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Abstract

Given a weighted directed graph G = (V, A), the minimum feedback arc set problem
consists of finding a minimum weight set of arcs A’ C A such that the directed graph
(V,A\ A’) is acyclic. Similarly, the minimum feedback vertex set problem consists of
finding a minimum weight set of vertices containing at least one vertex for each directed
cycle. Both problems are NP-complete. We present simple combinatorial algorithms
for these problems that achieve an approximation ratio bounded by the length, in terms
of number of arcs, of a longest simple cycle of the digraph.

Keywords: approximation algorithms, combinatorial optimization, feedback prob-
lems.

1 Introduction

A feedback arc set of a (directed) graph is a subset of its arcs whose removal makes
the graph acyclic. Similarly, a feedback vertex set of a (directed) graph is a subset
of its vertices containing at least one vertex for each (directed) cycle. The minimum
feedback vertex and arc set problems consist of finding a smallest cost feedback vertex
set and a smallest cost feedback arc set, respectively. The cost of the feedback set can
be either its cardinality or its weight with respect to a nonnegative weight function.

Feedback problems are fundamental in combinatorial optimization and find applica-
tion in many different settings: analysis of large-scale systems with feedback, constraint
satisfaction problems [4], graph layout [23], and certain scheduling problems [12] rep-
resent just some examples. For this reason they have been deeply studied since the
late 60's (see, for example, [19]).

Related work. The minimum feedback vertex set problem is NP-complete both
on directed and on undirected graphs [13, 18] and remains NP-complete even on edge
digraphs [14]. On the other hand, the minimum feedback arc set problem on undirected
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graphs can be easily solved in polynomial time by finding a maximum weight spanning
tree, while its directed formulation is NP-complete [13, 18] even on digraphs with total
vertex in-degree and out-degree smaller than 3 [14], but is polynomially solvable on
planar digraphs [20].

NP-completeness results have motivated extensive research for efficient heuristics
and approximation algorithms for these problems. In particular, the minimum feedback
vertex set problem on undirected graphs has been deeply studied and algorithms with
performance ratio equal to 2 have been presented in [1, 5].

Feedback problems on directed graphs appear significantly more difficult to be
approximated. In particular, they have been proved to be equivalent from an approx-
imability point of view and to be APX-hard [17], but no constant approximation ratio
has been found yet. Heuristics for the minimum feedback arc set problem are described
in [9, 10, 12]. In [21] it has been also shown that all minimal solutions can be enumer-
ated with polynomial delay. The best known approximation algorithm [11, 22] achieves
a performance ratio O(lognloglogn), where n is the number of vertices of the digraph,
and requires to solve a linear program. These results are in evident contrast with those
obtained for the complementary problem, called maximum acyclic subgraph, that can
be easily approximated by a ratio even smaller than 2 [6, 15].

Our results. In this paper we focus on feedback problems on directed graphs and
we present new approximation algorithms for them built on the top of the local-ratio
technique [2]. Our algorithms are combinatorial, run in O(m - n) worst-case time
on a digraph with n vertices and m arcs, and, independently of the weight function,
achieve an approximation ratio bounded by the length, in terms of number of arcs, of
a longest simple cycle of the digraph. According to a preliminary experimental study
in a crossing minimization application [7], they proved to be very practical on dense
instances with many short cycles.

The remainder of the paper is organized as follows. Section 2 introduces preliminary
concepts and reminds the local-ratio technique. Section 3 presents our approximation
algorithm for the minimum feedback arc set problem and shows that it can be easily
adapted to deal with feedback vertex sets. The algorithm is analyzed in Section 4.

2 Definitions and Notation

Let G = (V,A) be a directed graph, and let w : A — R and 2z : V. — R be
nonnegative weight functions on the arcs and on the vertices of G, respectively. The
minimum feedback arc set and vertex set problems can be formally stated as follows:

FAS: Given a directed graph G = (V, A) with nonnegative arc weights w : A — R,
find a minimum weight set of arcs A’ C A such that the directed graph (V, A\ A’) is
acyclic.

