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Abstract

We consider the problem of coding labeled trees by means of strings of node labels.
Different codes have been introduced in the literature by Prüfer, Neville, and Deo
and Micikevičius. For all of them, we show that both coding and decoding can be
reduced to integer (radix) sorting, closing several open problems within a unified
framework that can be applied both in a sequential and in a parallel setting. Our
sequential coding and decoding schemes require optimal O(n) time when applied to
n-node trees, yielding the first linear time decoding algorithm for a code presented
by Neville. These schemes can be parallelized on the EREW PRAM model, so as
to work in O(log n) time with cost O(n), O(n

√
log n), or O(n log n), depending

on the code and on the operation: in all cases, they either match or improve the
performances of the best ad-hoc approaches known so far.
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1 Introduction

Labeled trees are of interest in practical and theoretical areas of computer sci-
ence. For example, Ethernet has a unique path between terminal devices, thus
being a tree: labeling the tree nodes is necessary to identify without ambiguity
each device in the network. An interesting alternative to the usual representa-
tions of tree data structures in computer memories is based on coding labeled
trees by means of strings of node labels. This representation was first used by
Prüfer in the proof of Cayley’s theorem [3,23] to show a one-to-one correspon-
dence between unrooted labeled trees on n nodes and strings of length n− 2.
In addition to this purely mathematical use, string-based codings of trees have
many practical applications. For instance, they make it possible to generate
random uniformly distributed trees and random connected graphs [17]: the
generation of a random string followed by the use of a fast decoding algorithm
is typically more efficient than generating a tree by adding edges randomly,
since in the latter case one must pay attention not to introduce cycles. Fur-
thermore, constraints on the number and on the set of leaves, on the choice of
the root, and on the degree of nodes can be easily imposed during the genera-
tion. Tree codes are also used for data compression, in the computation of the
tree and forest volumes of graphs [16], in genetic algorithms over trees, where
chromosomes in the population are represented as strings of integers, and in
heuristics for computing minimum spanning trees with additional constraints,
e.g., on the number of leaves or on the diameter of the tree [9,10,25].

1.1 Tree codes

We now survey the main tree codes known in the literature, referring the
interested reader to the taxonomies in [8,19] for further details. We assume to
deal with a rooted n-node tree T whose nodes have distinct labels from [1, n].
All the codes that we discuss are obtained by progressively updating the tree
through the deletion of leaves: when a leaf is deleted, the label of its parent is
appended to the code.

The oldest and most famous code is due to Prüfer [23]: the leaf deleted at
each step is the one with smallest label. In 1953, Neville [21] presented three
different codes, the first of which coincides with Prüfer’s one. The second
Neville code, before updating T , deletes all the leaves ordered by increasing
labels. The third Neville code works by deleting chains. We call pending chain a
path u1, . . . , uk of maximal length such that the starting point u1 is a leaf, and,
for each i ∈ [1, k − 1], the deletion of ui makes ui+1 a leaf: the code works by
iteratively deleting the pending chain with the smallest starting point. Quite
recently, Deo and Micikevičius [7] suggested the following coding approach:
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Fig. 1. Step by step computation of different codes. PR deletes the leaf with smallest
label; N2 deletes all the leaves ordered by increasing labels; N3 deletes pending
chains; DM deletes nodes as they become leaves. S and C denote the deleted leaves
and the code, respectively.

at the first iteration, delete all tree leaves as in the second Neville code, then
delete the remaining nodes in the order in which they become leaves. For
brevity, we will denote the codes introduced above with PR, N2, N3, and DM,
respectively. Examples of code computation are shown in Figure 1.
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All these codes have length n− 1 and the last code element is the root of the
tree. If the tree is unrooted, the deletion scheme implicitly defines a root for
it. Actually, it is easy to see that the last element in the code is:

(1) the node with maximum label (i.e., n) for Prüfer code;
(2) the center of the tree with maximum label for the second Neville code;
(3) the leaf with maximum label for the third Neville code;
(4) any tree center for Deo and Micikevičius code.

