
Layered Drawings of Graphs
with Crossing Constraints�

Irene Finocchi

Department of Computer Science
University of Rome “La Sapienza”

finocchi@dsi.uniroma1.it
http://www.dsi.uniroma1.it/˜finocchi

Abstract. We study the problem of producing hierarchical drawings of
layered graphs when some pairs of edges are not allowed to cross. We
show that deciding on the existence of a drawing satisfying at least k
constraints from a given set of non-crossing constraints is NP-complete
even if the graph is 2-layered and even when the permutation of the
vertices on one side of the bipartition is fixed. We also propose simple
constant-ratio approximation algorithms for the optimization version of
the problem and we discuss how to extend the well-known hierarchical
approach for creating layered drawings of directed graphs with the capa-
bility of minimizing the number of edge crossings while maximizing the
number of satisfied non-crossing constraints.

1 Introduction

The problem of embedding graphs in the plane when only some pairs of edges
are allowed to cross, known in literature as realizability, has been formally in-
troduced in [12]. It finds application, e.g., in VLSI layout, where the crossings
between certain pairs of edges must be avoided due to the physical realization
of connectors, and in constrained graph layout, where users can specify require-
ments on the visualization that should be fulfilled by the drawing algorithm. In
these settings, it is fundamental to decide if an embedding of a graph satisfying a
given set of non-crossing constraints exists, and, if the answer is positive, to find
it. Realizability has been proved to be NP-hard in [10], but surprisingly it is not
known to belong to the class NP, turning out to be a very interesting problem
from a theoretical perspective. Its theoretical relevance is mostly due to the con-
nection with the classical themes of planarity and crossing numbers and with the
recognition of string graphs, i.e., intersection graphs of curves in the plane. The
relation between realizability and string graphs is addressed in [10,11]; here we
limit to point out that no finite algorithm for the recognition of string graphs is
known and that, given a graph G, it is possible to build an instance of realizabil-
ity which can be satisfied if and only if G is a string graph [11]. It is also worth
� Work supported in part by the project “Algorithms for Large Data Sets: Science and

Engineering” of the Italian Ministry of University and of Scientific and Technological
Research (MURST 40%).

J. Wang (Ed.): COCOON 2001, LNCS 2108, pp. 357–368, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

358 Irene Finocchi

observing that realizability is a generalization of the well-known planarity prob-
lem, which requires to decide if a graph is planar and clearly coincides with the
special case where no pair of edges is allowed to cross. We recall that planarity
can be checked in linear time [9].

This paper is concerned with the realizability problem in the special case
of hierarchical drawings [3], i.e., drawings where vertices are constrained to lie
on a set of parallel lines and edges are represented as polygonal chains. The
hierarchical drawing convention is widely used to represent procedure call de-
pendencies, class hierarchies, is-a relationships, and several economic and social
structures [3,5,14]. In the remainder of the paper we will refer to the vertex set
on each line as layer or level, and sometimes to the drawing itself as layered
drawing. Without loss of generality we also assume to deal with proper layered
graphs, i.e., layered graphs whose edges span only consecutive levels: it is always
possible to reduce to this case by properly adding dummy vertices to split edges
with end-points in non-consecutive layers. Under this hypothesis each edge in a
hierarchical drawing is simply represented by a straight-line. The main question
that we address is the following: Given a proper layered graph G, a set of edge
pairs C, and an integer k > 0, does a hierarchical drawing of G exist s.t. at least
k edge pairs in C do not cross? We refer to this problem as hierarchical realiz-
ability (HR) and to the elements of C as non-crossing constraints. We study the
computational complexity of some variants of hierarchical realizability and we
describe approximation strategies for the optimization versions of these prob-
lems, that require to find a maximum realizable subset of C. We also show how
algorithms for the variants that we consider can be used as subroutines to boost
existing graph drawing algorithms to support non-crossing constraints. Our re-
sults can be easily generalized to constraints concerning the relative positions
of vertices within each layer, though for simplicity we will not consider them in
this paper.

