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ABSTRACT

A crucial aspect in software development is understanding
how an application’s performance scales as a function of its
input data. Estimating the empirical cost function of indi-
vidual routines of a program can help developers predict the
runtime on larger workloads and pinpoint asymptotic ineffi-
ciencies in the code. While this has been the target of exten-
sive research in performance profiling, a major limitation of
state-of-the-art approaches is that the input size is assumed
to be determinable from the program’s state prior to the in-
vocation of the routine to be profiled, failing to characterize
the scenario where routines dynamically receive input values
during their activations. This results in missing workloads
generated by kernel system calls (e.g., in response to I/O or
network operations) or by other threads, which play a cru-
cial role in modern concurrent and interactive applications.
Measuring dynamic workloads poses several challenges, re-
quiring shared-memory communication between threads to
be efficiently traced. In this paper we present a new metric
and an efficient algorithm for automatically estimating the
size of the input of each routine activation. We provide ex-
amples showing that our metric allows the estimation of the
empirical cost functions of complex applications more pre-
cisely than previous approaches. An extensive experimen-
tal investigation on a variety of benchmarks shows that our
metric can be integrated in a Valgrind-based profiler incur-
ring overheads comparable to other prominent heavyweight
dynamic analysis tools.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Measurement Techniques;
D.2.8 [Software Engineering]: Metrics—performance mea-
sures
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Algorithms, Measurement, Performance.
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1. INTRODUCTION
Performance profilers collect information on running ap-

plications and associate performance metrics to software lo-
cations such as routines, basic blocks, or calling contexts [1,
9,18]. They play a crucial role towards software comprehen-
sion and tuning, letting developers identify hot spots and
guide optimizations to portions of code that are responsible
of excessive resource consumption.

Unfortunately, by reporting only the overall cost of por-
tions of code, traditional profilers do not help programmers
to predict how the performance of a program scales to larger
inputs. To overcome this limitation, some recent works have
addressed the problem of designing and implementing per-
formance profilers that return, instead of a single number
representing the cost of a portion of code, a function that
relates the cost to the input size (see, e.g., [5, 8, 23]). This
approach is inspired by traditional asymptotic analysis of al-
gorithms, and makes it possible to analyze – and sometimes
predict – the behavior of actual software implementations
run on deployed systems and realistic workloads. Some of
the proposed methods, such as [8], perform multiple runs
with different and determinable input parameters, measure
their cost, and fit the empirical observations to a model that
predicts performance as a function of the workload size.
More recent approaches made a step further, tackling the
problem of automatically measuring the size of the input
given to generic routines [5, 23], collecting data from multi-
ple or even single program runs.

As observed in [5] and [23], a current limitation of profilers
that estimate cost functions is that they ignore any commu-
nication between threads and data received via system calls
from the OS kernel, failing to accurately characterize the
behavior of routines executed in the context of modern con-
current and interactive applications. In this paper we show
how to overcome this limitation.

Contributions. The main contributions of this paper can
be summarized as follows:

• We propose a novel metric, called dynamic read mem-
ory size, that accurately and automatically estimates
the size of the input of a routine activation, taking
into account dynamic workloads produced by memory



stores performed by other threads and by the OS ker-
nel (e.g., in response to I/O or network operations).

• We provide real case studies, based on a database man-
agement system (MySQL) and on an image processing
tool (vips), showing that the new metric allows esti-
mating the empirical cost function of complex applica-
tions more precisely than previous approaches.

• We present an efficient profiling algorithm that com-
putes the dynamic read memory size of each routine
activation, producing as output a set of performance
points that relate the cost of each routine to the ob-
served distinct input sizes.

• To prove the feasibility of our approach, we imple-
mented our metric in aprof [5], a Valgrind open-source
profiler.

• We performed an extensive set of experiments on a
large variety of benchmark suites, including PARSEC
and SPEC OMP2012, evaluating the benefits of our
metric and showing that our tool can characterize the
nature of dynamic workloads on the considered bench-
marks, incurring overheads comparable to the other
tools in the Valgrind suite.

2. DYNAMIC INPUT SIZE ESTIMATION
A crucial issue in automatically estimating the cost func-

tion of a routine is the ability to infer the size of the input
data on which each activation operates. This can be done
for workloads that are stored in memory prior to the routine
activation to be profiled using the read memory size metric
introduced in [5]:

Definition 1. Let r be a routine activation by thread t.
The read memory size rmsr,t of r with respect to t is the
number of distinct memory cells first accessed by r, or by
any descendant of r in the call tree, with a read operation.