We remark that a center of a graph is a node minimizing the maximum dis-
tance from the other nodes; a tree has at most two centers. In cases 1, 3, and
4, the value of the last element can be univocally determined from the code
and thus the code length can be reduced to n − 2 [8]. We remark that codes
PR and DM have been originally presented for unrooted trees, while Neville’s
codes have been given for rooted trees and later generalized for unrooted trees
by Moon [20]. In view of these considerations, in the rest of this paper we will
focus on rooted trees.

1.2 Coding algorithms

Since the introduction of Prüfer code in 1918, a linear time algorithm for its
computation was given for the first time only in the late 70’s [22], and has
been later rediscovered several times [4,11]. The approach that we describe
here, according to our knowledge, is due to Kilingsberg (see, e.g., [22], page
271). Let L[x] denote the adjacency list of a node x of a tree T . Let us assume
that the degree of each node is known. The Prüfer code of T can be computed
as follows:

1. for each node v = 1 to n do

2. if degree[v] = 1 then

3. let u be the unique node in L[v]
4. append u to the code and decrease its degree by 1
5. while (degree[u] = 1 and u < v) do

6. let z be the unique node in L[u]
7. append z to the code and decrease its degree by 1
8. u ← z

As for the running time, the dominant operation consists of decreasing the
node degree, which is done in total as many times as the number of arcs. With
respect to the correctness, indexes v and u are used to scan nodes forward and
backward, respectively. The choice of the leaf with smallest label is guaranteed
by the while loop: when a node u becomes a leaf, if its label is smaller than
those of the leaves existing at that time (see the test u < v), u is immediately
appended to the code. The third Neville code can be computed in a similar
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way, by just omitting the test u < v. As shown in [7], the code of Deo and
Micikevičius requires a quite different approach, but their algorithm maintains
linear running time:

1. insert the leaves of T in a queue Q in increasing order

2. while (Q is not empty) do

3. let v be the head of Q

4. let u be the unique node in L[v]
5. append u to the code and decrease its degree by 1
6. if (degree(u) = 1) then

7. insert u in Q

As stated in [8], this algorithm cannot be adapted for computing the second
Neville code: indeed, in this case we can not add nodes to the queue as soon
as they become leaves, because code N2 requires sorting the leaves before each
tree update. A linear time coding algorithm for N2 has been presented only
recently in [19].

An optimal parallel algorithm for computing Prüfer codes, which improves
over a previous result due to Greenlaw and Petreschi [13], is given in [12].
A few simple changes make the algorithm work also for the third Neville
code. Efficient, but not optimal, parallel algorithms for codes N2 and DM are
presented in [9].

1.3 Decoding algorithms

A simple – non optimal – scheme for constructing a tree T from a Prüfer code
C is presented in [8]. The algorithm scans the labels in the code from left to
right, working as follows:

1. let L be the set of labels not appearing in C (leaves of T)

2. for i = 1 to n− 1 do

3. u = C[i]
4. let v be the smallest label in L

5. add edge (u, v) to tree T

6. delete v from L

7. if (C[i] is the rightmost occurrence of u in C) then

8. add u to the label set L

This scheme can be promptly generalized for building T starting from any
of the other codes: the only difference is in the choice of node v in step 4,
according to the description of the codes. Different data structures can be
used for L in order to implement the different choices of v. A priority queue is
well suited for extracting the smallest label node, as required by Prüfer code.
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Coding Decoding

before this paper before this paper

PR O(n)[12] O(n) O(n log n)[24] O(n log n)

N2 O(n log n)[9] O(n
√

log n) open O(n
√

log n)

N3 O(n)[9,12] O(n) open O(n
√

log n)

DM O(n log n)[9] O(n
√

log n) open O(n
√

log n)

Table 1
Summary of our results on the EREW PRAM model. Costs are expressed in terms
of number of operations.

Since the second Neville code deletes all the leaves ordered by increasing labels
before updating the tree, reconstructing T implies maintaining two disjoint
sets of nodes: nodes are extracted from set L while a new set L′ is being built;
when L is empty, it is assigned with L′ and a new round starts. Both L and L′

can be implemented as priority queues. The third Neville code and the code by
Deo and Micikevičius can be decoded using a stack and a queue, respectively.
This scheme implies linear time decoding algorithms only for codes N3 and
DM. The use of a priority queue, indeed, yields a running time O(n log n) for
codes PR and N2. Linear time decoding algorithms for code PR are presented
in [22,12].

