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Warnings

Goals:
give a flavor of the theoretical results and techniques of data
stream algorithmics
only a representative sample of each topic: many other
problems, algorithms, and techniques not covered in these
lectures (non-exhaustive overview at the end of the talk)

Math contents: some probability ahead (e.g., Chernoff bounds).
Will introduce basic tools along the way.

Request
If you get bored, ask questions
If you get lost, ask questions
If you’d like to ask questions, ask questions
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Massive data

Data is growing faster than our
ability to store and index it:

networking: phone call
networks, Internet, social
networks

scientific data: astronomical
data, genome sequences,
GIS geo-spatial data

economic transactions:
credit cards, online auctions
...
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Network management

Monitoring flow of IP packets through the routers (Internet traffic):

how many IP addresses used a given link
in the last month?
which are the top 100 IP addresses in
terms of traffic?
which destinations use most bandwidth?

what’s the average duration of an IP session?
which hosts have similar usage patterns (clusters)?
does traffic distribution change in different periods of time?

Up to 1 Billion packets per hour per router
Many hundreds of routers per ISP à Many terabytes of

data per hour!

5 / 99 Irene Finocchi Algorithms for data streams



Intro Puzzles Sampling Sketches Graphs Lower bounds Summing up Thanks!Stream sources Data stream model

Network management

Monitoring flow of IP packets through the routers (Internet traffic):

how many IP addresses used a given link
in the last month?
which are the top 100 IP addresses in
terms of traffic?
which destinations use most bandwidth?

what’s the average duration of an IP session?
which hosts have similar usage patterns (clusters)?
does traffic distribution change in different periods of time?

Up to 1 Billion packets per hour per router
Many hundreds of routers per ISP à Many terabytes of

data per hour!

5 / 99 Irene Finocchi Algorithms for data streams



Intro Puzzles Sampling Sketches Graphs Lower bounds Summing up Thanks!Stream sources Data stream model

Sensor data

Sensors with GPS unit deployed
in the ocean:

Each sensor reports surface
height (4-byte real number)
every tenth of second

Base station receives 3.5 MB
per day per sensor

What about a million sensors?
3.5 TB of data per day, coming at a high rate

A million sensors isn’t very many: roughly one sensor per 150
square miles of ocean...
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More streams...

Image data
satellites send down to earth many TBs of
images per day
surveillance cameras produce roughly one
image per second: London has about six
millions such cameras

Web traffic
Google receives several hundreds
million search queries per day

Economic trend analysis
in online auction systems, users
continuously submit bids for items and
items for auction
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Issues in data stream processing

Some features common to all these applications:
huge volumes of data (terabytes, even petabytes)
records arrive at a rapid rate
need to monitor data continuously to support exploratory
analyses and to detect correlations, patterns, rare events,
fraud, intrusion, unusual activities

Many problems about streaming data would be easy to solve if we
had enough memory, but require new techniques for realistic data
rates and sizes

What can be computed without even storing the input?
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Basic data stream model

Data stream = sequence σ = 〈a1, a2, ...am〉
of tokens drawn from universe [n] = {1, 2, ...n}

Input parameters: m and n

1 Stream σ is massively long. Stream length m is:
typically unknown
possibly infinite

2 Universe size n is also typically very large
(e.g., IP addresses, URLs, item prices)
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Performance metrics

Minimize space, passes, and processing time upon token arrivals

1 Use a sublinear amount of space s:
s = o(min{n,m})

where s = bits of random-access working memory

2 Make p passes over the data, for some small integer p (no
random access to tokens)

3 Use small per-item processing time t


s = O(logm + log n)
Happy if s = O(polylog(min{n,m})
p = 1
t = O(1)
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Token frequencies

Data stream = sequence σ = 〈a1, a2, ...am〉
of tokens drawn from universe [n] = {1, 2, ...n}

σ represents a multiset of items and implicitly defines a frequency
vector

f = 〈f1, f2, ...fn〉

where fi = number of occurrences of item i ∈ [n] in σ

Example

If σ = 〈2, 1, 2, 1, 5, 2, 3, 2〉 and n = 5, then f = 〈2, 4, 1, 0, 1〉

In many streaming problems, wish to compute some statistical
properties of the multiset: e.g., majority token (if any), most
frequent items, or number of distinct items
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Variations of the basic setup

Data stream =
sequence of tuples σ = 〈(a1, c1), (a2, c2), ...〉

where (ai , ci ) ∈ [n]× {−F , ...,F}

Upon arrival of (ai , ci )), update frequency fai = fai + ci

New role for m: m =
∑n

j=1 fj

Basic data stream model: ci = 1 (m = stream length)

Cash register model: ci > 0 (items can only arrive, their
frequencies can be incremented by variable amounts)

Turnstile model: generic ci (items can arrive and depart from the
multiset)
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Historical remarks

Origin in the 70s (seminal paper by Munro &
Paterson, STOC’78)

Gained popularity in the last fifteen years:
theoretical interest:

easy-to-state, but hard-to-solve problems
links to other theory areas and to novel
computing paradigms (MapReduce)

practical appeal: fast and effective solutions,
wide applicability

Alon, Matias & Szegedy: Gödel prize (2005) for their
paper on frequency moments approximation
(STOC’96, JCSS’99), foundational work for streaming
and sketching algorithms
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Three puzzles
Data stream challenges
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The missing number puzzle

π = 〈π1, π2, ...πn−1〉
is a permutation of [1, n]
with one number missing

What’s the missing number?