The intuition behind this metric is the following. Consider
the first time a memory location ℓ is accessed by a routine
activation r: if this first access is a read operation, then ℓ
contains an input value for r. Conversely, if ℓ is first written
by r, then later read operations will not contribute to in-
crease the rms since the value stored in ℓ was produced by r
itself. Estimates of the input size can be then used to auto-
matically produce performance charts: e.g., for each distinct
input size n of a routine r, we could plot the maximum time
spent by an activation of r on input size n (worst-case cost
plot).
The rms fails to properly characterize the input size of

routine activations under dynamic workloads. Consider, as
an example, the concurrent execution described in Figure 1a:
routine f in thread T1 reads location x twice, but only the
first read operation is a first access. Hence, rmsf,t = 1.
Routine g in thread T2, however, overwrites the value stored
in x before the second read by f : this read operation gets
a value that is not produced by routine f itself and that
should be therefore regarded as new input to f . The same
drawbacks discussed in the example above arise when one or
more memory locations are repeatedly loaded by a routine
with values read from an external source, e.g., network or
secondary storage. To overcome these issues, we propose

(a)

(b)

Figure 1: Dynamic read memory size examples.

a novel metric for estimating the input size, which we call
dynamic read memory size.

Definition 2. Let r be a routine activation by thread t
and let ℓ be a memory location. A read operation on ℓ is:

• a first-read, if ℓ has never been accessed before by r or
by any of its descendants in the call tree of thread t;

• an induced first-read, if no previous access to ℓ has
been made by t since the latest write to ℓ performed by
a thread different from t, if any.

Definition 3. Let r be a routine activation by thread t.
The dynamic read memory size drmsr,t of r with respect to
t is the number of operations performed by r that are first-
reads or induced first-reads.

For the sake of presentation, in this section we are assuming
that the OS kernel runs as a separate thread so that the
drms includes also inputs fed to the application from exter-
nal sources. This assumption will be relaxed in Section 3.2.

We notice that the rms coincides with the number of op-
erations that are first-reads and therefore

drmsr,t ≥ rmsr,t (1)

for each routine activation r and thread t.

Example. Consider again the example in Figure 1a: we
have drmsf,T1

= 2. The first read operation on x is indeed
a first-read, while the second one is an induced first-read, as
T2 has modified x since the previous access to x by T1.

Now consider Figure 1b. In this case rmsh,T1
= 1 and

rmsf,T1
= 1: function f performs three read operations on

x (one of which through its subroutine h), but only the first
one is a first-read and contributes to its rms. Conversely,
it holds drmsf,T1

= 2. The read operation by h is indeed
an induced first-read for f (similarly to the previous exam-
ple), while the third read is not: between the latest write
operation on x performed by thread T2 6= T1 and the third
read(x), f has already accessed x through its descendant h.

We also have drmsh,T1
= 1. Notice that the read opera-

tion in h could be regarded both as a first-read and as an
induced first-read with respect to h.
We now describe two common software patterns whose en-
tire workloads are dynamically generated.

Pattern 1: Producer-Consumer. Producer-consumer is
a classical pattern in concurrent applications. The standard
implementation based on semaphores (see, e.g. [19]) is shown
in Figure 2, where producer and consumer run as different



procedure producer()

1: while (1) do
2: wait(empty)
3: wait(mutex)
4: x = produceData()
5: signal(mutex)
6: signal(full)

procedure consumer()

1: while (1) do
2: wait(full)
3: wait(mutex)
4: consumeData(x)
5: signal(mutex)
6: signal(empty)

Figure 2: Producer-consumer pattern: at iteration
n, rmsconsumer,t = 1 while drmsconsumer,t = n.

threads and routines produceData and consumeData write to
and read from memory location x, respectively (the imple-
mentation can be easily extended to buffered read and write
operations). For simplicity of exposition, we will not con-
sider memory accesses due to semaphore operations. With
this assumption, rmsconsumer,t = 1, since the consumer re-
peatedly reads the same memory location x. Conversely,
the dynamic read memory size gives a correct estimate of
the consumer’s input size: whenever producer has gener-
ated n values written to location x at different times, we
have drmsconsumer,t = n. Indeed, all read operations on x
are induced first-reads: thanks to the interleaving guaran-
teed by semaphores, each read(x) in consumeData is always
preceded by a write(x) in produceData.

procedure streamReader()

1: let b a buffer of size 2
2: for i = 1 to n do
3: fill b with external data
4: consumeData(b[0]) // read and process b[0]

Figure 3: Buffered read from a data stream: after n
iterations, rmsexternalRead,t = 1 and drmsstreamReader,t = n.

Pattern 2: Data Streaming. The example in Figure 3
describes the case of buffered read operations from a data
stream. Procedure streamReader loads 2n values (line 3):
this is done by the operating system that fills in buffer b
with fresh data at each iteration. Only one of the two values
loaded at each iteration is then read and processed at line
4. Hence, at the end of the execution drmsstreamReader,t =
n, due to the n induced first-reads at line 4. Conversely,
rmsstreamReader,t = 1: data items are loaded across iterations
on the same two memory locations b[0] and b[1], but only
b[0] is repeatedly read.

2.1 Empirical Cost Function Estimation: Case
Studies

In this section we discuss examples showing that the drms
metric can greatly improve accuracy in characterizing the
empirical cost functions of prominent real applications.

