
k-Calling Context Profiling

Giorgio Ausiello

Dept. of Computer and System Sciences

Sapienza University of Rome

ausiello@dis.uniroma1.it

Camil Demetrescu

Dept. of Computer and System Sciences

Sapienza University of Rome

demetres@dis.uniroma1.it

Irene Finocchi

Dept. of Computer Science

Sapienza University of Rome

finocchi@di.uniroma1.it

Donatella Firmani

Dept. of Computer and System Sciences

Sapienza University of Rome

firmani@dis.uniroma1.it

Abstract

Calling context trees are one of the most fundamental data struc-
tures for representing the interprocedural control flow of a program,
providing valuable information for program understanding and op-
timization. Nodes of a calling context tree associate performance
metrics to whole distinct paths in the call graph starting from the
root function. However, no explicit information is provided for de-
tecting short hot sequences of activations, which may be a better
optimization target in large modular programs where groups of re-
lated functions are reused in many different parts of the code. Fur-
thermore, calling context trees can grow prohibitively large in some
scenarios. Another classical approach, called edge profiling, col-
lects performance metrics for caller-callee pairs in the call graph,
allowing it to detect hot paths of fixed length one. We study a gen-
eralization of edge and context-sensitive profiles by introducing a
novel data structure called k-calling context forest (k-CCF). Nodes
in a k-CCF associate performance metrics to paths of length at most
k that lead to each distinct routine of the program, providing edge
profiles for k = 1, full context-sensitive profiles for k = ∞, as
well as any other intermediate point in the spectrum. We study the
properties of the k-CCF both theoretically and experimentally on a
large suite of prominent Linux applications, showing how to con-
struct it efficiently and discussing its relationships with the calling
context tree. Our experiments show that the k-CCF can provide ef-
fective space-accuracy tradeoffs for interprocedural contextual pro-
filing, yielding useful clues to the hot spots of a program that may
be hidden in a calling context tree and using less space for small
values of k, which appear to be the most interesting in practice.

Categories and Subject Descriptors D.2.8 [Software Engineer-
ing]: Metrics—performance measures; D.2.2 [Software Engineer-
ing]: Design Tools and Techniques—programmer workbench

General Terms Algorithms, Measurement, Performance.

Keywords Call graph, calling context tree, dynamic program
analysis, edge profiling, profiling, vertex profiling.
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1. Introduction

Profilers attribute performance metrics to portions of a program’s
execution. Such metrics can be associated to isolated synctactic
units, such as statements or procedures, or to richer contexts, such
as paths in the control flow or the call graph. Accurate profiles can
provide valuable information for program understanding, optimiza-
tion, test coverage, and other software engineering tasks [20, 25, 33,
34].

In this paper we study profiling techniques for interprocedural
control flow, where performance metrics are associated with paths
in the call graph. In a spectrum of possible representations of call-
ing behavior that trade space overhead for information accuracy,
vertex profiling [15] provides the most compact solution. It main-
tains a performance counter for each routine of the program, but no
information is given on the contexts in which hot routine invoca-
tions occur. This limitation can play a crucial role in profiling hard-
ware events such as instruction stalls or cache misses, which can
be very context-dependent [2]. Edge profiling [15] makes one step
further by maintaining a single level of context sensitivity. How-
ever, since measurements are collected only for one-edge paths in
the call graph, this can still yield misleading results [23, 28]. At
the other end of the line, dynamic call trees record the complete
history of routine invocations and can be used to maintain accu-
rate profiling information, but they can grow prohibitively large for
long-running programs.

Calling context trees (CCT) provide an intermediate solution
by keeping track of all distinct calling contexts of a program,
i.e., sequences of procedures that are active during intervals of a
program’s execution [2]. In a CCT, each node is labeled with the
name of a routine and each path from the tree root to a node labeled
with v represents a distinct calling context of v. Since there is no
distinction between different invocations of the same routine within
the same context, a CCT is typically smaller than a call tree, but it
can still remain very large in many applications [12, 13, 27, 35].
The CCT encodes full information on the distinct call paths of
a program’s execution and supports context-sensitive profiling by
associating performance measurements to calling contexts that start
from the program’s root. Unfortunately, calling context trees may
fail to reveal certain relevant hot spots in the code, as discussed in
the following example.

Motivating example. Consider the edge profiling report of Fig-
ure 1(a), which shows the call graph of a program along with the
number of times each routine is called by another routine in a par-
ticular execution. It is easy to see that c, which is called 4 times,
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Figure 1. Motivating example for k-calling context profiling.

is one of the most frequently activated routines. To understand and
optimize the program, we would like to trace back the context in
which most invocations of c arise. By analyzing the edge weights
of the call graph, we discover that c is called 1/4 of the times by
r and 3/4 of the times by b. We notice however that it is impos-
sible to determine from the call graph if a longer hot context of c
exists, i.e., if most activations of c via b happened from e or from
a. Figure 1(b) shows the calling context tree of the same execution.
Observe that all distinct contexts of c are only reached once, which
again yields no clues to the existence of a hot path longer than 1 that
leads to c. A more careful analysis of the CCT reveals that call path
〈a, b, c〉, shown with a shaded background in Figure 1(b), appears
three distinct times as a subtree of the CCT. This implies that 3/4
of the calls of c arise via b when a is active, i.e., there is a call path
of 2 edges that accounts for 75% of all calls of the hottest routine,
whereas there is no interesting call path longer than 2. From this
example, we argue that sometimes profiling short paths that lead to
a hot routine may be more useful than considering whole contexts
constrained to start from the program’s root: this seems to be espe-
cially the case in large modular programs where groups of related
functions are reused in many different parts of the code. Since the
CCT provides frequency counters only for full contexts, extract-
ing information on shorter paths may be difficult. Additionally, we
notice that short paths may be repeated several distinct times in a
CCT, offering the opportunity for more compact and space-efficient
representations.

Profiling call paths of bounded length. Different authors have
discussed the benefits of profiling call paths of bounded length,
rather than entire paths constrained to start from the program’s root.
For instance, the N-level call encodings of Reiss and Renieris [24]
were proposed in a different setting as a technique for compact-
ing raw execution traces. When the size of the CCT is large, the
callgrind cache simulator [31] exploits a reduced CCTk, where
two contexts are collapsed if the trailing k contexts of the cor-
responding call chains are identical. Ammons et al. [3] advocate
the use of bounded-length calling contexts and show that they can
be computed by analyzing offline a previously recorded call tree.
While showing interesting practical results in applying their tool
to improve the performance of several Java applications, their ap-
proach scales poorly to large programs, which may require to col-
lect and process call trees of billions of nodes.