Constraint: Carole has limited memory: she can only use
O(log n) bits

n(n − 1)

2
−
∑n−1

i=1 πi
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Two missing numbers

Now π has two missing numbers, x and y : find them,
but use only O(log n) bits!

Track

{
S = n(n+1)

2 −
∑n−2

i=1 πi

P = n!− Πn−2
i=1 πi

Solve equations x + y = S and x y = P

How many bits? Ω(log n!) = Ω(n log n)
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Lesson 1

Some problems can be deterministically solved in:
logarithmic space
one pass

Most of the times, we’re not so lucky
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Fishing

U = {1, ...u} fish species in the universe

at ∈ U fish species caught at time t

ft [j ] = |{ai | ai = j , i ≤ t}| frequency of
species j up to time t

j is rare iff ft [j ] = 1

Rarity of catch at time t: ρt =
|{j | ft [j ] = 1}|

u
=

Rt

u

George is curious and wants to compute rarity
2u-bit vector would suffice
... but George’s suitcase has o(u) size

19 / 99 Irene Finocchi Algorithms for data streams
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Deterministic fish rarity

George cannot compute ρt precisely with a deterministic algorithm
using only o(u) bits

By contradiction

Let S ⊆ U be a set of species: no duplicates, |S | = Θ(u)

Need Ω(|S |) = Ω(u) bits to represent S

If claim is false, could break information theoretic lower bound

To retrieve S , for each i ∈ U, stream 〈S , i〉 to George and compare
ρt and ρt+1:

if i 6∈ S , then Rt+1 = Rt + 1 and ρt+1 > ρt

if i ∈ S , then Rt+1 = Rt − 1 and ρt+1 < ρt

Hence ρ decreases ⇔ i ∈ S
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Randomized fish rarity (1/2)

George can approximate ρt using 2k = o(u) bits

Sampling:

pick k random fish species
maintain rarity c1[t], ... ck [t] of each sampled species (2 bits)

Return ρ̃t =
|{i ∈ [1, k] | ci [t] = 1}|

k
=

R̃t

k

Claim: E [ρ̃t ] = ρt

If ρt large enough, ρ̃t is a good estimate for ρt with arbitrarily
small precision and good probability
Requires more advanced probabilistic tools: examples later
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Randomized fish rarity (2/2)

ρ̃t =
|{i ∈ [1, k] | ci [t] = 1}|

k
=

R̃t

k

E [ρ̃t ] = ρt

Yi indicator variable:
{

Yi = 1 if ci [t] = 1
Yi = 0 otherwise

Pr{Yi = 1} = Pr{the i-th sampled species is rare} =
Rt

u
= ρt

⇒ E [Yi ] = ρt

⇒ E [R̃t ] =
∑k

i=1 E [Yi ] = kρt

⇒ E [ρ̃t ] =
E [R̃t ]

k
= ρt
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Lesson 2

It is often impossible to solve problems precisely and
deterministically in small (sublinear) space

Randomization and approximation greatly help:

find an answer correct within some factor
(guarantee that ρ̃ is within 10% of ρ)
allow a small probability of failure
(answer is correct, except with probability 1 in
10,000)
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Pointer and chaser

Paul has n + 1 pointers

For each pointer i , he points to a position P[i ] ∈ [1, n]

63 5 2 1 3 4 1

n=7

Carole has to guess any duplicate pointer

Constraints:
O(log n) bits
O(n) queries
cannot move items
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Repeated scans

63 5 2 1 3 4 1

n=7

1 Trivial solution
for each i, count how many j are such that P[j]=i

O(log n) bits, but O(n2) queries

2 Better solution
if # of items below n/2 > # of items above n/2
then search for duplicates < n/2
else search for duplicates ≥ n/2

O(log n) bits and passes, O(n log n) queries

3 With O(log n) bits, Ω(log n/ log log n) passes are needed
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Random access helps

63 5 2 1 3 4 1

n=7

Chase pointers, starting from
position n + 1
Problem equivalent to finding a
loop in a linked list
Can be solved in O(n) time
with just 2 pointers!