MySQL. As a first case study, we consider the MySQL
DBMS. We performed a simple experiment with a query op-
eration that selects all tuples in a table, repeating the query
on tables of increasing sizes. At each query, processed by
routine mysql_select, tuples are partitioned into groups.
Each group is loaded into a buffer through a kernel sys-
tem call and is then read by mysql_select. The rms does
not count repeated buffer read operations: hence, the input
size on larger tables is exactly the same as in smaller ones
(it roughly coincides with the buffer size), while the perfor-
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Figure 4: Function mysql_select of MySQL: worst-case
cost plots respectively obtained using rms or drms
as an estimate for the input size.

mance cost grows due to the larger number of buffer loads.
Figure 4 shows the cost plots of routine mysql_select (mea-
suread as number of executed basic blocks) resulting from
both the drms and the rms. The drms plot correctly char-
acterizes the linear cost trend of mysql_select, while the
rms plot suggests a false superlinear trend.
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Figure 5: Function im_generate of vips (PARSEC 2.1):
worst-case cost plots respectively obtained using rms
or drms as an estimate for the input size.

vips. Routine im_generate of benchmark vips of the PAR-
SEC 2.1 suite [3] shows an analogous effect on the simlarge
reference input (see Figure 5). In this case the induced first-
reads not counted in the rms are due to the interaction
between threads via shared memory. In both examples, the
rms plot yields clues to an asymptotic bottleneck, which
instead does not actually exist.

The ability to accurately estimate cost functions crucially
depends on the number of distinct input size values col-
lected for each routine: each value corresponds to a point
in the cost plot generated by the profiler, and plots with a
small number of points do not clearly expose the behavior of
the routine. In our experiments, we observed that in many
cases the drms yields a much larger number of distinct input
size values than the rms. An example is the vips routine
wbuffer_write_thread shown in Figure 6: out of 110 dis-
tinct routine calls, the charts plot the maximum costs for
all calls having the same rms/drms value. As shown in Fig-
ure 6a, the rms collapses all input sizes onto two distinct
values, retaining the maximum cost over 65 calls on rms 67
and the maximum cost over 45 calls on rms 69. In our ex-
periment we observed a high cost variance for these rms val-
ues: this is a good indicator that some kind of information
might not be captured correctly. Due to intense disk and
threading activity, the number of points grows indeed con-
siderably if we take into account external inputs (Figure 6b),
and even more if we consider thread-induced inputs as well
(Figure 6c). Eventually, we collect 110 distinct points, since
each call turns out to have a distinct drms value.
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Figure 6: Function wbuffer_write_thread of vips (PARSEC 2.1): (a) rms cost plot; (b) drms cost plot with
external input only; (c) drms cost plot with both external and thread input.

3. COMPUTING THE DYNAMIC READ

MEMORY SIZE
In this section we describe an efficient algorithm for com-

puting the dynamic read memory size of a routine activation,
producing as output a set of performance points that relate
the cost of each routine to the observed distinct input sizes.
Routine profiles are thread-sensitive, i.e., profiles generated
by routine activations made by different threads are kept
distinct (if necessary, they can be merged in a subsequent
step).
The profiler is given as input multiple traces of program

operations associated with timing information. Each trace is
generated by a different thread and includes: routine activa-
tions (call), routine completions (return), read/write mem-
ory accesses, and read/write operations performed through
kernel system calls (userToKernel and kernelToUser, neces-
sary to characterize external input).
As a first step, thread-specific traces are logically merged,

interleaving operations performed by different threads ac-
cording to their timestamps, in order to produce a unique
execution trace. If two or more operations issued by different
threads have the same timestamp, ties are broken arbitrar-
ily: no assumption can be therefore done about which opera-
tion will be processed first. We remark that after merge and
tie breaking, trace events are totally ordered. For simplic-
ity of exposition, we also assume that switchThread events
are inserted in the merged trace between any two operations
performed by different threads.
For each operation issued by a routine r in a thread t, the

profiler must update drms and cost information of r with
respect to t. Some operations might also require updating
profiling data structures related to threads other than t. To
clarify the relationships between different threads, we first
discuss a naive approach as a warm-up for the reader.

3.1 Naive Approach
According to the definition of dynamic input size (see Sec-

tion 2), computing drmsr,t requires counting read opera-
tions issued by routine r that are either first reads or induced
first-reads. In turn, identifying induced first-reads requires
monitoring write operations performed by all threads, i.e.,
performed also by threads different from t.
A simple-minded approach, which is sketched in Figure 7,

is to maintain a set Lr,t of memory locations accessed during
the activation of r. Immediately after entering r, this set is
empty and drmsr,t = 0. Memory locations can be both
added to and removed from Lr,t during the execution of r,
as follows:

• when r reads or writes a location ℓ, then ℓ is added to
Lr,t (if not already present);

Event Instrumentation (event handler)
readt(ℓ) if ℓ 6∈ Lr,t then drmsr,t++

Lr,t ← Lr,t ∪ {ℓ}
writet(ℓ) Lr,t ← Lr,t ∪ {ℓ}
readt′(ℓ), t

′ 6= t –
writet′ (ℓ), t

′ 6= t Lr,t ← Lr,t \ {ℓ}

Figure 7: Computation of drmsr,t with a naive ap-
proach. The notation readt/writet(ℓ) indicates that
location ℓ is read/written by thread t.

