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Abstract

We study conflict-free data distribution schemes in parallel memories in multiprocessor
system architectures. Given a host graph G, the problem is to map the nodes of G into
memory modules such that any instance of a template type T in G can be accessed
without memory conflicts. A conflict occurs if two or more nodes of T are mapped to
the same memory module. The mapping algorithm should (i) be fast in terms of data
access (possibly mapping each node in constant time); (ii) minimize the required number
of memory modules for accessing any instance in G of the given template type; and
(iii) guarantee load balancing on the modules. In this paper, we consider conflict-free
access to star templates, i.e., to any node of G along with all of its neighbors. Such
a template type arises in many classical algorithms like breadth-first search in a graph,
message broadcasting in networks, and nearest neighbor based approximation in numerical
computation. We consider the star-template access problem on two specific host graphs
– tori and hypercubes – that are also popular interconnection network topologies. The
proposed conflict-free mappings on these graphs are fast, use an optimal or provably good
number of memory modules, and guarantee load balancing.
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1 Introduction

The CPU speed has been traditionally increasing at a much faster rate than the memory
speed. This results in higher memory latency and lower bandwidth or memory access rate
that put limits on the overall performance of algorithm execution on a given architecture, be
it uniprocessor or multiprocessor. Such a bottleneck can be overcome by one of two ways: (i)
organizing the memory hierarchically by adding several levels of caches, or (ii) partitioning the
memory into multiple modules (also called memory banks). The concept of multibank partition
has gained popularity, particularly in shared-memory multiprocessors [8], and is sometimes
used along with multi-level caches. Systems with multiple memory banks are often called
parallel memory systems: the memory modules can be accessed in parallel as long as the
processors request access to distinct modules. In other words, simultaneous access to the
same module by different processors leads to what is called a memory conflict. Conflicting
access requests must be queued, which increases the memory access latency. Clearly, the
efficiency of data distribution schemes into modules is crucial in minimizing conflicts, thus
exploiting the data parallelism offered by multibank architectures and improving the overall
performance [30]. Data distribution schemes should also be [1, 3]:

• balanced, by storing an almost equal number of data items in each module;

• direct, allowing the module to which a given item is assigned to be determined analyti-
cally;

• scalable, with the number of available memory modules.

In this paper, we focus on the problem of distributing data onto a parallel memory system
such that a high degree of data-parallelism is achieved. Assuming that the multiprocessor
architecture is able to request a number of data items from the memory subsystem, our goal
is to store data items in such a manner that they can be accessed with as few (ideally, zero)
conflicts as possible. As a consequence, we keep transparent the interconnection topology for
inter-processor communication as well as the algorithm implementation details. Informally,
the data distribution problem is defined as follows.

Let G be a host graph representing the data structure corresponding to an ap-
plication. Let T be a given template type in G. Instances of T are a family of
subsets of nodes, that describe which elements (or subgraphs) of G are to be ac-
cessed together. The data distribution problem is to design an efficient algorithm
for mapping the data items onto memory modules such that either of the follow-
ing two objectives are met: (i) minimize the number of conflicts for accessing the
specified template when a fixed number of memory modules is given; (ii) minimize
the number of modules for accessing the specified template when conflict-freeness
must be guaranteed.

We deal with objective (ii) in this paper. In general, minimizing the conflicts for arbitrary
templates or memory access patterns is computationally hard, since this problem can be
reduced to a variant of hypergraph coloring [24], where a color represents a module and nodes
in a template instance must have different colors to guarantee conflict-freeness. A natural
way to tackle this problem is by restricting it to special host graphs (e.g., arrays, circular lists,
trees, hypercubes) on which we can characterize structured templates useful in practice [35].
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1.1 Related Work

Over the last two decades, significant attention has been paid on the conflict-free mapping
and access to two-dimensional array data structures, in which templates of interest are rows,
columns, diagonals, and subarrays [9, 12, 19, 25, 35]. Mapping of non-numeric data structures,
such as trees and graphs, is also investigated in [14, 18, 19, 21]. The main focus of the
majority of existing research has been to guarantee conflict-free access with as few memory
modules as possible. The proposed mapping schemes consider mostly trees as hosts and
elementary templates like paths [7, 17, 18, 34] or subtrees [16, 17, 19]. In particular, conflict-
free access to t-ary subtrees of a complete k-ary tree and to subtrees of a binomial tree is
proposed in [17], where leaf-to-root path access in trees is also studied. Subcubes of a binary
or generalized hypercube are investigated in [16]. These works show that the overlapping of
template instances (of a given type) in the data structure plays a significant role in determining
the minimum number of memory modules needed to achieve conflict-free mappings.

The mapping algorithm due to [4] can be seen as a first step toward a “unifying” approach
that maps a complete binary tree onto memory modules for efficient access to several types
of elementary templates. Subsequently, improved and “versatile” algorithms have been pro-
posed [3] for mapping complete trees when accessed by elementary or composite, as well as
variable size templates. This is significant, since in a multiprocessor environment, the number
of available memory modules for a single cluster of processors may not be fixed and the cluster
can be (temporarily) forced to use only a part of the available memory modules for executing
a program. Therefore, when the number of modules varies, the template or the host size
changes, the mapping scheme should adapt to such change without being recomputed from
scratch.