r1

r2
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Random access helps

63 5 2 1 3 4 1

n=7

Chase pointers, starting from
position n + 1
Problem equivalent to finding a
loop in a linked list
Can be solved in O(n) time
with just 2 pointers!

r1

r2

a=9 b=3 c=3

{
a + b = t
a + k(b + c) + b = 2t

⇒
{

a + b = t
b + c = t/k

⇒ a = c+
k − 1

k
t

t and k known
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Random access helps

63 5 2 1 3 4 1

n=7

Chase pointers, starting from
position n + 1
Problem equivalent to finding a
loop in a linked list
Can be solved in O(n) time
with just 2 pointers!

r1

r2

a=9 b=3 c=3

t(k-1)/k=6

{
a + b = t
a + k(b + c) + b = 2t

⇒
{

a + b = t
b + c = t/k

⇒ a = c +
k − 1

k
t

t and k known
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Lesson 3

Tokens come as a stream: no random access

Sometimes impossible to achieve the
same bounds as in the RAM model
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Recap on lessons

Typically impossible to solve problems precisely
and deterministically in small (sublinear) space

Randomize and approximate!

Sequential data access makes things harder
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Sampling
Working with less
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Why sampling?

Basic problem: sample s items uniformly from a stream
Answer queries (e.g., compute fish species rarity) on the sample
Utility depends on the problem: in some cases, sampling-based
approaches not effective unless taking large (almost linear) samples

How can we sample uniformly
if we don’t know in advance how long is the stream?

When do we sample a stream token?

36 / 99 Irene Finocchi Algorithms for data streams
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Reservoir sampling

1 Add to S the first s stream items
2 Upon seeing xi at time, sample xi with probability s/i
3 If xi added to S , evict a random item from S (other than xi )

Sample is uniform

At any time t and for each i ≤ t, it holds: Pr{xi ∈t S} =
s
t

Warmup analysis: s = 1

Pr{xi ∈t S} =

= Pr{xi sampled at time i} × Pr{xi survives up to time t} =

=
1
i
× i

i + 1
× i + 1

i + 2
× ...× t − 2

t − 1
× t − 1

t
=

1
t
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Arbitrary sample size s: analysis

Sample is uniform: Pr{xi ∈t S} = s
t

By induction on t (base step: t ≤ s)

How does S change at time t when xt arrives?

1 Pr{xt added to S} = s
t

2 Inductive hypothesis: Pr{xi ∈t−1 S} = s
t−1

3 Pr{xi ∈t S | xt added to S} = Pr{xi ∈t−1 S and not evicted} =
= s

t−1

(
1− 1

s

)
4 Pr{xi ∈t S | xt not added to S} = Pr{xi ∈t−1 S} = s

t−1

By combining conditional probabilities:

Pr{xi ∈t S} =
s
t

s
t − 1

(
1− 1

s

)
+
(
1− s

t

) s
t − 1

=
s
t

38 / 99 Irene Finocchi Algorithms for data streams



Intro Puzzles Sampling Sketches Graphs Lower bounds Summing up Thanks!Reservoir sampling Heavy hitters

Arbitrary sample size s: analysis

Sample is uniform: Pr{xi ∈t S} = s
t

By induction on t (base step: t ≤ s)

How does S change at time t when xt arrives?

1 Pr{xt added to S} = s
t

2 Inductive hypothesis: Pr{xi ∈t−1 S} = s
t−1

3 Pr{xi ∈t S | xt added to S} = Pr{xi ∈t−1 S and not evicted} =
= s

t−1

(
1− 1

s

)
4 Pr{xi ∈t S | xt not added to S} = Pr{xi ∈t−1 S} = s

t−1

By combining conditional probabilities:

Pr{xi ∈t S} =
s
t

s
t − 1

(
1− 1

s

)
+
(
1− s

t

) s
t − 1

=
s
t

38 / 99 Irene Finocchi Algorithms for data streams



Intro Puzzles Sampling Sketches Graphs Lower bounds Summing up Thanks!Reservoir sampling Heavy hitters

Arbitrary sample size s: analysis

Sample is uniform: Pr{xi ∈t S} = s
t

By induction on t (base step: t ≤ s)

How does S change at time t when xt arrives?

1 Pr{xt added to S} = s
t

2 Inductive hypothesis: Pr{xi ∈t−1 S} = s
t−1

3 Pr{xi ∈t S | xt added to S} = Pr{xi ∈t−1 S and not evicted} =
= s

t−1

(
1− 1

s

)
4 Pr{xi ∈t S | xt not added to S} = Pr{xi ∈t−1 S} = s

t−1

By combining conditional probabilities:

Pr{xi ∈t S} =
s
t

s
t − 1

(
1− 1

s

)
+
(
1− s

t

) s
t − 1

=
s
t

38 / 99 Irene Finocchi Algorithms for data streams



Intro Puzzles Sampling Sketches Graphs Lower bounds Summing up Thanks!Reservoir sampling Heavy hitters

Arbitrary sample size s: analysis

Sample is uniform: Pr{xi ∈t S} = s
t

By induction on t (base step: t ≤ s)

How does S change at time t when xt arrives?