• when a thread t′ 6= t writes a location ℓ, then ℓ is
removed from Lr,t (if present): this allows recognizing
induced first-reads.

With this approach, at any time during the execution of
r, a read operation on a location ℓ is a first read (possibly
induced by other threads) if and only if ℓ 6∈ Lr,t. Hence,
drmsr,t is increased only if this test succeeds. Notice that
read operations performed by threads different from t change
neither set Lr,t nor drmsr,t.

We remark that in the description above r can be any
routine in the call stack of thread t (not necessarily the top-
most). Hence, the same checks and updates must be per-
formed for all pending routine activations in the call stack of
t. Due to stack-walking and to the fact that write operations
require updating sets Lr,t of all threads, this simple-minded
approach is extremely time-consuming. It is also very space
demanding: in the worst case, each distinct memory loca-
tion could be stored in all sets Lr,t for each thread t and
each routine activation r pending in the call stack of t. In
that case, the space would be proportional to the memory
size times the maximum stack depth times the number of
threads.

3.2 The Read/Write Timestamping Algorithm
To obtain a more space- and time-efficient algorithm, we

avoid storing explicitly the dynamic read memory size drmsr,t
and the sets Lr,t of accessed memory locations. Instead, we
maintain partial information that can be updated quickly
during the computation and from which the drms can be
easily derived upon the termination of a routine. Capturing
the interaction between different threads requires overcom-
ing several technical difficulties, which we sketch in this sec-
tion. Our algorithm stems from a non-trivial combination
of the latest-access approach described in [5] and the use of
a novel global timestamping technique.

For each thread t and memory location ℓ, we store ℓ in
only one set Pr,t such that r is the latest routine activation
in t that accessed ℓ (either directly or by its completed sub-
routines). At any time during the execution of thread t and



on event call(r, t):

1: count++
2: topt ++
3: St[topt].rtn← r
4: St[topt].ts← count
5: St[topt].drms← 0
6: St[topt].cost←

getCost()

on event return(t):

1: collect(St[topt].rtn,
St[topt].drms,
getCost()-
St[topt].cost)

2: St[topt-1].drms+=
St[topt].drms

3: topt--

on event switchThread():

1: count++

on event read(ℓ, t):

1: if tst[ℓ] < wts[ℓ] then
2: St[topt].drms++
3: else
4: if tst[ℓ] < St[topt].ts

then
5: St[topt].drms++
6: if tst[ℓ] 6= 0 then
7: i = max idx s.t.

St[i].ts ≤ tst[ℓ]
8: St[i].drms --
9: end if
10: end if
11: end if
12: tst[ℓ]← count

on event write(ℓ, t):

1: tst[ℓ]← count
2: wts[ℓ]← count

Figure 8: drms profiling algorithm: thread-induced
input.

for each pending routine activation r, it holds:

Lr,t = Pr,t ∪ {Pr′,t : r′ descendant of r}

where r′ is any pending routine activation that is above r
in the call stack at that time. Sets Pr,t will be stored im-
plicitly by associating timestamps to routines and memory
locations.
Similarly to the naive approach of Figure 7, locations will

be both added to and removed from Pr,t to characterize in-
duced first-reads. However, this turns out to be inefficient in
a multi-threaded scenario: differently from read operations
that change only thread-specific sets, write accesses require
changing the sets Pr,t of each activation r pending in the call
stack of each running thread t. By implicitly updating only
one set Pr,t per thread, the latest-access algorithm avoids
stack walking, but the update time for write accesses is still
linear in the number of threads, which can be prohibitive in
practice.
To reduce the overhead, we combine the latest access ap-
proach with global timestamps that are appropriately up-
dated upon write accesses to memory locations: in this way,
we will recognize induced first-reads by comparing thread-
specific timestamps with global ones. The entire algorithm
is sketched in Figure 8.

Data Structures. The algorithm uses the following global
data structures:

• a counter count that maintains the total number of
thread switches and routine activations for all threads;

• a shadow memory wts such that, for each memory lo-
cation ℓ, wts[ℓ] is the timestamp of the latest write
operation on ℓ performed by any thread. The times-
tamp of a memory access is defined as the value of
count at the time in which the access took place.

Similarly to [5], the algorithm also uses the following thread-
specific data structures for each thread t:

• a shadow memory tst such that, for each memory loca-
tion ℓ, tst[ℓ] is the timestamp of the latest access (read
or write) to ℓ made by thread t;

• a shadow run-time stack St, whose top is indexed by
variable topt. For each i ∈ [1, topt], the i-th stack entry
St[i] stores:

– The routine id (rtn), the invocation timestamp
(ts), and the cumulative cost (cost) of the i-th
pending routine activation.

– The partial dynamic read memory size (drms) of
the activation, defined so that the following in-
variant property holds throughout the execution
for each i such that 1 ≤ i ≤ topt:

∀i, 1 ≤ i ≤ topt : drmsi,t =

topt∑

j=i

St[j].drms (2)

where drmsi,t is a shortcut for drmsSt[i].rtn,t. At
any time, drmsi,t equals the current drms value
of the i-th pending activation on the portion of
the execution trace generated by thread t seen so
far.

