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Abstract. Dynamic program analysis encompasses the development of
techniques and tools for analyzing computer software by exploiting in-
formation gathered from a program at runtime. The impressive amounts
of data collected by dynamic analysis tools require efficient indexing and
compression schemes, as well as on-line algorithmic techniques for mining
relevant information on-the-fly in order to identify frequent events, hid-
den software patterns, or undesirable behaviors corresponding to bugs,
malware, or intrusions. The paper explores how recent results in algo-
rithmic theory for data-intensive scenarios can be applied to the design
and implementation of dynamic program analysis tools, focusing on two
important techniques: sampling and streaming.

1 Introduction

In our modern society, software has become ubiquitous in many branches of
human activities and has gained an unprecedented level of complexity. This
poses many challenges regarding reliability, performance, and scalability on con-
temporary computing platforms, thus calling for a much deeper understanding
of what happens inside a software program than the conventional visibility of-
fered by the program’s output. Dynamic program analysis, defined in [1] as “the
analysis of the properties of a running software system”, encompasses the devel-
opment of techniques and tools for analyzing computer software by exploiting
information gathered at runtime. It can be used for a variety of tasks [2], includ-
ing optimization (profiling, tracing, self-configuration), error detection (testing,
assertion checking, type checking, memory safety, leak detection), error correc-
tion (runtime data structure repair, protections against security attacks), and
program understanding (coverage, call graph construction, invariant detection,
software visualization).

Over the past few years, dynamic analysis has emerged as a focused sub-
ject aimed at bridging the gap between the complexity-haunted field of formal
verification and the ad-hoc field of testing. Being run-time information precise
and sensitive to the input data, dynamic analysis can complement and rein-
force traditional static analysis techniques, which might be inaccurate in modern
object-oriented software systems: since software is often deployed as a collection



of dynamically linked libraries or as Java bytecode that is delivered dynamically
and on demand, compilers and other programming tools know less and less of
the finally executing program. The use of static analysis in such programming
tools requires conservative assumptions, which yield analysis results that may
be too imprecise to be useful for either program optimization or program un-
derstanding tasks. In these contexts, dynamic analysis can enable new powerful
techniques that would be impossible to achieve otherwise.

The development of dynamic analysis tools that can successfully assist pro-
grammers and software engineers raises issues in a variety of areas, including
operating systems, algorithm design, software engineering, and programming
languages. In particular, optimizing the performance of dynamic analysis tools
is of crucial importance for their effective deployment and usability. For instance,
tools that analyze the patterns of memory accesses of a running program, such
as memory profilers, debuggers, or invariant checkers, must be able to deal with
huge streams of data generated on-the-fly by monitoring traffic on the address
bus and data bus at typical rates of several megabytes per second. Two main
problems arise in this context. Firstly, since dynamic program analysis routines
are inlined with program execution, they can substantially impact system perfor-
mance, greatly reducing their practical applicability: the cost of collecting run-
time information must be therefore appropriately lowered by means of available
hardware/software support. Secondly, the sheer size of data collected by a dy-
namic analysis tool requires on-line techniques for mining relevant information
on-the-fly, as well as efficient indexing and compression schemes for storing the
data for post-mortem examination.

While optimizing the costs of instrumentation and analysis can largely boost
the performance of dynamic analysis tools, it is a very difficult task: modern com-
puter systems must deal with billions of events per second, such as instruction
executions, accesses to main memory and caches, or packet forward operations.
Hence, execution traces generated from real applications, even from very short
runs, can be overwhelmingly large and processing them is very time-consuming.
Exploiting advanced algorithmic techniques to cope with the sheer size of data
collected throughout execution is thus regarded as a key challenge in this field [3,
4]. In the last few years the design of algorithms and data structures for han-
dling massive data sets has sparked a lot interest in the algorithmic community,
but this wealth of novel algorithmic techniques has been explored only to a very
little extent in dynamic program analysis. In this paper we will discuss a few
relevant examples where big-data algorithmics has provided valuable insights in
the design and implementation of dynamic program analysis tools, addressing
two important techniques: sampling (Section 3) and streaming (Section 4).

2 Execution Traces

Information collected by dynamic analysis tools is typically expressed in the
form of execution traces. Traces can be recorded via different instrumentation
techniques at the source code, binary code, or execution environment level [5,



Table 1. Data obtained from execution traces of routine invocations. The number of
nodes in the call tree is proportional to the trace length.

