
Experimental analysis of simple, distributed vertex coloring algorithms

(Extended Abstract)

Irene Finocchi∗ § Alessandro Panconesi∗ Riccardo Silvestri∗

Abstract

We perform an extensive experimental evaluation of very

simple, distributed, randomized algorithms for (∆ + 1)- and

so-called Brooks-Vizing vertex colorings, i.e., colorings using

considerably fewer than ∆ colors. We consider variants of

algorithms known from the literature, boosting them with a

distributed independent set computation. Our study clearly

determines the relative performance of the algorithms w.r.t.

the number of communication rounds and the number of

colors. The results are confirmed by all the experiments and

instance families. The empirical evidence shows that some

algorithms are extremely fast and very effective, thus being

amenable to be used in practice.

1 Introduction

In this paper we perform an extensive experimental
analysis of very simple, distributed vertex coloring
algorithms. Their appealing features are simplicity of
implementation, paired with a rather good performance
in terms of colors used, and great speed. In particular,
our algorithms can quickly compute vertex colorings
using many fewer than ∆ colors, where ∆ denotes
the maximum degree of the input graph. Because of
these characteristics, we expect them to be quite useful
in application areas, such as parallel sparse matrices
computation or protocols for wireless networks.

1.1 The algorithms. In some sense this is a study of
just one algorithm. It is by changing its few parameters
and by switching on and off a heuristic step that
several algorithms are obtained, with quite different
characteristics. We now describe the basic algorithm.
The input is an undirected graph G in which every
vertex u has its own unique ID and is initially given
a list (or palette) of available colors, denoted as L0

u.
The colors can be assumed to be consecutive natural
numbers. The algorithm simply repeats the following

∗Dipartimento di Scienze dell’Informazione, Università di
Roma “La Sapienza”, via Salaria 113, 00198 Rome, Italy. E-mail:
{finocchi,ale,silvestri}@dsi.uniroma1.it.

§Author supported in part by the Italian Ministry of University
and Scientific Research (Project “Algorithms for Large Data Sets:
Science and Engineering”).

basic iteration, until all vertices are colored. The current
iteration is denoted by r.

The basic iteration:

1. Wake up! At the beginning of the iteration every
vertex is asleep. In parallel, each uncolored vertex
u wakes up with probability pr

u
.

2. Try! Each awaken vertex u, in parallel, selects
a tentative color tu from its list Lr

u uniformly at
random.

3. Conflict resolution. If no neighbor of u has selected
the same tentative color, tu becomes the final color
of u. Otherwise the attempt fails and u will try
again at the next iteration.

4. Deliverance? Vertices that obtain a final color exit
the algorithm. The others, in parallel, update their
lists by removing all colors assigned as final colors
to the neighbors.

5. Feed the hungry. If the palette of a vertex u runs
out of colors, fresh new colors are introduced in the
following way. Let c be the greatest color used as
final color in u’s neighborhood. The new list of u
is set to [min{c + 1, ∆ + 1}].

6. Back to square one. All vertices go back to sleep.

It is apparent that the algorithm is distributed. Ev-
ery iteration (also called “round”) only requires O(log n)
message size and can be implemented in a constant
number of rounds in the synchronous, message-passing
model of computation, which is the one adopted here.

This is a rough but useful theoretical model that
approximates the behavior of those real distributed
architectures for which the cost of routing messages
is typically orders of magnitude greater than that of
performing local computations. For instance, it has
been used by several authors to analyze algorithm
performance in wireless networks [2, 24, 25] .

Whereas this simulation is, in terms of resources
and programming effort, relatively inexpensive, an im-
plementation on a real distributed architecture would



be much more demanding. Moreover, a truly dis-
tributed implementation would introduce factors that
would make the experimental results more informative
for the specific applications considered, but probably
unsuitable for drawing general conclusions about the
behavior of the algorithm.

In the course of our experiments we also made use of
the following heuristic, dubbed here the hungarian-folk

step (HS step).

Given a color c, let Gc be the graph induced
by all vertices that selected c as their tentative
color at the current iteration.
In parallel, for all colors c, compute an inde-
pendent set of Gc as follows. Let π be a ran-
dom permutation of the vertices of Gc: a ver-
tex u enters the independent set if and only
if it comes first than its neighbors in the total
ordering induced by π.

When this is used, it replaces the conflict-resolution
step of the basic algorithm. A crucial feature of the
HS step is that it can be implemented very cheaply
in our distributed setting. It does not require extra
communication rounds and the message size is O(log n).
It is well-known that, given a graph with n vertices, the
HS step computes an independent set whose expected
size is at least n/(d̂ + 1), d̂ being the average degree of
the graph. The very cute analysis appears to be part of
hungarian folklore [19]. Luby showed that by iterating
the HS step a maximal independent set is computed in
O(log n) expected many rounds [22].