1.2 Our Contributions

In this paper, we investigate efficient data distribution schemes for conflict-free access to
star templates that consists of a node of G along with all of its neighbors. The goal is to
color the nodes of the host data structure in such a way that nodes in any arbitrary star
are assigned different colors and the size of all color classes is balanced. We call this as the
star-coloring problem. In the rest of this paper, we will use the terms ‘color’ and ‘memory
module’ interchangeably. We will consider tori and hypercubes as the host graphs.

Star templates arise in many classical algorithms. Graph algorithms based on breadth-
first search, for instance, explore in each iteration a node’s immediate neighbors yet to be
visited. Message broadcasting in a network by breadth-first tree or binomial spanning tree (as
in hypercube topologies [26]) requires the access to star templates. Performance of parallel
algorithms for nearest neighbor computation in finite element meshes and numerical approxi-
mation of diffusion equations can be enhanced by efficient distribution of data items in various
kinds of grids and tori.

Similar coloring problems have been also studied in the context of channel assignment to
the base stations of wireless networks, where the same channel can be reused (without signal
interference) by two stations that are spaced sufficiently apart [5, 11]. The minimum distance
at which channels can be reused is called the co-channel reuse distance, denoted by σ. Our
star-coloring problem is related to the case where σ = 3 [2, 22]. Such a problem has been
shown to be intractable [28] and optimal results have been found on special networks, such
as rings, grids, complete trees. A survey of results on this topic is presented in [10]. We
notice that star-colorings have additional constraints with respect to colorings arising in the
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Memory Lower Mapping
Host graph

modules bound time

{h, k} mod 5 = 0 5 5
Torus Ch × Ck h mod 5 6= 0 or O(1)

k mod 5 6= 0
8 6

Binary Hypercube Qd 2⌊log d⌋+1 d + 1 O(d)

Table 1: Summary of our results. All mappings guarantee balanced load on memory modules.
The mapping related to hypercubes is a 2-approximation, likely to be optimal.

context of channel assignment, for example, they should be balanced and should allow the
determination of color assignments analytically. As far as we know, neither non-trivial lower
bounds nor optimal solutions on tori are known: the only results can be derived from [20] for
the torus C3 × C3 by looking at it as the product of two complete graphs. With respect to
hypercubes, a near-optimal algorithm for conflict-free channel assignment is presented in [33].
This algorithm guarantees load balancing and requires O(d log d) time and space to compute
the channel assigned to any node, where d is the dimension of the hypercube.

Our contributions on star-coloring of tori and hypercubes are summarized in Table 1.
With respect to tori, we show how to access star templates using at most 8 memory modules:
this is optimal within an additive factor ≤ 2. Our algorithm yields a closed formula that
allows it to color each node in only constant time. Deriving the torus coloring needs to
consider some technical issues that may not appear evident at a first thought: namely, the
presence of wrap-around edges makes the problem of coloring tori much more difficult with
respect to coloring grids (many results are indeed available in the literature for grids, but
none of them extends to tori without using too many additional colors). With respect to
hypercubes, we present a mapping algorithm that guarantees conflict-free access to every star
template in a d-dimensional binary hypercube, Qd, using 2⌊log d⌋+1 modules. The mapping
time and space are O(d), thus improving over [33]. As in [33], our result is a 2-approximation
that we conjecture to be optimal. As a by-product, our approach also solves the conflict-free
access problem to Q2 templates in Qd, thus generalizing the results presented in [16]. Both
mappings in Table 1 guarantee balanced load on memory modules.

The remainder of this paper is organized as follows. Section 2 introduces graph-theoretic
definitions and terminology specific to the conflict-free data access problem. Section 3 dis-
cusses basic properties of star-colorings. Section 4 and Section 5 present our contributions on
tori and hypercubes, respectively. Section 6 sums up and suggests possible research directions.

2 Preliminaries

This section introduces preliminary notations and concepts that will be useful throughout
the paper. We rely on standard graph-theoretic terminology [6]. Let paths and cycles with k
nodes, for k ≥ 0, be denoted as Pk and Ck, respectively. The length of a path is the number
of edges in it. The distance between any pair of nodes in a graph G(V,E) is the length of a
shortest path between the nodes. The diameter of G is the maximum distance over all pairs
of nodes of G.
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2.1 Graphs as Cartesian Products

Given two graphs G1(V1, E1) and G2(V2, E2), their Cartesian product G1 × G2 is the graph
G(V,E) such that V = V1 × V2 and E = {(u1u2, v1v2) | either u1 = v1 and (u2, v2) ∈
E2, or u2 = v2 and (u1, v1) ∈ E1}. Interconnection topologies like square meshes, tori, and
hypercubes can be obtained as Cartesian product of paths, cycles, and hypercubes of smaller
dimensions, respectively.