In more detail, the presentation of our results is organized as follows. In Sec-
tion 2 we prove that deciding on the realizability in case of hierarchical drawings
is not easier than deciding on the realizability for generic drawings: we show that
HR, which clearly belongs to NP , remains NP-hard even if G is 2-layered and
k = |C|. It is interesting to observe that the strictly related problem of deciding
if a layered graph has a hierarchical drawing without edge crossings can be solved
in linear time [8]. From an optimization point of view, it is trivial to approxi-
mate a maximum cardinality subset of realizable constraints with expected ratio
2, yet we can exhibit instances for which this bound is tight. In addition to the
general case, in Section 3 we consider a one-sided realizability problem where
G is 2-layered and the vertex ordering of a layer is fixed; we show this problem
to be NP-hard for a generic k, approximable with constant ratio 2, and poly-
nomial if k = |C|. Based on the one-sided formulation, in Section 4 we finally
address the constrained edge crossing minimization problem in layered drawings,
i.e., the problem of drawing hierarchically a graph with the minimum number
of edge crossing while respecting a set of non-crossing constraints. We consider
the well-known Sugiyama’s approach for producing layered drawings of directed

Layered Drawings of Graphs with Crossing Constraints 359

graphs [14] and we extend it in order to deal with non-crossing constraints. In
particular, we provide a mechanism for identifying a subset C ′ ⊆ C of realizable
constraints, and then we show how to minimize edge crossings while satisfying
all the constraints in C ′.

2 Hierarchical Realizability

In this section we prove that deciding about the hierarchical realizability of
a proper layered graph under a given set of non-crossing constraints is NP-
complete. From an optimization point of view, we show that a maximum cardi-
nality subset of realizable constraints can be easily approximated with expected
ratio 2 and we exhibit instances for which this bound is tight.

Lemma 1. HR ∈ NP .

Proof. Since edge crossings in layered drawings depend only on the permutation
of the vertices within each layer, a non-deterministic algorithm has simply to
guess an ordering of the vertices of each layer and to check in polynomial time
the realization of at least k constraints.

In the following we show the NP-hardness of HR on two-layered (i.e., bipar-
tite) graphs. For brevity, we call bipartite straight-line drawing a hierarchical
drawing with only two layers. Let B = (V0, V1, E) be a bipartite graph with
n = n0+n1 vertices and m edges. Without loss of generality, we assume that for
any (a, b) ∈ E a ∈ V0 and b ∈ V1. We also denote by π0 and π1 two permutations
of the vertices in V0 and V1, respectively. Let C ⊆ (

E
2

)
be a set of pairs of edges.

The hierarchical realizability problem on bipartite graphs consists of asking for
a set C ′ ⊆ C, |C ′| ≥ k, and for a bipartite straight-line drawing of B such that
for any (a, b; c, d) ∈ C ′ edges (a, b) and (c, d) do not cross in the drawing. More
formally, the problem can be stated as follows:
Bipartite realizability (in short, BR): Let B = (V0, V1, E) be a bipartite graph,
let C be a set of non-crossing constraints, and let k be a positive integer. Do two
permutations π0 and π1 exist such that the bipartite straight-line drawing of B
induced by π0 and π1 satisfies at least k constraints?

In the special case where the permutation of the vertices in a layer (e.g., V0)
is fixed, we have the one-sided bipartite realizability problem (in short, OBR),
whose complexity and approximability are discussed in Section 3.

Before proving the NP-completeness of BR, we state it in a slightly different
form which is more convenient for our purposes. Indeed, it is easy to see that
asking for two permutations satisfying a set of non-crossing constraints C ′ is
equivalent to asking for two bijective functions π0 and π1 such that:

∀(a, x; b, y) ∈ C ′ (π0(a)− π0(b)) · (π1(x)− π1(y)) ≥ 0 (1)

Based on this observation, we prove the NP-hardness of BR by means of a
polynomial time reduction from a total ordering problem arising in the computa-
tional biology field, called betweenness, which has been shown to be NP-complete
in [13] and is defined as follows:

360 Irene Finocchi

Betweenness: Given a finite set S of real variables and a set of triples T ⊆ S3,
does an ordering of the variables exist such that for each (a, b, c) ∈ T variable b
is positioned between variables a and c in the ordering?