In a parallel setting, Wang, Chen, and Liu [24] propose an O(log n) time de-
coding algorithm for Prüfer code using O(n) processors on the EREW PRAM
computational model. At the best of our knowledge, parallel decoding algo-
rithms for the other codes were not known in the literature until this paper.

1.4 Results and techniques

We show that both coding and decoding can be reduced to integer (radix)
sorting. Based on this reduction, we present a unified approach that works for
all the codes introduced so far and can be applied both in a sequential and
in a parallel setting. The coding scheme is based on the definition of pairs
associated to the nodes of T according to criteria dependent on the specific
code: the coding problem is then reduced to the problem of sorting these pairs
in lexicographic order. The decoding scheme is based on the computation of
the rightmost occurrence of each label in the code: this is also reduced to
integer radix sorting.

Concerning coding, our general sequential algorithm requires optimal linear
time for all the presented codes. The algorithm can be parallelized, and its
parallel version either matches or improves by a factor O(

√
log n) the per-

6



code (xv , yv )

PR (µ(v) , d(µ(v), v) )

N2 ( l(v) , v )

N3 (λ(v) , d(λ(v), v) )

DM ( l(v) , γ(v) )

Table 2
Pair (xv, yv) associated to node v for the different codes.

formances of the best ad-hoc approaches known so far. Concerning decoding,
we design the first parallel algorithm for codes N2, N3, and DM: our algorithm
works on the EREW PRAM model in O(log n) time with cost O(n

√
log n)

(with respect to PR, the cost is O(n logn) and matches the performances of
the best previous result). We remark that the problem of finding an optimal
sequential decoding algorithm for code N2 was open, and our general scheme
solves it. In summary, our results show that labeled trees can be coded and de-
coded in linear sequential time independently of the specific code. Our parallel
results both for coding and for decoding are summarized in Table 1.

2 A unified coding algorithm

Many sequential and parallel coding algorithms have been presented in the
literature [4,7,8,12,13,24], but all of them strongly depend on the properties
of the code which has to be computed and thus are very different from each
other. In this section we show a unified approach that works for all the codes
introduced in Section 1.1 and can be used both in a sequential and in a parallel
setting. Namely, we associate each tree node with a pair of integer numbers
and we sort nodes using such pairs as keys. The obtained ordering corresponds
to the order in which nodes are deleted from the tree and can thus be used
to compute the code. In the rest of this section we show how different pair
choices yield Prüfer, Neville, and Deo and Micikevičius codes, respectively. We
then present a linear time sequential coding algorithm and its parallelization
on the EREW PRAM model. The parallel algorithm works in O(log n) time
and requires either O(n) or O(n

√
log n) operations, depending on the code.

2.1 Coding by sorting pairs

Let T be a rooted labeled n-node tree. If T is unrooted, we assume the root r

to be chosen as in points 1 – 4 in Section1.1. Let u, v be any two nodes of tree
T . Let us call:
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• Tv, the subtree of T rooted at v;
• d(u, v), the distance between nodes u and v (we assume that d(v, v) = 0);
• l(v), the (bottom-up) level of node v, i.e., the maximum distance of v from

a leaf in Tv;
• µ(v), the maximum label among all nodes in Tv;
• λ(v), the maximum label among all leaves in Tv;
• γ(v), the maximum label among the leaves in Tv that have maximum dis-

tance from v;
• (xv, yv), a pair associated to node v according to the specific code as shown

in Table 2;
• P , the set of pairs (xv, yv) for each v in T .

The following lemma establishes a correspondence between the set P of pairs
and the order in which nodes are deleted from the tree.

Lemma 1 For each code, the lexicographic ordering of the pairs (xv, yv) in set

P corresponds to the order in which nodes are deleted from tree T according

to the code definition.

Proof. We discuss each code separately:

PR: before selecting a node v, the entire subtree Tv has been deleted. Fur-
thermore, according to the definition of Prüfer code, when the node µ(v)
is chosen for deletion, the only remaining subtree of Tv consists of a chain

from µ(v) to v. All the nodes in such a chain have label smaller than µ(v)
and thus will be chosen in the steps immediately following the deletion of
µ(v). The tree is therefore partitioned into chains containing nodes with the
same value of µ(v) and the rank of each node v in the chain is d(v, µ(v)).
Prüfer code deletes all the chains, in increasing order, with respect to µ(v).

