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Abstract. Hierarchical decompositions are a useful tool for drawing
large graphs. Such decompositions can be represented by means of a data
structure called hierarchy tree. In this paper we introduce the notion of
P-validity of hierarchy trees with respect to a given property P: this
notion reflects the similarity between the topological structure of the
original graph and of any high-level representation of it obtained from
the hierarchy tree. We study the P-validity when the clustered graph is
a tree and property P is the acyclicity, presenting a structure theorem
for the P-validity of hierarchy trees under these hypotheses.

1 Introduction and Preliminaries

Many graph drawing algorithms have been designed during the last years [2] and
most of them move from the following assumption: in order to find a pleasant
layout of a graph, we first of all should be able to recognize its graph-theoretical
properties, e.g., acyclicity, planarity, bipartiteness, and so on. Actually, exploit-
ing the relevant features of a graph helps produce better visualizations for it. It
is also well accepted that only few graph drawing algorithms scale up well and
are able to visualize the more and more large graphs that arise in practical appli-
cations. Clustering techniques are a useful tool to overcome this drawback and
make it possible dealing with graphs not fitting in the screen [3,4,5,6]. Recur-
sively clustering the vertices of a graph leads to a hierarchical decomposition of
the graph itself: each cluster in the decomposition is considered as a single node
which is visualized instead of a set of vertices of the original graph, consider-
ably reducing the dimension of the drawing. Thanks to the parent relationships
between clusters in the hierarchical decomposition, the viewer can move from a
high-level representation of the graph to another one by detailing or shrinking
clusters. The considerations above immediately lead to the following problem:
Given a hierarchical decomposition of a graph G and a graph-theoretical property
P satisfied by G, does any high-level representation of G obtained from the hier-
archical decomposition satisfy property P? Though this question naturally arises
when using hierarchical decompositions for visualizing large graphs, as far as we
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know it has not been previously studied in literature. Some related work is due
to Feng et al., who focus on clustered planar graphs and investigate the concept
of compound planarity [5].

In this paper we introduce the general notion of P-validity of hierarchical de-
compositions of graphs with respect to a given property P. This notion reflects
the similarity between the topological structure of the original graph and of any
high-level representation of it and allows us to compare different hierarchical
decompositions associated to the same graph. We then focus on the case where
the clustered graph is a tree and property P is the acyclicity and we present a
structural characterization of the P-validity under these hypotheses, i.e., condi-
tions on the structure of the clusters necessary and sufficient to guarantee the
P-validity of the decomposition.

We start with preliminary definitions and notation. A hierarchical decompo-
sition of a graph can be represented by means of a data structure called hierarchy
tree (or sometimes cluster or inclusion tree) [1,5]. A hierarchy tree HT = (N,A)
associated to a graph G = (V,E) is a rooted tree whose leaves are the vertices of
G. Nodes of a hierarchy tree are called clusters: a cluster c represents a set Vc of
vertices of G, namely, the vertices that are the leaves of the subtree rooted at c.
We say that such vertices are covered by c and we refer to their number as cardi-
nality of c. For brevity, we write u ≺ c to indicate that a vertex u ∈ V is covered
by a cluster c ∈ N . We call singleton cluster a cluster with cardinality equal to
1. W.l.o.g. we assume that the vertices covered by a cluster c are a proper subset
of the vertices covered by the parent of c in HT , i.e., in the hierarchy tree there
is no node with a unique child. Under this hypothesis, the number of nodes of
a hierarchy associated to a n-vertex graph is at most 2n − 1. This implies that
adding a hierarchy tree on the top of a graph requires only space linear in the
number of vertices of the graph itself.

It is possible to visit a hierarchy tree in a top-down fashion by performing
expand and contract operations on the clusters visualized at any instant of time:
these operations define a navigation of HT . The previous ideas can be formalized
by defining the concepts of covering and of view [1,6]:

Definition 1. A covering C of a graph G = (V,E) on a hierarchy tree HT =
(N,A) is a subset of the nodes of HT such that each vertex of G is covered by
exactly a node in C.

A view of graph G on HT is a graph W = (C,L) such that C is a covering of
G on HT and L = {(c, c′) | c, c′ ∈ C, c �= c′, ∃(u, v) ∈ E : u ≺ c and v ≺ c′}.