A square mesh Mh,k consists of n = h · k nodes arranged into an h × k grid such that a
node vi,j is adjacent to nodes vi±1,j and vi,j±1, whenever they exist. A torus Th,k is obtained
from a square mesh Mh,k by adding wrap-around edges that connect nodes on the boundary
of the mesh. Clearly, Mh,k = Ph ×Pk and Th,k = Ch ×Ck. A d-dimensional hypercube (Qd) is
a d-regular graph with 2d nodes, numbered from 0 to 2d − 1, each having a binary label of d
bits. The least and most significant bits in the node label have indexes 1 and d, respectively.
Two nodes in Qd are adjacent if and only if their binary labels differ in exactly one position
(i.e., their Hamming distance is 1). Note that Qd = Qd−i×Qi, for 0 ≤ i ≤ d, and in particular
Qd = Qd−1 × Q1.

2.2 Conflict-free Data Access vs. Node Coloring

Terminology specific to the conflict-free data access problem includes the following. Given
a host graph G and a mapping m of its nodes into memory modules, let m(v) denote the
memory module to which node v is assigned. The load on a module is defined as the number
of nodes assigned to it. A mapping is load-balanced if it evenly distributes the nodes of G onto
the modules, and perfectly load-balanced if the loads on any two modules differ by at most 1.
A mapping is direct if the module m(v) can be computed in O(1) time for each node v, and
optimal if it distributes the nodes of G onto the minimum number of memory modules such
that any occurrence of the specified template type in G can be accessed without conflicts.

We note that perfectly load-balanced mappings are also known in graph theory as equitable
colorings [27]. Moreover, since the nodes on any path of length 2 in star-coloring must be
assigned different colors, it is easy to prove the following lemma:

Lemma 1 A node coloring of a graph G is a star-coloring if and only if each pair of nodes
at distance ≤ 2 in G are assigned with different colors.

Let χ2(G) be the number of colors necessary in order to assign different colors to any two
nodes of G at distance ≤ 2. (In the literature, χ2(G) is sometimes denoted as χ(G2), where
G2 is the square of graph G, containing the same set of vertices as G and edges (u, v) if and
only if u and v have distance ≤ 2 in G.) Then, by Lemma 1, the minimum number of memory
modules that allows conflict-free access to any occurrence of a star template in G corresponds
exactly to χ2(G).

3 Star-coloring and Maximum Degree

In this section we discuss some basic properties of a star-coloring. As with the traditional
node-coloring problem [23], there is a strong relationship between χ2(G) and the maximum
degree ∆ of the graph. Namely:

χ2(G) ≥ ∆ + 1 (1)
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Figure 1: Star-coloring of square, hexagonal, and octagonal meshes.

This is because (∆+1) is the maximum size of a star template. Interestingly, this lower bound
is not tight even for very simple host graphs, such as cycles: this depends on the overlapping
of the template instances in the host graph, and is in line with the results obtained for other
kinds of templates (see, e.g., [3]). In the following, we show examples in which either (∆ + 1)
colors are sufficient or as many as (∆2 + 1) colors are necessary.

A good example. Square, hexagonal, and octagonal meshes can be star-colored with (∆+
1) colors, where ∆ = 4, 6, 8, respectively (hexagonal and octagonal meshes can be obtained
from the square mesh by adding “diagonal” edges as shown in Figure 1). We now show
a mapping m that works on all these meshes using the maximum degree ∆ as the only
distinguishing parameter. This generalizes the result presented in [7], which studies conflict-
free access to length-2 paths in square meshes only. We assume that a node in the mesh is
identified by (i, j) and the row and column indices start from 0. The mapping is as follows:

m(i, j) =

{
j mod (∆ + 1) if i = 0
m(i − 1, j + 3) = (m(i − 1, j) + 3) mod (∆ + 1) otherwise

(2)

The coloring of the first row is obtained by cyclically repeating the pattern (0, 1, . . . ,∆). The
coloring of a generic row i, for i > 0, is obtained by shifting the coloring of row (i − 1) to
the left by three positions. (An example of star coloring on the hexagonal mesh is shown in
Figure 1.) The mapping is optimal, as it uses exactly (∆ + 1) colors, and can be easily made
direct by unrolling the recursion, thus obtaining:

m(i, j) = (j + 3i) mod (∆ + 1) (3)

Theorem 1 The direct mapping m given in Equation (3) is an optimal star-coloring of
square, hexagonal, and octagonal meshes with h rows and k columns. The coloring is bal-
anced, and the cardinality γ of each color class satisfies h · ⌊ k

∆+1⌋ ≤ γ ≤ h · ⌈ k
∆+1⌉.

Proof. To prove that mapping m yields a star-coloring, let α be the color assigned to a node
(i, j) in row i and column j. We say that node (r, s) precedes (i, j) in the mesh if either
r < i, or r = i and s < j. Let N(i, j) be the set of nodes that precede (i, j) and have
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Figure 2: Class of graphs for which χ2(G) = Θ(∆2). In this example, ∆ = 5.

distance ≤ 2 from it. Clearly, the larger the degree ∆, the larger is the size of N(i, j). We
now prove that α is different from the colors of all nodes in N(i, j). Figure 1 shows the colors
of all the nodes in N(i, j) as a function of α. As far as the mapping works and due to the
properties of the modulo operator, a node with label (α − c) in the figure is assigned with
color (α − c) mod (∆ + 1) by the mapping m. Since c ∈ [1,∆], the color α will be different
from those of all other nodes in N(i, j).