N2: the code deletes at each iteration all the leaves of T , and thus nodes are
deleted starting from smaller to higher levels. Nodes within the same level
are deleted by increasing label. Hence the pair choice.

N3: it is sufficient to use the definition of pending chain given in Section 1.1
and to observe that, for each node v, λ(v) is the head of the unique pending
chain containing v.

DM: similarly to code N2, code DM deletes nodes from smaller to higher levels.
As proved in [9], nodes within the same level ` are deleted in increasing order
of their γ values. The proof given by Deo and Micikevičius is by induction
on `.
Nodes within level 0 (i.e., the leaves of T ) are such that γ(v) = v and are
deleted by increasing label order. Let u and v be two arbitrary nodes at
level `. According to the code definition, the order in which u and v become
leaves is strictly related to the deletion order of nodes at level ` − 1. Let
u′ and v′ be the last deleted nodes of Tu and Tv respectively. It is easy to
see that l(u′) = l(v′) = ` − 1. Furthermore, by definition of γ, it holds
γ(u′) = γ(u) and γ(v′) = γ(v). Since by inductive hypothesis u′ is deleted
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before v′ if and only if γ(u′) < γ(v′), the same holds for nodes u and v.
2

Prüfer code

Pairs: (3,0) (4,0) (5,0) (6,0) (8,0) (8,1) (8,2) (9,0) (9,1)

Node: 3 4 5 6 8 1 2 9 7

Code: 6 10 6 7 1 2 7 7 10

Third Neville code

Pairs: (3,0) (4,0) (4,1) (5,0) (5,1) (8,0) (8,1) (8,2) (8,3)

Node: 3 4 10 5 6 8 1 2 7

Code: 6 10 7 6 7 1 2 7 9

Second Neville Code

Pairs: (0,3) (0,4) (0,5) (0,8) (0,9) (1,1) (1,6) (1,10) (2,2)

Node: 3 4 5 8 9 1 6 10 2

Code: 6 10 6 1 7 2 7 7 7

Deo and Micikevičius code

Pairs: (0,3) (0,4) (0,5) (0,8) (0,9) (1,4) (1,5) (1,8) (2,9)

Node: 3 4 5 8 9 10 6 1 7

Code: 6 10 6 1 7 7 7 2 2

Fig. 2. Pair associated to each tree node as specified in Table 2.

Before describing the sequential and parallel algorithms, note that it is easy
to sort the pairs (xv, yv) used in the coding scheme. Indeed, independently of
the code, each element in such pairs is in the range [1, n]. A radix-sort like
approach [6] is thus sufficient to sort them according to yv, first, and xv, later.
In Figure 2 the pairs relative to the four codes are presented. The tree used
in the example is the same in the four cases and is rooted according to points
1 – 4 in Section 1.1. Bold arcs in the trees related to codes PR and N3 indicate
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chains and pending chains, respectively; dashed lines in the trees related to
codes N2 and DM separate nodes at different levels. In each figure the string
representing the generated code, the pairs sorted in increasing order, and the
node corresponding to each pair are also shown.

2.2 Sequential algorithm

Our sequential coding algorithm works on rooted trees and hinges upon the
pairs defined in Section 2.1:

UNIFIED CODING ALGORITHM:

1. for each node v, compute the pair (xv, yv) according to Table 2

2. sort the tree nodes according to pairs (xv , yv)
3. for i = 1 to n− 1 do

4. let v be the i-th node in the ordering

5. append parent(v) to the code

Theorem 1 Let T be a n-node tree and let the pair (xv, yv) associated to

each node v of T be defined as in Table 2. The unified coding algorithm

computes codes PR, N2, N3, and DM in O(n) running time.

Proof. The correctness of the unified coding algorithm follows from
Lemma 1. The set of pairs can be easily computed in O(n) time using a post-
order traversal of the tree, and two counting-sorts can be used to implement
step 2. Hence the linear running time. 2

We remark that the unified coding algorithm works on rooted trees and
generates strings of length n− 1. As observed in Section 1.1, the codes can be
also defined for unrooted trees. In this case, if we root the tree at a node r

chosen according to points 1 – 4 (see Section 1.1), our algorithm returns the
concatenation of C and r, where C is the string of length n− 2 associated to
the unrooted tree by code definition.