We refer to the edges of W as links. It is worth observing that any view is a
simple graph: if there exist two edges (u, v) ∈ E and (u′, v′) ∈ E which lead to a
connection between two clusters c and c′, only a single link (c, c′) is considered in
L. We also call Wr and Wl = G the views generated by the root of the hierarchy
tree and by all its leaves, respectively: in other words, Wr and Wl are the least
and the most detailed representations of the graph, respectively.
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2 P-Validity of Views and Hierarchy Trees
A navigation of a hierarchy tree should help the viewer to focus on particular
interesting regions of the graph, according to his/her necessities; hence, if the
clusters are generated not taking into account the topological structure of the
graph, no benefit may derive for the viewer from the clustering structure. In-
formally speaking, only vertices in the same “locality” of the graph should be
grouped together to form a cluster.

A motivating example of the concept of P-validity is illustrated in Figure 1,
where two different hierarchical decompositions associated to a chain with 8
vertices are considered (Figure 1(a) and Figure 1(d)). The hierarchy trees HT1
(Figure 1(b)) and HT2 (Figure 1(e)) corresponding to these decompositions are
both complete binary trees of height 3 and differ only in the permutation of
their leaves. Figure 1(c) and Figure 1(f) report three views related to coverings
{E, F}, {E, C, D}, and {A, B, C, D} in the two decompositions, respectively. All the
views built from HT1 maintain the structural property of the original graph to
be a chain, while the views from HT2 loose this property introducing cycles, up
to become even a clique.
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Fig. 1. Hierarchical decompositions, hierarchy trees, and views of a 8-vertex
chain

In order to characterize the “semantic” differences of hierarchy trees with
“syntactically” similar or even identical structure it is then natural to introduce
a notion of validity of a view and of a hierarchy tree with respect to a certain
property P: from now on we refer to this concept as P-validity.

Definition 2. Let HT be a hierarchy tree associated to a graph G and let P be
a property satisfied by G. A view W of G obtained from HT is P-valid iff W
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satisfies property P. HT is P-valid iff all the views of G obtained from it are
P-valid.

In view of the fact that Definition 2 is parametric in the property P to be
considered, different notions of validity may be thought for different classes of
graphs. For example, we may require a view of a bipartite graph to be bipartite or
a view of a planar graph to be planar. But even more sophisticated definitions
for P can be considered: as an example, we refer to the c-planarity property
introduced by Feng et al. [5]. The interest in characterizing P-valid hierarchy
trees naturally follows from the considerations in Section 1. In this paper we focus
on the case where the clustered graph is a tree and property P is the acyclicity:
for brevity, we will speak of valid views/hierarchy trees under these hypotheses.
In Section 3 we prove necessary and sufficient conditions for a hierarchy tree to
be valid.

3 A Structural Characterization of Valid Hierarchy Trees

Before presenting the structure theorem for the validity of a hierarchy tree, we
give preliminary definitions and lemmas useful for proving it. First of all we study
the connectivity of views obtained from hierarchy trees of connected graphs.

Lemma 1. Each view obtained from a hierarchy tree associated to a connected
graph is connected.

In the following we denote with S(c) the subgraph of T = (V,E) induced by
the vertices covered by a node c of HT . For each u, v ∈ T , let pathT (u, v) be the
path joining u and v in T and let distT (u, v) be the length of this path.

Definition 3. Let c be a node of a hierarchy tree HT associated to a free tree
T . Let u and v be two vertices of T covered by c. u, v are a broken pair of cluster
c iff they are neither coincident nor connected in S(c). A broken pair u, v is
a minimum-distance broken pair of c iff w �≺ c, ∀w ∈ pathT (u, v) such that
w �= u, v.

Lemma 2. Let W be a view on a hierarchy tree HT associated to a free tree T .
If W is not acyclic, then in each cycle C there is at least a cluster containing a
broken pair.