Our contributions. To answer the above concerns, we study a
space and time-efficient profiling methodology that we call k-
calling context profiling. The approach consists of computing per-
formance metrics for all call paths of length up to k that lead to
a program’s routine. The k-calling context profiling problem is
a generalization of other approaches, yielding vertex profiles for
k = 0, edge profiles for k = 1, full context-sensitive profiles for
k = ∞, as well as any other intermediate point in the spectrum.
We develop this concept in several novel directions:

• We design a novel combinatorial structure for k-calling context
profiling that we call k-calling context forest (k-CCF), showing
that it has several relevant properties and discussing its space
requirements (Section 4).

• We show that a k-CCF can be constructed from a CCT; we also
design a new efficient data structure called k-slab forest (k-SF),
which provides a more space-efficient alternative to the CCT
for constructing the k-CCF when k is small (Section 5).

• We perform an extensive experimental evaluation of our data
structures on a suite of large-scale Linux applications (Section 6
and Section 7), showing that:

hot call paths typically do not start from the program’s root
and are much shorter than the depth of the CCT, confirming
that short paths that lead to a hot routine can be a better
profiling target for detecting performance bottlenecks than
the full calling contexts of a CCT;

it is possible to convert a CCT into a pruned version of the
∞-CCF that is extremely compact (on average, just 1.5% of
the CCT on our benchmarks) and includes explicit profiles
for all hot paths;

if room for storing an entire CCT is not available, small
values of k can greatly reduce space at the price of a small
increase of the running time, while still preserving useful
information for detecting most hot call paths.

In Section 2 and in Section 3 we introduce the k-calling context
profiling problem and we provide some preliminary notation and
tools used in the definition of our data structures. Related work
is discussed in Section 8 and concluding remarks are given in
Section 9.

2. k-Calling Context Profiling

In this section we formalize the k-calling context profiling problem,
discussing its connections with other classical forms of interproce-
dural performance profiling.

Let G = (V,E) be the (dynamic) call graph of a program,
where V is the set of routine names and E is the set of caller-callee
relationships, and let r ∈ V be the root function of the program.
We assume that the length of a path is its number of hops. At any
time during the execution of the program, the current execution
context is described by a path π = 〈r, ..., u〉 in G starting from
r, representing the sequence of pending routine activations on the
runtime stack.

The input of the profiler is a trace of call/return program
operations, which update the current context starting from an empty
context as follows:

• call(v) updates the current context π = 〈r, ..., u〉 by adding
a node v s.t. 〈u, v〉 ∈ E. The resulting context is π′ =
〈r, ..., u, v〉.
• return updates the current context π = 〈r, ..., u, v〉 by deleting

the last node v. The resulting context is π′ = 〈r, ..., u〉.
Figure 2(a) shows an example of execution trace along with the
current context after each operation.

We now define the k-calling context of a routine, which general-
izes classical calling contexts [2] by focusing on a bounded number
of the topmost consecutive activations on the runtime stack, rather
than considering the whole path all the way down to the root func-
tion:

Definition 1 (k-calling context). Let π = 〈r, ..., v〉 be a calling
context of v. The k-(calling) context of v in π is the maximal suffix
of π of length at most k.
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operation curr. context

start 〈〉
call(r) 〈r 〉
call(a) 〈r, a 〉

call(b) 〈r, a, b 〉
return 〈r, a 〉
call(c) 〈r, a, c 〉
return 〈r, a 〉
return 〈r〉
call(c) 〈r, c 〉
call(a) 〈r, c, a 〉

call(b) 〈r, c, a, b 〉
return 〈r, c, a 〉

call(b) 〈r, c, a, b 〉
return 〈r, c, a 〉
return 〈r, c 〉
return 〈r〉
return 〈〉

(a) Execution trace.

q activated π c(π)
0 〈r〉∗ 1
〈a〉 2
〈b〉 3
〈c〉 2

1 〈r, a〉∗ 1
〈a, b〉 3
〈a, c〉 1
〈r, c〉∗ 1
〈c, a〉 1

2 〈r, a, b〉∗ 1
〈r, a, c〉∗ 1
〈r, c, a〉∗ 1
〈c, a, b〉 2

3 〈r, c, a, b〉∗ 2

(b) Distinct paths π of any
length q activated by the trace
of Figure 2(a). Counter c(π) de-
notes the number of activations
of path π in the execution trace.

Figure 2. Running example. The CCT corresponding to the exe-
cution trace is shown in Figure 4.

k-calling contexts correspond to the N-depth call sequences in [24].
For instance, if π = 〈r, a, b, c, d〉 is the calling context of d, its 2-
context is 〈b, c, d〉. Another example is given in Figure 2(a), which
shows as framed boxes all the 0, 1, and 2-contexts of the program’s
routines during the execution. As a special case, when k is larger
than the length of π, the k-context of v coincides with its full
context π.

Definition 2 (path activation). A path π of length q in the call
graph G is activated by a call(v) operation if π is the q-context
of v resulting from the operation.

In our example of Figure 2, all activations of length q ≤ 2 are
highlighted as framed boxes. The distinct activated paths are listed
in Figure 2(b) grouped by their length.

Definition 3 (k-calling context profiling). Given a trace of call
and return operations, the k-(calling) context profiling problem
consists of computing, for each activated path π of length q ≤ k,
the number c(π) of times π is activated.

Figure 2(b) shows all activation counters c(π) computed by 3-
context profiling for the sample trace of Figure 2(a). 2-context pro-
filing would compute all counters for paths up to length q = 2. We
notice that, since the longest activated path has length 3, k-context
profiling for any k > 3 computes the same values as 3-context pro-
filing. We remark that only counters of starred paths in Figure 2(b),
which start from the root function, would be maintained in a CCT.
Although we focus on counting routine activations, this approach
can be adapted to deal with other performance metrics, including
execution times, branch mispredictions, cache misses, etc.

The k-context profiling problem is a generalization of different
classical performance profiling approaches at the interprocedural
level. In particular:

• vertex profiling [15] is equivalent to k-context profiling with
k = 0;

• edge profiling [15] is solved by k-context profiling with k ≥ 1;

• context-sensitive profiling [2] is solved by k-context profiling
with k = ∞.

In Section 8 we discuss further connections between this approach
and previous work in the literature.

a, 2

b, 1

d, 4c, 5

a, 1

c, 6

d, 3

b, 1

(a) T1, T2

d, 7c, 5

a, 3

c, 6b, 2

(b) join(T1, T2)

Figure 3. Weighted tree join operation: for each node v we report
its label ℓ(v) and its counter c(v).