FVS: Given a directed graph G = (V, A) with nonnegative vertex weights z : V. — R,
find a minimum weight set of vertices V/ C V such that V' contains at least one vertex
for each directed cycle of G.

In the following we denote the weights of feedback vertex and arc sets A’ and V'
with w(A’) = 3, yea w(z,y) and 2(V') = 30 ey 2(v), respectively.



A feedback arc set A* is optimum if w(A*) < w(A’) for any feedback arc set
A’; moreover, a feedback arc set A’ is a r-approximation, r > 1, if w(A’) < r - w(A*).
Similarly, a feedback vertex set V* is optimum if z(V*) < z(V”) for any feedback vertex
set V' and a feedback vertex set V' is a r-approximation, r > 1, if 2(V') < r - 2(V*).
A feedback set C is minimal if any proper subset of C' is not a feedback set itself.

Feedback problems can be naturally thought as covering problems, i.e., as the prob-
lems of covering all cycles of a given digraph by means of a minimum cost set of vertices
or arcs. Hence, the classical techniques adopted for approximating covering problems
can be used. In particular, two main approaches have been investigated in the liter-
ature [16]: the primal-dual approach and the local-ratio approach. In this paper we
focus on the local-ratio technique [2, 3], that turns out to be a powerful yet simple tool
for designing approximation algorithms.

With respect to covering problems, the Local Ratio theorem can be informally
stated as follows: if a cover C' is a r-approximation with respect to both a weight
function wy; and a weight function ws, then C' is a r-approximation with respect to
the weight function wi 4+ we. This suggests a general strategy followed by many local-
ratio approximation algorithms: using weight reductions and solving the problem on
instances with simpler weight functions. Informally speaking, if the payment at each
step can be proved to cost no more than r times the optimum payment, then the total
payment will be at most r times the optimum cost.

3 The Approximation Algorithms

We first consider the minimum feedback arc set problem, proposing a simple combina-
torial approximation algorithm based on the use of the local-ratio technique, and then
we show that the algorithm can be easily adapted to FVS.

3.1 Approximating FAS

According to the overall strategy of local-ratio algorithms, our approach consists of
progressively reducing the weights of the arcs of the digraph and adding to the feedback
arc set the arcs whose weight becomes equal to 0.

In more detail, the algorithm consists of two phases. First, it looks for a simple
cycle C in the digraph and, if such a cycle exists, identifies an arc in C having minimum
weight, say €. Then, the weight of all the arcs in C is decreased by € and the arcs
whose weight becomes equal to 0 are removed. If the digraph is now acyclic the first
phase terminates, otherwise the previous steps are repeated. After Phase 1, the set of
deleted arcs is certainly a feedback arc set, though not necessarily minimal. Hence, the
algorithm tries to add back to the digraph some of the deleted arcs, paying attention
not to re-introduce cycles. The set of removed arcs is finally returned.

The pseudocode of Algorithm FAS and an example of its execution are given in
Figure 1 and in Figure 2, respectively. The example also shows the non-minimality of
the solution after Phase 1. It should be clear that, if an arc is considered at a certain
iteration but is not removed, it can still be considered for deletion in a successive
iteration. For instance, arc (2,4) in Figure 2 is not removed in the first iteration yet
belonging to the cycle discovered in that step. However, it is deleted in the second



Algorithm FAS (G = (V,A);w: A — RT)

1. begin

2 F 1 {F is the feedback arc set found by the algorithm}
3 while ((V, A\ F) is not acyclic) {Phase 1}
4 begin

5. Let C be a simple cycle in (V, A\ F)

6 Let (z,y) be a minimum weight arc in C and let € be its weight

7 for each (v,w) € C

8. w(v,w) — w(v,w) — e

9. if wv,w)=0

10. then F — F U {(v,w)}

11. end

12.  for each (v,w) € F {Phase 2}
13. if (V, A\ FU{(v,w)}) is acyclic

14. then F — F\ {(v,w)}

15. return F'

16. end

Figure 1: Finding a minimal feedback arc set of a weighted directed graph.

iteration, since there are still cycles it belongs to. This implies that the reduction of
the weights of all the arcs must be taken into account while computing the payed cost,
even if it may happen that either an arc is successively deleted or it is not.