We refer to the triples in T as ordering constraints. A solution for betweenness
is a bijective function f : S → {1..|S|} such that:

∀(a, b, c) ∈ T (f(a)− f(b)) · (f(b)− f(c)) ≥ 0 (2)

We remark that, in spite of the apparent similarity of Equation 1 and Equation 2,
the former involves four distinct vertices and two different functions, while the
latter only three variables and a single function. A one-to-one correspondence is
therefore not straightforward.

Lemma 2. Bipartite realizability is NP-hard.

Proof. Moving from an instance of betweenness, we build an instance of BR
as follows. The bipartite graph B = (V0, V1, E) is such that: (a) V0 = S; (b)
V1 contains a distinct vertex x′ for each item x ∈ S, i.e., V1 = {x′ : x ∈ S};
(c) E = {(x, x′) : x ∈ S} ∪ {(a, b′), (b, c′) : (a, b, c) ∈ T}. The set of non-
crossing constraints C is the union of two disjoint sets C1 and C2, where C1 =
{(x, x′; y, y′) : x, y ∈ S, x �= y} and C2 = {(a, b′; b, c′) : (a, b, c) ∈ T}. Note
|C1| = |S|(|S| − 1) and |C2| = |T |. k = |C1|+ |C2|, i.e., the problem is to decide
if all the non-crossing constraints can be realized.

It is easy to verify that the reduction above requires O(|T | + |S|2) time. To
prove that k constraints in C can be realized iff the instance of betweenness
admits a solution we exploit the one-to-one correspondence between ordering
constraints in T and crossing constraints in C2 and the fact that realizing all
the constraints in C1 forces π0(a) = π1(a′) for any pair of corresponding vertices
a ∈ V0 and a′ ∈ V1.

Let us first suppose that two permutations π0 and π1 exist able to satisfy all
the constraints in C. Then f = π0 represents a solution for betweenness. Indeed,
let (a, b, c,) ∈ T be an ordering constraint in the instance of betweenness. Let us
consider the constraints (b, b′; c, c′) ∈ C1 and (a, b′; b, c′) ∈ C2: these constraints
necessarily exist by construction. Since π0 and π1 satisfy all the non-crossing
constraints, by Equation 1 we know that: (π0(a) − π0(b)) · (π1(b′) − π1(c′)) ≥ 0
and (π0(b) − π0(c)) · (π1(b′) − π1(c′)) ≥ 0 By multiplying the left members of
these inequalities, we obtain (π0(a) − π0(b)) · (π0(b) − π0(c)) ≥ 0, proving that
the ordering constraint (a, b, c) ∈ T is satisfied by f = π0.

Conversely, let us assume that the instance of betweenness admits a solution
f and let us define π0 = f and ∀a′ ∈ V1 π1(a′) = f(a). Note that ∀a ∈ S
π0(a) = π1(a′). Any constraint (a, a′; b, b′) ∈ C1 is trivially satisfied by π0 and
π1, since π0(a)− π0(b) = π1(a′)− π1(b′) and therefore their product is ≥ 0. Let
(a, b′; b, c′) be any constraint in C2. As above, (π0(b)−π0(c))·(π1(b′)−π1(c′)) ≥ 0.
Moreover, since π0 = f satisfies constraint (a, b, c) ∈ T , by Equation 2 (π0(a) −
π0(b))·(π0(b)−π0(c)) ≥ 0. By multiplying the left members of the two inequalities
we finally get (π0(a)− π0(b)) · (π1(b′)− π1(c′)) ≥ 0, i.e., constraint (a, b′; b, c′) is
satisfied by π0 and π1, as well.

Layered Drawings of Graphs with Crossing Constraints 361

The NP-completeness of HR immediately follows from Lemma 1 and Lemma 2:

Theorem 1. Hierarchical realizability is NP-complete.

We now consider the problem of approximating a maximum set of realizable
constraints. If we choose, for each layer of G, a random ordering of the vertices
in that layer, we approximate a maximum set of realizable constraints (chosen
from C) with expected ratio 2.

