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1. Visualization in Algorithm Engineering:

Tools and Techniques

The process of implementing, debugging, testing, engineering and experimen-
tally analyzing algorithmic codes is a complex and delicate task, fraught with
many difficulties and pitfalls. In this context, traditional low-level textual de-
buggers or industrial-strength development environments can be of little help
for algorithm engineers, who are mainly interested in high-level algorithmic
ideas and not particularly in the language and platform-dependent details of
actual implementations. Algorithm visualization environments provide tools
for abstracting irrelevant program details and for conveying into still or ani-
mated images the high-level algorithmic behavior of a piece of software.

In this chapter we address the role of visualization in algorithm engi-
neering. We survey the main approaches and existing tools and we discuss
difficulties and relevant examples where visualization systems have helped
developers gain insight about algorithms, test implementation weaknesses,
and tune suitable heuristics for improving the practical performances of al-
gorithmic codes.

1.1 Introduction

There has been an increasing attention in our community toward the experi-
mental evaluation of algorithms. Indeed, several tools whose target is to offer
a general-purpose workbench for the experimental validation and fine-tuning
of algorithms and data structures have been produced: software repositories
and libraries, collections and generators of test sets, software systems for sup-
porting implementation and analysis are relevant examples of this effort. In
particular, in the last years there has been increasing attention toward the
design and implementation of interactive environments for developing and ex-
perimenting with algorithms, such as editors for test sets and development,
debugging, and visualization tools.

In this chapter we address the role of algorithm visualization tools in algo-
rithm engineering. According to a standard definition [44], algorithm anima-
tion is a form of high-level dynamic software visualization that uses graphics
and animation techniques for portraying and monitoring the computational
steps of algorithms. Systems for algorithm animation have matured signifi-
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cantly since, in the last decade, high-quality user interfaces have become a
standard in a large number of areas.

Nevertheless, the birth of algorithm visualization can be dated back to
the 60’s, when Licklider did early experiments on the use of graphics for mon-
itoring the evolution of the content of a computer memory. Knowlton was the
first to address the visualization of dynamically changing data structures in
his films demonstrating the Bell Lab’s low-level list processing language [29].
During the 70’s, the potential of program animation in a pedagogical setting
was pointed out by several authors, and this research ended up with the re-
alization in 1981 of the videotape Sorting Out Sorting [3], which represents
a milestone in the history of algorithm animation and has been successfully
used to teach sorting methods to computer science students for more than
15 years. Sorting Out Sorting is a 30-minute color film that explains nine
internal sorting algorithms, illustrating both their substance and their dif-
ferences in efficiency. Different graphical representations are provided for the
data being sorted, and showing the programs while running on their input
makes it clear at any step how such data are partially reorganized by the
different algorithms. A new era began with the 80’s, when bit-mapped dis-
plays became available on workstations: researchers attempted to go beyond
films and started developing interactive software visualization systems and
exploring their utility not only for education, but also for software engineer-
ing and program debugging. Dozens of algorithm animation systems have
been developed since then.

Thanks to the capability of conveying a large amount of information in
a compact form and to the ability of human beings at processing visual in-
formation, algorithm animation systems are useful tools also in algorithm
engineering, in particular in several phases during the process of design, im-
plementation, analysis, tuning, experimental evaluation, and presentation of
algorithms. Actually, visual debugging techniques can help highlight hidden
programming or conceptual errors, i.e., discover both errors due to a wrong
implementation of an algorithm and, at a higher level of abstraction, errors
possibly due to an incorrect design of the algorithm itself. Sometimes, algo-
rithm animation tools can help in designing heuristics and local improvements
in the code difficult to figure out theoretically, to test the correctness of al-
gorithms on specific test sets, to discover degeneracies, i.e., special cases for
which the algorithm may not produce a correct output. Their use can leverage
the task of monitoring complex systems or complex programs (e.g., concur-
rent programs), and makes it possible also to analyze problem instances not
limited in size and complexity, which even long and boring handiwork would
not be able to deal with. Not last, visualization could be an attractive medium
for algorithms researchers who want to share and disseminate their ideas.

In spite of the great research devoted in recent years to designing and
developing algorithm visualization facilities, the diffusion of the use of such
systems for algorithm engineering is still limited. We believe this is mostly due
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to the lack of fast prototyping mechanisms, i.e., to the fact that realizing an
animation often requires heavy modifications of the source code at hand and
therefore a great effort. Instead, the power of an algorithm animation system
should be in the hands of the end-users, possibly unexperienced, rather than
of professional programmers or of the developers of the visualization tool.
In addition, it is very important for a software visualization tool to be able
to animate not just “toy programs”, but significantly complex algorithmic
codes, and to test their behavior on large data sets. Unfortunately, even
those systems well suited for large information spaces often lack advanced
navigation techniques and methods to alleviate the screen bottleneck, such
as changes of resolution and scale, selectivity, and elision of information.
Finding a solution to this kind of limitations is nowadays a challenge for
algorithm visualization systems.

In this chapter we survey the main approaches and existing tools for the
realization of animations of algorithms. In particular, Section 1.2 is concerned
with the description of software visualization systems and libraries support-
ing visualization capabilities. Section 1.3 describes two main approaches used
by visualization tools: interesting events and state mapping. In Section 1.4 we
discuss difficulties and present relevant examples where visualization systems
helped developers gain insight about algorithms, test implementation weak-
nesses, and tune suitable heuristics for improving the practical performances
of algorithmic codes. Conclusions and challenges for algorithm visualization
research are finally listed in Section 1.5.

1.2 Tools for Algorithm Visualization

In this section we survey some algorithm visualization systems, discussing
their main features and the different approaches introduced by each of them.
We do not aim at being exhaustive, but rather we try to highlight the aspects
of these systems interesting from an algorithm engineering point of view.
We also describe some tools that will be used in Section 1.4 for illustrating
how to prepare algorithm animations for debugging or demonstrations. We
attempt to present visualization systems by their focus and innovation. For
a more comprehensive description of software visualization systems we refer
the interested reader to [44] and to the references therein.