2.3 Parallel algorithm

We now show how to parallelize each step of the sequential algorithm presented
in Section 2.2. We work in the simplest PRAM model with exclusive read and
write operations (EREW [15]). If the tree is unrooted, the Euler tour technique
makes it possible to root it at the node r specified in Section 1.1 in O(log n)
time with cost O(n) [15]. The node r can be easily identified; in particular,
we refer to the approach described in [18] for computing a center of the tree.
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Before analyzing the unified coding algorithm on the EREW PRAM, we
discuss how to compute the pair components in parallel.

Lemma 2 The pairs given in Table 2 can be computed on the EREW PRAM

model in O(logn) time with cost O(n).

Proof. We discuss separately the components of each pair.

µ(v): the maximum node in each subtree can be computed in O(log n) time
with cost O(n) using the Rake technique [15]. In order to avoid concurrent
reading during the Rake operation, the tree T must be preliminarily trans-
formed into a binary tree TR as follows: for each node v with k > 2 children,
v is replaced by a complete binary tree of height dlog ke having v as root
and v’s children as the k leftmost leaves. This transformation can be also
done in O(log n) time with cost O(n) [12].

d(µ(v), v): we partition T into chains by labeling each node v with the value
µ(v) and by deleting edges between nodes with different labels. Now, the
rank of node v in its chain is exactly d(µ(v), v). In order to compute the
chains, each node links itself to its parent if µ(v) = µ(parent(v)). A list
ranking then gives the position of each node in its chain in O(log n) time with
cost O(n) [15]. The use of the binary tree TR guarantees that no concurrent
read is necessary for accessing µ(parent(v)).

l(v): an Euler tour gives the distance d(v, r) of each node v from the root r

of tree T . Then, l(v) = d(f, r)− d(v, r), where f is a leaf of Tv at maximum
distance from r. We remark that f can be easily computed using the Rake
technique [15].

λ(v): the same techniques used for computing µ(v) can be adapted to obtain
the maximum leaf of each subtree with the same performances.

d(λ(v), v): analogous considerations as for computing d(µ(v), v) hold.
γ(v): given the distance of each node from the root, γ(v) is the node u ∈ Tv

such that (d(u, r), u) is maximum and can be computed with the Rake
technique.

2

The following theorem summarizes the performances of the unified coding

algorithm in a parallel setting.

Theorem 2 Let T be a n-node tree and let the pair (xv, yv) associated to

each node v of T be defined as in Table 2. On the EREW PRAM model, the

unified coding algorithm computes codes PR and N3 optimally, i.e., in

O(log n) time with cost O(n), and codes N2 and DM in O(logn) time with cost

O(n
√

log n).

Proof. By Lemma 2, step 1 of the unified coding algorithm requires
O(log n) time with cost O(n). Step 3 can be trivially implemented in O(1)
time with cost O(n). The sorting in step 2 is thus the most expensive opera-
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tion. Following a radix-sort like approach and using the stable integer-sorting
algorithm presented in [14] as a subroutine, step 2 would require O(log n) time
with cost O(n

√
log n) on an EREW PRAM 1 . This gives the stated running

time and cost for codes N2 and DM. For codes PR and N3, we can further reduce
the cost of our algorithm to O(n) by using an ad-hoc sorting procedure that
benefits from the partition into chains.

Let us consider Prüfer code first. As observed in [13], the final node ordering
can be obtained by sorting chains among each other and nodes within each
chain. In our framework, the chain ordering is given by the value µ(v), and
the position of each node within its chain by the distance d(µ(v), v). Instead
of using a black-box integer sorting procedure, we exploit the fact that we can
compute optimally the size of each chain, i.e., the number of nodes with the
same µ(v), by means of prefix sums. Another prefix sum computation can then
be used to obtain, for each chain head, the number of nodes in the preceding
chains, i.e., its final position. At last, the position of the remaining nodes is
univocally determined by summing up the position of the chain head µ(v)
with the value d(µ(v), v). Similar considerations can be applied to the third
Neville code. 2

We remark that our algorithm solves within a unified framework the parallel
coding problem. With respect to codes N3 and PR, it matches the performances
of the (optimal) algorithms known so far [9,12]. With respect to codes N2 and
DM, it improves of an O(

√
log n) factor over the best approaches known in the

literature [9].