Application |Call graph| |Call sites| |Call tree|

amarok 13 754 113 362 991 112 563
ark 9 933 76 547 216 881 324

audacity 6 895 79 656 924 534 168
firefox 6 756 145 883 625 133 218
gedit 5 063 57 774 407 906 721
gimp 5 146 93 372 805 947 134

sudoku 5 340 49 885 325 944 813
inkscape 6 454 89 590 675 915 815

ooimpress 16 980 256 848 730 115 446
oowriter 17 012 253 713 563 763 684
pidgin 7 195 80 028 404 787 763
quanta 13 263 113 850 602 409 403

6], and can contain a variety of information related to, e.g., routine invocations,
executions of program statements or basic blocks, memory accesses, and thread
operations. The information recorded in a trace clearly depends on software
properties that need to be analyzed. With respect to static analysis, execution
traces are incomplete, since they capture only a small fraction of all possible
execution paths. However, they have the advantage of being extremely precise
and sensitive to the input data.

Even traces obtained from short runs of real applications can be extremely
large and complex, affecting not only performance and storage of dynamic anal-
ysis tools, but also the cognitive load humans can deal with. Consider, as an
example, traces of routine invocations, which are especially useful for perfor-
mance profiling. These traces can be naturally regarded as a stream of tuples
containing routine name, call site, event type (i.e., routine enter or exit), and
possibly timing information. Table 1 is excerpted from [7] and analyzes a vari-
ety of prominent Linux applications, for which traces were obtained from short
running sessions of just a few minutes. The table reports the number of distinct
routines in a trace (i.e., the number of nodes of the call graph), the number of
distinct call sites (i.e., the number of code lines which call a routine), and the
number of nodes in the call tree. The call graph and the call tree are fundamental
data structures that maintain information about interprocedural control flow: in
a call graph, nodes represent routines and arcs caller-callee relationships, while
each node of a call tree represents a different routine invocation. The number
of call tree nodes is thus proportional to the stream length. Table 1 shows that
the number of call tree nodes can be very large, even when compared with call
graph nodes and call sites: execution traces obtained from short runs of real
applications produce a few hundred millions of events, which result in a few Gi-
gaBytes of memory under the optimistic assumption that each stream tuple can
be stored using only ten bytes. To mitigate this size explosion issue, many trace
simplification and abstraction techniques have been proposed in the literature,



aimed at extracting high-level views and relevant data from long raw traces:
execution traces can indeed contain several repetitions, either contiguous or not,
and a very large number of patterns. Each pattern, in turn, can have thousands
of occurrences, which makes data mining and pattern detection techniques quite
useful to understand the characteristics of program traces [4]. Redundancies can
be also reduced by compression techniques as proposed, e.g., in [8–10]. In the
rest of this paper we will describe some relevant trace analysis techniques based
on sampling and data stream algorithmics.

3 Sampling

Sampling is used in statistics to estimate the characteristics of a large population
by analyzing only a small portion of its members. A sample typically represents a
subset of the population of manageable size, thus allowing faster data collection
and smaller analysis costs. Many previous works, such as [11–16], have explored
the use of sampling to reduce the size of execution traces and/or the runtime
overhead of dynamic analysis tools. Overall, sampling appears to be a valuable
tool in dynamic analysis, although sampled traces are not always representative
of the original ones, and the results often heavily depend on manual tuning
of a variety of parameters. Furthermore, it has been observed that the same
sampling parameters might work well for one trace, while being inappropriate
for a different trace [12].

Fixed rate sampling. A widespread approach consists of selecting sample points
at fixed intervals, e.g., one point out of n trace items or every t milliseconds.
This technique might be easily biased when the original trace exhibits regular
patterns. Consider, for instance, the following scenario: the execution trace stores
memory accesses, the sampling distance n is set to 10, and a memory location
ℓ is accessed exactly every 10 memory operations. Then, depending on where
the sampling starts, the traced sample might never contain ℓ or might contain
exclusively operations on ℓ. Though this is a worst-case example, such regularities
in execution traces are far from being rare.

