
Mining Hot Calling Contexts in Small Space

Daniele Cono D’Elia

Dept. of Computer and System Sciences
Sapienza University of Rome

danielecono.delia@gmail.com

Camil Demetrescu

Dept. of Computer and System Sciences
Sapienza University of Rome

demetres@dis.uniroma1.it

Irene Finocchi

Dept. of Computer Science
Sapienza University of Rome

finocchi@di.uniroma1.it

Abstract

Calling context trees (CCTs) associate performance metrics with
paths through a program’s call graph, providing valuable infor-
mation for program understanding and performance analysis. Al-
though CCTs are typically much smaller than call trees, in real ap-
plications they might easily consist of tens of millions of distinct
calling contexts: this sheer size makes them difficult to analyze and
might hurt execution times due to poor access locality. For perfor-
mance analysis, accurately collecting information about hot calling
contexts may be more useful than constructing an entire CCT that
includes millions of uninteresting paths. As we show for a variety
of prominent Linux applications, the distribution of calling context
frequencies is typically very skewed. In this paper we show how to
exploit this property to reduce the CCT size considerably.

We introduce a novel run-time data structure, called Hot Calling
Context Tree (HCCT), that offers an additional intermediate point
in the spectrum of data structures for representing interprocedural
control flow. The HCCT is a subtree of the CCT that includes only
hot nodes and their ancestors. We show how to compute the HCCT
without storing the exact frequency of all calling contexts, by using
fast and space-efficient algorithms for mining frequent items in data
streams. With this approach, we can distinguish between hot and
cold contexts on the fly, while obtaining very accurate frequency
counts. We show both theoretically and experimentally that the
HCCT achieves a similar precision as the CCT in a much smaller
space, roughly proportional to the number of distinct hot contexts:
this is typically several orders of magnitude smaller than the total
number of calling contexts encountered during a program’s exe-
cution. Our space-efficient approach can be effectively combined
with previous context-sensitive profiling techniques, such as sam-
pling and bursting.

Categories and Subject Descriptors C.4 [Performance of Sys-
tems]: Measurement Techniques; D.2.2 [Software Engineering]:
Tools and Techniques—programmer workbench; D.2.5 [Software
Engineering]: Testing and Debugging—diagnostics, tracing

General Terms Algorithms, Measurement, Performance.

Keywords Performance profiling, dynamic program analysis,
data streaming algorithms, frequent items, program instrumenta-
tion.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’11, June 4–8, 2011, San Jose, California, USA.
Copyright c© 2011 ACM 978-1-4503-0663-8/11/06. . . $10.00

1. Introduction

Context sensitive profiling provides valuable information for pro-
gram understanding, performance analysis, and runtime optimiza-
tions. Previous works have demonstrated its effectiveness for tasks
such as residual testing [30, 35], function inlining [12], statistical
bug isolation [15, 23], object allocation analysis [29], or anomaly-
based intrusion detection [11]. A calling context is a sequence of
routine calls that are concurrently active on the run-time stack and
that lead to a program location. Collecting context information in
modern object-oriented software is very challenging: application
functionalities are divided into a large number of small routines,
and the high frequency of function calls and returns might result
in considerable profiling overhead, Heisenberg effects, and huge
amounts of contexts to be analyzed by the programmer.

Several data structures have long been used to maintain infor-
mation about interprocedural control flow. In a call graph, nodes
represent routines and arcs caller-callee relationships. The use of
call graph profiles was pionereed by gprof [17], that attributes the
time for each routine to its callers by propagating times along edges
of the call graph. Although very space- and time-efficient, this ap-
proach can lead to misleading results, as pointed out in [31, 34]. On
the other side, each node of a call tree represents a different rou-
tine invocation. This yields very accurate context information, but
requires extremely large (possibly unbounded) space. The inaccu-
racy of call graphs and the huge size of call trees have motivated
the introduction of calling context trees (CCT) [2]: differently from
call trees, CCTs do not distinguish between different invocations of
the same routine within the same context. While maintaining good
accuracy, typically CCTs are several orders of magnitude smaller
than call trees: the number of nodes may be large in the presence
of recursion, but this is seldom the case in practice. The exhaustive
approach to constructing a CCT is based on the instrumentation
of each routine call and return, incurring considerable slowdown
even using efficient instrumentation mechanisms [2, 37]. Sampled
stack-walking reduces slowdown, but at the price of accuracy. The
adaptive bursting mechanism proposed in [37] selectively inhibits
redundant profiling, dramatically reducing the overhead over the
exhaustive approach while preserving good profile accuracy.

As noticed in previous works [11, 37], even calling context trees
may be very large and difficult to analyze in several applications.
Moreover, their sheer size might hurt execution time due to poor
access locality during construction and query. As an example, in
Table 1 we report the number of nodes of the call graph, call tree,
and calling context tree for a variety of off-the-shelf applications
in a typical Linux distribution. These numbers have been obtained
from short runs of each application, which yield millions of calling
contexts. The optimistic assumption that each CCT node requires
20 bytes (previous works use larger nodes [2, 34]) already results in
almost 1GB needed just to store a CCT with 48 million nodes for an
application such as Open Office – calc. To face this space issue, the

516

Table 1. Number of nodes of call graph, call tree, calling context
tree, and number of distinct call sites for different applications.

Application |Call graph| Call sites |CCT| |Call tree|
amarok 13 754 113 362 13 794 470 991 112 563

ark 9 933 76 547 8 171 612 216 881 324
audacity 6 895 79 656 13 131 115 924 534 168
bluefish 5 211 64 239 7 274 132 248 162 281
dolphin 10 744 84 152 11 667 974 390 134 028
firefox 6 756 145 883 30 294 063 625 133 218

gedit 5 063 57 774 4 183 946 407 906 721
ghex2 3 816 39 714 1 868 555 80 988 952
gimp 5 146 93 372 26 107 261 805 947 134

gwenview 11 436 86 609 9 987 922 494 753 038
inkscape 6 454 89 590 13 896 175 675 915 815

oocalc 30 807 394 913 48 310 585 551 472 065
ooimpress 16 980 256 848 43 068 214 730 115 446

oowriter 17 012 253 713 41 395 182 563 763 684
pidgin 7 195 80 028 10 743 073 404 787 763
quanta 13 263 113 850 27 426 654 602 409 403
sudoku 5 340 49 885 2 794 177 325 944 813

vlc 5 692 47 481 3 295 907 125 436 877

approach proposed in [11] maintains a one-word probabilistically
unique value per context, achieving minimal space overhead when
all contexts have to be stored, but specific information about them
is unnecessary. As noted in [11], even this approach, however, can
run out of memory on large traces with tens of millions of contexts.

Although very useful, e.g., in bug or intrusion detection appli-
cations, probabilistic calling context was not designed for profil-
ing with the purpose of understanding and improving application
performance, where it is crucial to maintain for each context the
sequence of active routine calls along with performance metrics.
In this scenario, only the most frequent contexts are of interest,
since they represent the hot spots to which optimizations must be
directed. As observed in [37]: “Accurately collecting information
about hot edges may be more useful than accurately constructing
an entire CCT that includes rarely called paths.” Figure 1 shows
that, for different applications, only a small fraction of contexts are
hot: in accordance with the well-known Pareto principle, more than
90% of routine calls take place in only 10% of contexts. The skew-
ness of context distribution suggests that space could be greatly
reduced by keeping information about hot contexts only and dis-
carding on the fly contexts that are likely to be cold, i.e., to have
low frequency or to require small time throughout the entire execu-
tion.

