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Abstract. We focus on the problem of experimentally evaluating the
quality of hierarchical decompositions of trees with respect to criteria
relevant in graph drawing applications. We suggest a new family of tree
clustering algorithms based on the notion of t-divider and we empirically
show the relevance of this concept as a generalization of the ideas of
centroid and separator. We compare the t-divider based algorithms with
two well-known clustering strategies suitably adapted to work on trees.
The experiments analyze how the performances of the algorithms are
affected by structural properties of the input tree, such as degree and
balancing, and give insight in the choice of the algorithm to be used on
a given tree instance.

1 Introduction

Readable drawings of graphs are a helpful visual support in many applications,
as they usually convey information about the structure and the properties of a
graph more quickly and effectively than a textual description. This led in the
last years to the design of several algorithms for producing aestethically pleasing
layouts of graphs and networks, according to different drawing conventions and
aestethic criteria [7]. As the amount of data processed by real applications in-
creases, many realistic problem instances consist of very large graphs and suitable
tools for visualizing them are more and more necessary. Actually, standard visu-
alization algorithms and techniques do not scale up well, not only for efficiency
reasons, but mostly due to the finite resolution of the screen, which represents a
physical limitation on the size of the graphs that can be successfully displayed.

Common approaches to overcome this problem and to make it possible visu-
alizing graphs not fitting in the screen exploit clustering information [2,9,10,16]
and/or navigation strategies [1,6,17]. In particular, the clustering approach con-
sists of using recursion combined with graph decomposition in order to build
a sequence of meta-graphs from the original graph G: informally speaking, a
meta-graph in the sequence is a “summary” of the previous one; the first and
more detailed meta-graph coincides with G itself. To grow a meta-graph, suit-
ably chosen sets of related vertices are grouped together to form a cluster and
induced edges between clusters are computed. Clusters are then represented as
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single vertices or filled-in regions, thus obtaining a high-level visualization of the
graph while reducing the amount of displayed information by hiding irrelevant
details and uninteresting parts of the structure. There is no universally accepted
definition of cluster: usual trends consist of grouping vertices which either share
semantic information (e.g., the space of IP addresses in a telecommunication
network) or reflect structural properties of the original graph [19,21,22].

The sequence of meta-graphs defines a hierarchical decomposition of the orig-
inal graph G which can be well represented by means of a rooted tree, known
in literature as hierarchy tree [3], whose leaves are the vertices of G and whose
internal nodes are the clusters. In order to grow a hierarchy tree out of a graph
G, a simple top-down strategy works as follows: starting from the root of the
hierarchy tree, which is a high-level representation of the whole graph, at the
first iteration the vertices of G are partitioned by a clustering algorithm and the
clusters children of the root (at least 2) are generated. The procedure is then
recursively applied on all these clusters. It is obvious that very different hier-
archy trees can be associated to the same graph, depending on the clustering
algorithm used as a subroutine. Suitable selections of nodes of a hierarchy tree
lead to different high-level representations (views) of G: the user of the visualiza-
tion facility can then navigate from a representation to another one by shrinking
and expanding clusters in the current view. Due to the fact that hierarchy trees
are interactively visited, they should fulfil some requirements that are relevant
from a graph drawing perspective. First of all, any view obtained from a hierar-
chy tree of a graph G should reflect the topological structure of G so as not to
mislead the viewer. Furthermore, structural properties such as limited degree,
small depth and balancing of the hierarchy tree greatly help in preserving the
mental map of the viewer during the navigation and make it possible to provide
him/her with several different views of the same graph.

The main goal of this paper is to experimentally evaluate with respect to the
aforementioned criteria the quality of hierarchy trees built using different cluster-
ing subroutines. More precisely, in our study we are concerned with hierarchical
decompositions of trees, not only because such structures frequently arise in
many practical problems (e.g., evolutionary or parse trees), but also because
tree clustering procedures represent an important subroutine for partitioning
generic graphs (for example, they could be applied to the block-cut-vertex tree
of a graph). As a first contribution, we suggest new tree clustering algorithms
hinging upon the notion of t-divider, which generalizes concepts like centroid and
separators [4,18,20], and we present three partitioning strategies, each aimed at
optimizing different features of the hierarchy tree. We then explore the effec-
tiveness of the t-divider based algorithms for different values of t by comparing
them against two well-known clustering procedures due to Gonzalez [14] and
Frederickson [12], suitably adapted to work on general trees.