Roughly speaking, our algorithm tries to find a compromise between two (somewhat
opposite) approaches, i.e., removing light arcs, that is, arcs with small weight, and
removing arcs belonging to a large number of cycles. Indeed, light arcs are convenient
to be deleted as they contribute to breaking cycles, yet increasing the weight of the
feedback set only to a limited extent. On the other hand, if a heavy arc belongs to a
large number of cycles, it may be convenient to choose it instead of a numerous set of
light arcs. An example is shown in Figure 3: according to the fact that k is greater or
smaller than x, it may be convenient either to remove the only arc with weight x or
the whole set of arcs of weight 1 each. However, a simple greedy approach following
one of the two strategies will always fail in one case. Therefore, a somehow “mixed”
approach is needed in order to be able to limit the worst-case error.

Moving from the foregoing considerations, algorithm FAS decreases the weight of
all the arcs in any cycle it finds. The bigger is the number of cycles an arc belongs
to, the more likely is the reduction of its weight and the more likely is its subsequent
removal. Put another way, heavy arcs belonging to a huge number of cycles become
progressively more desirable as the algorithm goes on thanks to the reduction of their
weight. In the bad instances of Figure 3, our algorithm chooses a 1-weight arc for
min{x — 1,k} times, meanwhile decreasing the weight of arc (u,v). If x > k, the
algorithm finally decides to remove arc (u,v). Note that the optimum solution is
gained in both cases: if x > k algorithm FAS stops with the minimum solution within
k iterations; if x < k the feedback arc set built during Phase 1 is not the minimum
one, but Phase 2 improves it to the optimum by adding back all the 1-weight arcs.

It is worth pointing out that this approach is considerably different from both the
heuristics approaches studied in the literature and from the technique that the best



(d) Cycle (5,2,1) isbroken (e) Arc (2,4) is added back (f) Final acyclic digraph

Figure 2: Algorithm execution on a digraph with three simple cycles: (a) input digraph; (b)
to (d) phase 1; (e) phase 2. Arcs in the feedback set F' are dotted; arcs in the cycle broken
at each iteration are bold. Note the progressive reduction of arc weights.

approximation algorithm is based on. Indeed, this algorithm first finds an optimal
solution to a relaxed integer programming formulation of FAS and uses it to partition
the set of vertices into two disjoint sets Vi and Va; then, it deletes the cheapest set
of arcs either from V7 to V5 or from Vs to Vi; finally, it recurses both on Vi and on
V5. From a practical point of view, one of the main advantages of our algorithm over
the previous one relies in its simplicity and on the fact that it does not require any
knowledge in linear programming. The analysis of its running time and approximation
ratio is presented in Section 4.

3.2 Approximating FVS

The feedback arc and vertex sets problems on directed graphs are equivalent from an
approximability point of view: any approximation ratio obtained for one of them can be
translated into the same approximation ratio for the other one [16]. However, instead
of using the reduction in [16], our algorithm can be directly adapted to solve FVS by
means of a few straightforward changes. Actually, it is sufficient to work on vertices
and vertex weights instead of arcs and arc weights.

Once a cycle C has been identified in Phase 1, consider a minimum weight vertex
in C, say v, and decrease the weight of each vertex in C by z(v), adding to the feedback
set the vertices whose weight becomes equal to 0. Similarly, to get a minimal feedback
vertex set, in Phase 2 add back to the graph a (possibly empty) subset of the removed
vertices, paying attention not to re-introduce cycles.



Minimum feedback arc set Minimum feedback arc set
when x>k when x<k

Parametric instance

Figure 3: Bad instances for simple-minded greedy strategies. Removing light arcs produces
bad solutions when k >> z. Removing arc (u,v), that belongs to a large number of cycles,
produces bad solutions when = >> k.

