
√

s in G from each of the vertices in
A, where α is any constant > 1.

(3) Build a weighted graph G∗ = (A, E∗, w∗) on vertex set A such that there is an
edge (c1, c2) ∈ E∗ with weight w∗

c1c2
= distc1c2

if and only if distc1c2
≤ ℓ.

(4) Compute distances dist∗tc from t ∈ A to all other vertices c ∈ A in G∗.

(5) For each vertex v ∈ V whose distance from t has not been determined in step
2 being higher than ℓ, compute it as disttv = minc∈A{ dist∗tc + distcv }.
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Before describing a W-Stream implementation of sssp, we prove that each distance
larger than ℓ computed by the algorithm is correct with high probability, assuming
that distances up to ℓ computed in step 2 are correct.

Lemma 3.4. Each distance disttv > ℓ computed by algorithm sssp is correct
with probability at least 1− 1/nα−1.

Proof. If disttv > ℓ, then it is obtained in step 5 as disttv = minc∈A{ dist∗tc +
distcv }. Since edge weights of G are ≤ C, then any shortest path from t to v in G
will necessarily contain at least r = ℓ/C edges. Let πtv be any shortest path from
t to v. Adapting to our setting a well known sampling theorem from [Greene and
Knuth 1982], we now show that, with high probability, every subpath of πtv with
r vertices contains at least a vertex from A. Consider one of those subpaths, and
let Q be the probability that it does not contain vertices of A. Since a vertex of G
belongs to A with probability |A|/n, then:

Q =

(

1− |A|
n

)r

< 2−
|A|r

n =
1

nα
.

Since there can be at most n/r ≤ n disjoint subpaths of πtv with r vertices,
then the probability that each of them contains a vertex of A is at least 1 − Q ·
n > 1 − 1/nα−1. This implies that, with probability at least 1 − 1/nα−1, πtv can
be broken into the concatenation of subpaths of at most r vertices of the form
πcicj , with ci, cj ∈ A, plus one final subpath of the form πc∗v, where c∗ minimizes
minc∈A{ dist∗tc + distcv }. Since w.h.p. each πcicj is a shortest path with weight
at most ℓ, then it corresponds to an edge (ci, cj) ∈ E∗. Thus, w.h.p. the value
dist∗tc∗ computed in step 4 is the correct distance from t to c∗. To conclude the
proof, observe that distc∗v has also weight at most ℓ w.h.p., and thus it has been
correctly determined in step 2. Thus, disttv = dist∗tc∗ + distc∗v with probability at
least 1− 1/nα−1.

⊲ Implementation. In this section we sketch how steps 1–5 of algorithm sssp can
be implemented in W-Stream:

(1) As |A| =
√

s/ logn, then vertices of A can be sampled and maintained in main
memory.

(2) To find distances up to ℓ from each vertex in A, we can just run algorithm
shortDist(A, ℓ) described earlier in this section. The algorithm stores dis-
tances on the output stream.

(3) Graph G∗ can be stored in main memory, since it requires no more than
|A|2 log n = s bits. To build it, we can just make one pass and build an
|A| × |A| weight matrix w∗ such that for each cj , c ∈ A w∗

cjc = mini:c=yi{ dij }.
(4) Distances dist∗tc can be computed by running any internal-memory single-source

shortest paths algorithm on G∗ with source t, and can be stored in main memory
using O(|A|/ log n) = O(

√
s log3/2 n) bits of space.

(5) Compute final distances for s/ logn vertices K ⊆ V at a time. For each K,
compute in one pass disttv = min i,j : v=yi{dist∗tcj

+ dij} for each v ∈ K. At the
end of the pass, flush computed distances to the output stream in any desired
format.
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⊲ Analysis. We now discuss the time and space requirements of algorithm sssp.

Lemma 3.5. Algorithm sssp(G, t) computes, correctly with high probability, the

distances from t to all nodes in G within O((C n log3/2 n)/
√

s) passes, using s
bits of main memory and intermediate streams of size O(m + n ·

√

s/ logn) in the
W-Stream model.