3. Preliminaries

In this section we introduce some preliminary notation and a useful
operator on trees, called tree join, that will be used to define the
data structures discussed in the paper.

Let T be a labeled tree where ℓ(v) denotes the label of node
v. We assume that, for each tree node, all its children have distinct
labels. Let r be the root of T . Throughout this paper we will assume
that a tree root has level 0. A root-path is any path starting at r.
A root-to-leaf path is a root-path ending on a leaf. We also say
that a label path is the sequence of labels of a path in a labeled
tree. A root-label path is the sequence of labels of a root-path
and a root-to-leaf label path is the sequence of labels of a root-
to-leaf path. We denote by πR = 〈z, . . . , b, a〉 the reverse of a path
π = 〈a, b, . . . , z〉.
Tree join. We define the tree join operation as follows:

Definition 4 (Tree join). The join of two labeled trees T1 and T2,
denoted as join(T1,T2), is the minimal labeled forest F such that
F contains a root-label path π if and only if T1 or T2 contain π.

By the minimality of F , if two root-paths of T1 and T2 share a
common prefix of labels, that prefix is represented in F only once.
We can therefore distinguish two cases, depending on the labels of
tree roots r1 and r2:

• if ℓ(r1) 6= ℓ(r2), then F simply consists of T1 and T2;

• if ℓ(r1) = ℓ(r2), then T1 and T2 are merged in F into a unique
tree with root r and label ℓ(r) = ℓ(r1) = ℓ(r2).

Weighted tree join. The join operation can be easily extended to
deal with the weighted case where a counter c(v) is associated to
each node v of T1 and T2. Let z be a node of F and let πz the
unique root-path that leads to z in F . We define c(z) as the sum of
all counters c(v) of nodes v in V1 ∪ V2 such that the root-path πv

that leads to v in T1 or T2 has the same sequence of labels as πz .

Forest join. The join operator can be also generalized to arbitrary
sets of trees {T1, ..., Th}, with h ≥ 3: if all trees have distinct
root labels, then F coincides with the input forest {T1, ..., Th}.
Otherwise, let T1 and T2 be two labeled trees with the same root
labels, then:

join(T1, ..., Th) = join(join(T1, T2), T3, ..., Th).

Examples. An example of weighted join application is shown in
Figure 3. As another example, we notice that the join operator can
be used to provide an alternate definition of the CCT, compared to
the classical formulation based on an equivalence relation on pairs
of nodes of the call tree [2]. Let T be a call tree, let h be its number
of leaves, and let π1, ..., πh be the root-to-leaf paths of T : the CCT
of the program’s execution encoded by T is exactly the result of
the join(π1, ..., πh) operation. Since all paths share the same root,
they have a non-empty common prefix and the join will return a
unique tree (the CCT) instead of a forest.
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0-CCF

1-CCF

2-CCF

3-CCF = 4-CCF = ...

TaTr

r, 1 a, 2

r, 1 c, 1

r, 1

Tb

a, 3

r, 1

b, 3

c, 2

Tc

r, 1

c, 2

r, 1

a, 1

r, 2

CCT

r, 1

a, 1

a, 1

b, 2

c, 1b, 1

c, 1

Figure 4. CCT and k-CCF for the example of Figure 2.

4. k-Calling Context Forest

In this section we study data structures for k-context profiling.
In particular, we introduce a novel data structure called k-calling
context forest, discussing its properties and space requirements.

4.1 Definition and Properties

A k-calling context forest maintains information on all activated
paths of length up to k and can be simply defined as the join of the
reverse of those paths:

Definition 5 (k-calling context forest). The k-calling context forest
(k-CCF) of the execution of a program is a labeled forest defined

as join(πR
1 , . . . , πR

s ), where {π1, . . . , πs} is the set of all distinct
paths of length at most k activated by the execution.

Figure 4 shows the k-CCF for the running example of Figure 2(a)
for different values of k. k-calling context forests have the follow-
ing relevant properties:

1. each node ω of the forest is labeled with a routine name ℓ(ω);

2. there is a tree Tu of depth at most k for each distinct routine
u in the program; the root of Tu is labeled with u; there is a
one-to-one mapping between nodes of the call graph and roots
of the k-CCF;

3. there is a one-to-one mapping between k-CCF nodes and dis-
tinct call paths of length up to k activated during the program’s
execution; in particular, there is a root-label path 〈a, b . . . , z〉 of
length q ≤ k in Ta if and only if 〈z, . . . , b, a〉 is an activated
q-context of a;

4. 0-CCF ⊆ 1-CCF ⊆ 2-CCF ⊆ . . . ⊆ ∞-CCF;

5. for all k ≥ d, k-CCF = d-CCF = ∞-CCF, where d is
the length of the longest distinct context (i.e., the depth of the
CCT);

6. all leaves of the ∞-CCF are labeled with the name r of the root
function of the program;

7. each leaf of the ∞-CCF corresponds to a distinct context of
the program; therefore, there is a one-to-one mapping between
CCT nodes and ∞-CCF leaves.

Performance metrics. We now extend the definition of the k-CCF
to include the number of activations of each call path represented in
the forest. We assume that each node ω of the k-CCF is equipped
with a counter c(ω). Let Tℓ(α) be the k-CCF tree containing ω,
and let 〈α, β . . . , ω〉 be the unique root-path that leads to ω in
Tℓ(α). Then c(ω) is the number of activations of the call path
π = 〈ℓ(ω), . . . , ℓ(β), ℓ(α)〉, i.e., c(ω) = c(π). Therefore, building
a k-CCF solves the k-calling context profiling problem.

Counters associated to k-CCF nodes have some relevant prop-
erties:

(a) let υ be a node in a k-CCF and let ν be its parent. Then
c(ν) ≥ c(υ);

(b) let ν be a node in a k-CCF and let υ1, . . . , υh be the children
of ν. For any program trace such that the root function is never

recursively called, c(ν) =
Ph

i=1 c(υi);

(c) let Lk be the set of leaves of a k-CCF. Then
P

ν∈Lk
c(ν) is

equal to the number of call operations in the execution trace.

4.2 Space Analysis

In this section we provide upper bounds on the size of a k-CCF in
terms of the sizes of the CCT and the call graph and show that the
bounds are tight in the worst case. We also show that the k-CCF
can be considerably smaller than the CCT in some scenarios.