3 Decoding algorithms

In this section we present sequential and parallel algorithms for decoding,
i.e., for building the tree T corresponding to a given code C. As far as C is
computed, each node label in it represents the parent of a leaf deleted from
T . Hence, in order to reconstruct T , it is sufficient to compute the ordered
sequence of labels of the deleted leaves, say S: for each i ∈ [1, n− 1], the pair
(C[i], S[i]) will thus be an arc in the tree. Before describing the algorithms, we
argue that computing the rightmost occurrence of a node in the code is very
useful for decoding, and we show how to obtain such an information both in
a sequential and in a parallel setting.

1 The result on parallel integer sorting [14] holds when the machine word length is
O(log n). Under the more restrictive hypothesis that the word length is O(log2 n),
the cost of sorting can be reduced to O(n), and so does the cost of our coding
algorithm.
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3.1 Decoding by rightmost occurrence computation

We first observe that the leaves of T are exactly those nodes that do not appear
in the code, as they are not parents of any node. Each internal node, say v,
in general may appear in C more than once; each appearance corresponds to
the deletion of one of its children, and therefore to decreasing the degree of v

by 1. After the rightmost occurrence in the code, v is clearly a leaf and thus
becomes a candidate for being deleted. More formally:

∀ v 6= r, ∃ unique j > rightmost(v, C) such that S[j] = v

where r is the tree root (i.e., the last element in C) and rightmost(v, C)
denotes the index of the rightmost occurrence of node v in C. We assume
that rightmost(v, C) = 0 if v does not appear in C. It is easy to compute the
rightmost occurrence of each node sequentially by simply scanning C. The
following lemma analyzes the rightmost computation in parallel.

Lemma 3 The rightmost occurrences of nodes in a code C of length n − 1
can be computed in O(log n) time with cost O(n

√
log n) on the EREW PRAM

model.

Proof. We reduce the rightmost occurrence computation to a pair sorting
problem: we sort in increasing order the pairs (C[i], i), for i ∈ [1, n − 1].
Indeed, in each sub-sequence of pairs with the same first element C[i], the
second element of the last pair is the index of the rightmost occurrence of
node C[i] in the code. Since each pair value is an integer in [1, n], we can use
twice the stable integer-sorting algorithm of [14]: this requires O(log n) time
and O(n

√
log n) cost in the EREW PRAM model. Then, each processor pi

in parallel compares the first element of the i-th pair in the sorted sequence
to the first element of the (i + 1)-th pair, deciding whether this is the end
of a sub-sequence. This requires additional O(1) time and linear cost with
exclusive read and write operations. 2

3.2 A unified decoding algorithm

In this section we describe a decoding algorithm for codes PR, N3, and DM that
is based on the rightmost occurrences and can be used both in a sequential and
in a parallel setting. Differently from the other codes, in code N2 the rightmost
occurrence of each node in C gives only partial information about sequence S.
Thus, we treat N2 separately in Section 3.3. We need the following notation.
For each i ∈ [1, n−1], let ρ(i) be 1 if i is the rightmost occurrence of node C[i],
and 0 otherwise. Let σ(i) be the number of internal nodes whose rightmost
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test(v) position(v)

PR rightmost(v, C) > prev(v, C) rightmost(v, C) + 1

N3 rightmost(v, C) > 0 rightmost(v, C) + 1

DM rightmost(v, C) > 0 |leaves(T )| + σ(rightmost(v, C))

Table 3
Condition on node v that is checked in the unified decoding algorithm and
position of v as a function of rightmost(v, C).

occurrence is at most i, i.e.

σ(i) =
∑

j≤i

ρ(j)

Similarly to [24], let prev(v, C) denote the number of nodes with label smaller
than v that become leaves before v, i.e.

prev(v, C) = |{u s.t. u < v and rightmost(u, C) < rightmost(v, C)}|

The following lemma shows, for each code, how the position of a node in
the sequence S that we want to construct can be expressed as a function of
rightmost.