1 Pr{xt added to S} = s
t

2 Inductive hypothesis: Pr{xi ∈t−1 S} = s
t−1

3 Pr{xi ∈t S | xt added to S} = Pr{xi ∈t−1 S and not evicted} =
= s

t−1

(
1− 1

s

)
4 Pr{xi ∈t S | xt not added to S} = Pr{xi ∈t−1 S} = s

t−1

By combining conditional probabilities:

Pr{xi ∈t S} =
s
t

s
t − 1

(
1− 1

s

)
+
(
1− s

t

) s
t − 1

=
s
t

38 / 99 Irene Finocchi Algorithms for data streams



Intro Puzzles Sampling Sketches Graphs Lower bounds Summing up Thanks!Reservoir sampling Heavy hitters

Arbitrary sample size s: analysis

Sample is uniform: Pr{xi ∈t S} = s
t

By induction on t (base step: t ≤ s)

How does S change at time t when xt arrives?

1 Pr{xt added to S} = s
t

2 Inductive hypothesis: Pr{xi ∈t−1 S} = s
t−1

3 Pr{xi ∈t S | xt added to S} = Pr{xi ∈t−1 S and not evicted} =
= s

t−1

(
1− 1

s

)
4 Pr{xi ∈t S | xt not added to S} = Pr{xi ∈t−1 S} = s

t−1

By combining conditional probabilities:

Pr{xi ∈t S} =
s
t

s
t − 1

(
1− 1

s

)
+
(
1− s

t

) s
t − 1

=
s
t

38 / 99 Irene Finocchi Algorithms for data streams



Intro Puzzles Sampling Sketches Graphs Lower bounds Summing up Thanks!Reservoir sampling Heavy hitters

Arbitrary sample size s: analysis

Sample is uniform: Pr{xi ∈t S} = s
t

By induction on t (base step: t ≤ s)

How does S change at time t when xt arrives?

1 Pr{xt added to S} = s
t

2 Inductive hypothesis: Pr{xi ∈t−1 S} = s
t−1

3 Pr{xi ∈t S | xt added to S} = Pr{xi ∈t−1 S and not evicted} =
= s

t−1

(
1− 1

s

)

4 Pr{xi ∈t S | xt not added to S} = Pr{xi ∈t−1 S} = s
t−1

By combining conditional probabilities:

Pr{xi ∈t S} =
s
t

s
t − 1

(
1− 1

s

)
+
(
1− s

t

) s
t − 1

=
s
t

38 / 99 Irene Finocchi Algorithms for data streams



Intro Puzzles Sampling Sketches Graphs Lower bounds Summing up Thanks!Reservoir sampling Heavy hitters

Arbitrary sample size s: analysis

Sample is uniform: Pr{xi ∈t S} = s
t

By induction on t (base step: t ≤ s)

How does S change at time t when xt arrives?

1 Pr{xt added to S} = s
t

2 Inductive hypothesis: Pr{xi ∈t−1 S} = s
t−1

3 Pr{xi ∈t S | xt added to S} = Pr{xi ∈t−1 S and not evicted} =
= s

t−1

(
1− 1

s

)
4 Pr{xi ∈t S | xt not added to S} = Pr{xi ∈t−1 S} = s

t−1

By combining conditional probabilities:

Pr{xi ∈t S} =
s
t

s
t − 1

(
1− 1

s

)
+
(
1− s

t

) s
t − 1

=
s
t

38 / 99 Irene Finocchi Algorithms for data streams



Intro Puzzles Sampling Sketches Graphs Lower bounds Summing up Thanks!Reservoir sampling Heavy hitters

Arbitrary sample size s: analysis

Sample is uniform: Pr{xi ∈t S} = s
t

By induction on t (base step: t ≤ s)

How does S change at time t when xt arrives?