A case study in performance profiling. Fixed rate sampling can be naturally im-
plemented using periodic timer interrupts, ranging from process level interrupts
to processor hardware performance counters. Hence, it has become very popular
in the design of performance profilers. In accordance with the well-known Pareto
principle (also known as the 80 − 20 rule), more than 80% of running time is
indeed spent in only 20% of routines: “hot” routines must appear frequently in
the trace, and therefore are likely to be sampled. Unfortunately, even for such
skewed distributions, fixed rate sampling might not work properly if the sam-
pling parameter (n or t) is not appropriately tuned. As a concrete example, we
report the outcome of an experiment discussed in [17], aimed at comparing the
set of hot routines returned by a sampling-based profiler with the set of hot
routines obtained by full instrumentation (i.e., computed on the full execution
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Fig. 1. False positives and false negatives generated by fixed rate sampling. (a) A
routine is a false positive if it appears to be hot with respect to a sampled trace, but
is not hot with respect to the full trace; (b) a routine is a false negative if is not
reported as hot when using sampling, but is hot with respect to the full trace. Graphs
are excerpted from [17].

trace). Let τ be a trace of routine invocations and T (τ) be the total time re-
quired by all the routines appearing in τ . We define the set H(τ) of routines
that are hot with respect to trace τ as follows: all routines appearing in τ are
sorted by decreasing running time and are then progressively added to H(τ),
according to the precomputed order, until the total time required by routines in
H(τ) becomes larger than 0.9T (τ). Intuitively, H(τ) is the minimal set of the
most costly routines that account for at least 90% of the overall running time.
When τ is a sampled trace, some of the routines that are hot with respect to τ
could not be hot with respect to the full trace, yielding false positives. Symmet-
rically, it may happen that routines that are hot with respect to the full trace
are not hot with respect to the sampled trace τ , yielding false negatives. Fig-
ure 1 reports the percentage of false positives and false negatives as a function
of the sampling rate t (larger values of t imply less frequent sampling and thus
smaller sampled traces). The outcome of the experiment is exemplified on some
of the benchmarks listed in Table 1. Both quantities are considerably large: in
some applications, false positives account for up to 90% of the total number of
reported hot routines. The quantity of false negatives is smaller, but remains
non-negligible and is badly affected by larger sampling rates. Further details are
given in [17].

Random sampling. Overall, the experiments reported in [17] confirm that fixed
rate sampling can yield unrealistic results, even when data distributions are very
skewed. A valuable tool to mitigate these issues is random sampling, which con-
sists of selecting sample points with a fixed probability. Mytkowicz et al. [18]
observe that collecting samples randomly is a fundamental requirement to ob-
tain accurate profiles, but is often violated by commonly-used Java profilers.
Unfortunately, random sampling might be difficult to implement on-line (i.e.,
during trace generation) and, if not done properly, might result in samples of



unbounded size for long running applications. To overcome these issues, Coppa
et al. [17] advocate the use of reservoir sampling [19]: the experimental evalua-
tion of reservoir-based profiling shows that, while maintaining uniform sampling
probability, this technique yields much better and more stable profiling results
than fixed rate sampling, even when the stored sample is very small.

Adjusting sampling probabilities. A variety of works propose different strate-
gies for controlling sampling probabilities. For instance, Marino, Musuvathi, and
Narayanasamy apply sampling to the problem of detecting data races in con-
current applications [20]. Apparently, a sampling-based data-race detector may
seem unlikely to succeed, because most memory accesses do not participate in
data races and sampling approaches, in general, are not well suited at captur-
ing rare events. Hence, [20] proposes an adaptive approach, adjusting sampling
probabilities during the execution so that infrequently accessed regions of code
progressively become more likely to be sampled. Experimental results show that
this adaptive strategy achieves both a high detection rate and small slowdown
on the running time. In [15], Pirzadeh et al. use stratified sampling to create
samples representative of different characteristics of the entire execution. Strat-
ified sampling turns out to be useful on heterogeneous populations that can be
divided into homogeneous sub-populations, known as strata: this is often the
case in execution traces, where the sequence of trace events can be typically
partitioned into subsequences representing specific tasks performed by the soft-
ware system. In this scenario, strata correspond to execution phases, which can
be automatically identified using k-means clustering algorithms, and different
sampling parameters can be then used in each stratum.