The quality measures considered in the experimentation are defined in agree-
ment with the requirements on the structure of the hierarchy tree arising in
graph drawing applications. All the experiments are carried out on structured
randomly generated instances, which allow us to study how the performances
of the algorithms are affected by parameters such as degree and balancing of
the input tree. In particular, looking at the experimental results, we can detect
which algorithms are more sensitive to the structure of the input instance and
identify hard and easy problem families for some of the analyzed algorithms. The
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Fig. 1. (a) A graph G; (b) a hierarchy tree of G and a covering C={3,d,b,g,12,f} on
it; (c) view of G induced by covering C.

results give insight in the choice of the algorithm to be used when a particular
tree instance is given. Furthermore, they provide experimental evidence for the
utility of the theoretical notion of t-divider, proving that the use of centroids,
that is very frequent in literature, does not usually yield the best solution.

In order to prove the feasibility of the clustering approach for the visualization
of large trees we have been also developing a prototype of visualization facility
which implements all the algorithms discussed in the paper and supports the
navigation of the hierarchy tree as described above. The use of such a prototype
gave us visual feedback on the behaviour of the algorithms and was helpful for
tuning the code and for testing heuristics to design more efficient variations. The
prototype is implemented in ANSI C and visualizations are realized in the algo-
rithm animation system Leonardo [5], available for Macintosh platform at the
URL http://www.dis.uniroma1.it/˜demetres/Leonardo/. The tree cluster-
ing package is available at the URL http://www.dsi.uniroma1.it/˜finocchi/
experim/treeclust-2.0/.

In the rest of this paper we first recall preliminary definitions and concepts re-
lated to hierarchy trees in Section 2. In Section 3, after introducing the concept of
t-divider of a tree, we design three strategies for partitioning trees based on such
a concept. Gonzalez’s and Frederickson’s clustering approaches are summarized
in Section 4. Section 5 describes the experimental framework and the results of
the experimentation are discussed in Section 6. Conclusions and directions for
further research are finally addressed in Section 7.

2 “Attractive” Hierarchy Trees

In this section we recall the definition of hierarchy tree and we discuss the con-
cepts of covering and of view of a graph on a hierarchy tree associated to it [3].
We then point out which properties make a hierarchy tree attractive from a
graph visualization point of view, i.e., which requirements should be fulfilled by
a hierarchy tree so that graph drawing applications can substantially benefit
from its usage.

Definition 1. A hierarchy tree HT = (N,A) associated to a graph G = (V,E)
is a rooted tree whose set of leaves concides with the set of vertices of G.

Each node c ∈ N represents a cluster of vertices of G, that we call vertices
covered by c. Namely, each leaf in HT covers a single vertex of G and each
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Fig. 2. Validity of hierarchy trees of a 4-vertex chain.

internal node c covers all the vertices covered by its children, i.e., all the leaves
in the subtree rooted at c. For brevity, we write u ≺ c to indicate that a vertex
u ∈ V is covered by a cluster c ∈ N . The cardinality of a cluster c is the number
of vertices covered by c; moreover, for any c ∈ N , we denote by S(c) the subgraph
of G induced by the vertices covered by c. Two clusters c and c′ which are not
ancestors of each other are connected by a link if there exists at least an edge
e = (u, v) ∈ E such that u ≺ c and v ≺ c′ in HT ; if more than one edge of this
kind exists, we consider only a single link. We denote by L the set of all such
links. Given a subset N ′ of nodes of HT , the graph induced by N ′ is the graph
G′ = (N ′, L′), where L′ contains all the links of L whose endpoints are in N ′.
From the above definitions G′ contains neither self-loops nor multiple edges.

Definition 2. Given a hierarchy tree HT of a graph G, a covering of G on HT
is a subset C of nodes of HT such that ∀v ∈ V ∃! c ∈ C : v ≺ c. A view of G
on HT is the graph induced by any covering of G on HT .