With respect to load balancing, it is sufficient to observe that every color appears on each
of the h rows either ⌊ k

∆+1⌋ or ⌈ k
∆+1⌉ times. 2

A bad example. There exists an infinite class of graphs for which Θ(∆2) colors or memory
modules are necessary to guarantee conflict-freeness. The skeleton of these graphs is shown in
Figure 2. Each graph is a ⌈∆

2 ⌉-regular tree consisting of three levels with leaves interconnected

to form Θ(∆) cliques, each consisting of ⌈∆
2 ⌉ nodes. Each leaf belongs to two different cliques:

one is formed by its siblings in the base tree; while the other one consists of leaves in different
subtrees but in equal position with respect to the leaves ordering in each subtree (i.e., the
clique of all the first leaves, the clique of all the second leaves, and so on). Such a graph
has Θ(∆2) nodes and diameter 2. Since any graph G with n nodes and diameter 2 has
χ2(G) = n, it is easy to show that n = Θ(∆2) colors are necessary in our example in order to
avoid conflicts.

4 Star Template in Tori

In this section we describe a mapping algorithm to access without conflicts any star template
in a torus Ch × Ck with h rows and k columns. Our algorithm yields a direct, balanced
mapping using at most 8 colors, which are optimal within an additive factor ≤ 2. We assume
that nodes in the torus are identified by pairs (i, j) where i, j ≥ 0. Throughout this section,
the color of a node u in position (i, j) will be denoted either as cu or as m(i, j), where m is
the mapping.

4.1 Lower Bound

We start by discussing when the lower bound on χ2(G) given in Inequality (1) is tight, i.e.,
by characterizing tori for which there exist (∆ + 1) star-colorings. The following observation
is useful for this purpose.
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Figure 3: Colorings of the topology P3 × Ct used in the proof of Lemma 2.

Lemma 2 The topology P3 × Ct, for t ≥ 3, can be star-colored using five colors only if
t mod 5 = 0.

Proof. In any star-coloring of the Cartesian product P3 ×Ct, the nodes in any star must be
assigned with 5 different colors, as shown in Figure 3(a). Let e be the color of node v. Now
e can be either 1, or 3, or 4. If e = 1, then b = 4 and proceeding left-to-right, the choice for
the color of any other node is mandatory, as shown in Figure 3(b). It is not difficult to see
that the coloring can be completed without conflicts only if t mod 5 = 0. The case e = 3 is
symmetric. If e = 4, colors a, b, and c are forced to be 3, 1, and 2, respectively, but d cannot
be assigned with any of the colors 0, 1, 2, 3, 4 (see Figure 3(c)). 2

Lemma 3 Any star-coloring of the torus Ch × Ck, for h, k ≥ 3, requires at least 5 colors.
Furthermore, χ2(Ch × Ck) = 5 if and only if h mod 5 = k mod 5 = 0.

Proof. χ2(Ch × Ck) ≥ 5 in view of Inequality (1). If both dimensions h and k are multiples
of 5, then Ch × Ck can be star-colored with five colors as follows:

m(i, j) = (j + 2i) mod 5 (4)

This mapping guarantees conflict-freeness. Indeed, the mapping repeats a pattern of five
different colors in each row, and thus m(i, j−1) 6= m(i, j) 6= m(i, j+1) for each i and j, where
1 ≤ i ≤ k−1 and 1 ≤ j ≤ h−1. Furthermore, since m(i, j) = m(i−1, j +2) = m(i+1, j−2),
it follows that m(i − 1, j) 6= m(i, j) 6= m(i + 1, j). Boundary conditions can also be easily
checked since k mod 5 = h mod 5 = 0.

Let us now assume that either h or k is not a multiple of 5. The impossibility of coloring
Ch×Ck with five colors under this hypothesis follows from Lemma 2 and from observing that
Ch × Ck contains P3 × Ct as a subgraph both vertically (t = h) and horizontally (t = k). 2

Lemma 3 implies that χ2(Ch × Ck) ≥ 6 if h or k is not multiple of 5. It remains an open
problem to derive a general lower bound as a function of h and k.

4.2 Algorithm Torus-Coloring

In the following, we show how to star-color any torus Ch ×Ck using at most 8 colors. Recall
that a torus is obtained from a square mesh by adding wrap-around edges that connect
boundary nodes, and that a square mesh can be easily star-colored with the help of the
mapping presented in Lemma 3 (see also [7]). Unfortunately, the presence of wrap-around
edges prevents the coloring of the square mesh from being extended to tori unless both h and
k are multiples of 5.

We start with an informal sketch of the proposed algorithm Torus-Coloring. The al-
gorithm colors Ch × Ck row by row, by using two different sets of colors on even and odd
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k mod 4 = 10 1 2 3 0 1 2 3... 0 2 1 3 2(b)

k mod 4 = 23 20 1 2 3 0 1 2 0...(c)

k mod 4 = 30 10 1 2 3 0 1 2 3... 2(d)

k mod 4 = 00 1 2 3 0 1 2 3...(a)

Figure 4: Star-coloring of cycle Ck: the mapping m̃ described in this figure is used as a
building block of torus colorings and can be easily computed in O(1) time.

rows, respectively. Let m be the mapping and let r and s be the row and column indices,
respectively. Rows r, (r + 2), and (r + 4), for any r, pick colors from the same set. In order
to avoid conflicts, it must be m(r, s) 6= m(r + 2, s), m(r + 2, s) 6= m(r + 4, s), while it can be
m(r, s) = m(r+4, s). Therefore, the coloring of row (r+2) is obtained by suitably shifting the
coloring of row r, which can instead be repeated in row (r + 4). This gives rise to a pattern
consisting of four differently colored rows. Due to the vertical wrap-around edges, the last
two rows are treated differently.