4 Streaming

The data streaming model has gained increasing popularity in the last few years
as an effective paradigm for processing massive data sets. Streaming algorithms
are well suited in application domains where input data come at a very high
rate, cannot be stored entirely due to their huge (possibly unbounded) size, and
need to be continuously monitored in order to support exploratory analyses and
to detect correlations, frequent or rare events, fraud, intrusion, and anomalous
activities. Relevant examples include monitoring network traffic, online auctions,
transaction logs, telephone call records, automated bank machine operations,
atmospheric and astronomical events. For instance, in IP traffic analysis we
may want to monitor the packet log over a given link in order to estimate how
many distinct IP addresses used that link in a given period of time: since the
number of packets may be very large and stream items (source-destination IP
address pairs) are drawn from a large universe, a space-efficient data streaming
algorithm maintains a compact data structure supporting both dynamic updates
upon arrival of new packets and distinct items queries. Approximate answers
are allowed when it is impossible to obtain an exact solution using only one
sequential pass over the data and limited space.



One-pass streaming algorithms are typically designed to optimize four main
performance measures: space required to store the data structure, update time
(i.e., per-item processing time), query time, and guaranteed solution quality.
Starting from early papers appeared in the late 1970s (see, e.g., [21, 22]), a wide
range of results have been obtained in the last decade, mainly for statistics and
data sketching problems such as the computation of frequency moments [23],
histograms and quantiles [24], norm estimation [25], wavelet decomposition [24],
most frequent items [26], and clustering [27]. In this section we discuss two
applications of streaming algorithms to dynamic program analysis, focusing on
the problem of performance profiling.

Range adaptive profiling. In [28], Mysore et al. address a problem called pro-
filing with adaptive precision: they devise a profiling methodology capable of
hierarchically classifying items in an execution trace into increasingly precise
categories based on the frequency with which they occur. Differently from tradi-
tional profiles, which produce a flat list of items together with their performance
metrics, adaptive profiling outputs profile data into a hierarchical fashion, striv-
ing for higher precision on most frequent events. Assume, as an example, that
items of interest are lines of code: if 90% of the running time is spent on the
top half of the code, according to Amdahl’s law fine-grained profile data on the
bottom half would not be very useful. Hence, it makes sense to summarize the
behavior of the bottom half using a single performance counter, exploring in
more detail possible optimization targets in the top half: the top half could be
divided in turn into a top and a bottom quarter, refining data on the quarter
that consumes most of the time. In summary, in [28] profile data is grouped into
ranges: the most frequently occurring ranges are broken down into more precise
subranges, while the least frequently occurring events are kept as larger ranges.

Ranges can be naturally stored in a tree, together with their associated coun-
ters. The tree can be easily updated by incrementing the appropriate counter to
keep track of stream events. However, since relative range frequencies can dy-
namically change over time, the tree structure must be also adaptively changed
to resemble the hottest ranges. The solution proposed in [28] exploits a stream-
ing algorithm for adaptive spatial partitioning of multidimensional data streams
described in [29]. When a range becomes sufficiently hot, the corresponding tree
node is split into subranges. Symmetrically, ranges that get colder are merged
together, pruning the tree in order to maintain the least number of relevant
counters. Tree update, split, and merge operations can be performed on-line and
are designed so as to guarantee worst case bounds on precision and space usage.

Let [0, R] be the largest range to be considered (in the example above, R
might denote the number of code lines), let ε ∈ (0, 1) be a user defined constant,
and let n be the number of stream items at any time during the execution. The
streaming data structure of [29] splits nodes whenever their counter becomes
larger than the threshold ε · n/ log(R). It can be proved that this guarantees
O(logR/ε) size, independently of the length of the stream, and maximum error
upper bounded by ε · n. We notice that the error for any given range is relative
to the entire input stream, and not to the actual counter of that range.
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Fig. 2. Skewness of calling context distribution (graphs excerpted from [7]).

In [28], the authors show that this streaming approach can be efficiently
implemented via specialized hardware. Experimental results indicate that, using
just a few kilobytes of memory, it is possible to maintain range profiles with
an average accuracy of 98%. We remark that range adaptive profiling is not a
fully general technique, but can be nevertheless applied to a variety of scenarios,
such as profiling segments of code, blocks of data and IP addresses, or ranges of
memory addresses in order to quantify cache locality issues.