The random permutation of the HS step is needed
to generate a random total ordering of the vertices.
Strictly speaking, this requires global communication.
If n, the number of vertices of the input network, is
known, then it suffices to choose a random number in
a large enough interval for a high probability analysis
to go through. But in practice this is not a problem,
because for any realistic network a few dozen random
bits are enough to generate unique ID’s. In fact, our
experiments strongly suggest that using the original
ID’s works as well as truly (pseudo) random generated
ones.

1.2 Our results. In this paper we perform two kinds
of study. The first concerns algorithms for (∆+1)-vertex
coloring, while the second concerns so-called Brooks-

Vizing colorings, i.e., colorings using “many fewer” than
∆ colors [10].

Algorithms for (∆ + 1)-vertex coloring. In this
study the only dependent variable is the running time

of the basic algorithm, measured as the number of com-
munication rounds (basic iterations). The independent

variables are three: the wake-up probability, the initial

palette setting, and the HS step. The first is set to be
a constant in the interval (0, 1], while for the second
the possibilities are two. If the initial lists are set to
[∆ + 1], for all vertices, then we have the global set-

ting; otherwise, if L0
u := [deg(u) + 1], for all vertices

u, we have the so-called local setting. Likewise we shall
speak of the global or the local version of the algorithm.
Since both versions never run out of colors the Feed-the-
hungry step can be omitted. Notice that in either case
the algorithm has as many as ∆+1 colors at its disposal
and since in practice, as we shall see, they will always
all be used, it is not meaningful to consider the number
of used colors as a dependent variable. Finally, the HS
step can be either set on or off, i.e., it can be used as a
conflict resolution mechanism instead of Step 3.

There exist theoretical analyses of the trivial algo-

rithm, corresponding to setting the wake-up probability
to 1 for all vertices and iterations, and of Luby’s algo-

rithm corresponding to setting the wake-up probability
to 1/2, for all vertices and iterations [15, 21]. Both al-
gorithms compute a (∆ + 1)-coloring in O(log n) many
expected iterations, and in fact do so with high proba-
bility [5, 17].

The main findings of our experimental study of
these (∆ + 1)-coloring algorithms are the following.

• The closer the wake-up probability to 1, the faster
the algorithm, regardless of other parameters. The
basic trend is exemplified by Figure 1a, showing the
running time as a function of the wake-up prob-
ability for a random graph with 1000 nodes and
edge probability 0.1. We remark that the same be-
havior was exhibited in all our tests, regardless of
the graph. Thus the trivial algorithm is the algo-
rithm of choice for (∆ + 1)-coloring. In particular,
when compared with Luby’s algorithm it consis-
tently turned out to be 2–3 times faster.

The available asymptotic analyses do not explain
this behavior [21, 15] and we leave it as an inter-
esting open question.

• Globalization does not help, meaning that the fully
distributed local version is not slower and often
results in non-negligible color savings.

• As remarked, the algorithms with the hungarian-
folk heuristic work just as well if vertex ID’s are
used instead of generating a random permutation.

• The algorithms are extremely fast. It is often the
case that graphs with a thousand vertices or more
are colored within 5 communication rounds.



Algorithms for Brooks-Vizing colorings. The
second part of our study concerns so-called Brooks-

Vizing colorings, i.e., colorings using “many fewer”
than ∆ colors [10]. Here we have two dependent
variables, the running time, measured as the number
of communication rounds (basic iterations), and the
number of colors actually used by the algorithm. The
latter could exceed the initial allotment because the lists
can run out of colors. The independent variables are
three: the wake-up probability, the shrinking factor, and
the HS step. For this study we considered the local
setting only. Each vertex u is initially given a list of
deg(u)/s colors, where s > 1 is the shrinking factor.
Essentially our study focuses on three algorithms.

• Algorithm GP. This is the algorithm from [10].
Here the wake-up probability of vertex u at iter-
ation r is set to be pr

u
:= |Lr

u
|/ deg

r
(u), where

degr(u) is the number of uncolored neighbors of u
at iteration r. This choice (with high probability)
mantains the invariant that the number of neigh-
bors vying for coloring at any given round equals
the current size of the color lists.

• Algorithm Hungarian-GP (HGP). This is the same
as above, with the conflict-resolution step replaced
by the hungarian-folk heuristic.

• Algorithm Constantly-Hungarian (CH). Here
the wake-up probability is a constant in the
interval (0, 1] and the hungarian-folk step replaces
the conflict-resolution step.

The available theoretical evidence concerning
Brooks-Vizing colorings can be summarized as follows.
If G is square- or triangle-free then it is always possible
to color G with O(∆/ log ∆) colors [18, 14]. Moreover,
if G is not only triangle-free but also ∆-regular and of
high enough degree (i.e., ∆ � log n) then, with high
probability algorithm GP colors the input graph with as
few as O(∆/ log ∆) colors within O(log n) rounds [10].
The performance regarding the number of colors is the
best possible in view of a result of Bollobás showing
that there exist graphs of arbitrarily large girth whose
chromatic number is Ω(∆/ log ∆) [3].