Balsa [8], followed a few years later by Balsa-II [9], was the first system
able to animate general-purpose algorithms and pioneered the interesting
events approach, later used by many other tools. In order to realize an an-
imation, the points of the source code that are strategically important are
annotated with procedure calls that generate visualization events. At run
time, events are collected by an event manager that forwards them to the
views so as to update the displayed images. Balsa-II supports a good level
of interactivity, allowing execution control by means of step-points and stop-
points. In order to provide a measure of an algorithm’s performance, it also
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supports a way to associate different costs to different events and to count
the number of times each interesting event occurs, which may be interesting
for profiling algorithmic codes. Zeus [11] is an evolution of Balsa-II and adds
to the interesting events approach some object-oriented features: each view
is created by deriving a standard base View class and can be provided with
additional methods to handle each interesting event. Zeus also extensively
uses color and sound [12] and deals with three-dimensional objects [13], thus
making it possible to realize highly-customizable visualizations.

TANGO [42] (Transition-based ANimation GeneratiOn) introduced the
path-transition paradigm [41] for creating smooth continuous animations.
This paradigm relies on the use of four abstract data types (location, im-
age, path, and transition) and animations are realized by handling instances
of these data types by means of suitable operations defined on them. X-
TANGO [43] is the X-Windows based follow-up of TANGO. Polka [45] intro-
duces the support for the animation of concurrent programs: the programmer
can assemble and present the whole animation using an explicit global clock
counter as a timing system. It also includes a graphical front-end, called
Samba, that is driven by a script produced as a trace of the execution.

Debugging concurrent programs is more complicated than understand-
ing the behavior of sequential codes: not only concurrent computations may
produce vast quantities of data, but also the presence of multiple threads
that communicate, compete for resources, and periodically synchronize may
result in unexpected interactions and non-deterministic executions. Many
tools have been realized to cope with these issues. The Gthreads library [50]
builds and displays a program graph as threads are forked and functions are
called: the vertices represent program entities and events and the arcs tem-
poral orderings between them. The Hence system [6] offers animated views of
the program graph obtained from execution of PVM programs. Message pass-
ing views are supported by the Conch system [49]: processes appear around
the outside of a ring and messages move from the sending process to the
receiving one by traversing the center of the ring. This is useful to detect
undelivered messages, as they remain in the center of the ring. Kiviat graphs
for monitoring the CPU utilization of each processor are also supported by
other systems such as ParaGraph [25] and Tapestry [33].

One of the few examples of attempts to provide automatic visualization of
simple data structures is UWPI [26] (University of Washington Program Il-
lustrator). The visualization is automatically performed by the system thanks
to an “inferencer” that analyzes the data structures in the source code, both
at compile-time and at run-time, and suggests a number of possible displays
for each of them. Clearly, due to the lack of a deep knowledge of the logic of
the program, only the visualization of simple data structures, such as stacks
or queues, can be supported.

Pavane [38, 40] marks the first paradigm shift in algorithm visualization
since the introduction of interesting events. It features a declarative approach
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to the visualization of concurrent programs. It conceives the visualization as
a mapping between the state of the computation and the image space: the
transformation between a fixed set of program variables and the final image
is declared by using suitable rules. This seems very important for developing
visual debugging tools for languages such as Prolog and Lisp. Furthemore,
the non-invasiveness of the declarative approach seems very important also
in a concurrent framework, since the execution may be non-deterministic and
an invasive visualization code may change the outcome of a computation.

TPM [21] (Transparent Prolog Machine) is a debugging tool for the post-
mortem visualization of computer programs written in the Prolog program-
ming language. In order to deal with the inherent complexity of Prolog pro-
grams, TPM features two distinct views: a fine-grained view to represent the
program’s locality and a coarse-grained view to show the full execution space
via animated AND-OR trees. The overall trace structure also captures the
concept of backtracking to find alternative solutions to goals. ZStep95 [32] is a
reversible and animated source code stepper for LISP programs that provides
a powerful mechanism for error localization. It maintains a complete history
of the execution and is equipped with a fully reversible control structure:
the user allows the program to run until an error is found and then can go
back to discover the exact point in which something went wrong. Moreover, a
simple and strict connection between the execution and its graphical output
is obtained by elementary clicking actions.

Leonardo [17] is an integrated environment for developing, animating, and
executing general-purpose C programs. Animations are realized according to
a declarative approach, i.e., by embedding in the source code declarations that
provide high-level graphical interpretations of the program’s variables. As the
system automatically reflects the modifications of the program state into the
displayed images, a high level of automation is reached. Animations can be
fully customized by means of a graphical vocabulary including basic geomet-
ric shapes as well as primitives for visualizing graphs and trees. Smoothly
changing images are also supported by the system to help the viewer maintain
context [19]. In addition, code written with Leonardo is completely reversible:
when running code backwards, variable assignments are undone, output sent
to the console disappears, graphics drawn are undrawn, and so on. The re-
versibility is extended to the full set of standard ANSI functions. This feature,
combined with the declarative approach, makes the system well suited for vi-
sual debugging purposes. Differently from many other visualization systems,
Leonardo has been widely distributed over the Internet and includes several
animations of algorithms and data structures.

Computational geometry is an area where the visualization and anima-
tion of programs is a very important tool for the understanding, presentation,
and debugging of algorithms, and the animation of geometric algorithms is
mentioned among the strategic research directions in computational geom-
etry [47]. It is thus not surprising that increasing attention has been de-
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voted to algorithm visualization tools for computational geometry (see, e.g.,
[2, 4, 20, 27, 46]). In this chapter we particularly focus our attention on Geo-

Win, a C++ data type that can be easily interfaced with algorithmic software
libraries of great importance in algorithm engineering such as CGAL [22]
and LEDA [34]. The design and implementation of GeoWin was influenced
by LEDA’s graph editor GraphWin (see [34], chapter 12). Both data types
support a number of programming styles that have proven to be useful in
demonstration and animation programs. Examples are the use of result scenes

and the event handling approach, which will be discussed in section 1.4.3. An
instance gw of the data type GeoWin is an editor that maintains a collection
of so-called scenes. Each scene in this collection has an associated container

of geometric objects whose members are displayed according to a set of vi-
sual attributes (color, line width, line style, etc.). One of the scenes in the
collection can be active. It receives the input of all editing operations and
can be manipulated through the interactive interface. Both the container
type and the object type have to provide a certain functionality. The con-
tainer type must implement the STL list interface [35], in particular, it has
to provide STL-style iterators, and for all geometric objects a small number
of functions and operators (for stream input and output, basic transforma-
tions, drawing and mouse input in a LEDA window) have to be defined. Any
combination of container and object type that fulfill these requirements for
containers and objects, respectively, can be associated with a GeoWin scene
in a gw.new scene() operation. More recent work on geometric visualization
include VEGA [27] and WAVE [20].