Trivial coverings consist of the root of HT and of the whole set of its leaves.
Figure 1(a) and Figure 1(b) show a 12-vertex graph and a possible hierarchy
tree of it. The internal nodes of the hierarchy tree are squared and, for clarity,
no link is reported. A covering consisting of clusters {3,d,b,g,12,f} is highlighted
on the hierarchy tree and the corresponding view is given in Figure 1(c).

As this work is concerned with recursive clustering of trees and forests, in
the rest of the paper we assume that the graph to be clustered is a free tree
T = (V,E) with n = |V | vertices. Under this hypothesis it is natural to require
any view of T obtained from HT to be a tree. In [11] HT is said to be valid
iff it satisfies this property. It is worth observing that not any hierarchy tree
associated to a tree is valid. Figure 2(b) and Figure 2(c) show a simple example
of a valid hierarchy tree associated to a chain on four vertices and a view of
the chain on it, while Figure 2(d) depicts a non-valid hierarchy tree associated
to the same chain: the view associated to covering {a, 2, 3} contains a cycle, as
in Figure 2(e). All the existing links are shown on the hierarchy trees as dotted
lines. Due to the importance of the notion of validity for graph drawing purposes,
it is natural to restrict the attention on algorithms that generate valid hierarchy
trees. In [11] necessary and sufficient conditions for the validity of hierarchy trees
are presented; we reveal in advance that all the clustering algorithms described
in Section 3 and in Section 4 meet such requirements. For the purposes of this
paper it is enough to recall a weaker sufficient condition:

Theorem 1. [11] Let T = (V,E) be a free tree and let HT = (N,A) be a
hierarchy tree of T . Then HT is valid if for each c ∈ N s.t. S(c) is disconnected
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Fig. 3. Attractive and unattractive hierarchy trees associated to a 11-vertex star cen-
tered at vertex 0. The trees are grown up by the algorithms presented in Section 3 and
in Section 4. Snapshots are produced in the algorithm animation system Leonardo [5].

there exists a vertex v ∈ V , v �≺ c, such that each connected component of S(c)
contains a neighbor of v in T .

In addition to validity, we can identify other interesting requirements on
the structure of hierarchical decompositions that make them attractive. As an
example, let us consider the hierarchy trees in Figure 3; all of them are associated
to the same tree (a 11-vertex star centered at vertex 0) and are valid. Let us
now suppose that the user of the visualization facility needs a view containing no
more than 5 vertices, one of which must be vertex 0. It is easy to see that such
a view can be obtained only from the hierarchy tree in Figure 3(c). The main
problem with the tree in Figure 3(a) is that it is really deep and unbalanced: any
covering of cardinality ≤ 5 can show at the maximum detail only vertices 2, 3,
4, and 5, i.e., the leaves in the highest levels of the hierarchy tree. Similarly, the
tree in Figure 3(b) is shallow and has a too large degree: it contains only a view
with at most 5 nodes, i.e., the view consisting of its root. This simple example
gives some insight on the fact that navigating balanced hierarchy trees with
limited degree provides the viewer with better possibilities of interaction with
the visualization tool, since a high number of views can be obtained from such
trees and preserving the mental map becomes easier. The following structural
properties are therefore relevant for hierarchy trees that are going to be used in
visualization applications:

Limited degree: the expansion of a cluster should not result in the creation of a
high number of new nodes in the view. Indeed, adding all of a sudden many
new clusters to the view could imply drastic changes in its drawing.

Small depth: as suggested in [8,9], a logarithmic depth appears to be a rea-
sonable choice. Indeed, traversing the hierarchy tree should not require too
much time, but an excessively small depth (e.g., constant) is indicative of
big differences between consecutive views.
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Balancing: nodes on the same level of the hierarchy tree should have similar
cardinalities. In this way, any navigation from the root to a leaf takes ap-
proximately the same time, independently of the followed path.

3 Divider-Based Clustering Algorithms

In this section we first introduce the concept of t-divider and then we devise
three clustering strategies which hinge upon this concept. From now on we call
rank(T) the number of vertices in a tree T .