The main conclusions of our study can be summa-
rized as follows.

• The best algorithm for Brooks-Vizing colorings is
the simplest of them all, namely algorithm CH with
the wake-up probability set to 1. We called it
algorithm Trivially-Hungarian (TH). In all our
tests it outperformed the competitors in terms
of speed, while computing colorings of the same
quality (same number of colors). While we are

able to provide a (hopefully) convincing heuristic
explanation of why the HS step is so effective, a
rigorous analysis is lacking. For instance, it would
be very interesting if the results of [10] could be
extended to algorithm TH.

• A realistic value for the shrinking factor is a value
inbetween 4 and 6, even though in many cases
greater savings can be obtained. While the running
time of algorithms GP and HGP grows rather quickly
as s increases, algorithm TH’s running time grows
quite slowly. In practice, algorithm TH can be made
to run with values of s up to 20 or more. Even if
this might not result in colorings better than those
obtained with smaller values of the shrinking factor,
it might be worth a try since the running time stays
quite small (between 20 and 30 rounds for graphs
with several thousands of edges).

• The algorithms are very fast. Even using the
largest (feasible) shrinking factor, graphs with hun-
dreds or even thousands of vertices are typically
colored within 20-30 rounds.

• While the theoretical analyses only deal with
triangle-free graphs, the empirical evidence shows
that Brooks-Vizing colorings can be quickly com-
puted distributively also in the presence of many
triangles. It would be nice if the theoretical anal-
ysis could be extended to give characterizations
of classes of graphs admitting such colorings. At
present the only case known to us is that of line
graphs [11].

1.3 Comparison with previous work. In spite of
a quite extensive literature on vertex-coloring (see for
instance Culberson’s bibliography [7]), there are just
a few experimental studies of parallel or distributed
algorithms. Some are not quite related to the present
work inasmuch as their experiments regard parallel
algorithms designed for yielding very good colorings and
thus they are neither simple nor fast (see, e.g., [20]).

Then, as far as we know, there are very few
remaining papers experimenting with simple and fast
parallel or distributed heuristics. Some of the studied
heuristics derive from Luby’s parallel algorithm for
finding maximal indipendent sets [22]. The aim of the
experimental study carried out by Jones and Plassmann
[16] is showing that a specific parallel implementation of
such an heuristic could be effective for bounded degree
graphs. The performance of the heuristic is compared
with that of simple sequential greedy heuristics (e.g.,
First Fit [12], Saturation Degree Ordering [4], Incidence
Degree Ordering [6]). But no attempt is done to



0

10

20

30

40

50

60

70

80

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

WakeUp Probability

R
ou

nd
s

Global

Local

Global HS

Local HS

Instance: G(1000,0.1)

Luby

Trivial

(a)

50

70

90

110

130

150

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

WakeUp Probability

C
ol

or
s 

&
 D

eg
re

e

Global Local Global HS Local HS

min deg avg deg max deg

Instance: G(1000,0.1)

(b)

Figure 1: Algorithms for (∆ + 1)colorings: Effects of varying the wake up probability with local and global
palettes: for each algorithm the best wake up probability is 1.

understand the behavior of the parallel heuristic as a
function of the characteristics of the input graphs. Of
a similar flavor is the experimental study by Allwright
et al. [1], in which heuristics based on Luby’s algorithm
and on parallel variations of a greedy strategy are
compared. The algorithms were only tested on random
triangulated meshes. More recently, Gebremedhin and
Manne [9] proposed a simple parallel heuristic and they
studied a specific parallel implementation of it on just
a few input graphs arising from numerical problems.

We note that the emphasis of all these studies is
on testing specific parallel implementations of simple
heuristics with respect to some restricted class of in-
put graphs. Differently from this paper, the general
behavior of the proposed heuristics is not analysed. For
instance, which characteristics of the input graphs (e.g.
maximum degree, average degree, k-partiteness, etc.)
affect the number of used colors or the number of com-
munication rounds. Under this aspect the experimental
study reported here is much more similar in spirit to
that of [23].

2 More on the experimental design

The algorithms considered in the experiments were de-
scribed in sufficient detail in the introduction. In the
following we give more details concerning the implemen-
tation and the instances that we have been using.

Implementation details. The algorithms were imple-
mented in ANSI C. The performance indicators used in
the experiments are not affected by machine and com-
piler details, since we simulate a message-passing dis-
tributed network for which the running time is given
by the number of communication rounds. We used the
pseudo-random generator provided by the ANSI C stan-
dard function rand, using odd seeds and randomly gen-
erating the sequence of seeds for each test starting from

a base value. To increase the statistical confidence of
our results, in all the experiments we performed 5 to 10
runs of the algorithms on the same instance. Moreover,
in the experiments on randomly generated graphs we
used several trials per data point, i.e., we ran the algo-
rithms on several instances by the same parameters.