Basic Row Coloring. The basic row coloring is obtained by using the mapping m̃ described
in Figure 4. This mapping is conflict-free and load-balanced, but not optimal. The reason
for using a non-optimal mapping as a basic row coloring will be clear later on.

We now describe formally the algorithm Torus-Coloring. For simplicity, we assume that
the torus Ch × Ck has at least 6 columns (i.e., k ≥ 6). If k ≤ 5 and h ≥ 6, we work on the
transposed torus Ck × Ch. We omit the coloring of constant-size instances with less than 6
rows and 6 columns.

Repeated Pattern. Let us first focus on the coloring of the four uppermost rows of Ch×Ck.
Since the basic row coloring uses four different colors, we assume that rows 0 and 2 get colors
from {0, 1, 2, 3}, while rows 1 and 3 get colors from {4, 5, 6, 7}. The coloring of row 2 is
obtained by cyclically shifting the coloring of row 0 to the left by one position. Similarly, for
rows 1 and 3. The pattern is then repeated for all rows except for the last two. Therefore,
the mapping of node (i, j), for 0 ≤ i < h − 2 and 0 ≤ j ≤ k − 1, is as follows:

m(i, j) =





m̃(j) if i mod 4 = 0
4 + m̃(j) if i mod 4 = 1
m̃((j + 1) mod k) if i mod 4 = 2
4 + m̃((j + 1) mod k) if i mod 4 = 3

Although the above description and recurrence relation better resemble the algorithmic idea,
the mapping m is actually a direct mapping and can be expressed concisely as follows:

m(i, j) = 4 · (i mod 2) + m̃

((
j +

⌊
i mod 4

2

⌋)
mod k

)
(5)

Therefore, the color of any node can be computed in O(1) time since the basic row mapping
m̃ is also direct.

Wrapping Around. Due to the existence of vertical wrap-around edges, the pattern de-
scribed above cannot be used to color the last two rows for arbitrary values of h and k.
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Nevertheless, the vertical cycles can be closed without conflicts and without using new colors.
To show this, let us distinguish two cases depending on the parity of h and k.

◮ h is even: the last two rows can use the same coloring as rows 0 and 1, respectively,
cyclically shifted to the left by 2 positions (called 2-move shift):

m(h − 2, j) = m̃((j + 2) mod k)
m(h − 1, j) = 4 + m̃((j + 2) mod k)

Note that a 2-move shift is needed because row (h − 2) may be at vertical distance
2 both from a row colored like row 0 and from a row colored like row 2. A similar
argument holds for rows (h − 1), 1, and 3.

◮ h is odd: to deal with this case, let us define the following two mappings:

m1(i, j) = 4 + (j + 3) mod 4
m2(i, j) = 4 + (j + 1) mod 4

Note that mappings m1 and m2 are 1-move shifts of the basic pattern 4, 5, 6, 7 to the
right and to the left, respectively. We color row (h − 2) using mapping m1, and row
(h − 1) using mapping m2, except for the case when k mod 4 6= 0. In this case, at
most ten boundary nodes in the last two rows are assigned with different colors. The
appropriate coloring of such nodes is shown in Figure 5 and can be computed in O(1)
time based on the values of k and h.

4.3 Analysis

The following theorem proves that the coloring described in Section 4.2 is conflict-free and
near-optimal with respect to the number of colors used and also load balanced.

Theorem 2 Algorithm Torus-Coloring yields a direct, conflict-free, and load-balanced map-
ping for accessing any occurrence of a star template in a host torus Ch × Ck. The mapping
uses 8 colors and is optimal within an additive factor ≤ 2. The load λ on any memory module
satisfies ⌊

h

2

⌋⌊
k

4

⌋
≤ λ ≤

⌈
h

2

⌉ (⌊
k

4

⌋
+ 2

)

Proof. If both h and k are multiples of 5, the mapping in Equation (4) in the proof of
Lemma 3 solves the star-coloring problem optimally. Otherwise, χ2(Ch × Ck) ≥ 6. Since
algorithm Torus-Coloring uses at most 8 colors, the additive factor is at most 2.

To prove conflict-freeness, let u and v be any two nodes at distance ≤ 2. In view of
Lemma 1, it is sufficient to show that the colors cu and cv of u and v, respectively, are
different. To begin with, observe that if h is odd, k mod 4 6= 0, and either u or v is any of the
grey nodes shown in Figure 5, then their colors do not conflict, as shown in the same figure.
In the other cases, let ru and rv be the rows corresponding to nodes u and v, respectively.