Our Contributions. In this paper we introduce a novel run-time
data structure, called Hot Calling Context Tree (HCCT), that com-
pactly represents all the hot calling contexts encountered during
a program’s execution, offering an additional intermediate point
in the spectrum of data structures for representing interprocedural
control flow. The HCCT is a subtree of the CCT that includes only
hot nodes and their ancestors. For each hot calling context, it also
maintains an estimate of its performance metrics (for simplicity, we
focus on frequency counts throughout the paper, but our approach
can be easily extended to arbitrary metrics such as execution time,
cache misses, or instruction stalls). Our main contributions can be
summarized as follows:

• We formalize the concept of Hot Calling Context Tree and
we cast the problem of identifying the most frequent contexts
into a data streaming setting: we show that the HCCT can be
computed without storing the exact frequency of all calling
contexts, by using fast and space-efficient algorithms for mining
frequent items in data streams. With this approach, we can

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

%
 o

f
th

e
 t

o
ta

l
n

u
m

b
e

r
o

f
c
a

lls
 (

d
e

g
re

e
 o

f
o

v
e

rl
a

p
 w

it
h

 f
u

ll
C

C
T

)

% of hottest calling contexts

Cumulative frequencies

 amarok
 audacity

firefox
gedit

oocalc
pidgin

quanta
vlc

Figure 1. Skewness of calling contexts distribution on a represen-
tative subset of benchmarks.

distinguish between hot and cold contexts on the fly, while
obtaining very accurate frequency counts.

• We implement three variants of space-efficient context-sensitive
profilers based on three different streaming algorithms. For one
of the algorithms, we devise a highly tuned implementation
that is more efficient in practice than the one proposed by the
authors and that might be of independent interest.

• We integrate our space-efficient approach with previous tech-
niques aimed at reducing time overhead: we focus in particular
on static bursting and adaptive bursting with re-enablement [37],
which offer very good time-accuracy tradeoffs.

• We perform an extensive experimental analysis of perfor-
mances and accuracy on a variety of prominent Linux appli-
cations. We test many different parameter settings and consider
several metrics, including degree of overlap and hot edge cover-
age used in previous works. The experiments not only confirm,
but reinforce the theoretical prediction, showing that the HCCT
represents the hot portions of the full CCT very well using only
an extremely small percentage of the space required by the en-
tire CCT. Even when the peak memory usage of our profilers
is only 1% of standard context-sensitive profilers, we can show
the following:

all the hottest calling contexts are always identified correctly
(no false negatives);

frequency counters are very close to the true values;

the number of false positives (cold contexts that are consid-
ered as hot) is very small;

using bursting, the running time overhead can be kept under
control without affecting accuracy in a substantial way.

The rest of this paper is organized as follows. Section 2 gives pre-
liminary definitions about calling contexts and data stream algorith-
mics. Section 3 introduces the HCCT and describes our approach.
Section 4 focuses on implementation and engineering aspects, and
Section 5 presents the outcome of our experimental study. Relations
with related work are discussed in Section 6.

2. Background

2.1 Calling Context Tree

The dynamic calling context of a routine invocation is the sequence
of un-returned calls from the program’s root function to the routine

517

invocation. The calling context tree (CCT) compactly represents
all calling contexts encountered during the execution of a program.
CCT nodes correspond to routines and a path from a node v to the
tree root represents the calling context of v. A routine with multi-
ple contexts will appear more than once in a CCT, but each calling
context is represented just once and metrics for identical contexts
are aggregated, trading precision for space. Slightly extended def-
initions can be given to bound the depth of a CCT in the presence
of recursion and to distinguish calls that take place at different call
sites of the same calling procedure [2].

A CCT can be constructed on-the-fly during the execution of a
program. Let v be a cursor pointer that points to the current routine
context, i.e., to the CCT node corresponding to the calling context
of the currently active routine (v is initialized to the CCT root
node). At each routine invocation, the algorithm checks whether
v has a child associated with the called routine. If this is the case,
the existing child is used and its metrics are updated, if necessary.
Otherwise, a new child of v is added to the CCT. In both cases,
the cursor is moved to the callee. Upon routine termination, the
cursor is moved back to the parent node in the CCT. This approach
can be implemented either by instrumenting every routine call and
return or by performing stack-walking if sampling is used to inhibit
redundant profiling [5, 36, 37].

2.2 Frequent Items in Data Streams

In recent years there has been much interest in the design of al-
gorithms able to perform near-real time analyses on massive data
streams, where input data come at a very high rate and cannot be
stored entirely due to their huge, possibly unbounded size [14, 28].
This line of research has been mainly motivated by networking
and database applications: for instance, a relevant IP traffic anal-
ysis task consists of monitoring the packet log over a given link
in order to estimate how many distinct IP addresses used that link
in a given period of time. Since the stream may be very long and
stream items may also be drawn from a very large universe (e.g.,
the set of source-destination IP address pairs), space-efficient data
streaming algorithms can maintain a compact data structure that is
dynamically updated upon arrival of new input data, supporting a
variety of application-dependent queries. Approximate answers are
allowed when it is impossible to obtain an exact solution using only
limited space. Streaming algorithms are therefore designed to opti-
mize four main performance measures: space required to store the
data structure, update time (i.e., per-item processing time), query
time, and guaranteed solution quality.

The frequent items (a.k.a. heavy hitters) problem has been ex-
tensively studied in data streaming computational models. Given a
frequency threshold φ ∈ [0, 1] and a stream of lenght N , the prob-
lem (in its simplest formulation) is to find all items that appear in
the stream at least ⌊φN⌋ times, i.e., having frequency≥ ⌊φN⌋. For
instance, for φ = 0.1 the problems seeks all items that appear in the
stream at least 10% of the times. At most 1/φ items can have fre-
quency larger than ⌊φN⌋. It can be proved that any algorithm that
outputs an exact solution requires Ω(N) bits, even using random-
ization [28]. Hence, research focused on solving an approximate
version of the problem:

DEFINITION 1. (φ, ε)-heavy hitters problem. Given two parame-
ters φ, ε ∈ [0, 1], with ε < φ, return all items with frequency
≥ ⌊φN⌋ and no item with frequency ≤ ⌊(φ− ε)N⌋.

In the approximate solution, false negatives cannot exist, i.e., all
frequent items must be returned. Instead, some good false positives
are allowed, but their actual frequency is guaranteed to be at most
εN -far from the threshold ⌊φN⌋. Variations of the problem arise
when, besides returning the heavy hitters, it is necessary to estimate

100

100

100 10050

50

40

10

10 1010

1

false
positive

false
positive

(a) (b) (c)

Figure 2. (a) CCT; (b) HCCT; and (c) (φ, ε)-HCCT. Hot nodes
are darker. The number close to each node is the frequency count
of the corresponding calling context. In this example N = 581,
φ = 1/10, and ε = 1/30: the approximate HCCT includes all
contexts with frequency ≥ ⌊φN⌋ = 58 and no context with
frequency ≤ ⌊(φ− ε)N⌋ = 38.

accurately their true frequencies, when the stream length N is not
known in advance, and when the items are given weights.

Many different algorithms for computing (φ, ε)-heavy hitters
have been proposed in the literature in the last ten years. In this
paper we focus on counter-based algorithms that, according to ex-
tensive experimental studies [13], have superior performance with
respect to space, running time, and accuracy. Counter-based algo-
rithms track a subset of items from the input and monitor counts
associated with them. For each new arrival, the algorithms decide
whether to store the item or not, and, if so, what counts to associate
with it. There are three main embodiments of this approach: Space
Saving, Sticky Sampling, and Lossy Counting. Sticky Sampling [25]
is probabilistic: it fails to produce the correct answer with a minus-
cole probability, say δ, and uses at most 2

ε
log(φ−1δ−1) entries

in its data structure. Space Saving [27] and Lossy Counting [25]
are deterministic and use 1

ε
and 1

ε
log(εN) entries, respectively.

The theoretical results are even better when stream items have a
skewed distribution (e.g., Zipfian). In a general-purpose implemen-
tation of counter-based algorithms, the update times are dominated
by a small (constant) number of dictionary or heap operations.

3. HCCT: Hot Calling Context Tree

The execution trace of routine invocations and terminations can be
naturally regarded as a stream of items. Each item is a triple con-
taining routine name, call site, and event type. As shown in Table 1,
the number of distinct routines (i.e., the number of nodes of the call
graph) is small compared to the stream length (i.e., to the number of
nodes of the call tree), even for complex applications. Hence, non-
contextual profilers – such as vertex profilers – can maintain a hash
table of size proportional to the number of routines, using routine
names as hash keys in order to update the corresponding metrics.
This may be difficult in the case of contextual profiling, when the
number of distinct calling contexts (i.e., the number of CCT nodes)
is too large and hashing would be inefficient. Motivated by the fact
that execution traces are typically very long and their items (calling
contexts) are taken from a large universe, we cast the problem of
identifying the most frequent contexts into a data streaming setting.