4 Analysis of the Algorithms

We limit here to analyze the algorithm for the feedback arc set problem: analogous
considerations hold for FVS. In particular, we prove in Theorem 1 and in Theorem 2
that algorithm FAS finds a minimal feedback arc set of a digraph G in O(m-n) time, n
and m being the numbers of vertices and arcs of GG, and guarantees an approximation
ratio bounded by the length A of a longest simple cycle of G. Note that the length is
in terms of number of arcs, and therefore independent of the weight function.

Theorem 1 Let G = (V, A,w) be a weighted directed graph with n vertices and m
arcs. Algorithm FAS finds a minimal feedback arc set of G in O(m - n) worst-case
running time.

Proof: We first prove the correctness and then the running time of the algorithm.

Correctness: algorithm FAS progressively removes arcs from the input digraph, stop-
ping only when the remaining arcs do not form cycles (lines 3-11). Hence, the set of
arcs removed after the first phase is by definition a feedback arc set. To guarantee the
minimality of the solution, a maximal subset of the previously removed arcs is added
back in the second phase (lines 12-14): in this phase F' remains a feedback arc set
because the acyclicity condition is tested before any arc addition (line 13).

Running time: at most m iterations can be done in the first phase, since at each step
at least one arc is removed from the digraph (i.e., a minimum weight arc in C). At
each iteration three basic operations are performed: a simple cycle is found (line 5),
a minimum weight arc in the cycle is identified (line 6), and the weights of all arcs in
the cycle are updated (lines 7-10). The second and third operations can be performed
in O(n) time, as n is the maximum length of any simple cycle of G. A simple-minded
implementation of the first operation (by means of a visit), would yield O(m - (m+n))
overall running time. However, this bound can be reduced to O(m - n) by using a
dynamic algorithm for maintaining reachability information in digraphs subject to
deletion of arcs.

Using the reachability data structure in [8], any sequence of arc deletions can be
supported in O(m - n) worst-case time and any reachability query can be answered in
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optimal time. The dynamic algorithm maintains the Boolean transitive closure matrix
M and allows it to find a path between two vertices, if any, in time proportional to the
length of the path. In addition, we can easily maintain within the same time bound
the list L of pairs of vertices (z,y) such that M|z,y] = M|y, z] = 1, i.e.,, z and y lie
on a same cycle. To find a cycle, we pick any pair (z,y) from L and we query the
reachability data structure to find the paths from z to y and back, which form a cycle.
If this cycle is not simple, a simple cycle can be easily derived from it.

The same data structure can be also used to support any sequence of arc inser-
tions [8]. Hence, similarly, the second phase of algorithm FAS can be implemented in
O(m - n) worst-case running time. O

In the following we focus on proving the approximation ratio guaranteed by algo-
rithm FAS. We denote with w, wi, and ws different nonnegative weight functions for
the arcs of a digraph G = (V, A). Moreover, let F'*, F}, and Fj be the minimum
feedback arc sets of the weighted digraphs (V, A, w), (V, A,wy), and (V, A, w,), respec-
tively. The following lemma relates the values of the weights of the minimum feedback
arc sets with respect to different weight functions w, w1, and we when these functions
are linearly dependent:

Lemma 1 Let G = (V, A) be a directed graph and let w, wy, and we be three nonneg-
ative weight functions on the arcs of G such that w = w1 + wo. Then it holds:

w1 (F7) + wa(Fy) < w(F7)

Proof: Since w = w; + we, we have that w(F*) = wi(F*) + wa(F*). Moreover,
F* is a feedback arc set for G with respect to both w; and ws, but it is not necessarily
a minimum feedback arc set. Hence, we have that wq(F™*) > wi(Fy) and wy(F*) >
wa(F5). The claim immediately follows. O

Theorem 2 Let G = (V, A,w) be a weighted directed graph. Algorithm FAS approz-
imates a minimum feedback arc set of G within a ratio bounded by the length A of a
longest simple cycle of G.