• If ru = rv, then cu 6= cv because the basic cycle coloring derived from mapping m̃ is
conflict-free.
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Figure 5: Closing vertical cycles without introducing new colors when k mod 4 6= 0 and
h mod 2 = 1. The left and right columns represent the cases where h mod 4 = 1 and
h mod 4 = 3, respectively. Rows 0 and 1 are shown below row h − 1.

• If rv = (ru + 1) mod h, the colors of nodes u and v are drawn from disjoint sets, and
thus cannot conflict. The only exception is when h is odd, ru = h − 2, and rv = h − 1.
In this case, it is easy to see that m1(h − 2, j) 6= m2(h − 1, j) as far as mappings m1

and m2 are defined. (The case where ru = (rv + 1) mod h is symmetric.)

• If rv = (ru + 2) mod h, then u and v must be on the same column, since by hypothesis
they are at distance ≤ 2. If rows ru and rv get their colors from the same set, as far
as the algorithm works, one of these rows must be obtained from the other one by a
1-move or a 2-move shift. Thus, node v takes the same color of a node in row ru which
is at distance ≤ 2 from u: such a color is different from cu due to the conflict-freeness
of m̃. (The case where ru = (rv + 2) mod h is symmetric.)

With respect to load balancing, note that ⌊h/2⌋ rows use colors from [0, 3] and the remaining
⌈h/2⌉ rows use colors from [4, 7]. Moreover, for any two colors in the same set, the number of
times they appear on the same row differs by at most 2. Hence, the load λ on any memory
module is bounded as in the statement of the theorem. 2
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Figure 6: (a) The binomial tree B4. (b) The hypercube Q4 and its binomial spanning tree
B4: edges in B4 are black and solid.

5 Star Template in Hypercubes

This section addresses the problem of distributing the nodes of a d-dimensional binary hyper-
cube, Qd, into memory modules so as to guarantee conflict-free access to any star template
in Qd. In particular, we present a linear time algorithm for conflict-free star access that uses
2⌊log d⌋+1 colors and guarantees perfectly balanced load on memory modules. From the algo-
rithm we derive a mapping that computes the memory module assigned to any node of Qd in
O(d) time. As a by-product, our approach also solves the conflict-free access to Q2 templates
in Qd. This generalizes the result in [16], which presents a coding theoretic approach to the
Q2-access problem and is applicable only if codes with certain features exist (e.g., Hamming
perfect codes or maximum distance separable codes).

Before describing the algorithm, let us review the concept of binomial trees. A binomial
tree Bk of order k is an ordered, rooted tree recursively defined as follows [13]: (a) B0 is a
single node; (b) for k ≥ 1, Bk consists of two binomial trees of order (k − 1), where the root
of one tree is the rightmost child of the root of the other, as shown in Figure 6(a). Clearly,
Bk has 2k nodes, depth k, and

(
k
i

)
nodes at level i, for 0 ≤ i ≤ k. The hypercube Qd has

a binomial spanning tree Bd of order d [26] (Figure 6(b) shows the hypercube Q4 together
with its binomial spanning tree). In particular, if we hang Qd at node 0, the root of Bd has
d different children q0, . . . , qd−1, where qi = 2i (see Figure 7). For each i ∈ {0, 1, d − 1},
node qi is the root of the binomial spanning tree Bi of a subcube Qi of dimension i. The
subgraph induced by node 0 and by the nodes in all the subcubes Qj , with j < i, is in turn a
hypercube Qi. Recall that Qd = Qd−1×Q1, i.e., Qd is obtained by connecting two hypercubes

...

...Q0

Q1

Q2

Q3

q0 q1 q2 q3 qd-1

0

Qd-1
2Qd-1

1

Qd-1

Figure 7: The binomial spanning tree Bd of hypercube Qd: edges in Bd are black and solid.
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Algorithm Hypercube-Coloring (Qd)
1. begin

2. m(0)← 0 {m is the mapping computed by the algorithm}
3. for i = 0 to d− 1
4. for v = 2i to 2i+1

− 1
5. m(v)← (i + 1)⊕m(v − 2i) {Note that m(qi) = i + 1}
6. return m

7. end

Figure 8: Conflict-free star-coloring of the d-dimensional hypercube, Qd.

of dimension (d − 1), say Q1
d−1 and Q2

d−1, as shown in Figure 6(b). Let us assume that the

nodes in Q1
d−1 have labels < 2d−1: each node in Q2

d−1 has a unique neighbor in Q1
d−1 and the

binary labels of these two nodes differ exactly in position d.

5.1 Algorithm Hypercube-Coloring

The pseudocode of algorithm Hypercube-Coloring is given in Figure 8. It considers the
binomial spanning tree Bd obtained by hanging Qd at node 0; nodes and subcubes are named
as above. Subcubes Qi, for 0 ≤ i ≤ d − 1, are sequentially colored. In order to color Qi,
the star-coloring of the subgraph

⋃i−1
j=0 Qj is used. In particular, the color of the root qi is

assigned with m(qi) = i + 1. The color of any other node v in Qi, for 2i < v < 2i+1, is
obtained from the bitwise xor operation, ⊕, between m(qi) and the color of node u = v − 2i.
Observe that u is a node in

⋃i−1
j=0 Qj and also that u is a neighbor of v, since their binary

labels differ only in position i. For homogeneity, in our pseudocode, m(qi) is also obtained
from a xor operation with value m(qi −2i) = 0. The following two lemmas discuss properties
of the coloring generated by the algorithm that will be used in the proof of Theorem 3.