VEGA (Visualization Environment for Geometric Algorithms) is a client/server
visualization environment for geometric algorithms. It guarantees a low us-
age of communication bandwidth resources, thus achieving good performance
even in slow networks. The end-user can interactively draw, load, save, and
modify graphical scenes, can animate algorithms on-line or show saved runs
off-line, and can customize the visualization by specifying a suitable set
of view attributes. WAVE (Web Algorithm Visualization Engine) uses a
publication-driven approach to algorithm visualization over the Web and is
especially well-suited for geometric algorithms. Algorithms run on a devel-
oper’s remote server and their data structures are published on blackboards
held by the clients. Animations are realized by writing suitable visualization
handlers and by attaching them to the public data structures.

More recent trends in algorithm animation include distributed systems
over the Web. JEliot [24, 31] is an automatic system for the animation of
simple Java programs. After the Java code has been parsed, the user can
choose the cast of variables to be visualized on the scene according to built-in
graphical interpretations. The user needs to write no additional code: in other
words, animation is embedded in the implementation of data type operations.
The graphical presentation is based on a “theater metaphor” where the script
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is the algorithm, the stages are the views, the actors are the program’s data
structures depicted as graphical objects, and the director is the user.

CATAI [14] (Concurrent Algorithms and data Types Animation over the
Internet) tries to minimize the burden of the task of animating algorithms.
The main philosophy behind this system is that any algorithm implemented
in an object-oriented programming language (such as C++) should be easily
animated. This should make this system easy to use, and is based on the idea
that an average programmer or an algorithm developer should not invest too
much time in getting an animation of the algorithm up and running. This is
not always the case, and often animating an algorithm can be as difficult and
as time consuming as implementing the algorithm itself from scratch. CATAI
has an advantage over systems where the task of animating an algorithm can
be quite complex. Producing animations almost automatically, however, can
limit flexibility in creating custom graphic displays. If the user is willing to
invest more time on the development of an animation, he or she can produce
more sophisticated graphics capabilities, while still exploiting the features
offered by the system.

JDSL [5] (Java Data Structures Library) is a library of data structures
written in the Java programming language that supports the visualization
of the fundamental operations on abstract data types; it is well suited for
educational purposes, as students obtain a predefined visualization of their
own implementation by simply implementing JDSL Java interfaces with pre-
defined signatures.

1.3 Interesting Events versus State Mapping

In this section we focus on the main features of animation systems that are
appealing for their deployment in algorithm engineering. From the viewpoint
of the algorithmic developer, it would be highly desirable to rely on systems
that offer visualizations at a very high level of abstraction. Namely, one would
be more interested in visualizing the behavior of a complex data structure,
such as a graph, than in obtaining a particular value of a given pointer. Fur-
thermore, algorithm designers could be very interested in visualizations that
are reusable and that can be created with little effort from the algorithmic
source code at hand: this could be of substantial help in speeding up the time
required to produce a running animation.

Achieving simultaneously high level of abstraction and fast prototyping
makes the task of developing algorithm animation systems highly nontrivial.
Indeed, it is possible to visualize automatically static or even running code,
but at a very low level of abstraction, i.e., when the entities to be displayed
and the way they change can be directly deduced from the code and the
program state. For instance, the program counter tells us the next instruc-
tion, from which the line of the code to be executed can be easily recovered
and highlighted in a suitable view. Also, primitive and composite data types
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can be mapped into canonical representations, thus displaying for free the
data and the data flow. Conventional debuggers rely on this assumption but
they lack capability of abstraction: they are unable to convey information
about the algorithm’s fundamental operations and to produce high-level syn-
thesized views of data and of their manipulations. For example, if a graph is
represented by means of an adjacency matrix, a debugger can automatically
display only the matrix, but not the graph according to its usual representa-
tion with vertices and edges. Toward this aim, some extra knowledge, such as
the interpretation of matrix entries, should be provided to the visualization
system.

The considerations above are at the base of the distinction between pro-

gram and algorithm visualization. In particular, an algorithm visualization
system should be able to illustrate salient features of the algorithm, which
appears to be difficult, if not impossible, with a completely automatic mech-
anism. The opposition automation versus high-level and customization possi-
bilities makes it necessary to define a method for specifying the visualization,
i.e., a suitable mechanism for binding pictures to code. In the remainder
of this section, we discuss the two major solutions proposed in the litera-
ture: interestin events and state mapping. For a comprehensive discussion
of other techniques used in algorithm visualization we refer the interested
reader to [10, 36, 37, 39, 44].

Interesting Events. A natural approach to algorithm animation consists
of annotating the algorithmic code with calls to visualization routines. The
first step consists of identifying the relevant actions performed by the algo-
rithm that are interesting for visualization purposes. Such relevant actions
are usually referred to as Interesting Events. As an example, in a sorting
algorithm the swap of two items can be considered an interesting event. The
second step consists of associating each interesting event with a modification
of a graphical scene. In our example, if we depict the values to be sorted as
a sequence of sticks of different heights, the animation of a swap event might
be realized by exchanging the positions of the two sticks corresponding to
the values being swapped. Animation scenes can be specified by setting up
suitable visualization procedures that drive the graphic system according to
the actual parameters generated by the particular event. Alternatively, these
visualization procedures may simply log the events in a file for a post-mortem

visualization. The calls to the visualization routines are usually obtained by
annotating the original algorithmic code at the points where the interesting
events take place. This can be done either by hand or by means of specialized
editors.