Instances. We tested the algorithms on random
and synthetic graph families as well as on real test
sets. In addition to random graphs from G(n, p), i.e.,
random graphs with n vertices and edge probability p,
we considered uniform random k-partite graphs from
G(n, p, k), where vertices are randomly assigned to
one of k partition elements as nearly equal in size
as possible (the smallest sets being one less than the
larger) and a vertex pair uv is assigned an edge with
probability p, provided u and v are from distinct
partition elements. We have been also using Culberson’s
generators for coloring instances [7] and other test
sets available from the FTP site related to the second
DIMACS implementation challenge [8].

Lack of space prevents us from showing all our

data in this extended abstract. We remark that, unless

stated otherwise, the data we show exemplify the general

pattern.

In Section 3 and Section 4 we discuss the behav-
ior of the algorithms on random graphs. DIMACS
benchmarks and real test sets are briefly considered
in Section 5. The interested reader can also find
additional charts and tables with the experimental
package, that is available over the Web at the URL
http://www.dsi.uniroma1.it/~finocchi/coloring/.

3 Experimental results: ∆ + 1 colorings

In this section we experimentally analyze distributed
algorithms for computing ∆ + 1 colorings. The words
“list” and “palette” are used as synonyms.



3

5

7

9

11

13

15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Density

R
ou

nd
s

Global

Local

Global HS

Local HS

Instance: G(1000,p)

(a)

0

10

20

30

40

50

60

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Density

Pe
rc

en
ta

ge
 o

f 
ro

un
ds

 s
av

ed
 u

si
ng

 H
S

 Rounds saved by HS for algorithm Global

 Rounds saved by HS for algorithm Local

Instance: G(1000,p)

(b)

0

5

10

15

20

25

30

35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Density

Pe
rc

en
ta

ge
 o

f 
co

lo
rs

 s
av

ed
 b

y 
L

oc
al

 100 (colors(Global)-colors(Local))/colors(Global)

 100 (max deg - avg deg)/max deg

Instance: G(1000,p)

(c)

Figure 2: Behavior of the trivial algorithm with varying edge density. Very dense instances are difficult; the
independent set heuristic saves approximately 25% rounds; the benefit of local palettes is greater on sparser
instances.

Effects of varying the wake up probability. We
first show that the wake up probability, denoted here
as w, has a significant impact on the number of rounds
required to compute a ∆ + 1 coloring. The charts in
Figure 1 have been obtained by running the distributed
algorithms with global and local palettes on random
instances from G(1000, 0.1). As shown in Figure 1a,
the number of rounds of each algorithm is inversely

proportional to the wake up probability, thus obtaining
the fastest convergence for w = 1. The very same

trend was observed in all our experiments. The choices
w = 1

2 and w = 1 correspond to Luby’s algorithm and to
the trivial algorithm, respectively, analyzed in [21, 15].
In both cases the theoretical analysis shows that the
probability that a vertex colors at a certain round is
1
4 . This contrasts with the typical trend observed in the
experiments and exemplified by Figure 1a, that provides
strong empirical evidence that the trivial algorithm is
always faster, thus suggesting that the analysis may
not be tight. The following explanation is accurate for
the first round only, becoming less and less so as the
algorithm progresses. Neverthless it offers a plausible
explanation. Since w = 1/2 in Luby’s algorithm, the
expected degree of a vertex u in the graph induced
by the vertices that are awake is du/2, while u’s list
has du + 1 ∼ du colors. Thus, a vertex colors with
probability ∼ 1/2e

1

2 . On the other hand, in the trivial
algorithm every vertex is awake and therefore a vertex
obtains a final color with probabilty ∼ 1/e > 1/2e

1

2 .
Notice that neither the HS step nor the global list
initialization yield faster running times.

Intuitively, if the number of vertices is much larger
than ∆, in the global case all available colors will be
used (see Figure 1b). In the local case on the other
hand, the smaller the number of high degree vertices,
the higher the probability that the final color will use

less than ∆ + 1 colors. This intuition is confirmed by
the chart in Figure 1b: using local palettes leads to
slightly better colorings, though the number of colors
used is always greater than the average degree of the
graph. (Figure 2c will report on the color savings that
can be obtained using the local version as a function of
the edge probability.)

Experiments with different graph densities. In
order to analyze how the number of rounds and col-
ors depends on the density of the graph, we ran the
trivial algorithm with global and local palettes on sev-
eral graph instances of varying edge density. We con-
sider the trivial algorithm only, because it consistently
proved itself to be the best. Figure 2 reports the results
for random instances from G(1000, p), with p increas-
ing from 0.05 to 1. Although global palettes guarantee
faster convergence (Figure 2a), the effect is once again
rather negligible. Notice that the algorithms are ex-
tremely fast.