Lemma 4 Let d > 0 and ϕd = 2⌊log d⌋+1. Algorithm Hypercube-Coloring(Qd) uses all the
colors in [0, ϕd − 1].

Proof. (By induction on d.) The claim is easily verified for d = 1. By the inductive
hypothesis, assume that algorithm Hypercube-Coloring applied to Qd−1 uses all the colors
from 0 to ϕd−1 − 1. Thus, ⌊log(d − 1)⌋ + 1 bits are necessary and sufficient to represent the
colors. If d = 2k for some k, then k = ⌊log(d − 1)⌋ + 1, but (k + 1) bits are necessary to
represent the color d that is assigned to node qd−1. Since colors of nodes in Q2

d−1 are obtained
by means of a xor operation with value d, in this case the number of used colors doubles. If
d is not a power of 2, then ⌊log(d − 1)⌋+ 1 bits are still sufficient to represent color d, and in
this case the xor operation does not introduce any new color. 2

Lemma 5 Let u and v be two adjacent nodes of Qd (for d > 0) whose binary labels differ in
position i, for 1 ≤ i ≤ d. The mapping m computed by the algorithm Hypercube-Coloring

yields m(u) = m(v) ⊕ i.

Proof. The statement can be easily verified on hypercubes of dimension d ≤ 2. By induction,
assume that the coloring produced by the algorithm on any hypercube of dimension ≤ d − 1
satisfies the claim. Let Qd be obtained from Q1

d−1 and Q2
d−1, let the root of Q2

d−1 be qd−1 and
let m(qd−1) = d (see line 5 of algorithm Hypercube-Coloring). Without loss of generality,
assume that v < u. We distinguish three cases, according to the relative positions of u and v
in the subcubes Q1

d−1 and Q2
d−1:

13



1. v ∈ Q1
d−1 and u ∈ Q2

d−1: in this case, i = d and thus m(u) = m(qd−1)⊕ m(v) =
d ⊕ m(v) = i ⊕ m(v).

2. u, v ∈ Q1
d−1: the claim holds by the inductive hypothesis.

3. u, v ∈ Q2
d−1: in this case, m(u) = d ⊕ m(ũ) and m(v) = d ⊕ m(ṽ), where ũ = u − 2d−1

and ṽ = v − 2d−1, respectively. Clearly, ũ, ṽ ∈ Q1
d−1. If m(u) 6= m(v) ⊕ i, then

m(ũ) = m(u) ⊕ d 6= m(v) ⊕ i ⊕ d = m(ṽ)⊕ i, that contradicts the inductive hypothesis
on Q1

d−1. Therefore, m(u) = m(v) ⊕ i. 2

Theorem 3 Algorithm Hypercube-Coloring computes in linear time a perfectly balanced
star-coloring of hypercube Qd using 2⌊log d⌋+1 colors.

Proof. With respect to conflict-freeness, by Lemma 1 it is sufficient to prove that any pair
of nodes u and v at distance ≤ 2 are assigned different colors. Based on the distance between
u and v in Qd, we consider two cases:

• If u and v are at distance 1, their binary labels differ in a position i and, by Lemma 5,
m(u) = m(v) ⊕ i 6= m(v) since i > 0.

• If u and v are at distance 2, their binary labels differ in two positions i and j, with
i 6= j. Let w be a common neighbor of both u and v such that the i-th bits in the binary
labels of w and v are the same. By Lemma 5, m(u) = m(w) ⊕ i and m(v) = m(w) ⊕ j,
from which m(u) = m(v) ⊕ j ⊕ i. Thus, m(u) 6= m(v) since i ⊕ j 6= 0.

By Lemma 4, the number of colors used by the algorithm is ϕd = 2⌊log d⌋+1. Let us now prove
the load balancing property. We again use induction on d and assume by inductive hypothesis
that the coloring of Q1

d−1 is perfectly balanced. If d = 2k, the number of colors doubles and
perfect balancing is consequently maintained. Otherwise, the colors in Q2

d−1 are the same as
the colors in Q1

d−1 and appear with exactly the same multiplicity. This is due to the xor

operator and the fact that all the colors from 0 to ϕd − 1 are already used in Q1
d−1 according

to Lemma 4. Hence the claim. 2

To conclude, we observe that the color of any node v can be computed quickly in a
distributed way. In other words, mapping a node to its memory module does not require to
color the entire hypercube Qd, but can be simply obtained from the binary label of the node
itself. The mapping works as follows. After initializing m(v) to 0, consider the binary label
bdbd−1 . . . b1 of node v: for each position i such that bi = 1, update m(v) with the result of the
xor operation between its current value and i. Thus, at most d bitwise xor operations are
required to compute the color assigned to node v. It is not difficult to see that this mapping
assigns any node v with the same color as assigned to v by algorithm Hypercube-Coloring.
Conflict-freeness, load balancing and the number of colors used thus follow from Theorem 3.
In summary we have:

Theorem 4 The module m(v) assigned to a node v of hypercube Qd can be computed from
the binary label of v in time O(d) using O(d) bits of space.