If c = |C| and ci = (a, x; b, y), 1 ≤ i ≤ c, is a non-crossing constraint
involving vertices from any two consecutive layers Lj and Lj+1, four orderings
among a, b ∈ Lj and x, y ∈ Lj+1 are possible, yet only two of them realize ci.
Hence, the probability pi of having constraint ci satisfied is equal to 1

2 . Let Xi be
a random variable equal to 1 if constraint ci is realized, 0 otherwise. The quantity∑m

i=1 Xi represents the number of realized constraints and the expected value
for it is then equal to E[

∑c
i=1 Xi] =

∑c
i=1 E[Xi] =

∑c
i=1 pi = c

2 .
We now show that the ratio above is tight, i.e., no algorithm can do better

than trying to satisfy half of the constraints in C, unless being able to recognize
non-realizable instances of HR. The following lemma is useful at this aim:

Lemma 3. The number of non-crossing pairs of non-incident edges in any bi-

partite straight-line drawing of Kn,n is equal to
(

n(n−1)
2

)2
.

Proof. Any bipartite straight-line drawing of Kn,n has the same number x of
non-crossing pairs of non-incident edges. Then:

x = 1
2

∑n
i=1

∑n
j=1

(∑
k<i

∑
h<j 1 +

∑
k>i

∑
h>j 1

)
=

(
n(n−1)

2

)2

Let G = Kn,n and let C contain a constraint for any pair of non-incident
edges. It is easy to see that c = |C| = n2(n−1)2

2 and therefore, due to Lemma 3,
the number of realized constraints is always equal to c

2 independently of the
permutation of the two layers.

3 One-Sided Bipartite Realizability

In this section we focus on the one-sided bipartite realizability problem, that
turns out to be very useful in the design of algorithms for solving HR, as we
will show in Section 4. Unfortunately, we can prove that it is NP-complete, yet
easier than BR, being polynomially solvable if we are interested in the existence
of a solution satisfying all the constraints in C (i.e., for k = |C|).

NP-completeness. For simplicity we prove the NP-hardness of one-sided bi-
partite realizability in two steps, making use of a simple generalization of this
problem which takes into account also crossing constraints in addition to the
non-crossing ones. We refer to the generalized problem as one-sided bipartite
realizability with mixed constraints (in short, MBR). MBR is stated exactly as
OBR, except for taking into account a set of crossing constraints I ⊆ (

E
2

)
with

362 Irene Finocchi

the following meaning: for any (a, b; c, d) ∈ I, edges (a, b) and (c, d) should cross
in the bipartite drawing of graph B.

With arguments similar to those used in the proof of Lemma 1, it is easy
to see that both OBR and MBR belong to NP. We now prove the NP-hardness
of MBR by means of a polynomial-time reduction from the acyclic subgraph
problem. Then we further reduce MBR to our original realizability problem
OBR. We recall that the acyclic subgraph problem is stated as follows:
Acyclic subgraph (in short, AS): given a directed graph G = (V,A) and a positive
integer h, does a set A′ ⊆ A exist such that |A′| ≥ h and the graph G′ = (V,A′)
is acyclic?
This problem has been proved to be NP-complete in [6].

Lemma 4. One-sided bipartite realizability with mixed constraints is NP-hard.

Proof. Given an instance of AS, we build an instance of MBR as follows. The
bipartite graph B = (V0, V1, E) is such that: (a) V1 = V ; (b) V0 contains a
distinct vertex x′ for each vertex x ∈ V , i.e., V0 = {x′ s.t. x ∈ V }; (c) ∀(x, y) ∈ A
both (x′, y) and (y′, x) belong to E. Permutation π0 is any ordering of the vertices
in V0. For each arc (x, y) ∈ A we set up a constraint (x′, y; y′, x): if π0(x′) < π0(y′)
we add (x′, y; y′, x) to I, otherwise we add (x′, y; y′, x) to C. k = h. Figure 1
provides an example of this reduction. A directed graph G is given in Figure 1(a)
and the bipartite graph B obtained from it is shown in Figure 1(b), together
with the whole set of constraints obtained choosing π0 = 〈d′, a′, c′, b′〉.