Proof. Steps 1 and 4 are entirely performed in main memory, and thus require
no streaming passes. Step 3 requires one pass and step 5 takes O((n log n)/s) passes.
The entire procedure is dominated by the number of passes of algorithm shortDist

in step 2, which is O(n |A| log n
s + ℓ) = O(C n log

3/2 n√
s

) by Lemma 3.3. The size of

intermediate streams also follows from Lemma 3.3 and from the preprocessing tech-
nique described thereafter. The largest data structure maintained by the algorithm
in main memory is matrix w∗ created in step 3, which requires s bits. The claim
on the correctness of the computed distances follows from Lemma 3.4

3.3 Dealing with multiple sources

The algorithm described in Section 3.2 can be extended to deal with ρ ·
√

s/ logn

sources within the same asymptotic bounds, for any ρ ∈ (0, 1). Of the
√

s/ logn
vertices loaded into set A in step 1, let only a (1 − ρ) fraction of these be chosen
uniformly at random, while the remaining vertices are taken to be sources for
the shortest paths problem. In step 2, we find distances up to ℓ/(1 − ρ). Using

algorithm shortDist(A, ℓ/(1−ρ)) this will take O(C n log3/2 n√
s

) passes. Notice that,

since only a (1− ρ) fraction of A is chosen at random, algorithm shortDist needs
to find paths of length up to ℓ/(1 − ρ). In view of Lemma 3.4, this is crucial for
maintaining correctness with high probability. Step 3 of the algorithm remains
unchanged, while in step 4 the distances from each source to all other vertices
in main memory can be computed, by running any internal-memory single-source
shortest paths algorithm for each source vertex. The results can be stored in internal
memory. The final distances can be computed by repeating step 5 of the original
algorithm once for every source. Since there are ρ ·

√

s/ log n sources, this will

take O(
√

s
log n ·

n log n
s ) = O(n log1/2 n√

s
) passes. Therefore the number of passes of

the entire algorithm is determined by the asymptotic performance of the procedure
shortDist, and this is the same as in the single-source case. We call the algoritm
described in this section mssp and we summarize its bounds in the following lemma.

Lemma 3.6. Algorithm mssp requires O((C n log3/2 n)/
√

s) passes, using s bits
of main memory and intermediate streams of size O(m + n ·

√

s/ log n) in the W-
Stream model. With high probability, all computed distances are correct.

4. SEPARATION AND HARDNESS RESULTS

The algorithms presented in Sections 2 and 3 show that the ability to write in-
termediate streams makes it possible to obtain, at least for some problems, a full
range of possible space/passes tradeoffs, whereas the only known upper bounds
in Stream assume s = Θ(n log n). These results naturally raise the question of
whether W-Stream is more powerful than Stream. In this section we therefore
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study some aspects related to the computational power of W-Stream. We first ex-
emplify problems in W-Stream that are impossible to solve in Stream for a given
space restriction and problems that require a smaller number of processed items in
W-Stream than in Stream. Note that in W-Stream the size of intermediate streams
can vary from pass to pass, while in Stream the same input stream is read at each
pass: counting the total number of processed stream items, rather than the number
of passes, may therefore be a more accurate measure for comparing algorithms in
the two models. On the other hand, we also provide examples of problems that
are as hard in W-Stream as in Stream for a given space restriction (regardless of
the number of passes). We obtain this result by adapting to W-Stream classical
communication-complexity arguments used for proving lower bounds in Stream.
This kind of arguments cannot instead be applied to StreamSort.

4.1 Breaking the space wall

From a space complexity perspective, intermediate streams can be thought of as
part of the algorithm’s working memory. It is therefore conceivable that one should
be able to solve problems in W-Stream with a space restriction that would make
them unsolvable in Stream. Consider, for instance, the following Parenthesis Lan-
guage Recognition problem (PLR):

Let L be the context-free parenthesis language [S→ ()|(S)|(SS)]. Let x
be a string of n symbols in {(, )} represented as a data stream. Find out
if x ∈ L.