3.1 Approach

Let N be the number of calling contexts encountered during a
program’s execution: N equals the number of nodes of the call
tree, the sum of the frequency counts of CCT nodes, as well as
the number routine invocations in the execution trace. Given a
frequency threshold φ ∈ [0, 1], we will regard a calling context as
hot if the frequency count of the corresponding CCT node is larger
than ⌊φN⌋. All the other contexts are considered cold. We define

518

Figure 3. Tree data structures and calling contexts classification.
We use graphical notation S ↑ T to indicate that T is the minimal
subtree of the CCT spanning all nodes in S.

the Hot Calling Context Tree (HCCT) as the (unique) subtree of the
CCT obtained by pruning all cold nodes that are not ancestors of a
hot node. In graph theory, the HCCT corresponds to the Steiner tree
of the CCT with hot nodes used as terminals, i.e., to the minimal
connected subtree of the CCT spanning hot nodes. An example of
HCCT is given in Figure 2(b). It is worth noticing that all hot nodes
are included in the HCCT and that all its leaves are necessarily hot
(the converse, however, is not true).

The HCCT is the most compact data structure representing
information about hot calling contexts. The space lower bound
for the heavy hitters problem (see Section 2.2) extends to the
problem of computing the HCCT, that cannot be calculated exactly
in small space (in particular, using a space asymptotically smaller
than the entire CCT). Hence, we relax the problem and compute
an Approximate Hot Calling Context Tree, which we denote by
(φ, ε)-HCCT, where ε < φ controls the degree of approximation.
The (φ, ε)-HCCT contains all hot nodes (true positives), but may
possibly contain some cold nodes without hot descendants (false
positives). The true frequency of these false positives, however, is
guaranteed to be at least ⌊(φ − ε)N⌋. Similarly to the HCCT, the
(φ, ε)-HCCT can be thought of as a minimal subtree of the CCT
spanning a set of (φ, ε)-heavy hitters. Differently from the HCCT,
a (φ, ε)-HCCT is not uniquely defined, since the set of (φ, ε)-heavy
hitters is not unique: in particular, nodes with frequencies smaller
than ⌊φN⌋ and larger than ⌊(φ − ε)N⌋ may be either included in
such a set or not.

The Venn diagram in Figure 3 summarizes some important
relations:

• H⊆A, where H is the set of hot contexts and A is a set of
(φ, ε)-heavy hitters. Nodes in A \H are false positives.

• H⊆HCCT. Nodes in HCCT \H are cold nodes that have a
descendant in H.

• A⊆(φ, ε)-HCCT. Nodes in (φ, ε)-HCCT \A are cold nodes
that have a descendant in A.

• HCCT⊆(φ, ε)-HCCT, as implied by the previous inclusions.
Both of them are connected subtrees of the full CCT.

Figure 3 also introduces two additional sets: the set M of moni-
tored nodes and the subtree MCCT spanning all nodes in M. To
compute the set A of (φ, ε)-heavy hitters, we use as subroutines
counter-based streaming algorithms that monitor a slightly larger
set M⊇A. When a user query asks for the most frequent contexts,
these algorithms prune M and return A. In addition to M, our al-
gorithm maintains the subtree MCCT of the CCT consisting of the
nodes in M and of all their ancestors. At query time, the MCCT is
appropriately pruned and the (φ, ε)-HCCT⊆MCCT is returned.

Discussion and Example. To understand why the heavy hitters
and the approximate HCCT are not maintained directly, but derived

prune(x, MCCT):
1. V ← update(x, M)
2. for each context v ∈ V \{x}
3. while (v is a leaf in MCCT ∧ v 6∈M) do
4. remove v from MCCT
5. v← parent(v)

Figure 4. On-line pruning algorithm.

by pruning M and MCCT, respectively, consider the following
example: the execution trace contains the initial invocation of the
main function, which in turn invokes once a routine p and N − 2
times a different routine q. Assume that N ≥ 8, ε = 1/4, φ = 1/2,
and that the counter-based streaming subroutine can maintain at
least three counters. Then only node q has frequency larger than
⌊(φ − ε)N⌋ and is a (φ, ε)-heavy hitter, but the algorithm will
maintain in M both p and q together with their exact frequencies.
Since p has frequency 1, it would be an error returning it as a heavy
hitter. For this reason, M needs to be post-processed in order to
eliminate low-frequency items that may be included when there are
more available counters than heavy hitters. Details on updating and
querying M and MCCT are given in Section 3.2.

3.2 Data Structures Update and Query

At each function call, the set M of monitored contexts is updated
by a counter-based streaming algorithm (see Section 2.2). When
M is changed, the subtree MCCT spanning nodes in M needs to
be brought up to date as well. To describe how this happens, we
assume that the interface of the streaming algorithm provides two
main functions:

update(x,M)→ V: given a calling context x, update M to reflect
the new occurrence of x in the stream (e.g., if x was already
monitored in M, its frequency count may be increased by one).
The update function might return a set V of victim contexts
that were previously monitored in M and are evicted during the
update (as a special case, x itself may be considered as a victim
if the algorithm decides not to monitor it).

query(M)→ A: remove low-frequency items from M and return
the subset A of (φ, ε)-heavy hitters (see Figure 3).

Details on the implementation of update and query depend on the
specific streaming algorithm.

Similarly to the CCT, during the construction of the MCCT
we maintain a cursor pointer that points to the current calling
context, creating a new node if the current context x is encountered
for the first time (see Section 2.1). Additionally, we prune the
MCCT according to the victim contexts returned by the streaming
update operation (these contexts are no longer monitored in M).
The pseudocode of the pruning algorithm is given in Figure 4.
Since the tree must remain connected, victims can be removed from
the MCCT only if they are leaves. Moreover, removing a victim
might expose a path of unmonitored ancestors that no longer have
descendants in M: these nodes are pruned as well. The current
context x is never removed from the MCCT, even if it is not
necessarily monitored in M. This guarantees that no node in the
path from the tree root to x will be removed: these nodes have at
least x as a descendant and the leaf test (line 3 in Figure 4) will
always fail.

A similar pruning strategy can be used to compute the (φ, ε)-
HCCT from the MCCT. The streaming query operation is first
invoked on M, returning the support A of the (φ, ε)-HCCT. All
MCCT nodes that have no descendant in A are then removed,
following bottom up path traversals as in the prune operation.

519

3.3 Discussion

Compared to the standard approach of maintaining the entire CCT,
our solution requires to store the heavy hitters data structure M and
the subtree MCCT spanning nodes in M. The space required by
M depends on the specific streaming algorithm that is used as a
subroutine, and is roughly proportional to 1/ε (see Section 2.2 for
the exact bounds). This space can be customized by appropriately
choosing ε, e.g., according to the amount of available memory. An
appropriate choice of ε appears to be crucial for the effectiveness of
our approach: smaller values of ε guarantee more accurate results
(less false positives and more precise counters), but imply a larger
memory footprint. As we will see experimentally in Section 5,
the high skewness of context frequency distribution guarantees the
existence of very convenient tradeoffs between accuracy and space.

The MCCT consists of nodes corresponding to contexts moni-
tored in M and of all their ancestors, which may be cold contexts
without a corresponding entry in M. Hence, the space required by
the MCCT dominates the space required by M. The number of cold
ancestors cannot be analyzed theoretically: it depends on proper-
ties of the execution trace and on the structure of the calling con-
text tree. In Section 5 we will show that in practice this amount is
negligible with respect to the number of entries in M.

Updates of the MCCT can be performed very quickly. As we
will see in Section 4, the streaming update operation requires
constant time. Moreover, our implementation hinges upon very
simple and cache-efficient data structures, with no need for time-
consuming hashing. Simple amortized analysis arguments also
show that the amortized running time of tree pruning is constant.

Differently from previous approaches such as, e.g., adaptive
bursting [37], the MCCT adapts automatically to the case where
the hot calling contexts vary over time, and new calling patterns
are not likely to be lost. Contexts that are growing more popular
are added to the tree as they become more frequent, while contexts
that lose their popularity are gradually replaced by hotter contexts
and are finally discarded. This guarantees that heavy hitters queries
can be issued at any point in time, and will always be able to return
the set of hot contexts up to that time.