(a)

a

b c

d

(b)

c a'

d' b

a b'

c' d

c1=(a',b;b',a)
c2=(a',c;c',a)
c3=(b',d;d',b)
c4=(c',d;d',c)
c5=(d',a;a',d)

∈ I
∈ I
∈ C
∈ C
∈ I

π0=<d',a',c',b'>
a

b c

d

(c)

AAA
AAA
AAA
AAA

A
A
A
A

d' a' c' b'

a b c d

(d)

Fig. 1. From acyclic subgraph to one-sided realizability with mixed constraints.

It is worth observing that there is a one-to-one correspondence between con-
straints and arcs of the digraph and that the constraint (x′, y; y′, x) associated to
arc (x, y) belongs to C if and only if π0(x′) > π0(y′). To prove the correspondence
between solutions of AS and solutions of MBR we now exploit a basic idea: any
permutation of the vertices of a digraph partitions its arcs into left-to-right and
right-to-left arcs. We recall that a topological sort of an acyclic digraph yields
no right-to-left arc. Based on this idea, Figure 2 points out the meaning of both
crossing and non-crossing constraints: if arc (x′, y′) is left-to-right according to
π0, then we force x and y to have the same ordering as x′ and y′ using a crossing
constraint (see Figure 2(a)); if arc (x′, y′) is right-to-left according to π0, then
we force x and y to have the opposite ordering of x′ and y′ using a non-crossing
constraint (see Figure 2(b)).

Layered Drawings of Graphs with Crossing Constraints 363

x y

x' y'

(a)

x y

y' x'

(b)

Fig. 2. Crossing and non-crossing constraints: (a) (x′, y; y′, x) ∈ I; (b)
(x′, y; y′, x) ∈ C. In both cases arc (x, y) is forced to be a left-to-right arc.

Roughly speaking, our constraints force the presence of as many left-to-right
arcs as possible. Proving that any permutation π1 realizes k constraints from
I ∪ C iff it yields an acyclic subgraph of G containing h = k arcs is now easy.
Let c = (x′, y; y′, x) be a constraint from I ∪ C. If c ∈ I (i.e., π0(x′) < π0(y′)),
then c is realized by π1 if and only if π1(x) < π1(y). Analogously, if c ∈ C
(i.e., π0(x′) > π0(y′)), then c is realized by π1 if and only if π1(x) < π1(y). In
both cases the satisfaction of constraint c implies that arc (x, y) is a left-to-right
arc according to π1, and vice-versa. Therefore, any permutation π1 satisfies a
number of constraints equal to the number of left-to-right arcs that it induces.

In the example in Figure 1, choosing e.g. π1 = 〈a, b, c, d〉 partitions the arcs
of G as in Figure 1(c) and yields the bipartite straight-line drawing of B shown
in Figure 1(d). In this drawing only constraint (d′, a; a′, d) ∈ I is not satisfied;
note this constraint corresponds to the unique dotted arc (d, a) ∈ A \A′.

Theorem 2. One-sided bipartite realizability is NP-hard.

Proof. Let us consider an instance of MBR specified by a bipartite graph B =
(V0, V1, E), a set of crossing and non-crossing constraints I ∪ C, a permutation
π0, and an integer k (w.l.o.g. in the following we assume that π0(a) < π0(b) for
any constraint (a, x; b, y) ∈ I ∪ C). We build a corresponding instance of OBR
specified by a bipartite graph B′ = (V ′

0 , V
′
1 , E

′), a set of non-crossing constraints
C ′, a permutation π′

0, and an integer k′ as follows.
For each crossing constraint (a, x; b, y) ∈ I we create a vertex named âb, an

edge (âb, y), and a non-crossing constraint (âb, y; a, x). We denote the sets of all
the new vertices, the new edges, and the new constraints with V̂0, Ê, and Ĉ,
respectively. We then set V ′

0 = V0 ∪ V̂0, V ′
1 = V1, E′ = E ∪ Ê, C ′ = C ∪ Ĉ, and

k′ = k. At last, we choose any permutation π′
0 such that all vertices in V̂0 are

to the left of vertices in V0 (their relative positions are not important for our
purposes), while the vertices in V0 retain the same ordering as in π0.