The number of rounds does not depend very much
on the density of the graph except for densities beyond
0.9. After this point the number of rounds grows
considerably. In particular cliques require significantly
more rounds to be colored. This behavior has been
confirmed also on random k-partite graphs (charts are
not reported here due to the lack of space). On these
instances the number of rounds stays almost constant.
This is because the edge density cannot come too close
to 1. Figure 2b shows the percentage of rounds saved
when the HS step is used. The saving is roughly
25%, with both local and global palette, and therefore
significant.

We observed that the number of colors linearly in-
creases with the density, following the trend of the max-
imum degree curve, and that the benefit of using local
palettes is bigger for sparser graphs, as shown by Fig-



0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Wake up probability

R
ou

nd
s

GP

HGP

CH

Instance: G(500,0.25)                 s=2

(a)

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Wake up probability

R
ou

nd
s

GP

HGP

CH

Instance: G(500,0.25)                 s=3

(b)

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Wake up probability

R
ou

nd
s

GP

HGP

CH

Instance: G(500,0.25)                 s=7

(c)

Figure 3: Brooks-Vizing colorings: effects of varying the wake up probability.

ure 2c. The percentage of colors saved is approximately
7% for p = 0.1 and decreases linearly with the density
down to 0 for p = 1. Colorings obtained on cliques by
local and global palettes are obviously the same.

4 Experimental results: Brooks-Vizing

colorings

In this section we experimentally analyze distributed
algorithms for computing colorings with significantly
fewer than ∆ colors. Recall that we tested the local
version only, in which each vertex u is initially given a
list of deg(u)/s colors, s being the shrinking factor. The
algorithms tested were: (a) algorithm GP, in which the
wake up probability at round r is set to be |Lr

u
|/ degr(u);

(b) algorithm HGP, which is the same as above with the
HS step; and (c) algorithm CH, in which the wake-up
probability w is constant and the HS step is always used.
Algorithm TH is algorithm CH with w = 1.

Effects of varying the wake up probability. The
charts in Figure 3 have been obtained by running
algorithms GP, HGP, and CH on random instances from
G(500, 0.25) and plot the number of rounds required to
compute ∆

s
colorings for different values of the shrinking

factor s. The basic message is that, once again, the best
choice for the wake-up parameter is 1 (this applies to
algorithm CH only).

Though the trend of each curve is maintained, the
actual performance changes as s and w vary. The
running times of algorithms GP and HGP, not depending
on w, appear in Figure 3 as straight lines. GP appears
to benefit only to a limited extent from the independent
set computation and the benefit is greater for bigger
values of s. As expected, the independent set turns out
to be more useful when there are numerous conflicts,
and this happens for smaller palettes. Algorithm CH

can be worse than GP and HGP only for s = 2, and
becomes much better for larger values of s. The running
time of algorithm CH exhibits a good behavior. It

is inversely proportional to the wake up probability,
obtaining the fastest convergence for w = 1. In
subsequent experiments we will therefore report only on
the behavior of TH. We remark that if w = 1 algorithm
CH is always faster than GP and HGP.

Effects of varying the shrinking factor. Figure 3
and Figure 4 show how the running time (number of
communication rounds) grows as s increases. Figure 3
shows a marked deterioration of the running time of
GP and HGP as s takes the values 2, 3, 7. The running
time of algorithm CH also grows, but much more slowly,
especially that of algorithm TH. The same conclusion is
reinforced by Figure 4a, in which the running time of
both versions (local and global) of the trivial (∆ + 1)-
coloring algorithm is also reported. While the trivial
algorithm is considerably faster than the reduced palette
algorithms, it also uses many more colors (Figure 4b).
Notice that algorithms GP and TH use approximately
the same number of colors, but GP is much slower. The
seemingly asymptotic trend of the number of colors used
as a function of the shrinking factor is commented upon
in a paragraph below.

Figure 4c shows that algorithm TH saves around
70%−80% of the number of rounds of GP (the percentage
is smaller only for s = 2). Since the same relative
performance of GP and TH has been observed in all our
experiments, we can definitely conclude that algorithm
TH is the algorithm of choice for computing Brooks-
Vizing colorings in a distributed setting.