Lemma 4 Let C be a string of n− 1 integers in [1, n]. For each of the codes

PR, N3, and DM, let test and position be defined as in Table 3. Let S be the

sequence of leaves deleted from the tree while building the code. The proper

position in S of any node v that satisfies test(v) is given by position(v).

Proof. We discuss each code separately, starting from the simplest one.

N3: each internal node v is deleted as soon as it becomes a leaf. Thus, the
position of v in sequence S is exactly rightmost(v, C) + 1.

PR: differently from code N3, in code PR an internal node v is deleted as soon
as it becomes a leaf if and only if there is no leaf with label smaller than
v. In order to test this condition, following [24], we use information given
by prev(v, C): the position of v in S is rightmost(v, C) + 1 if and only if
rightmost(v, C) ≥ prev(v, C).

DM: by definition of code DM, all the leaves of T , sorted by increasing labels,
are at the beginning of sequence S. Then, all the internal nodes appear in
the order in which they become leaves, i.e., sorted by increasing rightmost.
Thus, the position of node v is given by |leaves(T )|+ σ(rightmost(v, C)).

2

We remark that some entries of S may be still empty after positioning nodes
according to Lemma 4. Using the codes’ definitions, all the nodes not posi-
tioned by Lemma 4, except for the root, can be assigned to the empty entries

14



Fig. 3. An example of execution of the unified decoding algorithm in the case
of Prüfer code: content of the main data structures and output tree.

of S by increasing label order. In particular, for codes N3 and DM, only the
leaves of T are not positioned and, in the case of DM, all of them will appear
at the beginning of S. We are now ready to describe our unified decoding
algorithm:

UNIFIED DECODING ALGORITHM:

1. for each node v compute rightmost(v, C)
2. for each node v except for the root do

3. if (test(v) = true) then S[position(v)]← v

4. let L be the list of (non-root) nodes not yet assigned to a

position and considered in increasing order

5. let P be the set of positions of S which are still empty

6. for each i = 1 to |L| do

7. S[P [i]]← L[i]

where test(v) and position(v) are specified in Table 3. An example of execution
of the unified decoding algorithm in the case of Prüfer code is shown in
Figure 3.

As observed in Section 1.3, a linear sequential decoding algorithm for Prüfer
code is presented in [12], while the straightforward sequential implementation
of our algorithm would require O(n logn) time due to the computation of
prev. This can be reduced to O(n) time by adapting the unified decoding

algorithm in such a way that the prev computation can be avoided. Namely,
lines 2–3 can be omitted (considering the test(v) as false for each node v),
and lines 6–7 can be replaced as follows:

6. for each i = 1 to |L| do

7. position← max{first empty pos(S), rightmost(L[i], C) + 1}
8. S[position]← L[i]

where first empty pos(S) returns the smallest empty position in S. In this
implementation, nodes are considered in increasing label order: node v is as-
signed to position rightmost(v) + 1 of S if this position is still empty, and
to the leftmost empty position otherwise. In order to see that this is equiv-
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alent to the unified decoding algorithm, observe that nodes for which
rightmost(v) > prev(v) (see the test in line 3) will always find the position
rightmost(v) + 1 empty, due to the definition of prev. Hence, they will be
inserted in S exactly as in line 3 of the unified decoding algorithm.

The performances of the unified decoding algorithm in sequential and
parallel models of computation are described by the following theorem.

Theorem 3 Let C be a string of n−1 integers in [1, n]. For each of the codes

PR, N3, and DM, let test and position be defined as in Table 3. The unified

decoding algorithm computes the tree corresponding to string C in O(n)
sequential time. On the EREW PRAM model, it requires O(logn) time with

cost O(n logn) for code PR and O(n
√

log n) for codes N3 and DM.

Proof. The correctness of the unified decoding algorithm follows from
Lemma 4. The sequential running time can be easily proved in view of the
previous considerations. With respect to Prüfer code, the parallel version of
the unified decoding algorithm yields essentially the same algorithm
described in [24]. Its bottleneck is the prev computation that can be reduced
to a dominance counting problem and can be solved on the EREW PRAM
in O(log n) time with cost O(n log n) [1,5]: we refer to [24,12] for a detailed
analysis. For the other codes, σ(i) can be computed for each i using a prefix
sum operation [15]. In order to get set L in step 4, we can mark each node not
yet assigned to S and obtain its rank in L by computing prefix sums. Similarly
for set P . Hence, the most expensive step is the rightmost computation, which
requires integer sorting as in Lemma 3. 2

3.3 Second Neville code

We first observe that if all nodes were assigned with a level, an ordering with
respect to pairs (l(v), v) would give sequence S, and thus the tree related to
code N2. We refer to Section 2.1 for details on the correctness of this approach.
We now show how to compute l(v).

