
Input-Sensitive Profiling
(or how to find the big-Oh of a program?)

Emilio Coppa, Camil Demetrescu, and Irene Finocchi

How can measure the input size of a routine
invocation automatically?

Read Memory Size: number of
distinct memory cells first
accessed by a routine, or by a
descendent in the call tree, with
a read operation

Conventional profilers collect cumulative
data over a whole execution...

No information about how performance
of single portions of code scales as a
function of the input size

A possible approach is to extract and isolate
the interesting code and perform multiple
under a traditional profiler with different
input but...

often hard to isolate portions of
code and analyze them
separately...

Hard to collect real data about
typical usage scenarios...

Miss cache effects due to the
interaction with the overall
application...

Input-Sensitive Profiling: aggregate routine
times by input sizes

For routine f, collect a set of tuples, where each
tuple contains:

- an estimate of an input size
- number of invocations on this input size
- max/min/avg execution cost

We need a metric for estimating the input size
of a routine invocation...

Case study: wf

call f
 read x
 write y
 call g
 read x
 read y
 read z
 write w
 return
 read w
 return

RMS(f) = 2
RMS(g) = 3

How can we compute efficiently the read
memory size?

Two data structures:

Profiles of CPU SPEC 2006 benchmarks: examples

1) a shadow runtime stack,
 where each entry contains:

- ID of pending routine
- routine entry timestamp
- total routine invocation cost
- partial read memory size

- more efficient/compact
- equal to the RMS upon
 invocation completion

Profiling algorithm:

procedure call(r):

 top++

 S[top].rtn ← r
 S[top].ts ← ++count
 S[top].rms ← 0
 S[top].cost ← get_cost()

procedure return():

 collect(S[top].rtn, S[top].rms,

 get_cost() −S[top].cost)
 S[top – 1].rms += S[top].rms
 top––

procedure read(w):

 if ts[w] < S[top].ts then

 S[top].rms++

 if ts[w] = 0 then

 let i be the max index in S

 such that S[i].ts ≤ ts[w]
 S[i].rms––

 end if
 end if

 ts[w] ← count

procedure write(w):

 ts[w] ← count

input-sensitive profiler based on

Comparable performance wrt other
Valgrind tools. Experiments on CPU SPEC
2006 suite:

slowdown: ~30x
space overhead: ~2x

We discuss wf, a simple word frequency counter
included in the current development head of Fedora
Linux.

Our goal: study how the perfomance of individual
routines scales as a function of the input size. To do so,
for each routine of wf, we plot a chart with k points.

gprof aprof

For each point of a chart
we need to perform a
separate run of wf.

aprof can collects several
points for a chart from the
same execution of a pro-
gram by aggregating rou-
tine times by input sizes

1 run = 1 point 1 run = N points

Input of wf: texts of
increasing size from
classical literature

Chart for str_tolower

Input of wf: smallest text
used with gprof

Chart for str_tolower

Linear growth vs quadratic growth
which one is correct?

strlen()
redundantly
called at each
iteration: O(n2)

2) a shadow memory:

tx

x

ty

y

tz

z

For each memory location w,
timestamp ts[w] contains the time of
latest access (read or write) to w

http://code.google.com/p/aprof/

void str_tolower(char* str) {
 int i;
 for (i = 0; i < strlen(str); i++)
 str[i] = wf_tolower(str[i]);
}

void str_tolower(char* str) {
 int i, len = strlen(str);
 for (i = 0; i < len; i++)
 str[i] = wf_tolower(str[i]);
}

Performance
improvement
of wf up to
30%

We analyze wf with:

Profile data generated by aprof from a single
run would require multiple runs of gprof

qsort()

split()

foo()

bar()

main()

aprof

Fix the code by loop-invariant code motion:

Lesson: input of str_tolower are single words, not
the entire text. aprof automatically measures cost
for each distinct word length.

tonto: quantum chemistry
__shell1quartet_module__make_r_jk_ascd()

gobmk: artificial intelligence
owl_shapes()

h264ref: video compression
PartitionMotionSearch()