Definition 3. Given a free tree T = (V,E) with n vertices and a constant t ≥ 2,
a vertex v ∈ V of degree d(v) is called t-divider if its removal disconnects T into
d(v) trees each one containing at most � t−1

t n� vertices.
The concept of t-divider is a natural generalization of that of centroid [4]

and separator [18,20], which are a 2-divider and a 3-divider, respectively. The
existence of centroids and the fact that, ∀ t1 ≥ t2, any t2-divider is also a t1-
divider, imply the existence of at least a t-divider for any value t ≥ 2. We remark
that t-dividers are not necessarily unique. The following theorem holds:

Theorem 2. Let T = (V,E) be a free tree and let v be any vertex of V . For
any constant t ≥ 2, if v is not a t-divider, the removal of v disconnects T into
k subtrees T1...Tk such that: (a) it exists a unique Ti with more than � t−1

t n�
vertices; (b) any t-divider of T belongs to Ti.

Based on Theorem 2, an efficient algorithm for finding a t-divider of a tree
starts from any vertex v verifying if v is a t-divider. If so, it stops and returns
v. Otherwise, it iterates on the subtree of maximum rank Ti obtained by the
removal of v; the new iteration starts from the vertex w ∈ Ti adjacent to v.

The concept of t-divider can be easily extended from trees to forests. We
say a forest F to be t-divided if all its trees have rank ≤ � t−1

t n�. Given a non
t-divided forest F , we can t-divide it by removing a single vertex, called t-divider
for F . It is easy to prove that this vertex must be searched in the maximum rank
tree of F , say Ti, and that any t-divider of Ti is also a t-divider for F .

Let us now consider a generic step during the top-down construction of the
hierarchy tree HT and let c be the node of HT considered at that step. Let us
assume that S(c) is a tree named T . The following algorithm is a straightforward
application of the concept of t-divider:

Algorithm SimpleClustering (SC): After a t-divider d has been found, the
subtrees T1...Tk obtained from T by removing d are generated. We then create
k children of node c: these children are the subtrees T1...Tk where we add back
vertex d to the one having minimum rank. SC is then recursively applied on all
the generated clusters.

The height of the hierarchy tree returned by algorithm SimpleClustering is
O(log n) and an upper bound on the degree of its internal nodes is the degree of
T itself. Moreover, for any cluster c, the subgraph S(c) induced by the vertices
covered by c is connected, i.e., it is a tree. From now on, where there is no
ambiguity we refer to this property as connectivity of clusters. Though algorithm
SimpleClustering can be implemented using “off the shelf” data structures and
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generates hierarchy trees with small depth, the structure of a hierarchy tree HT
grown by SC may be irregular and may depend too much on the input tree:
namely, the degree of the internal nodes of HT may be large, according to the
degree of the t-divider found by the algorithm at each step (see Figure 3(b)).

In the rest of this section we therefore present two extensions of this algorithm
which aim at overcoming these drawbacks. We move from the more realistic
hypothesis that the degree of the hierarchy tree should be limited by a constant
g ≥ 2. Under this assumption, we exploit the idea that the regularity of the
structure of the hierarchy tree can be best preserved if clusters covering non-
connected subgraphs are allowed: in other words, if one is willing to give up
the property of connectivity, we expect that more balanced hierarchy trees can
be built. On the other side, if clusters are allowed to be non-connected, special
attention must be paid to guarantee the validity of the hierarchy tree.

Finding connected clusters. The algorithm that we are going to present produces
hierarchy trees with bounded degree g ≥ 2 and guarantees the connectivity of
clusters. Hence, it always returns valid hierarchy trees.

Algorithm ConnectedClustering (CC): after finding the t-divider d and gen-
erating the subtrees T1...Tk, the algorithm checks the value k. If k ≤ g, it works
exactly as algorithm SC. If this is not the case, the subtrees are sorted in non-
increasing order according to their ranks: say Ti1 ...Tig ...Tik

the sorted sequence.
The children of node c will be Ti1 ...Tig−1 , T

′, where T ′ = {d} ∪ ⋃k
h=g Tih

.

It is easy to see that T ′ is connected thanks to the presence of the t-divider
d and that the degree of HT is at most g (it could be smaller than g due to the
case k ≤ g). Unfortunately, nothing is guaranteed about the rank of T ′. Hence,
HT may be very unbalanced up to reach linear height (see Figure 3(a)).