1 Pr{xt added to S} = s
t

2 Inductive hypothesis: Pr{xi ∈t−1 S} = s
t−1

3 Pr{xi ∈t S | xt added to S} = Pr{xi ∈t−1 S and not evicted} =
= s

t−1

(
1− 1

s

)
4 Pr{xi ∈t S | xt not added to S} = Pr{xi ∈t−1 S} = s

t−1

By combining conditional probabilities:

Pr{xi ∈t S} =
s
t

s
t − 1

(
1− 1

s

)
+
(
1− s

t

) s
t − 1

=
s
t

38 / 99 Irene Finocchi Algorithms for data streams



Intro Puzzles Sampling Sketches Graphs Lower bounds Summing up Thanks!Reservoir sampling Heavy hitters

Optimizations and drawbacks

Skip numbers
Instead of flipping a coin at each stream element, generate number
of elements to be skipped before the next element is added to S
[Vitter 85]

Other issues:

Frequently occurring values are a wasteful use of the available
sample space: concise sampling [Gibbons and Matias ’98]
Runs into difficulties in the presence of data deletions:
[Babcock et al. ’02]
Hard to parallelize on multiple streams: how do we sample if
more than one item comes at any time? Min-wise sampling
[Nath et al. ’04]
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The Britney Spears problem...
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... tracking who’s hot and who’s not

“... can’t just pay attention to a few popular subjects, because you
can’t know in advance which ones are going to rank near the top.
To be certain of catching every new trend as it unfolds, you have to
monitor all the incoming queries – and their variety is unbounded. ”
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Heavy hitters

Given a stream of n items, find those that appear “most frequently”

E.g., items occurring
more than 1% of the
time

Formally “hard” in small space, so allow approximation
No false negatives: return all items with count ≥ ϕn
“Good” false positives: no item with count < (ϕ− ε)n is
returned (error ε ∈ (0, 1), ε� ϕ)
Related problem: estimate each frequency with error ±εn
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Why heavy hitters?

Many practical applications: mining of search logs, analysis of
network data, DBMS optimization...

Core streaming problem: connections with entropy estimation,
itemsets mining, compressed sensing

Extensive research: scores of streaming papers on frequent
items and its variations

We’ll see a counter-based algorithm named Sticky sampling:

1 probabilistic, sampling-based approach

2 correct with probability ≥ 1− δ, with δ ∈ (0, 1) user-specified
probability of failure
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Sticky sampling

Intuition
It should be possible to estimate frequent items by a good sample

Data structure S : set of pairs 〈x , fe(x)〉, where
fe(x) estimated frequency of x
f (x) true frequency

Query algorithm: at time n report items x ∈ S such that
fe(x) ≥ (ϕ− ε)n

Update algorithm works in rounds:
each round distinguished by a (fixed) sampling rate r
sampling rate adjusted between rounds so that probability of
sampling a stream item decreases as stream gets longer
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Update algorithm

Structure of r -rate round
For each stream item x :

1 if x ∈ S , then increase fe(x) by 1
2 if x 6∈ S , sample x with probability 1

r : if x sampled, add pair
〈x , 1〉 to S

At the end of a round:
1 double sampling rate r (r increases geometrically)
2 adjust estimated frequencies so that S is transformed into

exactly the state it would have been in, if new rate 2r had
been used from the beginning
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Adjusting frequencies

Assume x sampled at time k with probability 1
r :

fe(x) = exact number of occurrences of x after time k
with smaller sampling probability ( 1

2r ), x will be sampled at
one of the later occurrences
simulate all coin tosses not done with sampling rate r

For each 〈x , fe(x)〉 ∈ S repeatedly toss a coin:
1 first coin toss unbiased (1

2 , makes probability of sampling x at
time k = 1

2r )
2 next coin tosses biased with probability 1

2r
3 for each unsuccessful coin toss, decrease fe(x) by 1
4 stop when coin toss successful or fe(x) = 0 (in this case

remove x from S)
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Round length

Recall:


ϕ = frequency threshold
ε = frequency error
δ = algorithm failure probability

Let t =
1
ε
log

1
ϕδ

2t 2t 4t 8t ...
1 2 4 8 ...rate

r -rate round has length rt (except for r = 1)

expected sample size: 2t (we’ll prove)

47 / 99 Irene Finocchi Algorithms for data streams



Intro Puzzles Sampling Sketches Graphs Lower bounds Summing up Thanks!Reservoir sampling Heavy hitters

A technical lemma

For each rate r ≥ 2, let n be the number of stream items
considered up to the r -rate round. It holds:

1
r
≥ t

n

By induction, at the beginning of r -rate round n = rt:

n=rt
rt
rrate

n'=n+rt=2rt
...

2r
...

Hence during the round n ≥ rt

à Expected sample size at the end of r -rate round =
n′

r
= 2t
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Analysis (1/2)

For any ϕ, ε, δ ∈ (0, 1), with ε < ϕ, Sticky Sampling computes the
heavy hitters with probability ≥ 1− δ

1 Good false positives: items with frequency < (ϕ− ε)n are not
returned
f (x) < (ϕ− ε)n⇒ fe(x) < (ϕ− ε)n, since fe(x) ≤ f (x)

2 No false negatives: all items with frequency ≥ ϕn are returned

y1 ... yk frequent items: f (yi ) ≥ ϕn ∀i
⇒ k ≤ 1

ϕ

Pr{∃ false negative} = Pr{∃yi : yi not returned} ≤∑k
i=1 Pr{yi not returned}
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Analysis (2/2)