Our data-streaming based approach is orthogonal to previ-
ous techniques and can be integrated, e.g., with sampled stack-
walking [5, 36] or with more recent techniques such as static and
adaptive bursting [37]. In addition to frequency counts, it can be
extended to support arbitrary performance metrics, exploiting the
ability of some streaming algorithms to compute the heavy hitters
in weighted item sets.

4. Implementation and Engineering

We implemented in C three variants of the HCCT construction al-
gorithm described in Section 3, based on three different stream-
ing algorithms for the computation of frequent items: Space Sav-
ing [27], Sticky Sampling [25], and Lossy Counting [25]. In our
experiments, Sticky Sampling consistently proved itself to be less
efficient and accurate than its competitors, so we will not mention it
any further. All our implementations (including the construction of
the entire CCT) are cast in a common framework in which different
streaming algorithms can be plugged in.

We use a first-child, next-sibling representation for calling con-
text trees. Each MCCT node also contains a pointer to its parent,
the routine ID, the call site, and the performance metrics. The first-
child, next-sibling representation is very space-efficient and still
guarantees that the children of each node can be explored in time
proportional to their number. According to our experiments with
several benchmarks, the average number of scanned children is a
small constant around 2-3, so this representation turns out to be
convenient also for checking whether a routine ID already appears

among the children of a node. The parent field, which is needed
to perform tree pruning efficiently (see Figure 4), is not required
in CCT nodes. As routine ID, we use the routine address. Overall,
CCT and MCCT nodes require 20 and 24 bytes, respectively, on 32
bit architectures. Using the bit stealing technique, we also encode
in one of the pointer fields a Boolean flag that tells if the calling
context associated with the node is monitored in the streaming data
structure M, without increasing the number of bytes per node.

To improve time and space efficiency, we allocate nodes through
a custom, page-based allocator, which maintains blocks of fixed
size. Any additional algorithm-specific information needed to
maintain the heavy hitters is stored as trailing fields within fat
MCCT nodes.

We now describe our implementation of the streaming algo-
rithms, focusing on Space Saving (SS) and Lossy Counting (LC).

4.1 Space Saving

Space Saving [27] monitors a set of 1/ε = |M | pairs of the
form (item, count), initialized by the first 1/ε distinct items and
their exact counts. After the init phase, when a calling context c
is observed in the stream the update operation (see Section 3.2)
works as follows:

1. if c is monitored, the corresponding counter is incremented;

2. if c is not monitored, the (item, count) pair with the smallest
count is chosen as a victim and has its item replaced with c and
its count incremented. Heavy hitters queries are answered by
returning entries in M such that count ≥ ⌊φN⌋.

The update time is bounded by the dictionary operation of check-
ing whether an item is monitored, and by the priority queue oper-
ations of finding and maintaining the item with minimum count.
In our setting, we can avoid the dictionary operation using the cur-
sor pointer to the MCCT: using this pointer, we can directly ac-
cess the monitored flag of the MCCT node associated with the
current context. The priority queue must support two operations,
find-min and increment, which return the item with minimum
count and increment a counter, respectively. In [27], it is suggested
to use an ordered bucket list, where each bucket points to a list of
items (MCCT nodes) with the same count, and buckets are ordered
by increasing count values.

In addition to the implementation realized by the Space Saving
authors [27], we devised a more efficient variant based on a lazy
priority queue. We will refer to our implementation as Lazy Space
Saving (LSS). We use an unordered array M of size 1/ε, where each
array entry points to an MCCT node. We also (lazily) maintain the
value min of the minimum counter and the smallest index min-idx
of an array entry that points to a monitored node with counter
equal to min. The increment operation does not change M, since
counters are stored directly inside MCCT nodes. However, min and
min-idx may become temporarily out of date after an increment:
this is why we call the approach lazy. The find-min operation
described in Figure 5 restores the invariant property on min and
min-idx: it finds the next index in M with counter equal to min.
If such an index does not exist, it completely rescans M in order to
find a new min value and its corresponding min-idx.

LEMMA 1. After a find-min query, the lazy priority queue cor-
rectly returns the minimum counter value in O(1) amortized time.

PROOF. Counters are never decremented. Hence, at any time, if a
monitored item with counter equal to min exists, it must be found in
a position larger than or equal to min-idx. This yields correctness.

To analyze the running time, let ∆ be the value of min after k
find-min and increment operations. Since there are |M | coun-
ters ≥ ∆, counters are initialized to 0, and each increment oper-
ation adds 1 to the value of a single counter, it must be k ≥ |M |∆.

520

find-min():
1. while (M [min-idx] 6= min ∧ min-idx ≤M) do
2. min-idx← min-idx +1
3. if (min-idx > M) then
4. min← minimum in M
5. min-idx← smallest index j such that M [j] = min
6. return min

Figure 5. find-min operation used in Lazy Space Saving.

For each distinct value assumed by min, the array is scanned twice.
We therefore have at most 2∆ array scans each of length |M |,
and the total cost of find-min operations throughout the whole
sequence of operations is upper bounded by 2|M |∆. It follows that
the amortized cost is (2|M |∆)/k ≤ 2. 2

4.2 Lossy Counting

Lossy Counting [25] maintains a set M of triples of the form
(item, count, ∆), where count represents the exact frequency of
the item since it was last inserted in M and ∆ is the maximum
possible underestimation of count: the algorithm guarantees that at
any time the true frequency of a monitored item is ≤ count +∆.
The incoming stream is conceptually divided into bursts of width
⌈1/ε⌉. During burst i, if an item x arrives that already exists in M,
the corresponding count is incremented. Otherwise:

• if x corresponds to a node v with count c that is an ancestor of
another node in M, we increment c by 1, leave ∆ untouched,
and then add (x, c, ∆) to M;

• otherwise, we add (x, 1, i− 1) to M.

We slightly modified the insertion algorithm of [25] to achieve
better precision by exploiting the advantages of the MCCT data
structure.

At the end of burst i, M is pruned by deleting entries such that
(count +∆) ≤ i: the set V of victims returned by the update
operation (see Section 3.2) is therefore always empty, except at
burst boundaries. Heavy hitters queries are answered by returning
entries in M such that count +∆ ≥ ⌊φN⌋; again, we modified
the original algorithm to reduce – sometimes considerably – the
number of false positives returned in the answer.

Since triples are dynamically added to and deleted from M, it
is convenient to maintain M using an unordered linked list. For
the sake of efficiency, in our implementation we superimpose M
on the MCCT by allocating fat MCCT nodes containing ∆ and
the pointer to the next element of M in addition to the standard
fields. Hence, Lossy Counting uses 28 bytes per node. Checking
whether an item is monitored can be done quickly as described in
Section 4.1. Every ⌈1/ε⌉ operations M is scanned and removed
items are marked unmonitored and pruned from the MCCT as
described in Figure 4.

5. Experimental Evaluation

In this section, we present an extensive experimental study of our
data-streaming based profiling mechanism. We implemented sev-
eral variants of space-efficient context-sensitive profilers and we
analyzed their performances and the accuracy of the produced
(φ, ε)-HCCT with respect to several metrics and using many dif-
ferent parameter settings. Our test suite includes profilers based
on the three different streaming algorithms discussed in Section 4:
Lazy Space Saving (LSS), Bucket Space Saving (BSS), and Lossy
Counting (LC). Besides the exahustive approach, where each rou-
tine call and return is instrumented, we integrate our implementa-
tions with previous techniques aimed at reducing time overhead: we

focus in particular on static bursting and adaptive bursting with re-
enablement [37], which offer very convenient time-accuracy trade-
offs. The experimental analysis not only confirms, but reinforces
the theoretical prediction: the (φ, ε)-HCCT represents the hot por-
tions of the full CCT very well using only an extremely small per-
centage of the space required by the entire CCT: all the hottest call-
ing contexts are always identified correctly, their counters are very
accurate, and the number of false positives is rather small. Using
the bursting technique, the running time overhead can be kept un-
der control without affecting accuracy in a substantial way. Before
discussing the results, we present the details of our experimental
methodology, focusing on benchmarks and accuracy metrics, and
we describe how the parameters of the streaming algorithms can be
tuned.