Finding balanced clusters. In the following we present an algorithm aimed at
producing hierarchy trees with a limited degree g ≥ 2 and as most balanced as
possible. To improve balancing we admit the existence of non-connected clusters.
Hence, from now on we assume that our clustering procedure works on a forest
F instead of a tree. We call F1 . . . Fh the h trees in the forest. We also assume
that each tree Fi has a representative vertex ri which satisfies the following
property: any ri is connected to a vertex v �∈ F , v belonging to the original
tree to be clustered. Our clustering algorithm always produces clusters which
maintain this invariant property: then any hierarchy tree built by this algorithm
is valid according to Theorem 1.

Before introducing algorithm BalancedClustering, we need to briefly recall
a classical partitioning problem concerning the scheduling of a set of jobs, each
having its own length, on p identical machines: the goal is to minimize the
schedule makespan, i.e., the time necessary to complete the execution of the jobs.
This problem has both an on-line and an off-line version and is NP-complete even
when p = 2 [13]. A simple approximation algorithm for it consists of considering
the jobs one by one and of assigning a job to the machine currently having the
smallest load [15]. In the off-line case, very good solutions (i.e., an approximation
ratio equal to 4

3 − 1
3p ) can be obtained if the jobs are previously sorted in non-

increasing order with respect to their lengths, so as to consider longer jobs first.
In the sequel we will refer to this algorithm as Scheduling.
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We now come back to our original clustering problem. Based on the concept
of t-divider of a forest, algorithm BalancedClustering works as follows:

Algorithm BalancedClustering (BC): it first verifies if F is already t-
divided. If so, it calls procedure Scheduling, where p = g, the jobs coincide
with the trees in the forest, and the length of a job is the rank of the corre-
sponding tree. If F is not t-divided, after a t-divider for F has been found in
the maximum rank tree Fi, a set of subtrees of Fi, named T1...Tk, is generated.
Without loss of generality, we assume that T1 is the unique tree that contains
the representative vertex ri. We call T2 . . . Tk lower trees of F and any other
subtree of the forest, T1 included, upper tree. As to maintain the validity of the
hierarchy tree that we are generating, the algorithm has to deal separately with
upper and lower trees in order not to mix them in a same cluster. Hence, it
builds gu clusters containing upper trees and gl = g−gu clusters with only lower
trees. The cluster containing T1 is the only cluster allowed to contain trees of
both types thanks to the fact that the t-divider, which belongs to T1, connects
any lower tree to T1 itself. The number gu is chosen proportionally to the total
rank of the upper trees. Once gu and gl have been chosen, algorithm BC makes
two consecutive calls to procedure Scheduling: the first call partitions the up-
per trees into gu clusters, while the second one partitions the lower trees into gl

clusters. The cluster containing T1 may be also augmented during this phase, if
convenient.

Algorithm BalancedClustering is able to effectively balance the cardinali-
ties of clusters, as Figure 3(c) and the experiments presented in Section 6 suggest.
This good result is obtained in spite of loosing the property of connectivity. How-
ever, we remark that the disconnectivity of clusters remains “weak”, because the
distance on the original tree between any pair of representative vertices in the
same cluster is always equal to 2 (cfr. Theorem 1).

4 Two Well-Known Clustering Algorithms

In this section we briefly recall two well-known clustering algorithms that we
implemented in our package after adapting them to work on general trees.

The first algorithm, due to Gonzalez [14], is designed for clustering a set
of points into a fixed number k of clusters and has been in wide use during
the last twenty years. In the first step Gonzalez’s algorithm picks an arbitrary
point to be the representative of the first cluster. In each of the next k − 1
steps a new representative point is chosen through a max-min selection: the i-th
representative is a point which maximizes the minimum distance from the first
i − 1 representatives. Cluster Si consists then of all points closer to the i-th
representative than to any other one. When specialized to trees, the farthest-
point algorithm (FP) considers as points the vertices of the tree and replaces the
Euclidean distance between two points with the length of the path between the
corresponding vertices on the tree. In our implementation the choice of the first
representative vertex is not random: indeed, a vertex maximizing the average
distance from all the other vertices is chosen. It is easy to see that this vertex
is always a leaf. We observed in the experimentation that this choice greatly
improves the behavior of the algorithm.
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The second algorithm (FR) is due to Frederickson [12] and generates con-
nected clusters with limited cardinalities, thus producing quite balanced hier-
archy trees. Even if it was designed for clustering cubic trees, it can be easily
generalized to trees with bounded degree. Vertices are partitioned on the basis
of the topology of the tree with a bottom-up strategy that grows up the clusters
in a recursive way starting from the leaves. A cluster is built when its current
cardinality falls into a prefixed range [z,D(z−1)+1], where D is the tree degree
and z is a value to be suitably chosen. In our implementation z is selected in
{1..n} in order to limit the degree g of HT as much as possible: if all the val-
ues for z produce more than g clusters, we choose the value that minimizes the
number of created clusters. Since algorithm FR is not always able to satisfy the
requirements on g, the degree of the hierarchy trees it returns is not bounded.