In addition to being simple to implement, the main benefit of the event-
driven approach is that interesting events are not necessarily low-level opera-
tions (such as comparisons or memory assignments), but can be more abstract
and complex operations designed by the programmer and strictly related to
the algorithm being visualized (e.g., the swap in the previous example, as well
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as a rotate operation in the management of an AVL tree). Major drawbacks
include the following: realizing an animation may require the programmer to
write several lines of additional code; the event-driven approach is invasive
(even if the code is not transformed, it is augmented); the person who is in
charge of realizing the animation has to know the source code quite well in
order to identify all the interesting points.

State Mapping. Algorithm visualization systems based on state mapping
rely on the assumption that observing how the variables change provides clues
to the actions performed by the algorithm. The focus is on capturing and
monitoring the data modifications rather than on processing the interesting
events issued by the annotated algorithmic code. For this reason they are also
referred to as “data driven” visualization systems. Conventional debuggers
can be viewed as data driven systems, since they provide direct feedback of
variable modifications.

Specifying an animation in a data driven system consists of providing a
graphical interpretation of the interesting data structures of the algorithmic
code. It is up to the system to ensure that the graphical interpretation at all
times reflects the state of the computation of the program being animated.
In the case of conventional debuggers, the interpretation is fixed and can-
not be changed by the user: usually, a direct representation of the content
of variables is provided. The debugger just updates the display after each
change, sometimes highlighting the latest variable that has been modified by
the program to help the user maintain context. In a more general scenario, an
adjacency matrix used by the code may be visualized as a graph with vertices
and edges, an array of numbers as a sequence of sticks of different heights,
and a heap vector as a balanced tree. As the focus is only on data structures,
the same graphical interpretation, and thus the same visualization code, may
be reused for any algorithm that uses the same data structure. For instance,
any sorting algorithm that manages to reorganize a given array of numbers
may be animated with the same visualization code that displays the array as
a sequence of sticks.

The main advantage of this approach over the event driven technique
is that a much greater ignorance of the code is allowed: indeed, only the
interpretation of the variables has to be known to animate a program. In
Section 1.4.2 we will describe how we realized the animation of an algorithm
in the system Leonardo with very little knowledge of the code to be visualized.
On the other hand, focusing only on data modification may sometimes limit
customization possibilities making it difficult to realize animations that would
be natural to express with interesting events.

We believe that a combination of the two approaches described in this
section would be most effective in algorithm animation as the two approaches
capture different aspects of the problem. In our own experience, each of the
two approaches has cases in which it is much preferable to the other. In
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some cases, we even found it useful to use both approaches simultaneously
for realizing the same animation.

1.4 Visualization in Algorithm Engineering

In this section we present relevant examples where visualization systems have
helped developers gain insight about algorithms, test implementation weak-
nesses, and tune suitable heuristics for improving the practical performances
of algorithmic codes. In particular, we will consider examples where visual-
ization can provide some insight into the design of algorithms at the level
of profiling and experimental evaluation (Section 1.4.1) and where anima-
tion has greatly simplified the task of debugging complex algorithmic code
(Section 1.4.2). One of the most important aspects of algorithm engineering
is the development of libraries. It is thus quite natural to try to interface
visualization tools to algorithmic software libraries. Two examples of such an
effort are considered in Sections 1.4.3 and 1.4.4. In particular, we will show
how demonstrations of geometric algorithms can be easily realized and inter-
faced with libraries (Section 1.4.3), and how fast animation prototyping can
be achieved by reusing existing visualization code (Section 1.4.4).

1.4.1 Animation Systems and Heuristics: Max Flow

The maximum flow problem, first introduced by Berge and Ghouila-Houri
in [7], is a fundamental problem in combinatorial optimization that arises
in many practical applications. Examples of the maximum flow problem in-
clude determining the maximum steady-state flow of petroleum products in
a pipeline network, cars in a road network, messages in a telecommunication
network, and electricity in an electrical network. Given a capacitated net-
work G = (V, E, c) where V is the set of nodes, E is the set of edges and
cxy is the capacity of edge (x, y) ∈ E, the maximum flow problem consists
of computing the maximum amount of flow that can be sent from a given
source node s to a given sink node t without exceeding the edge capacities.
A flow assignment is a function f on edges such that fxy ≤ cxy, i.e., edge
capacities are not exceeded, and for each node v (except the source s and
the sink t),

∑
(u,v)∈E fuv =

∑
(v,w)∈E fvw, i.e., the assigned incoming flows

and the outgoing flows are equal. Usually, one needs to compute not only the
maximum amount of flow that can be sent from the source to the sink in a
given network, but also a flow assignment that achieves that amount.

Several methods for computing a maximum flow have been proposed in
the literature. In particular, we mention the network simplex method pro-
posed by Dantzig [18], the augmenting path method of Ford and Fulkerson,
the blocking flow of Dinitz, and the push-relabel technique of Goldberg and
Tarjan [1].
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The push-relabel method, which made it possible to design the fastest
algorithms for the maximum flow problem, sends flows locally on individual
edges (push operation), possibly creating flow excesses at nodes, i.e., a pre-

flow. A preflow is just a relaxed flow assignment such that for some nodes,
called active nodes, the incoming flow may exceed the outgoing flow. The
push-relabel algorithms work by progressively transforming the preflow into
a maximum flow by dissipating excesses of flow held by active nodes that
either reach the sink or return back to the source. This is done by repeatedly
selecting a current active node according to some selection strategy, pushing
as much excess flow as possible towards adjacent nodes that have a lower
estimated distance from the sink paying attention not to exceed the edge
capacities, and then, if the current node is still active, updating its estimated
distance from the sink (relabel operation). Whenever an active node cannot
reach the sink anymore as no path to the sink remains with some residual
unused capacity, its distance progressively increases due to relabel operations
until it gets greater than n: when this happens, it starts sending flow back
towards the source, whose estimated distance is initially forced to n. This
elegant solution makes it possible to deal with both sending flows to the sink
and draining undeliverable excesses back to the source through exactly the
same push/relabel operations. However, as we will see later, if taken “as is”
this solution is not so good in practice.