Invariant 2 implies the following interesting property: for
each pending routine activation, its drms value can be ob-
tained by summing up its partial dynamic read memory size
with the drms value of its (unique) pending child, if any.
More formally:

drmstopt,t = St[topt].drms

drmsi,t = St[i].drms+ drmsi+1,t

for each i ∈ [1, topt−1]. Hence, if we can correctly maintain
the partial dynamic read memory size during the execution,
upon completion of a routine we will also get the correct
drms value.

Algorithm and Analysis. The partial dynamic read mem-
ory size can be maintained as shown in Figure 8. We first
notice that the global timestamp counter count is increased
at each thread switch and routine call, and its value is used
to update routine timestamps (line 4 of the call event han-
dler), global memory timestamps (line 2 of the write event
handler), and local memory timestamps (lines 1 and 12 of
write and read, respectively). Upon activation of a routine,
call(r, t) creates and initializes a new shadow stack entry
for routine r in St. When the routine activation terminates,
its cost is collected and its partial drms (which at this point
coincides with the correct drms value according to equation
drmstopt,t = St[topt].drms discussed above) is added to the
partial drms of its parent, preserving Invariant 2.

Local timestamps of memory locations are updated both
by read and write accesses, while global timestamps are not
updated upon read operations (they are thus associated to
write operations only). This update scheme makes it possi-
ble to recognize induced first-reads to any location ℓ, which is
done by lines 1-2 of read. If the read/write timestamp tst[ℓ]
local to thread t is smaller than the global write timestamp
wts[ℓ], then location ℓ must have been written more recently
than the last read/write access to ℓ by thread t. Note that,
if the latest access to ℓ was a write operation by thread t,
then it would be tst[ℓ] = wts[ℓ] (see the write event han-
dler), letting the test tst[ℓ] < wts[ℓ] fail. Hence, if the test
succeeds, the last write on ℓ must have been done by some
thread t′ 6= t, the read access by t is an induced access,
and the partial drms of the topmost routine is correctly



on event kernelToUser(ℓ):

1: count++
2: wts[ℓ]← count

on event userToKernel(ℓ, t):

1: read(ℓ, t)

Figure 9: drms profiling algorithm: external input.

increased by line 2 of read. Invariant 2 is fully preserved
by this assignment: the accessed value is new not only for
the topmost routine in the call stack St, but also for all its
ancestors, whose drms is implicitly updated in accordance
with Equation 2.
On the other side, if the test of line 1 of read fails, the

read access to ℓ might still be a first access: this happens
if the last access to location ℓ by thread t took place before
entering the current (topmost) routine. Lines 4–10 address
this case, updating the partial drms as described in [5]: the
test at line 6 succeeds if and only if location ℓ has been
accessed before by thread t during the execution. The latest
access happened at some ancestor i of the topmost routine
(or in one of its completed descendants): line 7 finds the
deepest ancestor i that has accessed ℓ and line 8 decreases its
partial DRMS by 1. This restores Invariant 2 for all pending
activations below i, whose DRMS must not be affected by
the current read operation.
The running time of all operations is constant, except for

line 7 of read that requires O(log dt) worst case time, where
dt is the depth of the call stack St.

External Input. So far we have focused on induced first-
reads generated by multi-threaded executions. The read-
/write timestamping algorithm can be naturally extended
to take into account also induced first-reads due to external
inputs, relaxing the unrealistic assumption we made in Sec-
tion 2 that kernel system calls are executed by a separate
thread.
Event handlers userToKernel and kernelToUser shown in
Figure 9 update the profiler’s data structures when memory
accesses are mediated by kernel system calls. Threads invoke
system calls to get data from external devices (e.g., disk or
network) or to send data to external devices. We remark
that the operating system kernel must be treated differently
from normal threads in our algorithm, since there are no
kernel-specific shadow memory and shadow stack.
When a thread sends data to an external device, it must

delegate the operating system to read the memory locations
containing those data and write their content to the device.
Hence, an OS write operation corresponds to a userToK-

ernel event in the execution trace. As shown in Figure 9,
read memory accesses by the operating system are regarded
as read operations implicitly performed by the thread, as if
the system call were a normal subroutine.
The case of kernelToUser operations is slightly more sub-

tle. When a thread needs data from an external device, it
delegates the operating system to write the device data to
some memory buffer. The kernelToUser event handler in-
creases count and then associates buffer memory locations
with a global write timestamp that is larger than any thread-
specific timestamp. This forces the test tst[ℓ] < wts[ℓ] to
succeed if a buffer location ℓ will be subsequently read by
the thread, properly increasing the partial drms only for
actual read operations.

Counter Overflows. The global counter used by the times-
tamping algorithm is common to all running threads and in

our initial experiments was affected by overflows, especially
for long-running applications. Unfortunately, overflows are
a serious concern in the computation of the drms, since
they alter the partial ordering between memory timestamps
yielding wrong input size values. To overcome this issue,
we perform a periodical global renumbering of timestamps
in the profiler’s data structures. The main technical diffi-
culty is preserving the partial order between tst[ℓ], wts[ℓ],
and St[i].ts for each memory location ℓ, running thread t,
and 1 ≤ i ≤ topt.