5 Experimental Setup

We implemented the tree clustering algorithms described in Section 3 and in Sec-
tion 4 in ANSI C and we debugged and visualized them in the algorithm anima-
tion system Leonardo [5]. To prove the feasibility of the clustering approach for
the visualization of large trees, we also realized a prototype of a visualization fa-
cility which hinges upon this approach, letting the user navigate through the hier-
archy tree by expanding and shrinking clusters. The prototype, comprehensive of
algorithm implementations, visualization code, and tree generator, is available at
the URL http://www.dsi.uniroma1.it/˜finocchi/experim/treeclust-2.0/.
In the rest of this section we review some interesting aspects of our experimental
framework related to instance generation and performance indicators.

The random tree generator. The problem instances that we used in the tests
are synthesized and have been randomly generated. Since both the degree and
the balancing of the input tree appeared to us to be crucial factors for the
performances of the t-divider based algorithms, we designed a tree generator
which produces structured instances taking into account these parameters. The
generator works recursively and takes as input four arguments, named n, d, D,
and β. n is the number of vertices of the tree T to be built; d and D are a lower
and an upper bound for its degree, respectively; β is the unbalancing factor of T ,
i.e., a real number in [0, 1] which indicates how much T must be unbalanced: the
bigger is β, the more unbalanced will be T . Let us suppose that during a generic
step the generator has to build a tree T , rooted at a vertex v, with parameters n,
d, D, and β. If n−1 < d, then all the n−1 vertices are considered as children of
v: hence, T can have vertices with degree smaller than d, though all the children
of such vertices are always leaves. If n − 1 ≥ d, the number r of children of v is
randomly chosen by picking up a value in [d,min{n−1, D}] and each of the n−1
vertices of T (except for v) is randomly assigned to any of the r subtrees. We
call ni the number of vertices assigned to the subtree Ti rooted at the i-th child.
If no ni is ≥ �β · n�, a further step to make T more unbalanced is performed. If
w.l.o.g. n1 = max1≤i≤rni, exactly �β · n� − n1 vertices are randomly removed
from the subtrees which they belong to and are added to T1. This construction
satisfies the unbalancing factor β required for vertex v.

Performance indicators. We considered three kinds of quality measures, aimed
at highlighting different aspects of the structure of the hierarchy trees grown up
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by the algorithms. In particular, based on the considerations in Section 2, we
studied balancing, depth, and degree properties.

Measure Unbalancing estimates how much a hierarchy tree is balanced and
is computed according to the following idea: the children of a cluster c in HT
should have “not too different” cardinalities. Let n be the cardinality of c, let
d(c) be its degree, and let ni be the cardinality of the i-th child of c. In the most
favourable scenario, each child of c covers n

d(c) vertices. A good estimate of the
unbalancing of cluster c is obtained by counting how much the real cardinalities
of its children are different from the optimal child cardinality n

d(c) . The quantity
∑d(c)

i=1 |ni − n
d(c) | is then normalized with respect to n, so as not to count bigger

contributions for clusters covering more vertices. Measure Unbalancing is the
sum over all the clusters in the hierarchy tree of the values defined above and is
averaged on the total number of clusters of HT which are not leaves. The lower
is the value of this measure, the more balanced is the hierarchy tree. We remark
that we suitably designed measure Unbalancing to be able to correctly compare
even hierarchy trees having internal nodes with different degrees.

A second performance indicator relates to the depth of the hierarchy tree and
is referred to as External Path Length. It represents the sum of the depths of
the leaves of the hierarchy tree. In this case it is not necessary to average this
measure on the number of leaves, which is always the same for all the hierarchy
trees associated to the same tree instance. Finally, measures Average Degree
and Maximum Degree refer to the average and to the maximum degree of the
hierarchy tree, respectively.