Pr{yi not returned} = Pr{fe(yi ) < (ϕ− ε)n} =

Pr{at least εn unsuccessful coin tosses} ≤(
1− 1

r

)εn
≤
(
1− t

n

)εn
≤ e−tε

Hence:

Pr{∃ false negative} ≤
∑k

i=1 Pr{yi not returned} ≤

≤ ke−tε ≤ e−tε

ϕ
= δ by definition of t
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Sketching streams
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Sketches

Not every problem can be solved with sampling
E.g., counting distinct items in a stream: need to sample a
large fraction of items to know if they are all same or different

Sketches take advantage that the algorithm can “see” all the
data even if it can’t “remember” it all

Sketch = linear transform of the input (exploit hashing)

Sampling and sketching ideas at the heart of stream mining:
A sample is a quite general representative of the data set
Sketches tend to be tailored to a specific problem (e.g.,
distinct items)
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Warmup example

Problem: test if two asynchronous binary streams are equal

To test in small space: pick a random hash function h and test
h(σ1) = h(σ2):

no false negatives: if σ1 = σ2 then h(σ1) = h(σ2)

small chance of false positive: it may be h(σ1) = h(σ2) for
σ1 6= σ2 with very small probability

Compute h(σ1) and h(σ2) incrementally as new bits arrive
(Karp-Rabin fingerprints)
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Distinct items

Count of the number of distinct items seen in the stream

Trivial solution: maintain set of encountered items through its
characteristic vector

O(1) processing time but Θ(u) space, where u = universe size

Exact/deterministic algorithms need Ω(u) bits of space
Approximate randomized algorithms use O(log u) bits of space

FM-sketch [Flajolet & Martin ’85]

Sampling not appropriate here: we’ll build a data summary (sketch)
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Universal hashing

Idea: select a hash function at random from a family H of
hash functions with a certain mathematical property
Guarantee: low number of collisions in expectation, even if the
data is chosen by an adversary

2-universal hashing

H is a 2-universal family (set) of hash functions h : U  D if,
for all x , y ∈ U, x 6= y :

Prh∈H{h(x) = h(y)} ≤ 1
|D|

Strongly 2-universal hashing
H is strongly 2-universal if, for all x 6= y ∈ U and a, b ∈ D:

Prh∈H{h(x) = a & h(y) = b} = 1
|D|2
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FM skecth: probabilistic counter

Two useful functions:
h : U  [0, u − 1] drawn from a family of strongly 2-universal
hash functions
Transforms values of the universe into integers uniformly distributed over
the set of binary strings of length log u

t : [0, u − 1] [1, log u] gives the number t(i) in the binary
representation of i
E.g., t(510) = t(001012) = 2

FM sketch: counter C of log u bits

Counter update: upon seeing stream item x , set C [t(h(x))] = 1

Query algorithm: return 2R , where R ∈ [1, log u] is the position of
the rightmost 1 in C
E.g., if C = 1110100, then R = 5: returns 32
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Intuition

h distributes items of the universe U uniformly on [0, u − 1]:
important to avoid adversarial streams

How many values in [0, u − 1] have exactly 0 trailing 0s? u/2
How many values have exactly 1 trailing 0? u/4
How many values have exactly 2 trailing 0s? u/8 ...

Hence, if the stream contains D distinct values:
D/2 will be mapped to the first bit of C
D/4 to the second bit
D/8 to the third bit ...

We expect the first logD counter bits will be set to 1
Hence R ≈ logD and 2R ≈ D
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Geometric distribution over counter bits

| values with exactly j trailing 0s | =
u

2j+1

| values with ≥ j trailing 0s | = 1 +
∑log u−1

i=j
u

2j+1 = 2log u−j

Wx indicator random variable: Wx = 1 iff t(h(x)) ≥ j

Pr{Wx = 1} = Pr{t(h(x)) ≥ j} = 2log u−j

u = 2−j

since h distributes items uniformly over [0, u − 1]

E [Wx ] = 2−j

Var [Wx ] =E [W 2
x ]− E [Wx ]2 = 2−j − 2−2j <2−j = E [Wx ]

E [Wx ] = 2−j and Var [Wx ] < E [Wx ]
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Geometric distribution over counter bits

Zj = number of stream items x s.t. t(h(x)) ≥ j
=
∑

x∈U∩Σ Wx

E [Zj ] =
∑

x∈U∩Σ E [Wx ] =
∑

x∈U∩Σ 2−j =
D
2j

Due to pairwise independence of Wx and Wy ,
Var [Wx + Wy ] = Var [Wx ] + Var [Wy ]

Var [Zj ] =
∑

x∈U∩Σ Var [Wx ] <
∑

x∈U∩Σ E [Wx ] = E [Zj ]

E [Zj ] =
D
2j and Var [Zj ] < E [Zj ]

R = max j such that Zj > 0
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Probability of overestimating

Let c > 2. Pr{2R > cD} = ?