4. EXPERIMENTAL EVALUATION
To prove the feasibiliy of our approach, we implemented

the drms metric in aprof [5], a Valgrind-based open-source
profiler. In this section, we discuss the results of an extensive
experimental evaluation of the resulting tool, which we call
aprof-drms, on a variety of benchmarks and we compare it
to other prominent heavyweight dynamic analysis tools.

4.1 Experimental Setup

Metrics. Besides slowdown and space overhead, we use the
following metrics:

1. Routine profile richness: for each routine r, let |rmsr|
and |drmsr| be the numbers of distinct input sizes col-
lected for routine r by all threads (each value corre-
sponds to a point in the cost plot of r). The profile
richness of routine r is defined as:

|drmsr| − |rmsr|

|rmsr|

Intuitively, this metric compares the number of dis-
tinct input values obtained using the drms and the
rms. We notice that |drmsr| ≥ |rmsr| does not neces-
sarily hold: it may happen that two distinct rms values
x and y (obtained from two different activations of a
routine) correspond to the same drms value z, with
z ≥ max{x, y}. Hence, the profile richness may be
either positive, if more points are collected using the
drms, or negative, if more points are collected using
the rms. We will see that in practice the latter case
happens quite rarely.

2. Dynamic input volume: according to Inequality 1, the
drms of a routine activation is always larger than or
equal to the rms of the same activation. The dynamic
input volume metric characterizes the increase of the
input size values due to multi-threading and to exter-
nal input for an entire execution:

1−

∑
routine activations 〈r,t〉 rmsr,t∑
routine activations 〈r,t〉 drmsr,t

Values of this metric range in [0, 1). If drmsr,t =
rmsr,t for all routine activations r, then the dynamic
input volume is 0. Conversely, if drmsr,t ≫ rmsr,t
for all routine activations r, then the dynamic input
volume gets close to 1.

3. Thread input: this metric measures the percentage of
induced first-reads (line 2 of procedure read in Fig-
ure 8) due to multi-threading.
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Figure 10: Selection sort: counting basic blocks ver-
sus measuring running time.

4. External input: similarly to the previous case, this
metric measures the percentage of induced first-reads
due to external input.

Benchmarks. The OMP2012 benchmark suite of the Stan-
dard Performance Evaluation Corporation [16] is a collection
of fourteen OpenMP-based applications from different sci-
ence domains. All of them were run on the SPEC train

workloads.
The Princeton Application Repository for Shared-Memory

Computers (PARSEC 2.1) is a benchmark suite for stud-
ies of Chip-Multiprocessors [3]. It includes different work-
loads chosen from a variety of areas such as computer vision,
media processing, computational finance, enterprise servers,
and animation physics. Experimental results reported in
this section are all based on the simlarge input sets [3].
We also included in our tests application MySQL (version
5.5.30) discussed in Section 2.1: we used the mysqlslap load
emulation client, simulating 50 concurrent clients that sub-
mit approximately 1000 auto-generated queries.

Evaluated Tools. We compared the performance of aprof-
drms to four reference Valgrind tools: nulgrind, which does
not collect any useful information and is used only for test-
ing purposes, memcheck [17], a tool for detecting memory-
related errors, callgrind [22], a call-graph generating pro-
filer, and helgrind [15], a data race detector. Although the
considered tools solve different analysis problems, all of them
share the same instrumentation infrastructure provided by
Valgrind, which accounts for a significant fraction of the ex-
ecution times. We also compared aprof-drms against the
standard version of aprof, which is based on the rms met-
ric.

Implementation Details. aprof-drms traces all memory
accesses and function calls and returns. Similarly to previous
works [5, 8], we use basic blocks as a performance measure.
This typically yields the same trends compared to running
time measuraments, but is faster and produces neater charts
with much lower variance, improving accuracy in character-
izing the asymptotic behavior even on small workloads (an
example is shown in Figure 10).
To reduce space overhead in practice, we maintain global

and thread-specific shadow memories by means of three-
level lookup tables, so that only chunks related to memory
cells actually accessed by a thread need to be shadowed in
its thread-specific memory. To take into account external
input, system calls are wrapped and properly mapped to
one or more userToKernel or kernelToUser events: among
the main system calls on a Linux x86 64 machine, write,
sendto, pwrite64, writev, msgsnd, and pwritev correspond
to userToKernel events, while read, recvfrom, pread64,
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Figure 11: Routine profile richness of drms w.r.t.
rms.
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Figure 12: Dynamic input volume of drms w.r.t.
rms.

readv, msgrcv, and preadv correspond to kernelToUser

events.

Platform. Experiments were performed on a cluster ma-
chine with four nodes, each equipped with two 64-bit AMD
Opteron Processors 6272 @ 2.10 GHz (32 cores), with 64
GB of RAM running Linux kernel 2.6.32 with gcc 4.4.7 and
Valgrind 3.8.1 – SVN rev. 13126.