Two aspects of the push-relabel technique seem to be relevant with respect
to the running time: (1) the selection strategy of the current active node, and
(2) the way estimated distances from the sink are updated by the algorithm.

The selection strategy of the current active node has been proved to sig-
nificantly affect the asymptotic worst-case running time of push-relabel al-
gorithms [1]: as a matter of fact, if active nodes are stored in a queue, the
algorithm, usually referred to as the FIFO preflow-push algorithm, takes
O(n3) in the worst case; if active nodes are kept in a priority queue where
each extracted node has the maximum estimated distance from the sink, the
worst-case running time decreases to O(

√
mn2), which is much better for

sparse graphs. The last algorithm is known as the highest-level preflow-push
algorithm.

Unfortunately, regardless of the selection strategy, the push-relabel method
in practice yields very slow codes if taken literally. Indeed, the way estimated
distances from the sink are maintained has been proved to affect dramatically
the practical performance of the push-relabel algorithms. For this reason, sev-
eral additional heuristics for the problem have been proposed. Though these
heuristics are irrelevant from an asymptotic point of view, the experimental
study presented in [16] proves that two of them, i.e., the global relabeling
and the gap heuristics, could be extremely useful in practice.

Global Relabeling Heuristic. Each relabel operation increases the esti-
mated distance of the current active node from the sink to be equal to the
lowest estimated distance of any adjacent node, plus one. This is done by
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considering only adjacent nodes joined by edges with some non-zero residual
capacity, i.e., edges that can still carry some additional flows. As relabel op-
erations are indeed local operations, the estimated distances from the sink
may progressively deviate from the exact distances by losing the “big pic-
ture” of the distances: for this reason, flow excesses might not be correctly
pushed right ahead towards the sink, and may follow longer paths slowing
down the computation. The global relabeling heuristic consists of recomput-
ing, say every n push/relabel operations, the exact distances from the sink,
and the asymptotic cost of doing so can be amortized against the previous
operations. This heuristic drastically improves the practical running time of
algorithms based on the push-relabel method [16].

Gap Heuristic. Cherkassky [15] has observed that, at any time during the
execution of the algorithm, if there are nodes with estimated distances from
the sink that are strictly greater than some distance d and no other node
has estimated distance d, then a gap in the distances has been formed and
all active nodes above the gap will eventually send their flow excesses back
to the source as they no longer can reach the sink. This can be achieved
by repeatedly increasing the estimated distances via relabel operations. The
process stops when distances get greater than n. The problem is that a huge
number of such relabeling operations may be required. To avoid this, it is
possible to keep track of gaps in the distances efficiently: whenever a gap
occurs, the estimated distances of all nodes above the gap are immediately
increased to n. This is usually referred to as the gap heuristic and, accord-
ing to the study in [16], it is a very useful addition to the global relabeling
heuristic if the highest-level active node selection strategy is applied. How-
ever, the gap heuristic does not seem to yield the same improvements under
FIFO selection strategy.

The 5 snapshots a, b, c, d and e shown in Fig. 1.1 and in Fig. 1.2 have
been produced by the algorithm animation system Leonardo [17] and depict
the behavior of the highest-level preflow push algorithm implemented with
no additional heuristics on a small network with 19 nodes and 39 edges.
The animation aims at giving an empirical explanation about the utility of
the gap heuristic under the highest-level selection. The example shows that
this heuristic, if added to the code, could have saved about 80% of the total
time spent by the algorithm to solve the problem on that instance. Both the
network and a histogram of the estimated distances of nodes are shown in
the snapshots: active nodes are highlighted both in the network and in the
histogram and flow excesses are reported as node labels. Moreover, the edge
currently selected for a push operation is highlighted as well. Notice that
the source is initially assigned distance n and all nodes that eventually send
flows back to the source get distance greater than n. We believe that this is
an example where a visualization system may be of great help in providing a
meaningful interpretation of data and statistics that can be of large size and
intrinsically complex and heterogeneous.
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(a) 

Network status and 
distances after the 
initialization phase.

(b) 

After 92 operations a 
gap has been formed. 
Nodes with distance 
greater than the gap 
no longer can reach 
the sink. Their 
distance should be 
directly increased to 
n through the gap 
heuristic.

(c) 

Nodes with distance 
greater than the gap 
are being slowly 
relabeled step after 
step if the gap 
heuristic is not 
implemented.

Fig. 1.1. Highest-level preflow push maxflow algorithm animation in Leonardo.
Snapshots a, b, c.
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(d) 

After 443 operations 
the distances of all 
nodes above the gap 
have been increased 
to n and their flow 
excesses are being 
drained back to the 
source. The gap 
heuristic could have  
saved  the last 351 
operations on this 
instance, i.e., about 
80% of the total 
time spent by the 
algorithm to solve 
the problem.

(e) 

After 446 operations  
the maximum flow 
has been determined 
by the algorithm 
and no more active 
nodes remain.

Fig. 1.2. Highest-level preflow push maxflow algorithm animation in Leonardo.
Snapshots d, e.

To conclude this section, we briefly describe how this particular visual-
ization was achieved with Leonardo. The source code used the following data
type for representing the network:

struct network {
int n,s,t; // Number of nodes, source and sink
int d[MAX]; // Estimated distances
int e[MAX]; // Flow excesses
int r[MAX][MAX]; // Residual capacity
char adj[MAX][MAX]; // Boolean adjacency matrix

} G; // Instance of network data type

where G is an instance of the input network, with G.n nodes, source G.s,
sink G.t, and Boolean adjacency matrix G.adj[][]. The algorithm main-
tains the estimated distances in G.d[], the excess flow in G.e[], and the
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residual capacities in G.r[][]. In order to produce the network visualization
we embedded into the source code the following lines:
/**

Graph(Out 1);
Directed(1);
Node(Out N,1) For N:InRange(N,0,G.n-1);
Arc(X,Y,1) If G.adj[X][Y]!=0;

NodeColor(N,Out LightGreen,1) If G.d[N]>=G.n;
NodeFrame(N,Out Red,Out 2,1) If G.e[N]>0;
NodeLabel(N,Out Int,Out L,1) If G.e[N]>0 Assign L=G.e[N];