In the following we show that any permutation π1 satisfies the same number
of constraints in the instance of MBR and in the corresponding instance of OBR,
proving a one-to-one correspondence between the solutions of the two problems.
It is obvious that any permutation π1 satisfies the same constraints from C in
both instances. Moreover, there is a one-to-one correspondence between con-
straints in I and constraints in Ĉ: let (a, x; b, y) ∈ I and let (âb, y; a, x) ∈ Ĉ
be the corresponding non-crossing constraint. Recall that by construction we

364 Irene Finocchi

have π′
0(âb) < π′

0(a) < π′
0(b). Therefore, the crossing constraint (a, x; b, y) is

realized by π1 if and only if the non-crossing constraint (âb, y; a, x) is, proving
that each satisfied constraint from I corresponds to a satisfied constraint from
Ĉ and vice-versa.

Approximability and polynomiality. In order to prove that OBR is polyno-
mial if k = |C| and that a maximum set of realizable constraints can be approxi-
mated within a constant ratio we use an approximation preserving reduction [1]
to the maximum acyclic subgraph problem. This problem is the optimization
version of AS: given a digraph H = (N,A,w) with positive arc weights w, it
requires to find a maximum weight set of arcs A′ ⊆ A such that the subgraph
H ′ = (N,A′) is acyclic.

Let B = (V0, V1, E) and π0 specify an instance of one-sided bipartite realiz-
ability. W.l.o.g. we assume that for each (a, x; b, y) ∈ C it holds π0(a) < π0(b);
otherwise we change C by removing (a, x; b, y) and adding the analogous con-
straint (b, y; a, x). In the reduction we build a weighted constraint digraph H =
(N,A,w) as follows: N = V1; A = {(x, y) : ∃ a, b ∈ V0 s.t. (a, x; b, y) ∈ C};
∀(x, y) ∈ A, w(x, y) is the number of constraints of C containing x and y in the
second and fourth positions, respectively. In other words, the weight of arc (x, y)
is the number of constraints that require π1(x) < π1(y) in order to be realized.

An almost trivial observation is that H is acyclic iff all the constraints in C
are realizable. This means that OBR can be solved in linear time if k = |C|,
thanks to the fact that both the previous reduction and checking the acyclicity
of the constraint digraph can be accomplished in linear time.

The following property also holds: each A′ ⊆ A such that the subgraph
H ′ = (N,A′) is acyclic corresponds to a realizable set of constraints C ′ ⊆ C
with |C ′| ≥ w(A′). Indeed, if π1 is a topological sort of H ′, then π1 satisfies at
least all the constraints corresponding by construction to the arcs in A′, whose
quantity is w(A′) =

∑
(x,y)∈A′ w(x, y) (it could happen that π1 satisfies more

constraints if A′ is not maximal). Finally, it is easy to see that the weight of
a maximum acyclic subgraph of the constraint digraph equals the maximum
number of realizable constraints, i.e., w(A∗) = |C∗|.

Let r ≥ 1 be any approximation ratio for the maximum acyclic subgraph
problem. From the previous considerations we have:

|C ′| ≥ w(A′) ≥ 1
r · w(A∗) = 1

r · |C∗|
proving that C ′ is an r-approximate solution for one-sided bipartite realizability,
as well. Hence, a maximum set of realizable constraints can be approximated with
ratio 2 [7].

4 Constrained Crossing Minimization

A widely used approach for creating layered drawings of directed graphs is pre-
sented in [14] and is known in literature as hierarchical approach. In order to
produce readable drawings, different aesthetic criteria are taken into account by

Layered Drawings of Graphs with Crossing Constraints 365

this method; among them the number of edge crossings deserves special atten-
tion. In this section we show how to extend the hierarchical approach in order
to support non-crossing constraints. Our extension hinges upon the approxima-
tion algorithm for one-sided bipartite realizability presented in Section 3. We
first briefly recall how Sugiyama’s algorithm works. Given a directed graph G,
it performs four main steps. (1) Cycle removal: the direction of some arcs is
temporarily reversed to make G acyclic. (2) Layer assignment: each vertex is
assigned with a level so that all the arcs “flow” in the same direction. Dummy
vertices are added for arcs spanning more than two levels. (3) Crossing reduc-
tion: vertices in each level are ordered so as to minimize the total number of edge
crossings. (4) Coordinates assignment: vertical coordinates are proportional to
layers, horizontal coordinates depend on the permutation of the vertices within
each layer. At this point the direction of the reversed arcs is also restored.