Theorem 1. The number of nodes of a k-CCF is bounded by

O(min{kn, dn, |V |k+1}) in the worst case, where n is the number
of nodes of the CCT, d is the depth of the CCT, and |V | is the
number of routines of the program.

Proof. We first bound the size of a tree Tu of the k-CCF. By
Definition 5, Tu is obtained by joining the reverse of all activated q-
contexts of u of length q ≤ k. The number of such contexts cannot
exceed the number nu of nodes of the CCT labeled with u. Since
each q-context is not longer than min{k, d}, where d is the length
of the longest distinct context (i.e., the depth of the CCT), then the
number of nodes of Tu is O(nu · min{k, d}). The claim follows
from the observation that

P

u∈V
nu = n, where n is the number

of nodes of the CCT, and from the fact that there can be at most
|V |q+1 distinct q-contexts for each q ≤ k.

As special cases, we notice that a 0-CCF contains |V | nodes and a
1-CCF contains |V |+ |E| nodes, where |E| is the number of edges
of the dynamic call graph.

Discussion. The worst-case space bound proved in Theorem 1 is
tight. Consider for instance a CCT of n = |V | nodes consisting
of a chain 〈v1, v2, ..., vn〉 in which all node labels are distinct (i.e.,
ℓ(vi) 6= ℓ(vj) for all i 6= j). For each node vi, the k-CCF contains
one chain rooted at vi, which includes the (at most k) predecessors
of vi in the CCT, taken in reverse order. Hence, the k-CCF contains
(n− k)(k +1)+ k(k +1)/2 nodes. If k = n/2, the k-CCF forest
has quadratic size Θ(n2) with respect to the CCT.

In Section 7 we will provide experimental evidence that the size
of the k-CCF for typical real-world applications can be consider-
ably smaller than the size of the CCT for small values of k. We
conclude this section by showing a scenario that illustrates why a
k-CCF can be more compact than the CCT in some cases.

Theorem 1 and the chain example described above show that the
k-CCF can be up to k times larger than the CCT in the worst case.
However, in that example each k-context appears in the CCT only
once (all node labels are distinct). On the other hand, all repeated
occurrences of the same k-context in the CCT will appear only once
in the k-CCF, and in that case we can expect a space reduction.
Consider the example in Figure 5, in which k = 2 and n = t2 + 1
for any appropriate integer t ≥ 2: in this example, any two CCT
nodes at the same distance from the root have the same label, except
for the children of the root. Hence, each 2-context ending in a node
at level ≥ 4 appears exactly t times in the CCT, but only once in
the 2-CCF. It is not difficult to see that in this scenario the number
of nodes of the k-CCF is O(t) = O(

√
n) for any constant value of

k, i.e., quadratically smaller than the CCT.

5. Construction Algorithms

In this section we discuss algorithms for building the k-CCF. We
first observe that, since each call event activates up to k paths si-
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Figure 5. Example showing that the k-CCF can be asymptotically
smaller than the CCT. Shaded label paths of length t − 2 are
duplicated t times in the CCT.

multaneously, maintaining explicitly the k-CCF concurrently with
program execution would require updating up to k nodes at each
routine invocation. This may considerably slow down the program
even for small values of k. We therefore discuss offline solutions
that construct the k-CCF at the end of the execution. We first show
that the k-CCF can be constructed starting from the CCT, and then
we propose a more space-efficient approach based on a new data
structure that can be maintained efficiently during the execution of
the program.

5.1 Building the k-CCF from the CCT

Since a CCT represents all distinct contexts of a program, by
Definition 1 it includes all distinct q-contexts for any value of q.
Hence, the CCT contains implicitly all the information needed to
construct the k-CCF.

In this section we show that the k-CCF can be constructed
starting from the CCT by joining the maximal reversed suffixes
of length at most k of all its root paths. We abstract this operation
by introducing a useful forest inversion primitive and show how to
implement it.

Definition 6 (k-inverse forest). Let F be a labeled forest with n
nodes v1, . . . , vn. For all i ∈ [1, n], let πi be the maximal suffix of
length at most k of the unique root path that leads to vi in F . The
k-inverse of F , denoted as invk(F ), is the labeled forest obtained
as join(πR

1 , . . . , πR
n ).

The proof of the following lemma provides a simple algorithm for
computing the k-inverse of a labeled forest.

Lemma 1. Given a labeled forest F with n nodes, the inverse forest
invk(F ) can be computed in O(kn) time.

Proof. To build the inverse forest, we first compute for each distinct
label x of F a list Lx of all nodes v ∈ F such that ℓ(v) = x. This
can be done in O(n) time. We then construct one output tree Tx at a
time: for each label x, we start from an empty tree Tx and for each
node v ∈ Lx we trace at most k ancestors back in F , joining with
Tx the path of scanned nodes. To trace all ancestors in O(k) time,
we assume that there is a pointer in F from each node to its parent.
Since joining a tree with a path of length at most k requires O(k)
time and we have |Lx| paths to join, each tree can be constructed
in O(k|Lx|) time. The bound follows from the observation that
P

x
|Lx| = n.

The following claim follows directly by Definition 5 and Defini-
tion 6:

Property 1. k-CCF = invk(CCT).

By Lemma 1 and Property 1, the k-CCF can be computed from a
CCT with n nodes in O(kn) time.

CCT

0

k

2k b, 7
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Figure 6. Example of CCT and k-SF with k = 2 computed over
the same execution trace.

5.2 A More Space-efficient Approach

The approach discussed in Section 5.1 has the disadvantage that
an entire CCT has to be constructed in order to produce a k-CCF.
We notice that the CCT contains all the information sufficient to
build a k-CCF for any value of k. This may be superfluous when
the k-CCF is smaller than the CCT. The question that we tackle in
this section is how to design a data structure that:

1. maintains information on all activated paths of length up to k,
and thus can be used for constructing the k-CCF;

2. is more compact than the CCT, at least for small k;

3. can be constructed efficiently on the fly during program execu-
tion.

To this aim, we propose a novel data structure called k-slab forest
(k-SF), which can be defined in terms of the CCT as follows:

Definition 7 (k-slab forest). Let v1, ..., vt be the t nodes at levels
multiple of k in the CCT (including the root, which has level 0).
For any k > 0 and each i ∈ [1, t], let Tvi

be the maximal subtree
of the CCT of depth at most 2k − 1 rooted at vi. The k-slab forest,
denoted as k-SF, is the labeled forest defined by join(Tv1

, ..., Tvt
).