We first prove that PLR cannot be solved in Stream using less than logarithmic
working memory:

Lemma 4.1. PLR 6∈ Stream(p, o(log n)), for any number p of passes.

Proof. Since the parenthesis language is a nonregular context-free language,
we can use the following result of Alt et al. [Alt et al. 1992]: if L is a nonregular
deterministic context–free language and L ∈ NSPACE(s(n)), then the recognition
of L requires space s(n) ≥ c·log n for some constant c and infinitely many n. Clearly,
this lower bound also applies to Stream algorithms and implies that, independently
of the number of passes, PLR cannot be solved using less than logarithmic space.

On the other hand, we can easily solve PLR in W-Stream with a constant size
working memory, by removing pairs of consecutive matching parentheses from the
stream at each pass, until possible, and returning true if the stream gets empty.
Hence, PLR ∈W-Stream(n, O(1)). Our first separation result immediately follows
from this observation and from Lemma 4.1:

Theorem 4.2. Stream(n, O(1)) ⊂W-Stream(n, O(1)).

4.2 Reducing the number of processed items

The ability to manipulate the data stream makes it possible, at least for some
problems, to discard at each pass items that are no longer useful, thus reducing the
overall number of items that an algorithm has to process. Consider, as an example,
the following FORK problem:
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Let A and B be two vectors of n numbers with A[1] = B[1] and A[n] 6=
B[n]. Find a “fork” index i such that A[i] = B[i] and A[i+1] 6= B[i+1].

Assume that A and B are given as an input stream of the form

A[1], A[2], . . . , A[n], B[1], B[2], . . . , B[n]

with items in {1, . . . , n}. The following lower bound on the space × passes product
follows from a communication complexity lower bound on FORK by Grigni and
Sipser [Grigni and Sipser 1995]:

Lemma 4.3. FORK in W-Stream (and thus in Stream) requires p×s = Ω(log2 n).

Lemma 4.3 implies that, if we stick to logarithmic space, then the number of passes
of any streaming algorithm solving FORK must be p = Ω(log n). Since in Stream
we have to process all the items in the input stream at each pass, it follows that
the number of processed items of any Stream algorithm must be Ω(n log n) when
s = O(log n).

Instead, we can solve FORK in W-Stream more efficiently as follows. Consider
a simple binary search-like algorithm, recurring upon the following conditions:

(1) if A[n/2] = B[n/2], then there must be a fork index in the second half of the
vectors;

(2) if A[n/2] 6= B[n/2], then there must be a fork index in the first half of the
vectors.

At each pass, we can thus halve the size of the intermediate stream, just by not
copying the uninteresting half of the input stream. It is easy to see that this
algorithm uses O(log n) space, runs in O(log n) passes, and processes only O(n)
items overall. From the considerations above, we get our separation with respect
to the number of processed items:

Theorem 4.4. FORK can be (optimally) solved in W-Stream with space s =
O(log n) and O(n) processed items. This is impossible to achieve in Stream.

4.3 Hardness results

Even if the use of intermediate streams makes W-Stream more powerful than Stream
for some problems, in this section we show that for other problems W-Stream
maintains all of the hardness of classical streaming. In particular, we exemplify
problems for which the use of intermediate streams does not help at all, except for
possibly simplifying the task of designing streaming algorithms.

Ruhl and Aggarwal et al. [Aggarwal et al. 2004; Ruhl 2003] already observed that,
for a small number of passes, intermediate streams do not help much, regardless of
the problem considered. Indeed, W-Stream can be simulated in Stream at the price
of increasing the size of the working memory by a factor of p: the simulation given
in [Aggarwal et al. 2004; Ruhl 2003] proves that W-Stream(p, s) ⊆ Stream(p, p · s),
making intermediate streams unuseful when p is small.