Proof: The second phase of algorithm FAS is only required for making the pre-
viously found feedback arc set minimal. Since the weight of the feedback arc set can
only decrease during this phase, it is sufficient to prove that the approximation ratio
is already guaranteed after Phase 1. The proof proceeds by induction on the number
of iterations of the while-loop in line 3 of Figure 1. This number is finite and strictly
decreasing since at each step at least one arc is removed from the digraph.

Base step: no iteration is performed. In this case the input digraph is already acyclic
and the empty feedback arc set is obviously an optimal solution.

Induction step: let us consider a generic iteration of the algorithm and let us denote
with w the weight of the arcs of G in that iteration. Let C be the simple cycle identified
by the algorithm (line 5), let k& be its length, and let € be the weight of the smallest
cost arc in C. We define a new weight function w; for the digraph (V, A) as follows:

e if (u,v)ecC
0 otherwise

V(u,v) € A wi (u,v) = {

7



Observe that the cost of the minimum feedback arc set of the digraph (V, A) with
respect to wy is equal to €, i.e., wi(F]) = e: this is because cycle C is simple, and
removing only one arc is sufficient to break it.

Moreover, the weight of any feedback arc set F' w.r.t w; cannot be greater than
k- e < X-e, because all the arcs not belonging to C cost 0 and at most all the arcs in
C can participate to F. Therefore, for any F':

wi(F) < X-wi(FY) (1)

In the following we denote with F the set of arcs of cycle C removed by the algorithm
in order to break it. As far as the algorithm is concerned, F; = {(u,v) € C such that
w(u,v) = €}. Since any arc (u,v) € C has weight w;(u, v) equal to €, it holds:

w(Fy) = wi(F1) (2)

Let us now define a new weight function we = w—w;. We have that 0 < wa(-) < w(+)
since w(-) > wi(-) > 0. In addition, by the inductive hypothesis on the digraph
(V, A\ Fy,wsq), algorithm FAS returns a feedback arc set Fs of this digraph such that

Let F be the feedback arc set returned by algorithm FAS on the weighted digraph
(V, A,w). As far as the algorithm is concerned, F' consists both of the arcs in F; and
of the arcs in Fy, i.e., F = F| U Fy. It is also worth pointing out that £} N Fy = (), due
to the fact that once an arc has been removed, it will be no longer considered by the
algorithm.

By linearity of w, wq, and ws, it holds w(F') = w1 (F) + wa(F'). In conclusion:

w(F) = (w = w1 +ws)
wl(F)—i—wQ(F): (F F1UF2)

w1 (F) + wa(F1) +wa(F2) — w2 (F1 N Fy) (FiNF=0)

w1 (F) + wa(Fy) + we(Fo)= (we = w — wy and Equation 2)
w1 (F) +wy(Fy) < (Equation 1)

A wi (F]) + wa(Fa) < (Inductive hypothesis)

A wy (FY) + X - we(Fy) < (Lemma 1)

The inequality w(F) < A - w(F™*) proves that algorithm FAS is a A-approximation
algorithm. O

We remark that various heuristics may be used to improve the performance of the
algorithm. In particular, choosing the shortest available cycle in Phase 1, or ordering
arcs by decreasing weight in Phase 2 might be helpful to improve the quality of the
solution.

5 Concluding Remarks

We have presented approximation algorithms for feedback problems in directed graphs.
Our algorithms are combinatorial, run in O(m - n) worst-case time on digraphs with
n vertices and m arcs, and, independently of the weight function, guarantee an ap-
proximation ratio bounded by the length of a longest simple cycle of the digraph. It



would be interesting to carry out an experimental study of our algorithms, addressing
both running time and quality of the obtained solution, boosting them with different
heuristics, and comparing their behaviour to the performances of the best approxima-
tion algorithm (based on linear programming) and of the most popular heuristics for
the same problems.
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