If nodes at levels multiple of k have z distinct node labels in the
CCT, then the k-SF will contain exactly z trees, one per label.
An example of k-SF for k = 2 is illustrated in Figure 6. The
example shows that k-SF trees are not necessarily subtrees of the
CCT, due to the join operation. For instance, the k-SF tree rooted at
the node with label h has no corresponding subtree in the CCT, as
it is obtained by joining the two CCT subtrees with labels 〈h, f, b〉
and 〈h, x〉.

Properties. By Definition 7, k-SF = CCT for all k > d, where d
is the depth of the CCT. Therefore, the k-SF can be regarded as a
generalization of the CCT.

To analyze the k-SF, we consider the CCT to be conceptually
divided into slabs of height k − 1, where the i-th slab consists of
nodes with level ∈ [ik, (i + 1)k). We will say that a node is a slab
boundary node if its level is a multiple of k (see shaded CCT nodes
in Figure 6). Each tree Tj of the k-SF can be also divided into a
top region and a bottom region: the top region consists of nodes in
levels up to k − 1, i.e., top(Tj) = {u ∈ Tj | level(u) < k}, while
the bottom region contain all the remaining nodes: bottom(Tj) =
{u ∈ Tj | k ≤ level(u) < 2k}. Each tree Tj of the k-SF spans two
consecutive slabs of T : the top and bottom regions contain nodes
belonging to the i-th and the (i+1)-th slabs, respectively, for some
i.

Lemma 2. The size of the k-SF is upper bounded by min{2n, |V |2k},
where n if the number of nodes of the CCT and |V | is the number
of routines of the program.
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Proof. Each slab of the CCT (except for slab 0) appears both in the
top region and in the bottom region of some k-SF tree. This implies
that each node of the CCT appears at most twice in the k-SF, and
therefore |k-SF| ≤ 2n. Since the join operation preserves the tree
height, the depth of any k-SF tree is at most 2k − 1. The number
of distinct labeled paths of length 2k − 1 starting from a node with
a given label is at most |V |2k−1, and any two occurrences of the

same path in the CCT are joined. The inequality |k-SF| ≤ |V |2k

follows by summing up over all distinct labels.

When k is not too large and the number |V | of routines is small
compared to the CCT size n, the k-SF can be considerably smaller
than the CCT, as we will see in Section 7.

We now show that the k-SF includes all activated paths of length
up to k, and thus can be used for constructing the k-CCF:

Lemma 3. For each activated path π = 〈v1, ..., vq〉 of length
q ≤ k, there is a tree in k-SF containing π.

Proof. Let v be the deepest slab boundary node that is an ancestor
of v1. Since the distance between v and v1 in the CCT is smaller
than k, π has length at most k, and the k-SF trees have depth 2k−1,
then π is fully contained in the k-SF tree with root label ℓ(v).

Property 2. k-CCF = invk(k-SF).

Proof. By Lemma 3 any q-context in the CCT with q ≤ k also
appears in some k-SF tree. Since the inverse is obtained by joining
reversed q-contexts, it follows that invk(CCT) ⊆ invk(k-SF). The
opposite inclusion can be proved by observing that any root-to-leaf
label path in the k-SF is also a label path starting at some slab
boundary node of the CCT, and thus invk(k-SF) ⊆ invk(CCT).
The claim follows by Property 1.

By Lemma 1 and Property 2, the k-CCF can be computed from a
k-SF with n nodes in O(kn) time. As a technical note, we observe
that computing correct frequency counters in the k-CCF using the
invk primitive requires all counters of nodes in the top regions of
the k-SF, except for the tree with root label r, to be first cleared to
zero.

Algorithm. We now show an online algorithm for building the
k-SF in constant worst-case time per trace operation. The approach
is similar to the classical CCT construction algorithm [2]. The main
difference is that, instead of having one current location as in the
CCT, in the k-SF we have two current locations, working on two
trees at a time. One location t points to a node in a top region (top
location); the other, denoted by b, points to a node in a bottom
region (bottom location). Both locations are locally updated in the
same way as the CCT. The algorithm starts with an empty k-SF
and maintains the following data:

• A set R of roots of k-SF trees. Since each tree has a distinct
root label, R is stored in a mapping table so that, given a label
x, it is possible to find in O(1) time the tree associated with x:
we denote this operation find(R,x).

• The top and bottom pointers t and b.

• A shadow stack S containing, for each pending routine activa-
tion, the corresponding 〈t, b〉 pair of locations.

Figure 7 shows how to update the k-SF at each call and return

event. The stack S is initialized with the special pair 〈null, null〉.
When the root function r is called, the algorithm creates the first
root of the k-SF, pointed to by t (line 6). Let d = |S| − 1
denote the length of the current calling context. As long as d < k,
b = null and we work only on the top region of the tree rooted

procedure call(x):

1: 〈t, b〉 ← top of stack S
// update top region

2: if (|S| − 1) mod k = 0 then
3: b← t
4: t ← find(R,x)
5: if t = null then
6: add root t with ℓ(t) = x and c(t) = 0 to k-SF and R

7: end if
8: else

9: find child w of node t with label ℓ(w) = x
10: if w = null then
11: add node w with ℓ(w) = x and c(w) = 0 to k-SF
12: add arc (t, w) to k-SF
13: end if

14: t← w
15: end if

16: increase c(t) by 1
// update bottom region

17: if b 6= null then
18: find child u of node b with label ℓ(u) = x
19: if u = null then

20: add node u with ℓ(u) = x and c(u) = 0 to k-SF
21: add arc (b, u) to k-SF
22: end if
23: b← u

24: increase c(b) by 1
25: end if

26: push 〈t, b〉 onto stack S

procedure return:

1: pop stack S

Figure 7. k-SF construction algorithm.

at r, adding nodes and updating counters at location t (lines 9–14).
When d ≥ k, both t and b locations are updated (lines 2–16 and
17–25, respectively). Every time d reaches a positive multiple of k
(line 6), t enters a bottom region of the forest, and thus we move b
to t and raise t back to the top by letting it point to a (possibly new)
tree root in the k-SF (lines 3–7).

If lookups at lines 9 and 18 are implemented with a hash table,
the algorithm requires constant time per call event.