Mining hot calling contexts. In [7], D’Elia et al. show an efficient and accurate
solution for context sensitive profiling based on the computation of frequent
items in the data stream model. Calling contexts are typically stored in a data
structure called calling context tree, which is substantially smaller than standard
call trees, but may still be very large and difficult to analyze in real applications.
However, only the most frequent contexts are of interest, since they represent
the hot spots to which optimizations must be directed. Context frequency dis-
tribution satisfies the well-known Pareto principle: Figure 2, excerpted from [7],
shows on a variety of real applications that only a small fraction of contexts
are hot, and typically more than 90% of routine calls take place in only 10% of
calling contexts. This skewness suggests that space could be greatly reduced by
keeping information about hot contexts only, discarding on the fly contexts that
are likely to be cold. This is the approach taken in [7], where the problem of
identifying the most frequent contexts on the fly is cast into a data streaming
setting, exploiting fast and space-efficient algorithms for mining frequent items.

Given a frequency threshold φ ∈ [0, 1] and a stream of lenght N , the frequent
items problem is to find all items that appear in the stream at least ⌊φN⌋ times.
Since computing an exact solution requires Ω(N) bits, even using randomiza-
tion [30], research focused on solving an approximate version of the problem,
called (φ, ε)-heavy hitters: given two parameters φ, ε ∈ [0, 1], with ε < φ, return



all items with frequency ≥ ⌊φN⌋ and no item with frequency ≤ ⌊(φ − ε)N⌋.
In the approximate solution, false negatives cannot exist, i.e., all frequent items
must be returned. Instead, false positives are allowed, but their real frequency
must be guaranteed to be at most εN -far from the threshold ⌊φN⌋. Different al-
gorithms for computing (φ, ε)-heavy hitters are known in the literature. Among
them, Space Saving [31] and Sticky Sampling [26] are counter-based algorithms
that track a subset of the input items, monitoring counts associated with them.
For each new arrival, they decide whether to store the item or not, and, if so,
what counts to associate with it. Sticky Sampling is probabilistic: it fails to pro-
duce the correct answer with a minuscule probability, say δ, and uses at most
2

ε
log(φ−1δ−1) entries in its data structure [26]. Space Saving [31] is instead de-

terministic and uses 1

ε
entries.

Frequent items algorithms can be naturally adapted to context sensitive pro-
filing: during the computation the profiler maintains a subtree of the full calling
context tree, called Hot Calling Context Tree (HCCT), storing only hot contexts
and their ancestors. More formally, the HCCT is defined as the (unique) sub-
tree of the calling context tree obtained by pruning all cold nodes that are not
ancestors of a hot node: by definition all hot nodes are included in the HCCT,
whose leaves are necessarily hot (the converse, however, is not true). The fre-
quent items algorithms decide which hot nodes must be monitored, and the
profiler updates the HCCT accordingly so as to maintain also their ancestors.
The space used by the HCCT includes both monitored hot contexts, and their
(possibly cold) ancestors. The former quantity can be analyzed theoretically, as
in [26, 31], while the latter depends on properties of the execution trace and on
the structure of the calling context tree. In practice, experiments show that this
amount is negligible with respect to the number of hot nodes. Hence, the HCCT
represents the hot portions of the full calling context tree very well using only an
extremely small percentage of space: even when the peak memory usage of the
stream-based profiler of [7] is only 1% of standard context-sensitive profilers, all
the hottest calling contexts are always identified correctly (no false negatives),
the number of false positives (cold contexts that are considered as hot) is very
small, and frequency counters are very close to the true values.

5 Concluding Remarks

In this paper we have discussed how recent results in algorithmic theory for
data-intensive scenarios can be applied to the design and implementation of dy-
namic program analysis tools. We have focused on sampling and data stream
algorithmics. The examples illustrated in this work should be considered as a
non-exhaustive starting point: many other techniques (e.g., data mining or com-
pression) may prove to be valuable in dynamic program analysis. This is indeed
a fresh area, and we believe that it represents a novel fertile ground for fun-
damental algorithmic research: not only dynamic program analysis can inspire
many novel, interesting algorithmic questions (or genuinely new variants of well
understood problems), but the transfer of algorithmic knowledge in the imple-



mentation of program analysis tools can also have a significant practical impact.
Furthermore, algorithm engineering techniques for developing fast, robust, and
scalable implementations can play a major role in this scenario, where architec-
tural aspects, such as the presence of memory hierarchies and of multiple cores,
can be successfully exploited in order to leverage the runtime impact of dynamic
analysis tools.
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