5.1 Methodology and Experimental Setup

Benchmarks. Tests were performed on a variety of large-scale
Linux applications, including graphics programs (inkscape and
gimp), an hexadecimal file viewer (ghex2), audio players/editors
(amarok and audacity), an archiver (ark), an Internet browser
(firefox), an HTML editor (quanta), a chat program (pidgin),
the Open Office suite for word processing (oowriter), spread-
sheets (oocalc), and drawing (ooimpress). To ensure determinis-
tic replay of the execution of the interactive applications in out test
suite, we used the PIN dynamic instrumentation framework [24]
to record timestamped execution traces for typical usage sessions.
After the startup, in each session we interactively used the applica-
tion for approximately ten up to twenty minutes: e.g., we created
a 420 × 300 pixel image with gimp applying a variety of graphic
filters and color effects, we reproduced fifty images in slideshow
mode with gwenview, we played a ten minutes audio file with
amarok, and we wrote a two pages formatted text, including tables,
with oowriter. Statistical information about test sets is shown in
Table 1: even short sessions of a few minutes result in CCTs con-
sisting of tens of millions of calling contexts, whereas the call graph
has only a few thousands nodes. The number of distinct call sites is
roughly one order of magnitude larger than the call graph.

Metrics. We test the accuracy of the (φ, ε)-HCCT produced by
our profilers according to a variety of metrics:

1. Degree of overlap, considered in [4, 5, 37], is used to measure
the completeness of the (φ, ε)-HCCT with respect to the full
CCT and defined as follows:

overlap((φ, ε)-HCCT,CCT) =
1

N

X

arcs e∈(φ,ε)-HCCT

w(e)

where N is the total number of routine activations (correspond-
ing to the CCT total weight) and w(e) is the true frequency of
the target node of arc e in the CCT.

2. Hot edge coverage, introduced in [37], measures the percentage
of hot edges of the CCT that are covered by the (φ, ε)-HCCT,
using an edge-weight threshold τ ∈ [0, 1] to determine hotness.
Since (φ, ε)-HCCT⊆CCT, hot edge coverage can be defined as
follows:

cover((φ, ε)-HCCT,CCT, τ) =
|{e ∈ (φ, ε)-HCCT: w(e) ≥ τH}|

|{e ∈ CCT: w(e) ≥ τH}|

where H is the weight of the hottest CCT arc.

3. Maximum frequency of uncovered calling contexts, where a
context is uncovered if is not included in the (φ, ε)-HCCT:

maxUncov((φ, ε)-HCCT,CCT) = max
e∈CCT\(φ,ε)-HCCT

w(e)

H1
×100

Average frequency of uncovered contexts is defined similarly.

521

Table 2. Typical thresholds

HCCT nodes HCCT nodes HCCT nodes
Benchmark φ = 10−3 φ = 10−5 φ = 10−7

audacity 112 9 181 233 362
dolphin 97 14 563 978 544

gimp 96 15 330 963 708
inkscape 80 16 713 830 191
oocalc 136 13 414 1 339 752
quanta 94 13 881 812 098

4. Number of false positives, i.e., |A \ H|: the smaller this num-
ber, the better the (φ, ε)-HCCT approximates the exact HCCT
obtained from CCT pruning.

5. Counter accuracy, i.e., maximum error in the frequency coun-
ters of (φ, ε)-HCCT nodes with respect to their true value in the
full CCT:

maxError((φ, ε)-HCCT) = max
e∈(φ,ε)-HCCT

|w(e) − ew(e)|

w(e)
× 100

where w(e) and ew(e) are the true and the estimated frequency
of context e, respectively. Average counter error is defined
similarly.

An accurate solution should maximize degree of overlap and hot
edge coverage, and minimize the remaining metrics.

Platform. Our experiments were performed on a 2.53GHz Intel
Core2 Duo T9400 with 128KB of L1 data cache, 6MB of L2 cache,
and 4 GB of main memory DDR3 1066, running Ubuntu 8.04,
Linux Kernel 2.6.24, 32 bit.

5.2 Parameter Tuning

Before describing our experimental findings, we discuss how to
choose parameters φ and ε to be provided as input to the stream-
ing algorithms. According to the theoretical analysis, an accurate
choice of φ and ε might greatly affect the space used by the algo-
rithms and the accuracy of the solution. In our study we considered
many different choices of φ and ε across rather heterogeneous sets
of benchmarks and execution traces, always obtaining similar re-
sults that we summarize below.

A rule of thumb about φ and ε validated by previous experimen-
tal studies [13] suggests that it is sufficient to choose ε = φ/10 in
order to obtain high counter accuracy and a small number of false
positives. We found this choice overly pessimistic in our scenario:
the extremely skewed cumulative distribution of calling context fre-
quencies shown in Figure 1 makes it possible to use much larger
values of ε without sacrificing accuracy. This yields substantial
benefits on the space usage, which is roughly proportional to 1/ε.
Unless otherwise stated, in all our experiments we used ε = φ/5.

Let us now consider the choice of φ: φ is the hotness threshold
with respect to the stream length N , i.e., to the number of routine
enter events. However, N is unknown a priori during profiling,
and thus choosing φ appropriately may appear to be difficult: too
large values might result in returning very few hot calling contexts
(even no context at all in some extreme cases), while too small
values might result in using too much space and returning too many
contexts without being able to discriminate accurately which of
them are actually hot. Our experiments suggest that an appropriate
choice of φ is mostly independent of the specific benchmark and of
the stream length: as shown in Table 2, different benchmarks have
HCCT sizes of the same order of magnitude when using the same
φ threshold (results for omitted benchmarks are similar). This is
a consequence of the skewness of context frequency distribution,
and greatly simplifies the choice of φ in practice. Unless otherwise
stated, in our experiments we used φ = 10−4, which corresponds
to mining roughly the hottest 1 000 calling contexts.

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 20 30 40 50 60 70 80 90 100

M
a

x
 φ

Degree of overlap (%)

Largest value of φ that guarantees a given degree of overlap

amarok
audacity
bluefish

firefox
gedit

gwenview
oocalc
pidgin

quanta
vlc

Figure 6. Relation between φ and degree of overlap between the
exact HCCT and the full CCT on a representative subset of bench-
marks.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

am
arok

ark
audacity

bluefish

dolphin

firefox

gedit

ghex2

gim
p
sudoku

gw
enview

inkscape

oocalc

ooim
press

oow
riter

pidgin

quanta

vlcU
n

c
o

v
e

re
d

 f
re

q
u

e
n

c
y
 (

%
 o

f
th

e
 h

o
tt

e
s
t

c
o

n
te

x
t)

Benchmarks

Avg/max frequency of contexts not included in (φ,ε)-HCCT

LSS avg
LSS max

Figure 7. Maximum and average frequency of calling contexts not
included in the (φ, ε)-HCCT generated by LSS. Results for LC are
almost identical and are not shown in the chart.

5.3 Accuracy: exact HCCT

We first discuss the accuracy of the exact HCCT with respect to
the full CCT. Since the HCCT is a subtree of the (φ, ε)-HCCT
computed by our algorithms, the results described in this section
apply to the (φ, ε)-HCCT, as well. In particular, the values of
degree of overlap and hot edge coverage on the HCCT are a lower
bound to the corresponding values in the (φ, ε)-HCCT, while the
frequency of uncovered contexts is an upper bound.