Exhaustive Instrumentation vs. Sampling. For the sake of sim-
plicity, the algorithm we presented for on-line construction of the
k-SF assumes all call/return events are traced using exhaustive in-
strumentation. Notice that full event tracing is required in all ap-
plications where perfect accuracy is needed, e.g., debugging or in-
trusion detection [12]. If we can settle for approximate results, a
simpler alternative to the k-SF could be to just walk up to k frames
on the top of the stack periodically, joining the traced k-contexts
to an initially empty k-CCF. In this way, one could build directly
a k-CCF on the fly, without having to first construct a k-SF. How-
ever, as discussed in [12, 35], a low-overhead solution using sam-
pled stack-walking alone can be rather inaccurate. To overcome this
problem, the authors of [35] use an effective technique called burst-
ing, where stack-walking is immediately followed by a short pe-
riod, called a burst, during which the profiler traces each and every
routine call and return. This substantially increases accuracy while
keeping the running time reasonably low. We remark that building
a k-CCF on the fly during a burst can be rather expensive, requiring
O(k) time per call. A natural way to take advantage of the benefits
of bursting in collecting k-context profiles consists of feeding the
k-SF algorithm with an event trace generated by sampled bursting.
By suitably tuning the sampling frequency and the burst duration,
this approach can yield effective time/accuracy tradeoffs. We ana-
lyze this method experimentally in Section 7.
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Application
Call

CCT
CCT Call CCT

graph (call sites) tree depth

amarok 13 957 6 212 090 13 794 470 1 254 852 066 210
ark 10 081 3 859 081 8 171 612 238 179 120 192

audacity 6 880 5 264 498 13 131 115 960 243 960 305
dolphin 9 349 3 451 678 11 667 974 185 785 164 160
evince 4 869 2 003 454 6 772 430 92 775 397 226
firefox 6 076 12 670 331 30 294 063 617 296 926 433

gedit 5 934 3 927 949 4 183 946 419 970 719 263
ghex2 3 778 960 781 1 868 555 145 049 522 158
gimp 5 275 11 350 729 26 107 261 819 811 432 291

gwenview 11 510 4 970 270 9 987 922 459 196 696 281
inkscape 6 426 5 854 809 13 896 175 624 835 038 299

kile 12 280 5 450 415 12 936 360 484 246 000 230
oowriter 16 541 16 371 565 41 395 182 657 189 223 268
sudoku 5 347 1 335 864 2 794 177 186 644 308 266

vlc 5 808 1 844 857 3 295 907 122 164 908 173

Table 1. Number of nodes of call graph, CCT (both with and
without call sites), call tree, and depth of the CCT for different
Linux applications.

Handling Recursion. A major problem related to the construc-
tion of the CCT is that its depth may be unbounded in the presence
of recursion. To overcome this problem, Ammons et al. [2] define
a vertex equivalence relation on the call tree so that all occurrences
of a given procedure name on a same path from the root to a leaf are
equivalent. While this allows it to bound the depth of the CCT to the
number of distinct routines in the program, it implies adding back-
edges, which break the tree structure of the CCT and its context-
uniqueness property with respect to the dynamic call tree [2]. In
contrast, by Definition 7 the k-SF has a depth bounded by 2k − 1
and maintains the context-uniqueness property by avoiding back-
edges.

6. Experimental Setup

In this section we give some details on our implementation, bench-
marks, and experimental methodology.

Tree implementation. We implemented our data structures in C
in a common framework that makes the different versions directly
comparable. We used two different representations for tree nodes:

• a standard first-child, next-sibling representation, which is very
space-efficient and guarantees that the existence of a node child
can be checked in time proportional to the number of children;

• an indexed representation obtained by statically analyzing the
code of each routine and associating an integer key to each
called subroutine. Each tree node stores its children in a direct-
access array, which is indexed by the integer keys. With this
representation we can check the existence of a node child in
constant time with just one table lookup. The indexing works
only for direct calls: indirect calls are added to a separate list,
similarly to the standard representation.

According to our experiments with several benchmarks, the aver-
age degree of CCT nodes is a small constant around 2-3, making
the classical first-child, next-sibling tree representation a simple
and efficient solution for maintaining a CCT. Conversely, since the
k-SF tends to have larger degrees due to the tree join operations
(see Definition 7), the indexed representation can deliver substan-
tial speedups especially for small values of k. We will discuss this
issue in more depth in Section 7.

Data structures. In addition to the CCT, k-CCF, and k-SF, we
also considered variants of the k-CCF obtained by pruning nodes
according to two different rules:

• pruned k-CCF. Obtained by removing from the k-CCF all
chain subtrees that lead to a leaf. For each such chain, we
maintain in the partial k-CCF only its first node, along with
a pointer to a corresponding k-SF or CCT node from which the
pruned chain can be univocally reconstructed. This pruning rule
is motivated by the worst-case example of Section 4: in a CCT
chain with distinct node labels, each node can be represented in
Θ(k) trees of the k-CCF, while these repeated occurrences are
eliminated by chain pruning.

• x%-similar ∞-CCF. Contains all calling contexts of maximal
length in which most invocations of each routine occur. These
paths are the most interesting from a performance profiling
perspective and, as we will see in Section 7, they tend to be
rather short. The x%-similar ∞-CCF is formally defined as
follows. We say that a node u in a k-CCF tree with root r is x%-
similar to r if its counter is sufficiently large w.r.t. the counter of
r, namely if c(u) ≥ (x/100) c(r). Otherwise, the node is called
x%-dissimilar. Monotonicity of counters discussed in Section 4
guarantees that all descendants of a dissimilar node are also
dissimilar. The x%-similar ∞-CCF is obtained by removing
from the ∞-CCF all x%-dissimilar nodes.

We also considered two scenarios for constructing the CCT and
the k-SF: exhaustive instrumentation and static bursting with a 2
msec sampling interval and a 0.2 msec burst length (see Section 5.2
and [13, 35]).

Benchmarks. Tests were performed on a variety of large-scale
Linux applications, including an Internet browser (firefox), graph-
ics programs (inkscape and gimp), an archiver (ark), an hex-
adecimal file viewer (ghex2), audio players/editors (amarok and
audacity), and the Open Office word processor (oowriter). To
ensure deterministic replay of the execution of the interactive ap-
plications, following [13] we used recorded execution traces of
typical usage sessions. Statistical information about test sets is
shown in Table 1. In our experiments, we considered the simplest
scenario where distinct call sites within the same routine are re-
garded as equivalent. We notice that, even in this case, the calling
context trees of the benchmarks we analyzed contain several mil-
lion nodes. By maintaining distinct nodes for distinct call sites, the
number of CCT nodes grows by a factor between about 2 and 3 in
our test suite, making the quest for space-efficient techniques even
more important (see also [27]).

Platform. Running times were measured on a 2.8 GHz Intel Core
i7 with 3 GB of main memory, running Debian 6.0.4, Linux Kernel
2.6.32, 32 bit.