In order to extend the hierarchical approach to support non-crossing con-
straints we need to focus on steps 2 and 3, because neither the removal of cycles
nor the assignment of coordinates are affected by this kind of constraints. In the
following we denote with G the directed graph to be drawn and with C the set
of non-crossing constraints to be realized in the drawing.

Extending step 2. We recall that in this step the directed graph G is trans-
formed into a proper layered graph. The set of constraints C must be therefore
changed accordingly, due to the fact that dummy vertices could be added to
split an edge involved in some constraint. We let the algorithm assign layers
to vertices as usual, where l(v) denotes the level of a vertex v after the layer
assignment. Then we change C as follows.

Let (a, x) and (b, y) be any two arcs of G such that constraint (a, x; b, y) ∈ C;
w.l.o.g. we can assume l(a) < l(x) and l(b) < l(y). If l(x) = l(a) + 1 and l(y) =
l(b)+1 we do not touch C. Otherwise, at least a dummy vertex has been added to
split (a, x) or (b, y) or both and constraint (a, x; b, y) must be suitably replaced.
Let 〈uk, uk+1, . . . , uk+s〉 be the path that replaced arc (a, x), with uk = a, uk+s =
x, k = l(a), and k + s = l(x). Analogously, let 〈vh, vh+1, ..., vh+t〉 be the path
that replaced arc (b, y), with vh = b, vh+t = y, h = l(b), and h+t = l(y). Let also
[r, r+q] = [k, k+s]∩[h, h+t]. If [r, r+q] �= ∅ we replace constraint (a, x; b, y) with
the constraints (ur, ur+1; vr, vr+1) . . . (ur+q−1, ur+q; vr+q−1, vr+q). Otherwise we
remove it, since it is going to be satisfied by any drawing obtained from layer
assignment l. Figure 3 shows an example of the two cases. It is easy to get
convinced that an original constraint will be realized in the final drawing if and
only if all the new constraints are satisfied.

Thanks to the preprocessing of set C described above, we can now assume
to deal only with constraints involving edges that join vertices in consecutive
layers. More formally, we assume that G has k layers, named L0 . . . Lk, and
that each (a, x; b, y) ∈ C is such that ∃i ∈ [0..k − 1] such that a, b ∈ Li and
x, y ∈ Li+1. Based on this assumption, we can partition C into k−1 sets, named
C0,1 . . . Ck−1,k, where Ci,i+1 contains the constraints related to edges with end-
points in Li and Li+1.

366 Irene Finocchi

(a)

a=uk

uk+1

uk+2

x=uk+s

uk+s-1

...

vh=b

vh+1

vh+t=y

vh+t-1

...

vh+t-2

(b)

a=uk

uk+1

x=uk+s

...

vh=b

vh+1

vh+t=y

...

Fig. 3. Constraints replacement during the layer assignment step: dummy ver-
tices are squared. (a) (a, x; b, y) is replaced by constraints between edges in the
grey band; (b) the grey band is empty: (a, x; b, y) is removed from C.

Extending step 3. Before attempting at minimizing edge crossings, we in-
troduce a constraint realization step, aimed at finding a large set of realizable
constraints. Then we devise a crossing minimization strategy able to take into
account and satisfy the set of realizable constraints previously identified.

We recall that the most used strategy for crossing minimization in hierar-
chical drawings is based on a layer-by-layer sweep heuristic [3], that requires
to repeatedly solve a crossing minimization problem on a bipartite graph with
one side fixed. We therefore adapt the layer-by-layer sweep method to support
non-crossing constraints, by repeatedly solving a one-sided bipartite realizability
problem as follows.

A vertex ordering π0 for L0 is first randomly chosen. Then, for i = 0 to
k − 1, the bipartite subgraph Bi of G induced by the vertices in Li ∪ Li+1 and
the set of constraints Ci,i+1 are considered. An approximated solution to OBR
on this instance is found, keeping layer Li fixed. This leads to identify a set
C ′

i,i+1 ⊆ Ci,i+1 of realizable constraints. We have then to find a vertex ordering
for Li+1 which minimizes edge crossings while realizing the constraints of C ′

i,i+1.
Not all crossing minimization algorithms can be easily adapted to accomplish
this task (think, e.g., of the well-known median/barycenter algorithms [4,14]);
here we suggest a modification of the penalty minimization technique discussed
in [2].