4.2 Experimental Results
The goals of our experiments are threefold: evaluating the

benefits of the drms, showing that aprof-drms can charac-
terize the nature of dynamic workloads, and assessing its
slowdown and space overhead.

DRMS versus RMS. As shown in [5], an rms-based pro-
filer can collect a significant number of distinct input sizes for
most algorithmic-intensive functions. A first natural ques-
tion is whether using drms instead of rms has any impact
on the profile richness. Charts in Figure 11 contribute to
answer this question, focusing on a representative set of
benchmarks. A point (x, y) on a curve means that x% of
routines have profile richness at least y: e.g., in benchmark
dedup, the number of points collected by the drms is more
than 100 times larger than using the rms for roughly 4% of
the routines. As expected, only a small percentage of rou-
tines has high values of profile richness, since I/O and thread
communication are typically encapsulated in a few software
components. However, for these routines |drmsr| can be
substantially larger than |rmsr| (up to a factor of roughly
106 for benchmark dedup). We also notice that only a sta-
tistically intangible number of routines has negative profile
richness: this means that the drms can almost always gen-
erate plots with more points than the rms.

Due to Inequality 1, drms values are always larger that
rms values for the same routine activations. Figure 12 char-
acterizes the increase of the input size values due to induced
first-reads. The interpretation of these graphs is similar to
Figure 11: a point (x, y) on each benchmark-specific curve
means that x% of routines have dynamic input volume ≥ y.
For instance, in benchmark fluidanimate, roughly 3% of
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Figure 13: Routine-by-routine thread and external input on benchmarks (a) MySQL and (b) vips.
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Figure 14: Thread and external input on a routine
basis.

the routines take almost all their input from external devices
or from other threads. The trend of curves in Figure 12
decreases steeply from 100 to 0, reaching its minimum at
x ≃ 8% for most benchmarks: this means that 8% of the
routines are responsible of thread intercommunication and
streamed I/O, and the input size of these routines cannot
be appropriately predicted by the rms metric alone.

Dynamic Workload Characterization. Besides produc-
ing estimates of the empirical cost functions of routines, in-
put measurement metrics also yield a characterization of
the typical workloads on which routines are called in the
context of deployed systems [5]. In particular, rich profile
data collected by the drms metric can provide insights on
the amount of interaction with external devices (external
input) and cooperating threads (thread input). Charts in
Figures 13, 14, and 15 characterize the workload of an ap-
plication at different levels of granularity and can be auto-
matically produced by our profiler.
If we sort in decreasing order all routines by percentage

of induced first-reads, we can assess the interplay between
workload, computation, and concurrency, as shown in Fig-
ure 13. For each routine of benchmarks MySQL and vips, the
histogram plots the percentage of induced first-reads parti-
tioned between thread and external input. A first look re-
veals that induced first-reads of the majority of MySQL rou-
tines are due to external input, confirming the fact that
MySQL makes extensive use of both network and I/O. Con-
versely, thread input turns out to be predominant in vips,
which is indeed a data-parallel image processing application.
Figure 14 compactly represents the percentage of thread and
external input over the total number of (possibly induced)
first-read operations: a point (x, y) on each benchmark-
specific curve means that x% of routines have external /
thread input ≥ y%. For instance, in benchmark dedup, 16%
of the routines are such that at least 20% of their first-reads
are due to thread intercommunication. By computing the
percentages w.r.t. the total number of induced first-reads,
we can instead obtain the histogram in Figure 15, where each
bar sums up to 100%. Benchmarks are sorted by decreasing
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Figure 15: Characterization of induced first-reads.

thread input (and thus by increasing external input). An
interesting observation is that the SPEC OMP2012 bench-
marks get naturally clustered in the leftmost part of the
histogram (from nab to botsalgn), and all of them have
thread input larger than 69%.

Notice that the execution of an application may change
according to the thread interleaving chosen by a scheduler.
An interesting aspect is how this choice can affect the shared-
memory communication between threads and thus the drms
metric. We analyzed several runs of different applications
taken from the SPEC OMP2012 and PARSEC 2.1 bench-
mark suites using multiple Valgrind’s scheduling configura-
tions. As expected, the external input remains stable across
different runs. On the other hand, thread input shows a
mean fluctuation of less than 2%, with peaks up to 800%
for a few benchmarks. This alteration, however, does not
qualitatively affect the observed trends in the routine cost
plots.