A possible explanation to account for this marked
difference in speed is the following. In the initial rounds
of algorithm GP a vertex wakes up with probability
∼ 1/s. A vertex that wakes up has on average a number
of neighbors vying for coloring equal to the size of its list
of available colors. Therefore a vertex colors itself with
probability ∼ 1/(se). In contrast, algorithm TH first
partitions the vertex set into a certain number of classes,
say k. The average degree of a conflict graph Gc– the



0

20

40

60

80

100

120

140

0 2 4 6 8 10 12 14 16

Shrinking Factor

R
ou

nd
s

GP

HGP

TH

Global HS

Local HS

Instance: G(500,0.25)

(a)

0

20

40

60

80

100

120

140

160

180

0 2 4 6 8 10 12 14 16

Shrinking Factor

C
ol

or
s

GP

HGP

TH

Global HS

Local HS

Instance: G(500,0.25)

(b)

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16

Shrinking Factor

Pe
rc

en
ta

ge
 o

f 
ro

un
ds

 s
av

ed
 b

y 
T

H

Rounds saved by TH w.r.t. GP

Rounds saved by TH w.r.t. HGP

Instance: G(500,0.25)

(c)

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10 12 14 16

Shrinking factor

R
at

e 
of

 a
t w

hi
ch

 r
ou

nd
s 

in
cr

ea
se GP

HGP

TH

Instance: G(500,0.25)

(d)

Figure 4: Brooks-Vizing colorings: effects of varying the shrinking factor.

graph induced by all vertices that picked tentative color
c– is s. Recall that an application of the HS step in
a graph with x vertices and average degree d yields an
independent set of size ∼ x/d. Therefore on average
n/s vertices will get a final color after one step of
algorithm TH, as opposed to ∼ n/(se) with algorithm
GP. Although this rough analysis is plausible only for
the initial rounds, to some extent it might explain the
very different running times.

Finally, Figure 4d plots r(s), the rate at which
the number of rounds increases. The chart should
be interpreted as follows: r(s) = k means that when
shrinking factor s is used instead of s−1 the number of
rounds increases by k%. Both GP and TH exhibit a good
behavior w.r.t. this measure, as curves are decreasing
for s ≥ 5.

Is the best shrinking factor small? Figure 4b
seems to suggest that the shrinking factor tends to
an asymptotic value, i.e., larger values of s do not
yield better colorings. This is not always the case
however. Often larger values of s do result in better
colorings. In particular, we investigated this point on
random k-partite instances and observed a surprising
phenomenon. We fixed a distribution G(n, p) (i.e.,
we fixed n and p) and generated k-partite random
graphs from G(n, pk, k) for different values of k. These

graphs all had the same expected density, and the same
minimum, average and maximum degree of graphs from
G(n, p) (this is done by setting pk = k/(k − 1)p).
Therefore the local properties were the same but the
chromatic number– a global property– differed. We
then ran algorithm TH on these instances with different
shrinking factors. The outcome is reported in Figure 5.

The figure shows that it pays off to consider bigger
values of s and that in spite of the fact that locally the
graphs look the same, the number of colors used by the
algorithm differs, being lower for graphs with smaller
chromatic number. Presently we are not able to offer
any plausible explanation of this behavior.

Experiments for different graph densities. Fig-
ure 6 is concerned with reduced palette algorithms on
random instances G(1000, p) for 0.05 ≤ p ≤ 0.45 and
is the companion to Figure 2. Figure 6a and Figure 6b
report on the number of rounds of GP and TH, respec-
tively, for different shrinking factors. In both cases the
number of rounds increase linearly with the density and
curves related to bigger shrinking factors are steeper.
The range of the values on the y-axes in the two charts is
the same, making it easier to grasp the advantage of TH
over GP: though not reported in the chart, we point out
that GP s=8 requires 293 rounds for p = 0.45, instead of
56 rounds used by TH s=8. As GP and TH use the same



p=0.1 pk=0.125
k=5 pk=0.133

k=4 pk=0.15
k=3 pk=0.2

k=2

TH   s=2

TH   s=10
TH   s=20

0

5

10

15

20

25

30

R
ou

nd
s

Instance families

(a)

p=0.1 pk=0.125
k=5 pk=0.133

k=4 pk=0.15
k=3 pk=0.2

k=2

TH   s=20

TH   s=10
TH   s=2

0

10

20

30

40

50

60

70

C
ol

or
s

Instance families

(b)

Figure 5: Algorithm TH for different shrinking factors on k-partite instances with the same density and degrees:
the smaller k, the easier the instance.

0

20

40

60

80

100

120

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Density

R
ou

nd
s

GP s=2

GP s=3

GP s=4

GP s=8

Instance: G(1000,p)

(a)

0

20

40

60

80

100

120

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Density

R
ou

nd
s

TH  s=2

TH  s=3

TH  s=4

TH  s=8

Instance: G(1000,p)

(b)

0

100

200

300

400

500

600

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Density

C
ol

or
s

GP s=2 GP s=3

GP s=4 GP s=8

min deg avg deg

Local Global

Instance: G(1000,p)

(c)

Figure 6: Brooks-Vizing colorings: experimenting different graph densities.

number of colors, Figure 6c reports only on the color-
ing of GP. Differently from (∆ + 1)-colorings, where the
number of colors is sharply concentrated near the max-
imum degree, the curves related to reduced palettes are
less steep and, as expected, their slope is smaller for
bigger values of the shrinking factor.