Proof. Let C = (c1, . . . , ch) be a cycle in W . Each cluster ci ∈ C is endpoint
of two links (ci−1, ci) and (ci, ci+1), respectively (to simplify the notation we
assume that h + 1 = 1). Let us call (ri−1, li) and (ri, li+1) two tree edges which
derive links (ci−1, ci) and (ci, ci+1), respectively. For each cluster ci we therefore
identify two vertices covered by it, named li and ri (see Figure 2). If no broken
pair exists in any cluster of C, for each i ∈ [1, h] vertices li and ri are either
coincident or connected in S(ci). This implies the existence of a cycle in tree T ,
that is a contradiction.
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Fig. 2. Vertices, edges, clusters, and links involved in cycle C in the proof of
Lemma 2

Theorem 1. Let T = (V,E) be a free tree and let HT = (N,A) be a hierarchy
tree associated to T . HT is valid iff for each minimum-distance broken pair u, v
of HT distT (u, v) = 2.

Proof. We first prove the necessary condition, showing that the existence in HT
of a minimum-distance broken pair u, v such that distT (u, v) > 2 implies that
HT is not valid. Let c be a node of HT such that u, v are a minimum-distance
broken pair in c. Let us consider the view W = (C,L) where covering C consists
only of singleton clusters, except for cluster c: C = {c}∪{{x}, x ∈ V and x �≺ c}.
Let z and w be the vertices in pathT (u, v) such that (u, z) ∈ E and (w, v) ∈ E.
Since u, v is a minimum-distance broken pair of c, z �≺ c, w �≺ c, and any
other vertex in pathT (u, v) is not covered by c. Moreover, since distT (u, v) > 2,
distT (z, w) > 0, i.e., z and w are distinct vertices. Hence 〈c, {z}, . . . , {w}, c〉 is a
cycle in W , proving that HT is not valid.

We now focus on the sufficient condition, proving that a contradiction can
be derived if we suppose that HT is not valid while satisfying the property on
the minimum-distance broken pairs formulated in the statement of the theorem.
Namely, we assume that in HT there exists a non-valid view W = (C,L), i.e., a
view W that is not a tree. Since W must be connected due to Lemma 1, it must
contain a simple cycle C. We prove that this assumption leads to a contradiction.

The general idea of the proof is to convert W into another view W ′, still
existing on the hierarchy tree, such that: (a) the number of singletons of W ′ is
strictly greater than the number of singletons of W ; (b) the cycle C of W is also
changed into a simple cycle C′ in W ′. The sequence of manipulations that we
perform has finite length, as the number of singletons is clearly upper bounded
by n = |V |. We can therefore prove that at some step during this process we find
a contradiction due to Lemma 2, since we obtain a cycle with no broken pairs.

Let C = (c1, . . . , ch) be a simple cycle of length h in W and let ci, li, and ri

be defined as in the proof of Lemma 2 for 1 ≤ i ≤ h (see also Figure 2). Due
to Lemma 2 a broken pair must exist in C. Let li and ri be the vertices in such
a broken pair of C. We remark that li and ri are not necessarily a minimum-
distance broken pair.

Let us consider the path from li to ri in T , which is unique and not completely
contained in S(ci). On this path we can univocally identify a set of k vertices
uj , for 1 ≤ j ≤ k, such that uj ≺ ci but its successor on pathT (li, ri) is not
covered by ci. Analogously, we can univocally identify a set of k vertices vj , for
1 ≤ j ≤ k, such that vj ≺ ci but its predecessor on pathT (li, ri) is not covered
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Fig. 3. (a) Broken pair li, ri in cycle C; (b) cycle Ĉ in the proof of Theorem 1

by ci. Observe that it could be uj = vj for some j, but vertices with different
indexes always belong to different connected components of S(ci).

It is clear that v1 = li and uk = ri. Besides, it is easy to see that the pairs
uj , vj+1, for 1 ≤ j ≤ k − 1, are minimum distance broken pairs of cluster ci

and, by hypothesis, we know that distT (uj , vj+1) = 2. Let us call zj the unique
vertex of T in the path between uj and vj+1 and let c′

j be the cluster of W that
covers zj . The configuration is illustrated in Figure 3(a).