It is not difficult to see that the cumulative distribution of call-
ing context frequencies shown in Figure 1 corresponds exactly to
the degree of overlap with the full CCT. This distribution roughly
satisfies the 10% - 90% rule: hence, with only 10% of hot contexts,
we have a degree of overlap around 90% on all benchmarks. Fig-
ure 6 illustrates the relationship between degree of overlap and hot-

ness threshold, plotting the value eφ of the largest hotness threshold
for which a given degree of overlap d can be achieved: using any

φ ≤ eφ, the achieved degree of overlap will be larger than or equal

to d. The value of eφ decreases as d increases: if we want to achieve
a larger degree of overlap, we must include in the HCCT a larger
number of nodes, which corresponds to choosing a smaller hotness

522

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1e-09 1e-08 1e-07 1e-06 1e-05 0.0001 0.001

M
in

 τ

φ

Minimum τ for which hot edge coverage is 100%

 firefox
 oocalc

 amarok
 ark

 inkscape

Figure 8. Hot edge coverage of the exact HCCT: relation between
φ and edge-weight threshold τ .

threshold. However, when computing the (φ, ε)-HCCT, the value
of φ indirectly affects the space used by the algorithm and in prac-
tice cannot be too small (see Section 5.2). By analyzing hot edge
coverage and uncovered frequency, we will show below that even
when the degree of overlap is not particularly large, the HCCT and
the (φ, ε)-HCCT are nevertheless good approximations of the full
CCT: values of φ ∈ [10−4, 10−6] represent on all our benchmarks
a good tradeoff between accuracy and space reduction.

Consider, as an example, φ = 10−4, which yields degree of
overlap as small as 10% on two of the less skewed benchmarks
(oocalc and firefox). In this apparently bad scenario, Figure 7
analyzes how the remaining 90% of the total CCT weight is dis-
tributed among uncovered contexts: the average frequency of un-
covered contexts is about 0.01% of the frequency of the hottest
context, and the maximum frequency is typically less than 10%.
This suggests that uncovered contexts are likely to be uninterest-
ing with respect to the hottest contexts, and that the distribution
of calling context frequencies obeys a “long-tail, heavy-tail” phe-
nomenon: the CCT contains a huge number of calling contexts that
rarely get executed, but overall these low-frequency contexts ac-
count for a significant fraction of the total CCT weight.

Figure 8 confirms this intuition, showing that the HCCT repre-
sents the hot portions of the full CCT remarkably well even for val-
ues of φ for which the degree of overlap may be small. The figure
plots, as a function of φ, the smallest value eτ of the hotness thresh-
old τ for which hot edge coverage of the HCCT is 100%. Results
are shown only on some of the less skewed, and thus more difficult,
benchmarks. Note that eτ is directly proportional to and roughly one
order of magnitude larger than φ. This is because the HCCT con-
tains all contexts with frequency ≥ ⌊φN⌋, and always contains
the hottest context (which implies H1 = H2 in the definition of
hot edge coverage in Section 5.1). Hence, the hot edge coverage is
100% as long as ⌊φN⌋ ≥ τH1, which yields eτ = ⌊φN⌋/H1. The
experiment shows that 100% hot edge coverage is always obtained
for τ ≥ 0.01. As a frame of comparison, notice that the τ thresh-
olds used in [37] to analyze hot edge coverage are always larger
than 0.05, and for those values we always guarantee total coverage.

5.4 Accuracy: (φ, ε)-HCCT

We now discuss the accuracy of the (φ, ε)-HCCT computed by
our algorithms compared to the exact HCCT. Figure 9 shows the
percentages of cold nodes, true hots, and false positives in the
(φ, ε)-HCCT using φ = 10−4 and ε = φ/5. Both algorithms
include in the tree only very few false positives (less than 10%

 0

 20

 40

 60

 80

 100

 am
arok

 ark
 audacity

 bluefish

 dolphin

 firefox

 gedit

 ghex2

 gim
p

 sudoku

 gw
enview

 inkscape

 oocalc

 ooim
press

 oow
riter

 pidgin

 quanta

 vlc

C
o

ld
 n

o
d

e
s
 /

 h
o

t
n

o
d

e
s
 /

 f
a

ls
e

 p
o

s
it
iv

e
s
 (

%
)

Classification of (φ,ε)-HCCT nodes

Figure 9. Partition of (φ, ε)-HCCT nodes into: cold (bottom bar),
hot (middle bar), and false positives (top bar) for LSS and LC.
The two bars for each benchmark are related to LC (left) and LSS
(right), respectively.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 2 4 6 8 10 12 14 16

F
a

ls
e

 p
o

s
it
iv

e
s
 (

%
 o

f
(φ

,ε
)-

H
C

C
T

 n
o

d
e

s
)

φ/ε

Number of false positives as a function of ε

LSS - firefox
LSS - oocalc

LSS - inkscape
LSS - ark

LC - firefox
LC - oocalc

LC - inkscape
LC - ark

Figure 10. False positives in the (φ, ε)-HCCT as a function of ε
on a representative subset of benchmarks. The value of φ is fixed

to 10−4.

of the total number of tree nodes in the worst case), and Lazy
Space Saving consistently proved to be better than Lossy Counting.
Figure 10 also shows that the number of false positives decreases
considerably as we decrease ε, getting very close to 0% on most
benchmarks when the ratio φ/ε is larger than 10.

A very interesting feature of our approach is that counter esti-
mates are very close to the true frequencies, as shown in Figure 11.
Lossy Counting on average achieves almost exact counters for the
hot contexts (0.057% average difference from the true frequency),
and even the maximum error in the worst case is smaller than 8%.
Lazy Space Saving as described in this paper computes less ac-
curate counters. The error, however, can be considerably reduced
and made comparable to Lossy Counting by maintaining, for each
monitored context, the maximum possible overestimation resulting
from the initialization of the counter when the context was last in-
serted in the data structure [27]. Due to the lack of space, we defer
the details of this improvement to the full version of this paper.

523

 0

 3

 6

 9

 12

 15

 18

am
arok

ark
audacity

bluefish

dolphin

firefox

gedit

ghex2

gim
p

sudoku

gw
enview

inkscape

oocalc

ooim
press

oow
riter

pidgin

quanta

vlc
am

arok

ark
audacity

bluefish

dolphin

firefox

gedit

ghex2

gim
p

sudoku

gw
enview

inkscape

oocalc

ooim
press

oow
riter

pidgin

quanta

vlc

A
v
g

/m
a

x
 e

rr
o

r
(%

)

Benchmarks

Avg/max counter error among hot elements (% of the true frequency)

 LSS avg error
 LC avg error

 LSS max error
 LC max error

MaxAvg

Figure 11. Accuracy of context frequencies computed by LSS and LC, measured on hot contexts included in the (φ, ε)-HCCT.

 0.1

 1

 10

 100

am
arok

ark
audacity

bluefish

dolphin

firefox

gedit

ghex2

gim
p

sudoku

gw
enview

inkscape

oocalc

ooim
press

oow
riter

pidgin

quanta

vlc

V
ir
tu

a
l
m

e
m

o
ry

 p
e

a
k

(%
 o

f
fu

ll
C

C
T

)

Benchmarks

Space comparison with full CCT

LSS + static burst
LSS
BSS

LC + static burst
LC

static burst

Figure 12. Space analysis on several benchmarks of LSS/LC, static and adaptive bursting [37], and LSS/LC combined with static and
adaptive bursting with sampling interval 2 msec, and burst length 0.2 msec.

5.5 Performance

To analyze time and space performances of our profilers we con-
sider LSS, LC, BSS (omitted from the previous discussions as it
computes exactly the same (φ, ε)-HCCT as LSS), and the combi-
nation of these algorithms with static and adaptive bursting.

Memory Usage. We first evaluate how much space can be saved
by our approach. Figure 12 plots the peak memory usage of our
profilers as a percentage of the full CCT. We recall that during the
computation we store the minimal subtree MCCT of the CCT span-
ning all monitored contexts. This subtree is eventually pruned to
obtain the (φ, ε)-HCCT (see Section 3.1). The peak memory usage
is proportional to the number of MCCT nodes, which is typically
much larger than the actual number of hot contexts obtained after
pruning. In spite of this, a considerable amount of space is saved by
all algorithms. On many benchmarks, our profilers use less than 1%
of the space required by the full CCT, and even in the worst case
the space usage is about 6.5%. Space Saving is always more effi-
cient than Lossy Counting, and the lazy approach is preferable to
the bucket-based implementation. It should be noted, however, that
the space used in practice by Lossy Counting is much smaller than
the theoretical prediction. Quite surprisingly, static bursting also
improves space usage (results for adaptive bursting are similar and
are not reported in the chart). This depends on the fact that sam-
pling reduces the variance of calling context frequencies: MCCT
cold nodes that have a hot descendant are more likely to become
hot when sampling is active, and monitoring these nodes reduces
the total MCCT size. The histogram also shows that static bursting
alone (i.e., without streaming) is not sufficient to reduce the space
substantially: in addition to hot contexts, a large fraction of cold
contexts is also sampled and included in the CCT. On the oocalc
benchmark, even adaptive bursting without re-enablement requires
127 times more space than LSS. We also observed that the larger
the applications, the larger the space reduction of our approach over
bursting alone.