5 Results with DIMACS instances

In this section we briefly report on the performance
of algorithms HGP and TH on a subset of the instances
used in the second DIMACS challenge [13], on other
test sets available from the DIMACS FTP site, and
on graphs with decreasing degree variance generated
using Culberson’s clique-driven generator. We consider
both colors and rounds and, with respect to colors,
in the case of DIMACS benchmarks we compare HGP

and TH against two well known algorithms: Iterated
Greedy and Hybrid [13]. These algorithms are known
to produce very good colorings, though can require a
considerable amount of time (minutes or even hours).
Our distributed algorithms compare rather well.

We ran algorithms HGP and TH at least 10 times

per instance and we averaged the values of colors and
rounds over the runs. The value of the shrinking factor
used on each instance is reported between parentheses
(results for different shrinking factors are available with
the experimental package).

The table in Figure 7 confirms that TH is consider-
ably faster than HGP and shows that TH usually obtains
slightly better colorings. It also reports the standard de-
viation of the number of rounds, that we were precluded
from discussing throughout the paper due to space limi-
tations: note that the standard deviation of TH is always
much smaller than the standard deviation of HGP.

References

[1] J.R. Allwright, R. Bordawekar, P.D. Coddington, K.
Dincer, and C.L. Martin. A Comparison of Parallel
Graph Coloring Algorithms. Technical Report SCCS-
666, Northeast Parallel Architecture Center, Syracuse
University, 1995.

[2] S. Basagni, Finding a maximal weighted independent
set in wireless networks, Telecommunication Systems,
18:1,2, 155-168, 2001.



HGP TH HGP TH IG HY
Instance Rounds Rounds Colors Colors Colors Colors

(Std. Dev.) (Std. Dev.) (s) (s)

C2000.5.col 661.2 (33.55) 122.2 (1.47) 229.6 (10) 226.0 (10) 190 DNR
flat300 20 0.col 119.2 (6.03) 32.6 (1.02) 49.1 (10) 47.7 (10) 20.2 20
flat300 26 0.col 123.6 (10.2) 32.8 (1.4) 50 (10) 48.3 (10) 37.1 32.4
flat300 28 0.col 125.6 (8.55) 33.1 (0.94) 49.8 (10) 48.2 (10) 37 33
flat1000 50 0.col 355.3 (13.91) 76.7 (1) 131 (10) 128.8 (10) 65.6 97
flat1000 60 0.col 365.4 (12.06) 76.9 (1.22) 130.5 (10) 128.9 (10) 102.5 97.8
flat1000 76 0.col 362.4 (3.77) 76.6 (1.02) 130.6 (10) 128.6 (10) 103.6 99

latin square 10.col 514.7 (25.52) 91.9 (2.11) 159.6 (10) 159.9 (10) 106.7 109.25
le450 15a.col 43.8 (4.19) 13.9 (0.7) 23.5 (10) 21.8 (10) 17.9 15
le450 15b.col 45.1 (2.98) 14.8 (0.98) 23.4 (10) 22.3 (10) 17.9 15
le450 15c.col 69.7 (3.52) 18.8 (0.98) 33 (10) 30.9 (10) 25.6 16.6
le450 15d.col 70.8 (5.81) 19.0 (0.77) 33.1 (10) 30.9 (10) 25.8 16.8

mulsol.i.1.col 72.5 (5.64) 38.7 (1.55) 49.3 (10) 49.1 (10) 49 49
school1.col 104.1 (6.02) 26.8 (1.07) 46 (15) 43.4 (15) 14 14

school1 nsh.col 85.1 (5.41) 20.9 (2.3) 40.4 (10) 39.8 (10) 14.1 14

inithx.i.1.col 50.2 (6.55) 17.4 (3.92) 62.7 (10) 56.2 (10)
inithx.i.2.col 28 (2.0) 4.9 (0.94) 50.9 (10) 47.2 (10)
inithx.i.3.col 30.8 (5.74) 4.9 (0.7) 52 (10) 46.6 (10)
fpsol2.i.1.col 89.5 (7.48) 42.8 (0.98) 65.5 (10) 65.1 (10)
fpsol2.i.2.col 34.6 (3.26) 6.2 (0.87) 41.9 (10) 35.2 (10)
fpsol2.i.3.col 33.6 (5.42) 6.2 (0.74) 40.3 (10) 34.2 (10)

degree variance.1 70.4 (7.49) 26.6 (4.22) 46.8 (20) 43.4 (20)
degree variance.2 66.2 (7.44) 21.6 (3.13) 43.6 (20) 41.0(20)
degree variance.3 59.6 (6.46) 20.6 (3.2) 41.8 (20) 40.0 (20)
degree variance.4 61.8 (9.51) 19.8 (2.31) 42.2 (20) 40.6 (20)
degree variance.5 58.8 (6.4) 25.4 (3.26) 40.6 (20) 40.0 (20)
degree variance.6 56.6 (8.4) 27.0 (2.6) 40.6 (20) 40.0 (20)
degree variance.7 55.6 (7.73) 22.6 (5.38) 40.0 (15) 40.0 (15)
degree variance.8 44.2 (9.8) 17.2 (5.52) 39.0 (15) 39.0 (15)

Figure 7: Results on DIMACS instances.