By Markov’s inequality (Zj takes only non-negative values):

Pr{Zj ≥ 1} ≤
E [Zj ]

1
=

D
2j (1)

2R > cD ⇒ ∃j such that C [j ] = 1 & 2j > cD
⇒ C [j ] = 1 & j > log2(cD)
⇒ Zlog2(c D) ≥ 1

Thus:

Pr{2R > cD} ≤ Pr{Zlog2(c D) ≥ 1 } ≤(1)
D

2log2(c D)
=

1
c
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Probability of underestimating

Let c > 2. Pr
{
2R < D

c

}
= ?

By Chebyshev inequality (Zj takes only non-negative values):

Pr{Zj = 0} = Pr{|Zj − E [Zj ]| ≥ E [Zj ]}

≤
Var [Zj ]

E [Zj ]2
<

1
E [Zj ]

=
2j

D

(2)

2R < D
c ⇒ C [p] = 0 ∀p ≥ log2(D/c)

⇒ Zlog2(D/c) = 0

Thus:

Pr
{
2R <

D
c

}
≤ Pr{Zlog2(D/c) = 0 } ≤(2)

2log2(D/c)

D
=

1
c
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Distinct items: summing up

Let D be the exact number of distinct values and let 2R be the
output of the probabilistic counter.

For any c > 2, the probability that 2R is not between D/c and c D
is at most 2/c .
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Frequency moments

Stream Σ = 〈x1, x2, ... xn〉 of tokens drawn from universe U

fi = |{j : xj = i}|

k-th frequency moment Fk of Σ

Fk =
∑
i∈U

f k
i

Useful statistical information:
F0 = distinct items
F1 = stream length
F2 = Gini’s index (skew of the data)
F∞ related to maximum frequency element, i.e., maxi∈U fi
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AMS sketch for F2

Fundamental technique introduced by Alon, Matias, and Szegedy

AMS sketches = randomized linear projections

Define a random variable Z such that E [Z 2] = F2:

select at random a hash function ξ : U  {−1,+1} from a
family of 4-wise independent hash functions

Z =
∑

u∈U fu ξ(u)

random linear projection (inner product) of frequency vector
〈f1, f2, ... fu〉 with random vector {−1,+1}u

Z incrementally updated upon arrival of xt by adding ξ(xt)
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AMS sketch: expectation

Z =
∑

u∈U fu ξ(u)

ξ : U  {−1,+1} 4-wise independent

E [ξ(i)] = (−1)1
2 + (1)1

2 = 0

E [Z 2] = E
[(∑

i∈U fi ξ(i)
)2]

= E
[∑

i∈U f 2
i (ξ(i))2 + 2

∑
i 6=j∈U fi fj ξ(i)ξ(j)

]
=
∑

i∈U f 2
i E
[
(ξ(i))2]+ 2

∑
i 6=j∈U fi fj E [ξ(i)ξ(j)]

=
∑

i∈U f 2
i = F2

since (ξ(i))2 = 1 and by pair-wise independence
E [ξ(i)ξ(j)] = E [ξ(i)] E [ξ(j)] = 0 · 0 = 0
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Median of the averages

Still need small variance and good confidence:

Compute µ random variables Y1, ...,Yµ and output their
median Y as the estimator for F2

Each Yi is the average of α independent, identically distributed
random variables Xij computed as random linear projections

Averaging Xij implies each Yi has small variance

Computing Y as the median of the Yi allows it to boost confidence
using Chernoff bounds
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F2: summing up

For every λ, δ > 0, there exists a randomized algorithm that com-
putes a number Y that deviates from F2 by more than λF2 with
probability at most δ.

The algorithm uses only

O
(
log(1/δ)

λ2 (log u + log n)

)
memory bits and performs one pass over the data.

Similar results for frequency moments Fk , with k > 2
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Mining graphs
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Models for graph streams

G = (V ,E ) graph with |V | = n nodes and |E | = m edges,
possibly weighted

Observe edges of G in a stream, one by one

What order do we see the edges in?

Arbitrary (adversarial) order
Incidence streams: all edges incident to one vertex appear
sequentially (easier, stronger bounds)

How many passes over the data can we take (one or many?)