Let x be the number of leaves of T : these nodes have both level and rightmost
0. Consider the first x elements of code C, say C[1], . . . , C[x]. For each i,
1 ≤ i ≤ x, such that i is the rightmost occurrence of C[i], we know that
node C[i] has level 1. The same reasoning can be applied to get level-2 nodes
from level-1 nodes, and so on. With respect to the running time, a sequential
scan of code C is sufficient to compute the level of each node in linear time.
Unfortunately, this approach is inherently sequential and thus inefficient in
parallel. We now discuss an alternative approach for computing l(v) that can
be easily parallelized.
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Lemma 5 Let C be a string of n − 1 integers in [1, n] representing the code

N2 associated to a tree T . The level of each node in T can be computed from

C on the EREW PRAM model in O(log n) time with cost O(n
√

log n).

Proof. Let T ′ be the tree obtained by interpreting C as the code by Deo
and Micikevičius and let S ′ be the corresponding sequence: although T and
T ′ are different, they have the same nodes at the same levels since xv = l(v)
as shown in Table 2. Thus, both in S and S ′, nodes at level i + 1 appear
after nodes at level i, but are differently permuted within the level. We use
T ′ to get missing information: after building T ′ using the unified decoding

algorithm, we compute node levels applying the Euler tour technique. We
remark that the Euler tour technique requires a particular data structure [15]
that can be built as described in [13]. The bottleneck of this procedure is
sorting of pairs of integers in [1, n], and thus we can use the parallel integer
sorting presented in [14]. 2

Given level information, the sequence S corresponding to tree T can be easily
obtained by sorting the pairs (l(v), v). We can summarize the results concern-
ing code N2 as follows:

Theorem 4 Let C be a string of n−1 integers in [1, n]. The tree corresponding

to C according to code N2 can be computed in O(n) sequential time and in

O(log n) time with cost O(n
√

log n) on the EREW PRAM model.

Proof. The correctness follows from the definition of code N2 and from Lemma 1.
The running time is guaranteed by Lemma 5 and by the bounds on integer
sorting [14]. 2

4 Concluding remarks

In this paper we have presented a unified approach for coding labeled trees by
means of strings of node labels and have applied it to four well-known codes
due to Prüfer [23], Neville [21], and Deo and Micikevičius [7]. The coding
scheme is based on the definition of pairs associated to the nodes of the tree
according to criteria dependent on the specific code: the coding problem is
then reduced to the problem of sorting these pairs in lexicographic order. The
decoding scheme is based on the computation of the rightmost occurrence of
each label in the code: this is also reduced to pair sorting.

We have applied these approaches both in a sequential and in a parallel setting.
Namely, we have presented the first optimal sequential decoding algorithm for
code N2: the sequential coding and decoding problem is thus completely closed,
as we have shown that both operations in all the four codes can be done in
linear time.
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The parallel version of our coding algorithm works on the EREW PRAM
model in O(log n) time and either O(n) or O(n

√
log n) operations, depending

on the code: it is therefore optimal for codes PR and N3, while it improves by
a factor O(

√
log n) the performances of the best ad hoc algorithms for codes

N2 and DM.

With respect to parallel decoding, our general scheme yields the first algo-
rithms for N2, N3, and DM and matches the performances of the best known al-
gorithm for PR. Namely, all the codes, except for PR, can be decoded in O(log n)
time and O(n

√
log n) operations, since integer sorting is the most costly oper-

ation: any improvement on the computation of integer sorting would thus yield
better results for our parallel algorithms. As discussed in [12], a dominance
counting problem is instead the bottleneck of the decoding algorithm for PR:
in [1] a lower bound Ω(n log n) has been shown for the dominance counting
problem. At the best of our knowledge, it is an open question to understand if
it is possible to improve this result when the input is limited to integer values
in a small range or to avoid the prev computation in the decoding algorithm
for PR.
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