[3] B. Bollobás. Chromatic number, girth, and maximal
degree. Discrete Mathematics 24:311–314, 1978.

[4] D. Brélaz. New Methods to Color Vertices of a Graph.
Communications of the ACM, 22:251–256, 1979.

[5] S. Chaudhuri and D. Dubhashi. Probabilistic recur-
rence relations revisited. Theoretical Computer Sci-

ence, to appear.
[6] T.F. Coleman and J.J. Moré. Estimation of Sparse Ja-

cobian Matrices and Graph Coloring Problems. SIAM

Journal on Numerical Analysis, 20:187–209, 1983.
[7] J.C. Culberson. http://web.cs.ualberta.ca/~joe/

Coloring/.
[8] FTP site of DIMACS implementation challenges.

ftp://dimacs.rutgers.edu/pub/challenge/.
[9] A.H. Gebremedhin and F. Manne. Scalable Parallel

Graph Coloring Algorithms. Concurrency: Practice

and Experience, 12:1131–1146, 2000.
[10] D.A. Grable and A. Panconesi. Fast distributed algo-

rithms for Brooks-Vizing colourings. Journal of Algo-

rithms, 37:85–120, 2000. Special issue for SODA 98,
the Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms.

[11] D.A. Grable and A. Panconesi. Nearly optimal dis-
tributed edge colouring in O(log log n) rounds. Ran-

dom Structures and Algorithms, 10(3):385–405, 1997.
Preliminary version in Proceedings of the Eight An-
nual ACM-SIAM Symposium on Discrete Algorithms
(SODA 97).

[12] G.R. Grimmet and C.J.H. McDiarmid. On Colouring
Random Graphs. Mathematical Proceedings of the

Cambridge Philosophical Society, 77:313–324, 1975.
[13] D.S. Johnson and M.A. Trick. Cliques, Coloring, and

Satisfiability, volume 26 of DIMACS Series in Dis-

crete Mathematics and Theoretical Computer Science.
American Mathematical Society, 1996.

[14] A.R. Johansson. Asymptotic choice number for
triangle-free graphs. Preprint, DIMACS, September
30, 1996.

[15] Ö. Johansson. Simple distributed ∆ + 1-coloring of
graphs. Information Processing Letters 70:229–232,
1999.

[16] M.T. Jones and P.E. Plassmann. A Parallel Graph
Coloring Heuristics. SIAM Journal on Scientific Com-

puting, 14(3):654–669, 1993.



[17] R.M. Karp. Probabilistic recurrence relations. In
proceedings of the 23rd Annual ACM Symposium on
Theory of Computing (STOC 91), 190–197, 1991.

[18] J.H.Kim, On Brooks’ Theorem for sparse graphs, Com-

binatorics Probability and Computing, 4 (1995) 97-132.
[19] J. Körner. Private communication.
[20] G. Lewandowski and A. Condon. Experiments with

Parallel Graph Coloring Heuristics and Applications of
Graph Coloring. Cliques, Coloring, and Satisfiability,
volume 26 of DIMACS Series in Discrete Mathematics

and Theoretical Computer Science. American Mathe-
matical Society, 1996.

[21] M. Luby. Removing randomness in parallel without
processor penality. Journal of Computer and System

Sciences, 47(2):250–286, 1993.
[22] M. Luby. A simple parallel algorithm for the maximal

independent set problem. SIAM Journal on Comput-

ing, 15:1036–1053, 1986.
[23] M.V. Marathe, A. Panconesi, and L.D. Risinger jr.

An Experimental Study of a Simple, Distributed Edge
Coloring Algorithm. In proceedings of the 12th ACM
Symposium on Parallel Algorithms and Architectures
(SPAA’00), 166–175, 2000.

[24] P. Sinha, R. Sivakumar, and V. Bharghavan, Enhanc-
ing ad hoc routing with dynamical virtual infrastruc-
tures, Proceedings of IEEE Infocom 2001, 1-10.

[25] P. Sinha, R. Sivakumar, and V. Bharghavan, CEDAR:
a core-extraction distributed ad-hoc routing algo-
rithms, IEEE Journal on Selected Areas in Commu-

nication, 17, 8, 1454-1458, August 1999.