6 Experimental Results

In this section we empirically study the behavior of the previously described tree
clustering algorithms, using different values of t in the analysis of the t-divider
based ones. The main goals of our experiments are the following: (a) comparing
the algorithms, studying if/how/which algorithms are affected by the degree and
balancing of the input tree and giving insight on the choice of a “good” algorithm
for a given value of g and a given problem instance; (b) validate/disprove the
practical utility of the theoretical concept of t-divider; (c) checking if the idea of
relaxing the connectivity of clusters and the use of Graham’s heuristic effectively
help to improve balancing of the hierarchy tree.

The experimentation contemplates three kinds of tests, where either the num-
ber n of vertices, or the unbalancing factor β, or the maximum degree D of the
input tree vary. All the experiments used from 50 to 100 trials per data point and
the sequence of seeds used in each test was randomly generated starting from
a base seed. The algorithms based on t-dividers are referred to in the charts by
means of their name (SC, CC, or BC) followed by the value t that they employ.
We sometimes report the results of the tests for different values of g: though
the general trend of the curves is maintained, the relative performances of the
algorithms often vary. We preliminarly remark that the values of the metrics are
usually smaller for bigger values of g: roughly speaking, we can explain this by
observing that, when g is bigger, the algorithms have usually more possibilities
for decomposing the original tree and so can do it better. We now give more
insight on the tests we performed.
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Fig. 4. Utility of t-dividers.

Experiments on t-dividers. Figure 4 presents the results of the comparison of
algorithms BC and CC for different values of t, i.e., 2 ≤ t ≤ 6. The graph
on the left part of Figure 4 shows that algorithm BC has an almost constant
behavior as the instance size increases and that the choice of t greatly affects
its performances. In particular, the best results are obtained for t = 3, thus
proving that the use of centroids (t = 2), which is frequent in literature, does
not necessarily yield the best solutions. This is even more evident in the graph
on the right part of Figure 4, where the interrelation between the balancing of
the input tree and the best choice for t is analyzed w.r.t. algorithm CC: t = 2
represents the worst choice for quite balanced trees, i.e., for β < 0.6. It is worth
to point out that all the curves have a local maximum in β = t−1

t . This trend
depends on the choice of the t-divider vertex: for a fixed t, as long as β ≤ t−1

t ,
the same vertex continues to be chosen as t-divider, while the tree becomes more
and more unbalanced. As soon as β gets bigger than t−1

t , the vertex chosen as
t-divider changes, implying a more balanced partition of the vertices. Similar
results have been obtained for different parameters of the experiments and for
algorithm SC, as well. Hence, in the tests presented later on, for each algorithm
we will limit to report the chart corresponding to the best choice of t.

Algorithms’ comparison. The first test that we discuss analyzes the behavior of
the algorithms when the maximum degree of the input tree increases. The charts
in Figure 5 have been obtained by running the algorithms on 300-vertex trees
with unbalancing factor 0.5, minimum degree 2, and maximum degree ranging
from 3 to 30 = n

10 (this implies that the average degree increases, too). Each row
reports the graphs obtained by running the algorithms with a different value g
of the maximum degree required for HT , 2 ≤ g ≤ 4. A first reading of the charts
is sufficient to grasp the trend of curves and to separate the algorithms into two
well distinct groups: algorithm SC and algorithm BC are able to benefit of the
increase of the degree, while algorithms CC, FP, and FR get worse as D in-
creases. This behavior, that holds w.r.t. both Unbalancing and External Path
Length, strenghtens the following intuition: if D is large, the t-dividers found by
the algorithms at each step will probably have big degrees and so will disconnect
the tree into numerous clusters of small cardinalities. This immediately clarifies
why SC gets better. For what concerns the balanced approach, it is then easy
to recombine numerous small clusters to form exactly g clusters, while the con-
nected strategy is not well suited for this: due to the necessity of maintaining the
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Fig. 5. Experiments for increasing maximum degree of the input tree: charts on each
row are for g = 2, 3, 4, respectively.

connectivity of clusters, it will usually obtain an unbalanced partition consisting
of g − 1 small clusters and a single big cluster. The worsening behaviour of FP
and FR can be explained similarly to that of algorithm CC. However, we re-
mark that algorithm FR obtains very good results w.r.t. measure Unbalancing,
especially for larger value of g, despite the increasing trend of its curve.