Since the average node degree is a small constant, cold HCCT
nodes are typically a fraction of the total number of nodes, as shown
in Figure 9 for φ = 10−4. In our experiments we observed that
this fraction strongly depends on the hotness threshold φ, and in
particular decreases with φ: cold nodes that have a hot descendant
are indeed more likely to become hot when φ is smaller.

Time Overhead. We conclude by analyzing running times. Since
our approach is independent of any specific instrumentation mech-
anisms, and different techniques for tracing routine enter and exit
events might incur rather different overheads in practice, we fo-
cus on the time required by the analysis routines only, omitting
instrumentation times. Compared to the the standard construction
of the CCT, streaming algorithms incur a small overhead, which
can be considerably reduced by exploiting sampling and bursting
techniques: in Figure 13, we plot the speedup that can be obtained
by combining our approach with static bursting and with adaptive
bursting. We compared the performance of six variants (from slow-
est to fastest) for both LSS and LC: full (φ, ε)-HCCT construc-
tion (on the entire routine enter/exit stream), static bursting, adap-
tive bursting with re-enable ratio equal to 20%, 10%, and 5%, and
adaptive bursting without re-enablement (for a description of the
adaptive bursting technique, we refer the interested reader to [37]).
We also considered bursting alone (both static and adaptive), while
we omitted sample-driven stack walking, which has been shown to
be largely inferior to bursting with respect to the accuracy [37]. The
construction of the HCCT greatly benefits from bursting, achieving
speedups up to 35×. LSS is always faster than LC, but both of them
are slower than bursting without streaming: the speedup difference,
however, is moderate and for LSS is typically smaller than 2.

As shown in Figure 14, the accuracy of the HCCT (and in partic-
ular the hot edge coverage) is not affected substantially by the com-
bination of streaming and bursting (except for adaptive sampling
without re-enablement). We take as an example the vlc bench-
mark considered in Figure 13 for τ = 0.025: the HCCT computed

524

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 64

static

R
R
 20%

R
R
 10%

R
R
 5%

adaptive

static

R
R
 20%

R
R
 10%

R
R
 5%

adaptive

S
p

e
e

d
u

p
 w

.r
.t

.
C

C
T

 c
o

n
s
tr

u
c
ti
o

n

Comparison of analysis running times using static and adaptive bursting

Full CCT

Bursting
LSS

LC

Sampling interval = 10 ms Sampling interval = 2 ms No sampling

Figure 13. Speedup analysis relative to full CCT construction on
the vlc benchmark for LSS/LC, static and adaptive bursting [37],
and LSS/LC combined with static and adaptive bursting: (1) no
sampling (left histogram); (2) sampling interval 2 msec and burst
length 0.2 msec (middle histogram); (3) sampling interval 10 msec
and burst length 0.2 msec (right histogram). The CCT construction

baseline is about 1.5 seconds for 2.5 · 108 routine enter/exit events.

without bursting has coverage 100%, which is also achieved using
static busting and adaptive bursting with re-enable ratio 20%. The
hot edge coverage decreases as sampling becomes more aggressive,
but in this experiment is always larger than 78% and 91% for LSS
and LC, respectively.

6. Related Work

This section describes research on context sensitive profiling: it
focuses on calling context trees and briefly considers other forms
of contextual profiling at both inter and intraprocedural level.

Early approaches. The utility of calling context information was
already clear in the 80s: gprof [17] approximates context sensitive
profiles by associating procedure timing with caller-callee pairs
rather than with single procedures. This single level of context
sensitivity, however, may yield to several inaccuracies [31, 34].
Goldberg and Hall [19] introduce call path profiles of monotonic
program resources and show how they can be computed in Unix
processes using interval-based sampling: a call path is a sequence
of function pairs in a caller-callee relationship, and the profile is a
sorted list of call paths and of their performance metrics. The space
usage with this approach can be prohibitive, since at each sample
point metrics are recorded along with the entire call stack.

Calling context trees. Calling context trees have been introduced
in [2] as a practical data structure to associate performance metrics
with paths through a program’s call graph: Ammons, Ball, and
Larus suggest to build a CCT by instrumenting procedure code
and to compute metrics by exploiting hardware counters available
in modern processors. It has been later observed, however, that
exhaustive instrumentation can lead to large slowdown.

Time-efficiency vs. profile accuracy. To reduce overhead, Bernat
and Miller [8] generate path profiles including only methods of
interest, while statistical profilers [5, 16, 19, 36] attribute metrics
to calling contexts through periodic sampling of the call stack. For
call-intensive programs, sample-driven stack-walking can be orders
of magnitude faster than exhaustive instrumentation, but may incur
significant loss of accuracy with respect to the complete CCT:
sampling guarantees neither high coverage [11] nor accuracy of

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

static

R
R
 20%

R
R
 10%

R
R
 5%

adaptive

H
o

t
e

d
g

e
 c

o
v
e

ra
g

e
 (

%
)

Comparison of hot edge coverage results using static and adaptive bursting

 LSS
 LC

Figure 14. Hot edge coverage analysis on the vlc benchmark
for LSS/LC combined with static and adaptive bursting [37] for

τ = 0.025, with φ = 4 · 10−5, ǫ = φ/2, sampling interval 2
msec, and burst length 0.2 msec. Static and adaptive bursting alone
always achieve 100% hot edge coverage in this experiment and are
not reported.

performance metrics [37], and its results may be highly inconsistent
in different executions.

A variety of works explores the combination of sampling with
bursting [4, 20, 37]. Most recently, Zhuang et al. suggest to perform
stack-walking followed by a burst during which the profiler traces
every routine call and return [37]: experiments show that adaptive
bursting can yield very accurate results. In [33], the profiler infre-
quently collects small call traces that are merged afterwards to build
large calling context trees: ambiguities might emerge during this
process, and the lack of information about where the partial CCTs
should be merged to does not allow it to reconstruct the entire CCT
univocally. The main goal of all these works is to reduce profil-
ing overhead without incurring significant loss of accuracy. Our
approach is orthogonal to this line of research and regards space
efficiency as an additional resource optimization criterion besides
profile accuracy and time efficiency. When the purpose of profiling
is to identify hot contexts, exhaustive instrumentation, sampling,
and bursting might all be combined with our approach and benefit
of our space reduction technique.

Reducing space. A few previous works have addressed tech-
niques to reduce profile data (or at least the amount of data pre-
sented to the user) in context sensitive profiling. Incremental call-
path profiling lets the user choose a subset of routines to be an-
alyzed [8]. Call path refinement helps users focus the attention
on performance bottlenecks by limiting and aggregating the infor-
mation revealed to the user [18]. These works are quite different
in spirit from our approach, where only hot contexts are profiled
and identified automatically during program’s execution. Quite re-
cently, probabilistic calling contexts have been introduced as an ex-
tremely compact representation (just a 32-bit value per context),
especially useful for tasks such as residual testing, statistical bug
isolation, and anomaly-based intrusion detection [11]. Bond and
McKinley target applications where coverage of both hot and cold
contexts is necessary. This is not the case in performance analysis,
where identifying a few hot contexts is typically sufficient to guide
code optimization. Hence, although sharing with [11] the common
goal of space reduction, our approach targets a rather different ap-
plication context.

525

Path profiling. At the intraprocedural level, the seminal work of
Ball and Larus [6] has spawned much research on flow sensitive
profiling [1–3, 7, 9, 10, 21, 22, 35]. Ball-Larus path profiling com-
putes a unique number through each possible path in the control
flow graph [6]: a path profile determines how many times each
acyclic path in a routine executes, extending the more common ba-
sic block and edge profiling. Melski and Reps have proposed in-
terprocedural path profiling in order to capture both inter- and in-
traprocedural control flow [26]. However, their approach does not
scale due to the large number of statically possible paths existing
across procedure boundaries.