7. Experimental Results

In this section we present an experimental analysis of our data
structures. The experiments aim at studying accuracy of k-context
profiling, at quantifying running time and space requirements of
our data structures, and at tuning parameter k in practical scenarios.

Accuracy of k-context profiles. The motivating example in Sec-
tion 1 shows that relevant profiling information may be missing
in the call graph and hidden in the CCT. For the example we dis-
cussed, a 2-context profile appears to be more informative than both
edge profiles and full context sensitive profiles. In general, the most
interesting call paths that lead to a routine appear to be those of
maximal length in which most invocations of the routine occur. We
notice that the notion of similarity introduced in Section 6 charac-
terizes such interesting paths in a natural way: the interesting paths
are precisely those that lead to a leaf in the x%-similar ∞-CCF.
The question we address here is which values of k are large enough
in practice so that the k-CCF contains most such paths.
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In Figure 8 we report the outcome of an experiment in which we
evaluate the average depth of x%-similar ∞-CCF trees for different
similarity thresholds x. As expected by the definition of similarity,
the depth decreases as we increase the threshold: the larger x, the
more nodes are pruned from ∞-CCF trees. In practice, the depth
is a small constant, which depends on x but is quite similar across
the different benchmarks. Comparing these values with the CCT
depths reported in Table 1, the experiment suggests that rather small
values of k are sufficient on average to detect the hottest call paths,
without the need to build an entire CCT. For instance, by choosing
k ∈ [10, 20], the k-CCF records for each routine v most partial
contexts of v whose counters differ by at most 10% (x = 90%)
from c(v), independently of the specific benchmark. Although not
reported in Figure 8, we also observed that the average depth would
be even smaller by focusing on hot trees only, i.e., by omitting from
the average depth computation trees whose root counter is small
enough. Such hot trees are the natural target of context sensitive
profiling.

Size and skewness of k-context profiles. Figure 9 compares the
numbers of hot routines and hot distinct calling contexts, show-
ing that these numbers can differ by up to four orders of magni-
tude. This suggests that full individual calling contexts tend to be
substantially colder than individual routines in typical applications,
motivating our effort in exploring partial contexts. In our experi-
ment, hot items (routines or contexts) are those accounting for 90%
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of the total number of calls. In Figure 10 we compare the num-
ber of k-contexts and hot k-contexts for k ≤ 50 on the firefox

benchmark. Values of k larger than 50 up to the CCT depth (433)
exhibit negligible variations and are not plotted. The chart shows
an initial exponential growth followed by a slow convergence, con-
firming that small values of k are the most interesting in practice.
As a frame of comparison, we also report the number of hot rou-
tines and the number of full distinct calling contexts (CCT size) for
the same benchmark.

Space usage. We first evaluate the space required by our data
structures as a function of k. Figure 11 plots the number of nodes
in the CCT, k-CCF, k-SF, and pruned k-CCF for k ∈ [1, 500]
for the firefox benchmark (notice that 500 is larger than the CCT
depth reported in Table 1 and Property 5 of Section 4 holds). While
the number of CCT nodes is obviously constant, the sizes of the
other data structures can differ by up to five orders of magnitude
and largely benefit from small values of k. When k ≤ 12, all our
data structures are smaller than the CCT, suggesting that the space
bound given in Theorem 1 is overly pessimistic. For larger values
of k, the k-CCF can be much larger than the CCT, but the chain
pruning rule is very effective and reduces the size considerably.
The k-SF curve has an increasing trend up to a maximum value
roughly equal to 1.6n (the theoretical bound is 2n, see Lemma 2).
Then, it converges to the CCT size: the larger k, the smaller the
number of trees in the k-SF. For k = ∞ the forest consists of a
single tree, equal to the CCT. Figure 11 also shows the size of the
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CCT and of the k-SF as a function of k constructed on a call/return
event stream generated with static bursting: notice that the size of
the CCT with static busting is about 30% of the size resulting from
exhaustive instrumentation. The bursting technique yields a similar
space reduction for the k-SF, showing that it can be effectively
combined with our method.

Similar results are confirmed on the entire set of benchmarks.
This is shown in Figure 12, which plots the largest value of k
for which our data structures are smaller than the CCT, and in
Figure 13, which plots the best-case ratio (corresponding to the
case k = 0) and the worst-case ratio (corresponding to the case
k = ∞, both with and without pruning) between the numbers of
k-CCF and CCT nodes.

Finally, we have measured the number of nodes of the x%-
similar ∞-CCF for different similarity thresholds x. The results,
reported in Figure 13, show that this number is very small com-
pared to the size of the CCT even for small values of x, providing
an extremely compact explicit representation of all hot paths of a
program, with no length restrictions.

Running time. As a first experiment, we analyzed the impact
of k on the performance of the construction algorithms of the
different data structures. Since our approach is independent of any
specific instrumentation mechanisms, and different techniques for
tracing routine enter and exit events might incur rather different
overheads in practice, we focus on the time required by the analysis
routines only, omitting instrumentation times. Our tests, whose

Application
CCT

1-SF
1-SF ∞-SF

k
(∞-SF) (indexed) (indexed)

amarok 11.66 2 029.90 33.05 14.52 70
ark 2.29 178.18 12.90 3.33 43

audacity 11.05 118.84 25.41 13.36 40
dolphin 1.64 45.11 6.16 2.40 21
evince 1.96 8.76 2.64 2.28 14
firefox 5.33 55.38 7.07 6.85 38

gedit 4.50 34.85 8.19 5.78 13
ghex2 1.48 6.31 2.14 1.93 6
gimp 9.61 93.73 30.45 12.18 15

gwenview 4.12 381.16 26.21 6.20 45
inkscape 4.89 25.47 6.82 6.43 5

kile 4.12 315.80 17.13 5.99 41
oowriter 6.05 38.21 9.57 7.56 10
sudoku 2.34 11.43 2.87 2.60 13

vlc 1.11 49.58 1.60 1.50 28

Table 2. Comparison of running times.

outcome is exemplified by Figure 14a on the firefox benchmark,
show that the time required by the indexed k-SF is barely affected
by varying k, while the running time decreases steeply for the
standard representation (the time spent for constructing the CCT
is independent of k, and therefore constant). This depends on the
fact that the average degree of internal nodes of the k-SF decreases
when k becomes larger as shown in Figure 14b, and the indexed
representation is more effective on large degrees.