We now change view W into W ′ by expanding cluster ci at the singleton
level, i.e., by substituting ci with the set of singleton clusters corresponding to
the vertices in S(ci). In the following we prove that we are able to exhibit in W ′

a simple cycle C′. Let us first consider the cycle Ĉ shown in Figure 3(b). Ĉ clearly
exists in W ′, being obtained from C by unrolling pathT (li, ri) (compare vertices
and clusters involved in Figure 3(a) and in Figure 3(b), respectively). However,
Ĉ is not necessarily simple. W.l.o.g. we can assume that c′

j �= c′
s ∀j, s ∈ [1, k−1],

j �= s. We can always reduce to this situation as follows: while Ĉ contains a pair
j, s such that 1 ≤ j < s ≤ k − 1 and c′

j = c′
s, substitute the path

〈
c′
j , . . . , c

′
s

〉

with the path
〈
c′
j

〉
. After this operation all the c′

j are distinct. If ∀j ∈ [1, k − 1]
c′
j �∈ C, C′ = Ĉ is a simple cycle. Otherwise ∃j ∈ [1, k − 1] such that c′

j ∈ C and
two cases may happen:

– c′
1 = ci−1: change Ĉ by replacing the non-simple path 〈ci−1, p1, c

′
1, p2〉 with

the simple path 〈ci−1, p2〉. If k = 1 or ∀j ∈ [2, k − 1] c′
j �∈ C, then the

modified Ĉ is a simple cycle and we can choose C′ = Ĉ. Otherwise, let s
be the smallest value in [2, k − 1] such that c′

s ∈ C, i.e., c′
s = ct for some

t ∈ [1, h], t �= i. Moving clockwise on Ĉ, we find the simple cycle C′ =
〈ci−1, p2, c

′
2, . . . , ps, c

′
s = ct ∼ ci−1〉, where ∼ indicates a subpath of p.

– c′
1 �= ci−1: let s be the smallest value in [1, k−1] such that c′

s ∈ C, i.e., c′
s = ct

for some t ∈ [1, h], t �= i. If s = 1 then C′ = 〈ci−1, p1, c
′
1 = ct ∼ ci−1〉 is a sim-

ple cycle in W ′. Note that the length of the path 〈ct ∼ ci−1〉 is ≥ 1, because
ct = c′

1 �= ci−1. If s>1 then let C′ = 〈ci−1, p1, c
′
1, p2, c

′
2, . . . , ps, c

′
s = ct ∼ ci−1〉.



374 Irene Finocchi and Rossella Petreschi

In this case it could be ct = ci−1; however, the fact that the path from ci−1
to c′

s has length ≥ 3 guarantees C′ to be a cycle of W ′. By construction we
also know that C′ is simple.

In any case we are therefore able to find a view W ′ containing more singletons
than W and to exhibit a simple cycle C′ in W ′. Iterating this reasoning, we obtain
either a cycle with no broken pairs, which is absurd due to Lemma 2, or a cyclic
view containing only singleton clusters, i.e., Wl. This is also a contradiction
because Wl is acyclic being equal to T .

Theorem 1 implies that the validity of a hierarchy tree can be checked in poly-
nomial time. We remark that this does not immediately follow from Definition 2,
since the number of views in a hierarchy tree may be exponential.

References

1. Buchsbaum, A.L., and Westbrook, J.R.: Maintaining hierarchical graph views,
Proc. ACM-SIAM Symposium on Discrete Algorithms (SODA’00), 566-575, 2000.

2. Di Battista, G., Eades, P., Tamassia, R., and Tollis, I.: Graph Drawing: Algorithms
for the visualization of graphs, Prentice Hall, Upper Saddle River, NJ, 1999.

3. Duncan, C.A., Goodrich, M.T., and Kobourov, S.G.: Balanced aspect ratio trees
and their use for drawing large graphs, Journal of Graph Algorithms and Applica-
tions, 4(3), 19-46, 2000.

4. Eades, P., and Feng, Q.: Multilevel visualization of clustered graphs, Proc. 4th
Symposium on Graph Drawing (GD’96), LNCS 1190, 101-112, 1997.

5. Feng, Q.W., Cohen, R.F., and Eades, P.: Planarity for clustered graphs, Proc.
European Symposium on Algorithms (ESA’95), LNCS 979, 213-226, 1995.

6. Finocchi, I., and Petreschi, R.: Hierarchical clustering of trees: algorithms and
experiments, Proc. 3rd Workshop on Algorithm Engineering and Experiments
(ALENEX’01), January 2001.


	Introduction and Preliminaries  
	P-Validity of Views and Hierarchy Trees  
	A Structural Characterization of Valid Hierarchy Trees 
	References