ArcThickness(X,Y,Out Thick,1) If G.d[Y]==G.d[X]-1 && G.r[X][Y]>0;
ArcStyle(X,Y,Out Dashed,1) If G.d[Y]!=G.d[X]-1 || !G.r[X][Y];

**/

The goal of this visualization code is to declare a directed graph window
displaying a graph with id number 1. The nodes of the visualized graph are in
the range [0, G.n− 1] and there is an edge (X, Y) if and only if the correspond-
ing entry in the adjacency matrix is non-zero. Declarations of NodeColor,
NodeFrame, NodeLabel, NodeLabel, ArcStyle and ArcThickness specify the
graphical attributes of nodes and edges in the visualization. In particular, a
node is colored light green if its estimated distance fron the sink is at least
n; active nodes, i.e., nodes with positive excess flow, are highlighted with a
red frame and the amount of integer (Int) excess flow is shown as a node
label. Finally, edges are solid and thick if they might be selected for a push
operation, i.e., they enter nodes with lower estimated distance from the sink
and have positive residual capacity. The remaining edges are dashed. The
animation hinges upon the fact that, when the original algorithmic code is
executed, any change in the fields of variable G is automatically reflected in
the displayed images. The visualization code for the window showing the es-
timated distances of nodes from the sink is based on similar ideas and not
reported here.

1.4.2 Animation Systems and Debugging: Spring Embedding

In this section we address an important application of animation systems:
debugging complex algorithmic codes. In particular, we describe our own
experience with a graph layout algorithm and show how its animation was
crucial for debugging an available implementation, and for discovering con-
vergence problems due to numerical errors. The algorithm, due to Kamada
and Kawai [28], is based on a force-directed paradigm, which uses a physi-
cal analogy to draw graphs: graph vertices and edges define a force system
and the algorithm seeks a configuration with locally minimal energy. The
embedding produced by the algorithm is also known as spring embedding :
indeed, Kamada and Kawai’s algorithm finds an embedding by introducing
a force system where vertices are mutually connected by springs. In more
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detail, the algorithm attempts to find an embedding of the graph in which
Euclidean distances between vertices are as close as possible to the lengths
of their shortest paths. The energy of this system is thus:

E =

n∑

i=1

n∑

j=i+1

ki,j

2
(dist(i, j)− L · `(i, j))2 ,

where dist(i, j) is the Euclidean distance between vertices i and j, `(i, j) is
the length of a shortest path between i and j in the embedded graph, L is
the desirable length of a single edge in the drawing, and ki,j is the strength
of the spring between vertices i and j.

In order to find a local minimum of the energy, Kamada and Kawai make
use of a two-dimensional Newton-Raphson method to look where partial
derivatives are zero (or close to zero). In particular, at each step all vertices
are frozen, except for one vertex that is moved to a stable point by means of
an iterated process. In more detail, the vertex with largest first-order partial
derivatives is selected, and it is repeatedly moved towards a local minimum
(based on the value of second-order partial derivatives). Those iterations ter-
minate when the first-order partial derivatives become small enough. This
is a very high-level description of the algorithm, which should suffice for our
goals: the interested reader is referred to [28] for the full details of the method.

We received a C implementation of this algorithm that was implemented
straight from the paper. The implementation seemed flawed with convergence
problems on some graph instances: however, despite many efforts, the authors
of the code were unable to track down the bug. We were thus asked to try
to animate their implementation, in order to gain better understanding and
help debug this piece of algorithmic code. At that time, we did not know
much about Kamada and Kawai’s algorithm, and did not know much about
the implementation either: furthermore, we did not want to invest too much
time in studying in depth either the paper or the implementation.

We set up an animation in Leonardo [17]: the only information we had
to retrieve from the implementation concerned the data structures used to
store the graph and the positions of the vertices as progressively refined and
returned by the algorithm. In particular, we had to look only at the following
lines from the implementation code:

int n;
int G[ MAXNODES ][ MAXNODES ];
struct { double x,y; } pos[ MAXNODES ];

where G is the adjacency matrix of the graph, n is the number of vertices,
and pos contains the x and y coordinates of each vertex in the drawing. Our
animation was set up so as to show how vertices were changing their posi-
tion as the pos array was being updated by the algorithm, thus illustrating
the intermediate drawings produced in different steps of the algorithm. We
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Fig. 1.3. Storyboard of Kamada and Kawai’s algorithm animated with Leonardo.

emphasize that it was very difficult to figure out this process using only the
numerical information displayed by a conventional textual debugger.

In order to produce the animation of this algorithm with Leonardo, we
embedded into the source code the following lines:

/**
Graph( Out 1 );
Node( Out N, 1) For N: InRange( N, 0, n-1 );
Arc( U, V, 1 ) If G[ U ][ V ] != 0;
NodePos( N, Out X, Out Y, 1 )

Assign X = pos[ N ].x * 100
Y = pos[ N ].y * 100;

**/
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The goal of this visualization code is to declare a window displaying a
graph with id number 1. The vertices of the visualized graph are labeled
with integers in the range [0, n− 1], and there is an edge (U,V) if and only if
the corresponding entry in the adjacency matrix is non-zero. The coordinates
(x,y) of vertex N of graph 1 are proportional to pos[N ].x and pos[N ].y

respectively. The animation hinges upon the fact that, when the original
algorithmic code is executed, any change in the variables n, G, and pos is
automatically reflected in the displayed images.

Figure 1.3 illustrates different snapshots of the animation throughout the
execution. Together with the window displaying the graph, there is another
window showing the potential energy of each vertex (the visualization code
for this window is not reported). As can easily be seen from the right col-
umn in Figure 1.3, the implementation seems to be looping among different
energy configurations while trying to position vertex 0: in particular, the
animation shows that vertex 0 is oscillating between two different positions.
This was more difficult to discover without visualizing the running code, since
the relevant values of pos[ 0 ].x and pos[ 0 ].y were never identical in
the sequence of cycling steps. We also found examples where the oscillation
was much more complicated, i.e., it involved more than one vertex and its
periodicity was ranging over dozens of iterations. A simple analysis of the
implementation code pointed out that the oscillating behavior was caused by
numerical errors: a more careful tuning of the convergence parameters was
able to fix the problem.