It is also worth observing that, as we increase the value of g keeping the
other parameters fixed, the curves get closer and their relative position changes.
Let us focus, for instance, on the unbalancing measure concerning algorithms
BC and FP: the related curves do not cross for g = 2, a crossing is introduced
in D = 5 when g = 3, and such a crossing point moves forward as g gets bigger
(D = 12 for g = 4). We underline that before the crossing point algorithm FP
exhibits a better behavior than algorithm BC. This suggests that the choice
of the best algorithm to use on a given instance is much influenced by a subtle
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Fig. 6. Algorithms’ comparison w.r.t. average and maximum degree of the hierarchy
tree. In both the experiments g = 2.

interplay between the maximum degree g allowed for HT and the average degree
of the input tree. Similar experiments should be reported for different choices
of parameter β in order to be able to recognize, given a problem instance and a
value for g, whether FP is preferable to BC. Due to the lack of space we do not
report such graphs in this paper.

Even if algorithms FR and SC behave very well w.r.t. measures Unbalancing
and External Path Length, as Figure 5 shows, we have to notice that both of
them do not limit the degree of the hierarchy tree, being often impractical in
graph drawing applications. Figure 6 highlights that both the average and the
maximum degree of the hierarchy trees returned by these algorithms are much
bigger that the value required for g.

We also studied how the relative performances of the algorithms are affected
by the instance size and by the balancing of the input tree (see Figure 7). In the
left chart we considered 300-vertex trees with degree in [2, 3] and we increased
the value of the unbalancing factor β from 0.2 to 0.95, with step 0.05. We found
that algorithm SC is much influenced by the growth of β, suggesting that unbal-
anced trees are more difficult to partition than balanced ones. In the right chart
we therefore considered the same range for the degree and we fixed β to 0.8; we
varied the vertices in the range 50 to 500. With respect to measure Unbalancing
no algorithm is affected by the increase of n, i.e., the measure is almost constant.
This depends on the fact that, for a fixed β, smaller trees returned by our gen-
erator locally reflect the global structure of larger ones, yielding the algorithms
to a similar behavior. The relative positions of the unbalancing curves are not
very surprising. As the algorithms are concerned, it is easy to see that both al-
gorithm CC and algorithm FP do not take into account balancing problems at
all, possibly obtaining very unbalanced trees. Also the simple clustering strategy
is affected by the balancing of the input instances and this is conveyed on the
hierarchy trees. As expected from theoretical considerations, algorithms BC and
FR come out to be the best ones w.r.t. the choice of parameters in this test.

7 Conclusions

In this paper we have focused on the problem of experimentally evaluating with
respect to criteria relevant in graph drawing applications the quality of hierarchi-
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Fig. 7. Algorithms’ comparison for increasing unbalancing and increasing number of
vertices of the input tree.

cal decompositions of trees built using different clustering subroutines. We have
designed new tree clustering algorithms hinging upon the notion of t-divider and
we have empirically shown the relevance of this concept as a generalization of
the ideas of centroid and separator. In particular, our experiments prove that
the use of centroids, that is very frequent in literature, does not usually yield
the best solution in practice. From the comparison of the algorithms’ behavior,
it comes out that the choice of the best algorithm to use on a given tree instance
depends on structural properties of the instance (e.g., balancing and degree) and
on the quality measure to be optimized on the hierarchy tree, either balancing
or depth or degree. Algorithms FR and SC turn out to behave very well w.r.t.
balancing and depth, respectively, but they do not limit the degree of the hier-
archy tree, being often impractical for graph drawing purposes. Algorithm BC
obtains fairly good results w.r.t. all the performance indicators we considered.

We are currently working on extending the concepts and ideas presented
throughout the paper to edge-weighted trees; this is a better model of real situ-
ations, since the edge weights represent the level of correlation between vertices.
From an experimental point of view, we are also studying the quality of hier-
archical decompositions associated to trees obtained from real-life applications.
The interested reader can download our visualization prototype at the URL
http://www.dsi.uniroma1.it/˜finocchi/experim/treeclust-2.0/.
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