In Table 2 we summarize performance figures of our data struc-
tures on all benchmarks, reporting the running times for construct-
ing CCT and k-SF for k = 1 and k = ∞. We remark that k = 1
yields the largest construction times for the k-SF and that CCT
and ∞-SF are exactly the same data structure. The indexed im-
plementations of the CCT and of the 1-SF proved to be respec-
tively slower and much faster than the standard implementations:
on average, the construction algorithm for the indexed 1-SF is 2.8x
slower than the CCT, but can save more than two orders of mag-
nitudes in space compared to maintaining the CCT (see, e.g., Fig-
ure 11). The table also reports the smallest value of k for which
the standard implementation of the 1-SF becomes preferable to the
indexed version: for almost all benchmarks, this breakpoint value
is rather large, proving the usefulness of supporting direct access to
tree node children. We remark that performance can be greatly im-
proved by using sampled bursting techniques (see [13]) along with
our data structures.

8. Related Work

There is a vast literature related to software profiling. In this section
we survey research on context-sensitive profiling that appears to be
most relevant to our work.

Call path profiling. Call graph profiles produced by gprof intro-
duce for the first time a form of context sensitivity [15], by associ-
ating procedure timing with caller-callee pairs and relating it with
edges of the call graph (hence the alternative name edge profiling).
It has been later observed that a single level of context sensitivity
may yield to several inaccuracies [23, 28]. To overcome these is-
sues, Goldberg and Hall [17] propose call path profiles: a call path
is a sequence of function pairs in a caller-callee relationship, and
the profile is a sorted list of call paths along with their metrics.
The space usage with this approach, however, can be prohibitive.
Limiting the length of profiled call paths as we do is mentioned
in [24, 31] as a possible useful call tree/CCT compaction technique.
However, differently from our work, in [24, 31] the implications
of the basic idea are not further explored and no data structures
for short paths are provided. The work in [3] introduces “Bottle-
necks”, an interactive tool for helping developers identify hot call-
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Figure 14. Running time of the k-SF construction algorithms and average internal degree of CCT and k-SF as a function of k.

ing contexts of bounded length. Differently from our approach, the
Bottlenecks tool works offline on a previously recorded call tree
allowing users to interactively mine hot call paths. Their approach
scales poorly to the large C/C++ applications we considered, which
produce call trees up to billion nodes. They do not provide any
time/space bounds, neither theoretically nor experimentally. Our k-
SF data structure is constructed online with provable time bounds,
is orders of magnitude smaller than a call tree, and supports fully
automatic identification of hot call paths using a k-CCF.

Calling context trees. Calling context trees have been introduced
in [2] as a compact data structure to associate performance metrics
with paths through a program’s call graph: Ammons, Ball, and
Larus show how to build a CCT by instrumenting procedure code
and to compute metrics by exploiting hardware counters available
in modern processors. Since exhaustive instrumentation can lead to
a large slowdown, a variety of techniques have been proposed to
reduce the time overhead of context-sensitive profilers. Bernat and
Miller [9] generate path profiles including only a subset of methods
of interest, while statistical profilers [6, 14, 17, 32] attribute metrics
to calling contexts through periodic sampling of the call stack.
Although much faster than exhaustive instrumentation, sample-
driven stack-walking might incur significant loss of accuracy with
respect to the complete CCT [12, 35]. More accurate results can
be obtained by combining sampling with bursting [5, 18, 35], i.e.,
by performing stack-walking followed by a burst during which the
profiler traces every routine call and return. As we have discussed
in Section 5.2, sampling and bursting can be integrated with our
algorithms to reduce profiling overhead.

Space issues in context-sensitive profiling. Although the CCT
compactly represents all distinct calling contexts encountered dur-
ing the execution of a program, it has been noticed in previous
works that it could be still very large and difficult to analyze [12,
13, 35], especially if collected profiles are not only complete, but
also call-site aware [27]. Different techniques have been thus pro-
posed to reduce either profile data or the amount of data presented
to the user. Most previous works focus on performance analysis
applications, where identifying a few hot contexts is typically suf-
ficient to guide code optimization. Incremental call-path profiling
lets the user choose a subset of routines to be analyzed [9], while
call path refinement helps users focus the attention on performance
bottlenecks by limiting and aggregating the information revealed to
the user [16]. To this end, in [27] the authors provide a dumper that
serializes the CCT as a dynamic call graph. The hot calling con-
text tree proposed in [13] is a subtree of the CCT that includes only
hot nodes and their ancestors, compactly representing the hot call-
ing contexts encountered during a program’s execution. Our data

structures provide another solution to the profile data abundance
problem, allowing programmers to control the space usage by ap-
propriately choosing the value of k.

Other approaches are based on compactly encoding the calling
contexts encountered during the execution of a program [12, 29],
which is especially useful for tasks such as residual testing, opti-
mization, statistical bug isolation, and anomaly-based intrusion de-
tection. In contrast, our work focuses on explicit context encoding
for performance profiling applications.

Flow-sensitive profiling. At the intraprocedural level, the semi-
nal work of Ball and Larus [7] has spawned much research on flow-
sensitive profiling [1, 2, 4, 8, 10, 11, 19, 21, 22, 30]. A path profile
determines how many times each path in the control flow graph ex-
ecutes: path profiles terminate either at backedges or at procedure
exits, and are thus acyclic. Though useful at driving many compiler
optimizations, it has been observed in [26] that more opportunities
can be exploited in the presence of information about longer paths:
k-iteration paths are intraprocedural cyclic paths spanning up to k
loop iterations, and can be computed efficiently by generalizing the
Ball-Larus profiling algorithm. The work on k-iteration paths [26]
has some similarities with our approach, although the focus there
is on intraprocedural profiles.

9. Conclusions

In this paper we have studied a generalization of the classical call-
ing context profiling approach, motivated by a key observation: full
calling contexts starting from the program’s root can be substan-
tially colder than individual routines. In some cases, there may even
be hot routines having no hot calling context at all. On the other
hand, performance bottlenecks may still arise in short sequences
of calls leading to a hot routine, making them a useful profiling tar-
get.

We have shown that profiles for call paths of length up to k can
be compactly represented using a simple but rich data structure that
we called k-calling context forest. Our experiments confirm that
this data structure can provide effective space-accuracy tradeoffs
for interprocedural performance profiling.

We regard it as an interesting open question how to construct a
x%-similar ∞-CCF for profiling all hot call paths using less space
than the CCT. We expect that the techniques developed in this paper
could be successfully applied to intraprocedural profiling as well,
allowing it to detect hot paths of bounded length in the control flow
graph.
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