1.4.3 Animation Systems and Demos: Geometric Algorithms

The visual nature of geometric applications makes them a natural area for
designing systems that describe relevant aspects of the algorithm behavior by
using animation. Indeed, the animation of geometric algorithms is mentioned
among the strategic research directions in computational geometry [47] and
increasing attention has been put towards designing algorithm visualization
tools for computational geometry (see, e.g., [2, 4, 27, 46]).

In this section we show how to use the GeoWin data type introduced
in Section 1.2, which was designed to be easily interfaced with algorithmic
software libraries such as CGAL [22] and LEDA [34]. In particular, we discuss
two of the basic features of GeoWin.

Result Scenes. A result scene is a GeoWin scene that depends on one or
more input scenes. The dependence is defined by a function to be called for
the objects of the input scenes. The contents of the result scene are just
the output of this function. Whenever the input scene is modified the output
scene is recomputed. In this way, it is very easy to write programs for showing
the result of an algorithm on-line while the user is modifying the input of the
algorithm, for example, by moving objects around, or by inserting or deleting
objects of the input scenes.
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The following piece of code shows an example program using this ap-
proach. We assume that there is a function INTERSECT computing the inter-
section points (of some type point t) of a given set of straight line segments
(of some type segment t). Then we can create a the result scene that depends
on an input scene sc input of points by calling gw.new scene(INTERSECT,

sc input). Many demonstration programs in LEDA and CGAL are written
in this way. In particular, all algorithms working on an input set of points
(e.g., all kinds of Voronoi and Delaunay diagrams) can be visualized in a
single elegant program.

void INTERSECT(const list<segment_t>&, list<point_t>&);

int main() {
GeoWin gw("Segment Intersection");
list<segment_t> L;
geo_scene sc_input = gw.new_scene(L);
geo_scene sc_ouput = gw.new_scene(INTERSECT,sc_input);
gw.set_color(sc_output,red );
gw.set_visible(sc_ouput,true );
gw.edit(sc_input);
return 0;

}

Event Handling. Every edit operation of the interactive interface of Geo-
Win has an associated event. For instance, creating a new object triggers a
new object event, deleting an object causes a del object event, and moving an
object around creates a move object event. Application programs can handle
these events by specifying corresponding call-back functions that are to be
called whenever a certain event occurs. We show how to use event handling
in the animation of a sweep line algorithm.

The program creates a special scene sc sweep that contains a single verti-
cal line, the sweep line, and it associates a call-back function sweep handler

with the move object events of this scene (by calling gw.set move handler

(sc sweep,sweep handler)). Now, during the interactive mode, the user can
grab and move the sweep line with the mouse, and for each motion event the
sweep handler function is called, with the relative distance vector of the mo-
tion. Note that the call-back function associated with move object events has
a boolean return type. The result of this function is evaluated by GeoWin and
controls whether the actual motion is really executed. In the sweep example
we use this fact to prevent any backward motion of the sweep line.

void sweep_handler(GeoWin& gw, const line& sl,
double dx, double dy) {

// move sweep line horizontally by dx"
// do not allow backward motions
if (dx > 0) {

sweep_x += dx;
"process all events left of sweep_x"

}
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}

int main() {
GeoWin gw("Sweep Demo");

list<line> sweep_line;
sweep_line.append(line(point(0,-100), point(0,100)));

geo_scene sc_sweep = gw.new_scene(sweep_line);
gw.set_move_handler(sc_sweep, sweep_handler);
gw.edit(sc_sweep);

return 0;
}

The screenshot of Figure 1.4 shows the window of an animation that uses
this technique for the animation of Fortune’s sweep algorithm (see [23]) for
computing the Voronoi Diagram of a set of points in the plane. This animation
allows the user to drag the sweep line across the plane while watching several
different structures: the constructed Delaunay triangulation, the shore line of
parabolic arcs, and the circle events of the sweep.

1.4.4 Animation Systems and Fast Prototyping

Many animation systems require heavy modifications to the source code at
hand and, in some instances, even require writing the entire animation code
in order to produce a desired algorithm visualization. Thus, a user of these
systems is supposed to invest a considerable amount of time writing code for
the animation but also needs to have a significant algorithmic background to
understand the details of the program to be visualized. This is not desirable,
especially when algorithm animation is to be used in program development
and debugging. Indeed, our own experience supports the same conclusions
drawn in reference [37], namely that the effort required to animate an algo-
rithm is one of the main factors limiting the diffusion of animation techniques
as a successful tool for debugging, testing and understanding computer algo-
rithms.

In this section we address the issue of fast prototyping in algorithm ani-
mation and we show how this can be achieved by a deep use of reusability : in
many cases, in the area of algorithm animation reusability is not considered
at all, and very often the animation is so heavily embedded in the algorithm
itself that not much of it can be reused in other animations. To achieve this,
we need to enforce reusability in a strong sense: if the user produces a given
animated data type (e.g., a stack, a tree, or a graph), then all its instances in
any context (local scope, global scope, different programs) must show some
standard graphical behavior with no additional effort at all. Of course, when
multiple instances of different data types are animated for different goals, a
basic graphical result may be poor without an additional, application-specific
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Fig. 1.4. Animation of Fortune’s sweep algorithm with GeoWin

coordination effort that by its own nature seems not (and perhaps could never
be) reusable. A successful approach is to offer different levels of sophistica-
tion: non-sophisticated animations should be basically obtained for free. If
one wants a more sophisticated animation, for instance by exploiting some
coordination among different data types for the algorithm at hand, then some
additional effort should be required.

We now exemplify how fast prototyping and reusability can be addressed
in an animation system by taking the example of CATAI [14]. In particular,
we describe the general steps that must be followed for preparing an ani-
mation in CATAI and at the same time illustrate them through a working
example: the animation of Kruskal’s algorithm for computing a minimum
spanning tree (MST) of a graph [30].