In the following we show that there are problems for which using intermediate
streams does not help at all, even regardless of the number of passes. As an example,
we take the element-distinctness problem (ED), that asks if there are any duplicates
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in a stream of n numbers in {1, . . . , n}. We first give a lower bound on the passes
× space product. Although similar arguments already appear in [Henzinger et al.
1999], we provide a complete proof here as an example of how communication-
complexity lower bounds used in the Stream model can also be used in W-Stream:

Theorem 4.5. Any W-Stream algorithm for element distinctness requires p ×
s = Ω(n).

Proof. Consider the bit-vector-disjointness problem, in which Alice and Bob
have two n-bit-vectors A and B, respectively, and want to know whether A ·B > 0.
This problem can be reduced to ED in the following way. Alice creates a stream
containing the indices corresponding to the 1’s in vector A, and Bob does the same
for vector B. Then Alice runs a W-Stream algorithm for element-distinctness on her
stream, producing an intermediate stream, and when the input stream is over she
sends the content of her working memory to Bob. Bob continues to run the same
W-Stream algorithm starting from the memory image received from Alice, reading
from his own input stream and producing his own intermediate stream. When the
stream is over, Bob sends his memory image back to Alice, who starts a second
pass by taking as input the intermediate stream that she produced at the previous
pass. At the end, the streaming algorithm will determine whether all the elements
in the two input streams are distinct or not: notice that the elements are distinct
if and only if A · B > 0, which is exactly the solution to bit-vector-disjointness. If,
by contradiction, the total working memory used by Alice and Bob has size o(n/p),
then the total number of bits sent between Alice and Bob in p passes would be
o(n/p) · p = o(n), which would violate the Ω(n) communication complexity lower
bound for bit-vector-disjointness [Kushilevitz and Nisan 1997].

Since there is a folklore Stream algorithm that solves ED with p = O(n/s) passes,
the use of intermediate streams is of no help for this problem.

We remark that arguments similar to the proof of Theorem 4.5 can be used to
prove additional lower bounds in W-Stream. In particular, many classical communication-
complexity based lower bounds known in Stream can be adapted to W-Stream,
as well. This technique yields, for instance, W-Stream lower bounds for graph
problems such as undirected connectivity and shortest paths (see Theorem 2.1 in
Section 2 and Theorem 3.1 in Section 3).

5. CONCLUDING REMARKS

Data stream processing has enjoyed an increasing popularity in the past few years
as a computational paradigm for massive data set applications. Motivated by tech-
nological factors, such as the availability of inexpensive secondary storage devices
with ever increasing capacity and fast sequential access rates, less restrictive stream-
ing models have been recently proposed. One of these models, named W-Stream,
augments the classical streaming model with the ability to sequentially write at
each pass an intermediate stream that will be taken as input in the next pass.
In this model, we have shown algorithms for fundamental graph problems, such
as undirected graph connectivity and directed shortest paths (even with multiple
sources). Our algorithms are the first to allow effective tradeoffs between the avail-
able internal memory and the number of passes they require. Such tradeoffs are
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not known for the more restrictive classical streaming model, in which intermedi-
ate temporary streams are not allowed. Results for other graph problems, such as
minimum spanning tree, biconnected components, and maximal independent set,
can be obtained by adapting classical parallel algorithms to the W-Stream model
as recently shown in [Demetrescu et al. 2007].

We conclude by observing that one can achieve space/time tradeoffs for simpler
specialized variants of some graph problems even in classical read-only streaming.
Consider, for instance, the following chain reachability problem: given a directed
chain C and any two nodes u and v, determine whether there is a path from u to
v in C. By using a sampling-based technique inspired by the algorithm described
in Section 3, it is not difficult to prove that chain reachability can be solved within
p = O(n log2 n/s) passes when the space restriction is s, without using intermediate
temporary streams. It remains, however, an interesting open question whether such
space/passes tradeoffs can be achieved in classical streaming for more general and
natural graph problems.
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