This result improves by a multiplicative factor Θ(log d) both the mapping time and the
space required by the algorithm described in [33], and yields a simple distributed algorithm
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for star-coloring of binary hypercubes. Notice that the recursive construction in algorithm
Hypercube-Coloring results in a sequential star-coloring algorithm faster by a factor Θ(d)
than the sequential algorithm that would be obtained from the iterated application of Theo-
rem 4.

5.2 Remarks on the Lower Bound for χ2(Qd)

Since each node of a hypercube Qd has exactly d neighbors, (d+1) is an obvious lower bound
on χ2(Qd). If (d + 1) is a power of two, the upper bound is 2⌊log d⌋+1 = d + 1 and hence
our star-coloring algorithm is optimal. It has been conjectured (see for instance, [29, 33])
that 2⌊log d⌋+1 is a lower bound on χ2(Qd) for every d: this would imply the optimality of
our solution on every instance. In this section we prove that, if an optimal solution for Qd

exists satisfying an optimal substructure property, then the lower bound would hold. The
optimal substructure property states that, in an optimal coloring of Qd, the coloring of the
two subgraphs Qd−1 from which Qd is obtained is also optimal.

Lemma 6 If there exists an optimal solution to the star-coloring problem on Qd which sat-
isfies the optimal substructure property, then χ2(Qd) ≥ 2⌊log d⌋+1.

Proof. It is sufficient to show that the claim holds if the dimension of the hypercube is a power
of two. Otherwise, let d̂ be the largest power of two such that d̂ ≤ d. We have: χ2(Qd) ≥

χ2(Qd̂
) and 2⌊log d⌋+1 = 2⌊log d̂⌋+1. Hence, χ2(Qd̂

) ≥ 2⌊log d̂⌋+1 implies that χ2(Qd) ≥ 2⌊log d⌋+1.

In the following we therefore assume d = 2k, for k > 0, and prove that any optimal and
sub-optimal star-coloring of Qd must use at least 2d = 2⌊log d⌋+1 colors.

Let Q1
d−1 and Q2

d−1 be the two subcubes of dimension (d− 1) from which Qd is obtained.
Without loss of generality, let the most significant bit of the binary label of every node in Q1

d−1
be 0. By the sub-optimality property, there exists an optimal coloring of Qd such that the
coloring of Q1

d−1 is also optimal. Therefore, the coloring of Q1
d−1 uses exactly 2⌊log(d−1)⌋+1 = d

colors. We will now show that the coloring of Qd obtained from the optimal coloring of Q1
d−1

must use at least 2d colors.
First observe that the star centered at any node of Qd must use (d + 1) different colors.

In particular, this holds for node 0. In this case, node 0 and its (d− 1) neighbors in Q1
d−1 use

all the colors from [0, d− 1], because the coloring of Q1
d−1 is optimal. The unique neighbor of

node 0 in Q2
d−1 is a node v that must use a color larger than (d − 1), say d.

Let x be any neighbor of node v in Q2
d−1 and let u be the unique neighbor of x in Q1

d−1.
Since the coloring of Q1

d−1 is optimal, the star centered at u in Q1
d−1 uses all the colors from

[0, d − 1]. Thus, the color of node x must be larger than (d − 1). Furthermore, since x is a
neighbor of v in Q2

d−1, its color cannot be d. Thus, we have to introduce a new color for x,
say (d + 1). We can apply the same reasoning on the entire neighborhood of node v in Q2

d−1,
introducing a new color for each neighbor. Since the number of such neighbors is (d − 1), at
the end we will be using all the colors from [0, 2d − 1]. 2

Lemma 6 implies that, if the conjecture were false, then there exist a dimension d such
that every optimal coloring of Qd does not satisfy the optimal substructure property.

6 Conclusions and Open Problems

In this paper we have studied conflict-free access to star templates in such host graphs
as tori and hypercubes that are interconnection topologies of multiprocessor architectures,
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which implements parallel memory subsystems. The proposed mapping algorithms are fast,
load-balanced, and use an optimal or near-optimal number of memory modules to guaran-
tee conflict-freeness. As part of future work, we plan to investigate the mapping of data (or
graph) structures on secondary memory or multi-level memory hierarchies [31, 32] with a goal
to design efficient external memory algorithms in parallel.

In general, as explained earlier, mapping arbitrary graphs to memory modules so as to
guarantee conflict-free access to arbitrary templates is extremely challenging. A number of
open questions arise. We have seen that expressing a graph as Cartesian product of smaller
graphs may help in designing efficient mappings: it would be therefore interesting to see
whether color bounds for two graphs G and H can be useful to obtain color bounds for their
Cartesian product G × H. More in general, deriving non-trivial color bounds for graphs
obtained from simpler component graphs by using suitable composition operations appears
to be a natural approach to the problem (the case of Cartesian products of complete graphs
has been already addressed in [20]). Exploring the use of randomization to get conflict-free
mappings for general graphs, studying templates in directed graphs, and generalizing our
results to k-distance neighborhood graphs or spanning trees represent additional interesting
research directions.
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