Kruskal’s algorithm first sorts all the edges by increasing cost, and then
grows a forest that will finally converge to a minimum spanning tree. Initially,
the forest consists of n singleton nodes (i.e., the vertices in the graph). At each
step, the algorithm analyzes one edge at the time, in increasing order of their
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cost. If the endpoints of the edge under examination are already connected
in the current forest, this edge is discarded. Otherwise, the endpoints are
in two different trees: the edge is inserted into the forest (i.e., it will be a
minimum spanning tree edge), and the two trees are merged into one. For
efficiency issues, the trees are maintained as set union data types [48]. We
refer to LEDA’s implementation of Kruskal’s algorithm [34], which makes use
of the class partition to implement set union data types.

While building an algorithm animation, the first decision to be taken is
which data types are to be animated. In the example at hand, for instance,
it seems natural to visualize the graph being explored; additionally, we could
also choose to animate the underlying partition given by the set union data
types. Once this has been decided, the process of developing an animation
can be broken into three different steps.

Animation libraries. A crucial module that provides the basic tools for an-
imation in CATAI, e.g., the graphical vocabulary, is given by the animation
libraries. CATAI supplies animation libraries for most textbook algorithms:
these libraries are totally independent from the data structures being ani-
mated and can be easily reused. In our example of minimum spanning trees,
CATAI already contains animation libraries to represent graph objects, and
thus this task is trivial.

Animated data types. Once animation libraries are available, we need to
revise the implementation of the original data types to support some anima-
tion capabilities. We call animated classes the classes that implement data
types with support for animation: CATAI offers a specialized C++ library to
assist in the development of animated classes. The principal component of
this library is the Animator class, which provides animation server commu-
nication primitives and binding mechanisms between a data type and the
related animation library. An animated class can be derived from the origi-
nal non-animated class and from the Animator class. These primitives map
data type operators to their animated counterparts.

In our minimum spanning tree example, the non-animated algorithm uses
the LEDA graph and partition data types. The LEDA graph class uses a
single object that acts as a container to hold nodes and edges. To obtain
the animated class, we derive the class animgraph from the LEDA graph

class and from the Animator class. The methods that we wish to animate
are those that change the graph: adding, removing and modifying edges or
vertices. Apart from these methods, we could also add some extra methods
for animation purposes.

Animated algorithm. We are now ready to show how to animate the im-
plementation of Kruskal’s algorithm at hand. Starting from the original code,
we replace the standard graph and partition with their animated counter-
parts. Next, we add some animation-specific code to highlight the behavior
of the algorithm.



1.5 Conclusions and Further Directions 23

Original algorithm

...
G = new graph();

...
list<edge> MST::KRUSKAL(graph &G){

node_partition P(G);
list<edge> L = G.all_edges();
list<edge> T;

L.sort(CMP_EDGES);

edge e;
forall(e,L) {

node v = source(e);
node w = target(e);
if (! P->same_block(v,w)) {

T.append(e);
P->union_blocks(v,w);

}
}
return T;

}

Animated algorithm

...
G = new animgraph(sockd);
...

list<edge> MST::KRUSKAL(animgraph &G){
anim_node_partition P(G);

list<edge> L = G.all_edges();
list<edge> T;

L.sort(CMP_EDGES);
edge e;

forall(e,L) {
color_edge(e, GREEN);

node v = source(e);
node w = target(e);
if (! P->same_block(v,w)) {

T.append(e);
color_edge(e, BLUE);

color_node(v, BLUE);
color_node(w, BLUE);
P->union_blocks(v,w);

}
else color_edge(e, RED);

}
return T;

}

For instance, we can choose to color green the edge that we are currently
considering. If this edge will be included in the minimum spanning tree, then
we will color it blue, and otherwise we will color it red . Endpoints of blue

edges are colored blue, so that a forest of blue trees is visualized throughout
the execution of the algorithm. This blue forest will converge to a minimum
spanning tree. The resulting algorithm is proposed as a method of a container
object, i.e., an MST class, and the public interface of this object will report
the services (methods) that can be requested by the end-user. One snapshot
of the animation is contained in Figure 1.5.

1.5 Conclusions and Further Directions

In this chapter we have addressed the role of visualization in algorithm en-
gineering, and we have surveyed the main approaches and existing tools.
Furthermore, we have discussed difficulties and relevant examples where vi-
sualization systems have helped developers gain insight about algorithms,
test implementation weaknesses, and tune suitable heuristics for improving
the practical performance of algorithmic codes.

We believe that this can have a high impact in the way we design, debug,
engineer, and teach algorithms. Yet, it seems that its potential has not been
fully delivered. Citing verbatim from the foreword of [44] by Jim Foley: “My
only disappointment with the field is that software visualization has not yet
had a major impact on the way we teach algorithms and programming or
the way in which we debug our programs and systems. While I continue to
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Fig. 1.5. Snapshot of the animation of Kruskal with CATAI: edges (2,5) (0,5),
(4,0), (6,7),(4,3) and (1,7) have been examined and colored blue together with
their endpoints, edge (5,3) has been colored red, and the edge (3,8) is currently
being examined and colored green. The state of the partition is shown to the right:
we have grown two blue trees (one containing vertices 0,2,3,4,5 and the other
containing vertices 1,6,7 ). Vertices 8 and 9 are still in singleton trees.

believe in the promise and potential of software visualization, it is at the
same time the case that software visualization has not yet had the impact
that many have predicted and hoped for.”

There are many challenges that the area of algorithm animation is cur-
rently facing. First of all, the real power of an algorithm animation system
should be in the hands of the final user, possibly inexperienced, rather than
of a professional programmer or of the developer of the tool. For instance,
instructors may greatly benefit from fast and easy methods for tailoring ani-
mations to their specific educational needs, while they might be discouraged
from using systems that are difficult to install or heavily dependent on partic-
ular software/hardware platforms. In addition to being easy to use, a software
visualization tool should be able to animate significantly complex algorith-
mic codes without requiring a lot of effort. This seems particularly important
for future development of visual debuggers. Finally, visualizing the execution
of algorithms on large data sets seems worthy of further investigation. Cur-
rently, even systems designed for large information spaces often lack advanced
navigation techniques and methods to alleviate the screen bottleneck, such
as changes of resolution and scale, selectivity, and elision of information.
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