7. Conclusions

Calling context trees offer a compact representation of all calling
contexts encountered during a program’s execution. Even for short
runs of medium-sized applications, CCTs can be rather large and
difficult to analyze. Motivated by the observation that only a very
small fraction of calling contexts are hot, in this paper we have pre-
sented a novel technique for improving the space efficiency of the
full calling context tree without sacrificing accuracy. By adapting
modern data mining techniques, we have devised an algorithm for
interprocedural contextual profiling that can discard on the fly cold
contexts and appears to be extremely practical. We have evaluated
our approach on several large-scale Linux applications, showing
significant space saving with respect to the full CCT.

We believe that a careful use of data mining techniques has the
potential benefit of enabling some previously impossible dynamic
program analysis tasks, which would otherwise be too costly. In
particular, our techniques could be applied to certain forms of path
profiling: e.g., they could help leverage the scalability problems
encountered when collecting performance metrics about interpro-
cedural paths (i.e., acyclic paths that may cross procedure bound-
aries) [26] or k-iteration paths (i.e., intraprocedural cyclic paths
spanning up to k loop iterations) for large values of k [32]. We
plan to investigate these applications in future work.

Acknowledgments

We thank the anonymous reviewers for their valuable comments.
This work is supported in part by the Italian Ministry for Education,
University, and Research (MIUR) under the PRIN national research
project “AlgoDEEP: Algorithmic challenges for data-intensive pro-
cessing on emerging computing platforms”.

References

[1] G. Ammons and J. R. Larus. Improving data-flow analysis with path
profiles. SIGPLAN Not., 39(4):568–582, 2004.

[2] G. Ammons, T. Ball, and J. R. Larus. Exploiting hardware perfor-
mance counters with flow and context sensitive profiling. SIGPLAN

Not., 32(5):85–96, 1997. ISSN 0362-1340.

[3] T. Apiwattanapong and M. J. Harrold. Selective path profiling. In
Proc. ACM SIGPLAN-SIGSOFT workshop on Program analysis for

software tools and engineering, pages 35–42. ACM, 2002.

[4] M. Arnold and B. Ryder. A framework for reducing the cost of
instrumented code. In PLDI, pages 168–179. ACM, 2001.

[5] M. Arnold and P. Sweeney. Approximating the calling context tree via
sampling. Technical Report RC 21789, IBM Research, 2000.

[6] T. Ball and J. R. Larus. Efficient path profiling. In MICRO 29:

Proceedings of the 29th annual ACM/IEEE international symposium

on Microarchitecture, pages 46–57, 1996.

[7] T. Ball, P. Mataga, and M. Sagiv. Edge profiling versus path profiling:
the showdown. In POPL, pages 134–148. ACM, 1998.

[8] A. R. Bernat and B. P. Miller. Incremental call-path profiling. Techni-
cal report, University of Wisconsin, 2004.

[9] M. D. Bond and K. S. McKinley. Continuous path and edge profil-
ing. In Proc. 38th annual IEEE/ACM International Symposium on

Microarchitecture, pages 130–140. IEEE Computer Society, 2005.

[10] M. D. Bond and K. S. McKinley. Practical path profiling for dynamic
optimizers. In CGO, pages 205–216. IEEE Computer Society, 2005.

[11] M. D. Bond and K. S. McKinley. Probabilistic calling context. SIG-

PLAN Not. (proceedings of the 2007 OOPSLA conference), 42(10):
97–112, 2007.

[12] P. P. Chang, S. A. Mahlke, W. Y. Chen, and W. mei W. Hwu. Profile-
guided automatic inline expansion for c programs. Softw., Pract.

Exper., 22(5):349–369, 1992.

[13] G. Cormode and M. Hadjieleftheriou. Finding frequent items in
data streams. Proceedings of the VLDB Endowment, 1(2):1530–1541,
2008.

[14] C. Demetrescu and I. Finocchi. Algorithms for data streams. In
Handbook of Applied Algorithms: Solving Scientific, Engineering, and

Practical Problems. John Wiley and Sons, 2007.

[15] H. H. Feng, O. M. Kolesnikov, P. Fogla, W. Lee, and W. Gong.
Anomaly detection using call stack information. In Proc. 2003 IEEE

Symposium on Security and Privacy, SP ’03, pages 62–. IEEE Com-
puter Society, 2003. ISBN 0-7695-1940-7.

[16] N. Froyd, J. Mellor-Crummey, and R. Fowler. Low-overhead call
path profiling of unmodified, optimized code. In Proc. 19th Annual

International Conf. on Supercomputing, pages 81–90. ACM, 2005.

[17] S. L. Graham, P. B. Kessler, and M. K. McKusick. gprof: a call graph
execution profiler (with retrospective). In K. S. McKinley, editor, Best

of PLDI, pages 49–57. ACM, 1982. ISBN 1-58113-623-4.

[18] R. J. Hall. Call path refinement profiles. IEEE Trans. Softw. Eng., 21
(6):481–496, 1995.

[19] R. J. Hall and A. J. Goldberg. Call path profiling of monotonic pro-
gram resources in UNIX. In Proc. Summer 1993 USENIX Technical

Conference, pages 1–19. USENIX Association, 1993.

[20] M. Hirzel and T. Chilimbi. Bursty tracing: A framework for
low-overhead temporal profiling. In Proc. 4th ACM Workshop on

Feedback-Directed and Dynamic Optimization, 2001.

[21] R. Joshi, M. D. Bond, and C. Zilles. Targeted path profiling: Lower
overhead path profiling for staged dynamic optimization systems. In
CGO, page 239. IEEE Computer Society, 2004.

[22] J. R. Larus. Whole program paths. SIGPLAN Not., 34(5):259–269,
1999.

[23] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug isolation via
remote program sampling. In PLDI, pages 141–154. ACM, 2003.

[24] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood. Pin: building customized pro-
gram analysis tools with dynamic instrumentation. In PLDI, pages
190–200, 2005.

[25] G. S. Manku and R. Motwani. Approximate frequency counts over
data streams. In VLDB, pages 346–357. Morgan Kaufmann, 2002.

[26] D. Melski and T. W. Reps. Interprocedural path profiling. In
S. Jähnichen, editor, CC, volume 1575 of Lecture Notes in Computer

Science, pages 47–62. Springer, 1999. ISBN 3-540-65717-7.

[27] A. Metwally, D. Agrawal, and A. E. Abbadi. An integrated efficient
solution for computing frequent and top-k elements in data streams.
ACM Trans. Database Syst., 31(3):1095–1133, 2006.

[28] S. Muthukrishnan. Data streams: Algorithms and applications. Foun-

dations and Trends in Theoretical Computer Science, 1(2), 2005.

[29] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. In PLDI, pages 89–100, 2007.

[30] C. Pavlopoulou and M. Young. Residual test coverage monitoring. In
ICSE, pages 277–284, 1999.

[31] C. Ponder and R. J. Fateman. Inaccuracies in program profilers. Softw.,

Pract. Exper., 18(5):459–467, 1988.

[32] S. Roy and Y. N. Srikant. Profiling k-iteration paths: A generalization
of the ball-larus profiling algorithm. In CGO, pages 70–80, 2009.

526

[33] M. Serrano and X. Zhuang. Building approximate calling context from
partial call traces. In CGO, pages 221–230, 2009.

[34] J. M. Spivey. Fast, accurate call graph profiling. Softw., Pract. Exper.,
34(3):249–264, 2004.

[35] K. Vaswani, A. V. Nori, and T. M. Chilimbi. Preferential path profil-
ing: compactly numbering interesting paths. In POPL, pages 351–362.
ACM, 2007.

[36] J. Whaley. A portable sampling-based profiler for Java virtual ma-
chines. In Proceedings of the ACM 2000 Conference on Java Grande,
pages 78–87. ACM Press, 2000.

[37] X. Zhuang, M. J. Serrano, H. W. Cain, and J.-D. Choi. Accurate,
efficient, and adaptive calling context profiling. In PLDI, pages 263–
271, 2006.

527