Slowdown and Space Overhead. Performance figures on
the SPEC OMP2012 and PARSEC 2.1 benchmark suites,
obtained spawning four threads per benchmark, are sum-
marized in Table 1 (see [6] for detailed results). Compared
to native execution, all the evaluated tools exhibit a large
slowdown: even nulgrind, which is reported to be roughly
5 times slower than native [20], in our experiments turned
out to have mean slowdown factors of 23.6× and 12.2× re-
spectively for the two suites. aprof-drms is on average 6
times slower than nulgrind. The slowdown is worse than
memcheck, which is 1.5 times faster than our tool but does
not trace function calls and returns. helgrind, the only
tool designed for the analysis of concurrent computations,
results to be slower than aprof-drms (e.g., 2.2 times on the
PARSEC 2.1 suite). Recognizing induced first-reads causes
an average overhead of 29% on the running time, as demon-
strated by the comparison of aprof-drms with aprof.
The mean memory requirements of aprof-drms are within
a factor of 3.3× on SPEC OMP2012 and of 6.1× on PAR-
SEC 2.1: this overhead mostly depends on shadow memo-
ries. memcheck turns out to be more efficient than our tool



nulgrind memcheck callgrind helgrind aprof aprof-drms

Slowdown (Geom. Mean)
SPEC OMP 23.6× 94.1× 64.8× 179.4× 101.5× 140.8×

PARSEC 2.1 12.2× 51.8× 51.4× 153.3× 57.1× 68.2×

Space overhead (Geom. Mean)
SPEC OMP 1.4× 2.0× 1.5× 4.5× 2.8× 3.3×

PARSEC 2.1 1.8× 2.9× 2.1× 8.4× 4.6× 6.1×

Table 1: Performance comparison of aprof-drms with aprof and some prominent Valgrind tools.

thanks to the adoption of memory compression schemes and
to its independence from the number of threads. Similarly,
aprof is slightly more efficient than our tool due to the lack
of a global shadow memory. On the other hand, helgrind,
which is akin to our tool with respect to the analysis of con-
currency issues, uses 36% more space than aprof-drms. We
remark that benchmarks of the PARSEC 2.1 suite use very
small memory on the largesim workload and thus the over-
head is very high even for nullgrind and callgrind which
do not use shadow memories.
Figure 16 shows the average slowdown and space over-

head, with respect to the native execution, as a function
of the number of spawned OpenMP threads for the SPEC
OMP2012 suite. Due to Valgrind thread serialization, on
parallel benchmarks such as OMP 2012 the slowdown of all
Valgrind tools increases with the number of threads. This
is an issue of the Valgrind instrumentation infrastructure,
which does not exploit multiple cores, rather than of Val-
grind tools, including aprof-drms. Regarding space over-
head, we observe a modest growth when the number of
threads increases, but the memory requirement of aprof-
drms remains always smaller than helgrind, confirming that
the performance of our tool is comparable to other heavy-
weight tools.

5. RELATED WORK
There is a vast literature on performance profiling, both

at the inter- and intra-procedural level: see, e.g., [1, 2, 4,
9–11, 21, 24] and the references therein. All these works
aim at associating performance metrics to distinct paths tra-
versed in the call graph or in the control flow graph during
a program’s execution. Input-sensitivity issues are instead
explored in [5, 8, 13, 23]. Marin and Mellor-Crummey [13]
consider the problem of understanding how an application’s
performance scales given different problem sizes, using data
collected from multiple runs with determinable input pa-
rameters. Goldsmith, Aiken, and Wilkerson [8] also propose
to run a program on workloads of different sizes, to mea-
sure the performance of its routines, and eventually to fit
these observations to a model that predicts how the perfor-
mance scales. The workload size of the program’s routines,
however, is not computed automatically. Algorithmic pro-
filing by Zaparanuks and Hauswirth [23], besides identifying
boundaries between different algorithms in a program, infers
their computational cost, which is related to the input size.
The notion of input size is defined at a high level of abstrac-
tion, using different definitions for different data structures
(e.g., the size of an array or the number of nodes in a tree).
The input-sensitive profiling methodology described in [5],
which provides the basis for our approach, automatically
infers the input size by tracing low-level memory accesses
performed by different routines. None of these approaches
addresses dynamic workloads, ignoring exernal inputs and
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Figure 16: (a) Time and (b) space overhead as a
function of the number of threads.

communication among threads.
The problem of empirically studying the asymptotic be-

havior of a program has been the target of extensive re-
search in experimental algorithmics [7, 14], where individ-
ual modules are extracted from applications and separately
analyzed on ad-hoc test harnesses. However, by studying
performance-critical routines out of the context of the over-
all application in which they are deployed, this approach
may fail to characterize their actual behavior in production
environments.

6. CONCLUSIONS
In this paper we have extended the input-sensitive pro-

filing methodology [5] in order to include dynamic input
sources such as communication between threads and I/O.
In more details, we have proposed a novel metric, called
drms, that gives an estimate of the size of dynamic work-
loads of each routine activation by taking into account first
read operations, possibly induced by other threads or by
kernel system calls.

As a future direction, it would be interesting to port our
implementation to a fully scalable and concurrent dynamic
instrumentation framework, in order to exploit parallelism
to leverage the overhead of our profiler. Our approach also
raises interesting open issues regarding input characteriza-
tion and thread intercommunication in concurrent applica-
tions. In a recent experimental study [12], it has been ob-
served that even widespread multi-threaded benchmarks do
not interact much or interact only in limited ways, and that
communication does not change predictably as a function
of the number of cores. We believe that our drms com-
putation algorithm may support the development of auto-
matic tools for characterizing how multi-threaded applica-
tions scale their work and how they communicate via shared
memory at routine activation rather than thread granularity.
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