With this method, a penalty digraph P (with vertex set Li+1) is built from Bi

and πi, a feedback arc set F is found on P , and a topological sort of the vertices
in the subgraph of P obtained by deleting arcs in F is returned as ordering for
Li+1. We recall that a feedback arc set of a directed graph is a subset of arcs
whose removal makes the digraph acyclic; the feedback arc set problem requires
to find a minimum weight feedback arc set.

Crossing constraints can be incorporated in the penalty based approach by
suitably assigning weights to some arcs of P and by applying the previous al-
gorithm as is. Namely, if (a, x; b, y) is a constraint in C ′

i,i+1 with a, b ∈ Li and
x, y ∈ Li+1, we add arc (x, y) to P if it does not already exist, and we set

Layered Drawings of Graphs with Crossing Constraints 367

w(x, y) = ∞. Since C ′
i,i+1 is realizable, the subgraph of P induced by the infi-

nite weight arcs is acyclic. Any approximation algorithm for the feedback arc set
problem applied on P will therefore choose none of these arcs, thus minimizing
crossings while satisfying all the constraints in C ′

i,i+1.
As far as the algorithm above is concerned, it may happen that a pair of edges

decomposed by means of dummy vertices may cross several times. This can be
avoided by assigning ∞ weight to suitably chosen arcs in the constraint digraph.
We also remark that our algorithm can be extended to deal with constraints
concerning the relative positions of vertices within each layer. Due to the lack
of space, we defer the details to the full paper.

References

1. G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and
M. Protasi. Approximate Solution of NP-Hard Optimization Problems. Springer
Verlag, 1999.

2. Demetrescu, C. and Finocchi, I. Break the “right” cycles and get the “best”
drawing. In B.E. Moret and A.V. Goldberg, editors, Proc. 2nd Int. Workshop on
Algorithm Engineering and Experiments (ALENEX’00), 171–182, 2000.

3. G. Di Battista, P. Eades, R. Tamassia, and I. Tollis. Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice Hall, Upper Saddle River, NJ, 1999.

4. P. Eades and N.C. Wormald. Edge crossings in drawings of bipartite graphs.
Algorithmica, 11:379–403, 1994.

5. E.R. Gansner, E. Koutsofios, S.C. North, and K.P. Vo. A technique for drawing
directed graphs. IEEE Trans. Softw. Eng., 19:214–230, 1993.

6. M.R. Garey and D.S. Johnson. Computers and Intractability: a Guide to Theory
of NP-completeness. W.H.Freeman, 1979.

7. R. Hassin and S. Rubinstein. Approximations for the maximum acyclic subgraph
problem. Information Processing Letters, 51:133–140, 1994.

8. S. Leipert. Level Planarity Testing and Embedding in Linear Time. PhD-Thesis,
Universität zu Köln, 1998.

9. J. Hopcroft and R. Tarjan. Efficient planarity testing. Journal of the ACM,
21(4):549–568, 1974.

10. J. Kratochv́il. String graphs II: Recognizing string graphs is NP-hard. Journal
Combin. Theory Ser. B, 52:67–78, 1991.

11. J. Kratochv́il. Crossing number of abstract topological graphs. In Proc. 6th Int.
Symp. on Graph Drawing (GD’98), LNCS 1547, 238–245, 1998.

12. J. Kratochv́il, A. Lubiw, and J. Nesetril. Noncrossing subgraphs of topological
layouts. SIAM Journal on Discrete Mathematics, 4:223–244, 1991.

13. J. Opatrny. Total ordering problem. SIAM Journal on Computing, 8(1):111–114,
1979.

14. K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of
hierarchical system structures. IEEE Trans. Syst. Man Cybern., 11(2):109–125,
1981.

	Introduction
	Hierarchical Realizability
	One-Sided Bipartite Realizability
	Constrained Crossing Minimization
	References