How much space?
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Counting triangles

Finding frequent graph patterns and dense subgraphs are basic
tools in the analysis of the structure of large networks (e.g.,
social networks, Web graph)

Exact triangle counting reduces to matrix multiplication:
unfeasible even for networks of medium size

Resort to random sampling

We’ll present an algorithm for the arbitrary order model
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A 3-pass algorithm

Algorithm SampleTriangle

1st pass. Count number of edges m in the stream

2nd pass. Sample an edge e = (a, b) uniformly from E and a node
v uniformly from V \ {a, b}

3rd pass. If (a, v) ∈ E and (b, v) ∈ E then β = 1, else β = 0
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A useful property

Ti = triples with i edges, 0 ≤ i ≤ 3

E [β] =
3|T3|

m · (n − 2)
=

3|T3|
|T1|+ 2|T2|+ 3|T3|

m · (n − 2) ways to select an edge (a, b) and a node v 6= a, b
i |Ti | ways to select a triple with i edges, i > 0
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The complete 3-pass algorithm

Start s parallel instances of algorithm SampleTriangle, where

s ≥ 3
ε2
|T1|+ 2|T2|+ 3|T3|

|T3|
ln
(
2
δ

)
Each instance returns a value βi

Return T̃3 =

(
1
s

s∑
i=1

βi

)
m · (n − 2)

3
as an estimation for T3

E [T̃3] = |T3| because E [βi ] = 3|T3|
m·(n−2)

OK, but how far from the mean?
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Chernoff bounds

X1,X2, ...Xn independent Bernoulli trials: Xi indicator random
variable, Pr{Xi = 1} = p, Xi all independent

X =
n∑

i=1
Xi

E [X ] = µ = n p

Lower tail bound

For any ε ∈ (0, 1] Pr{X < (1− ε)µ} < e−
µε2
2

Upper tail bound

For any ε ∈ (0, 1] Pr{X > (1 + ε)µ} < e−
µε2
3
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Triangle counting analysis

In triangle counting, X =
s∑

i=1
βi and p = 3|T3|

|T1|+2|T2|+3|T3|

Pr{X < (1− ε)ps || X > (1 + ε)ps} < e−
psε2

2 + e−
psε2

3

≤ 2e−
spε2

3 ≤ δ

as long as s ≥ 3
ε2
|T1|+2|T2|+3|T3|

|T3| ln
(2
δ

)

X < (1− ε)ps ⇔

(
1
s

s∑
i=1

βi

)
m · (n − 2)

3︸ ︷︷ ︸fT3

< (1− ε) p
m(n − 2)

3︸ ︷︷ ︸
T3

Similarly X > (1 + ε)ps ⇔ T̃3 > (1 + ε)T3
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Improvements and extensions

Expected constant time:
1 when edge (a, b) and node v sampled, hash missing edges

(a, v) and (b, v) to a set M
2 in the third pass, lookup each edge (x , y) in M, and mark it if

present
3 triangles determined in a postprocessing step

1-pass: exploit reservoir sampling

Other minors and cliques of size α

Better space bounds for incidence streams
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Semi-streaming model

For many graph problems space × passes = Ω(n), even using
randomization and approximation
⇒ Cannot achieve O(1) passes and polylog working space

Semi-streaming model: polylog space requirement is relaxed

working memory size O(n polylog n)
for input graph with n nodes

enough space to store nodes, not enough for edges

Problems solvable in semi-streaming: spanners, matching,
diameter estimation...
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Maximum weight matching

Edge weighted, undirected
graph G (V ,E ,w)

No two edges in a matching
have a common endpoint

120
62

10 2
30

50
4

40
130

a b c

f
e

d

g h i

Optimization problem: find a maximum weight matching M∗

1-pass semi-streaming algorithm with approximation ratio 1/6:

w(M) ≥ w(M∗)
6

where M returned matching
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Semi-streaming algorithm

Data structure: matching M maintained in main memory

Query algorithm: return M

Update algorithm: upon arrival of edge e, consider set C ⊆ M of
conflicting edges (edges in M that share an endpoint with e)

if w(e) > 2w(C ), replace C with {e} in M

if w(e) ≤ 2w(C )), ignore e
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Replacement forest

Σ = 〈 (c , f , 2) (b, e, 10) (h, i , 4) (e, f , 30) (h, f , 50)

(e, g , 40) (d , e, 62) (a, d , 120) (d , g , 130) 〉

120
62

10 2
30

50
4

40
130

a b c

f
e

d

g h i

120
62

10 2
30

50
4

40
130

a b c

f
e

d

g h i (c,f) (b,e)

Replacement forest

(h,i)

Every edge e ∈ M is root of a replacement tree Te

R(e) = nodes in Te except for root e
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Replacement edges have small weight

w(R(e)) ≤ w(e)

By induction:

w(e) > 2w(e1) + 2w(e2) ≥
≥ w(e1) + w(R(e1)) + w(e2) + w(R(e2)) = w(R(e))
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A charging scheme for M∗

M∗ maximum weight matching
H = history edges part of the matching at some point
Charge weight of M∗ to H. For each o ∈ M∗:

1 o ∈ H: charge w(o) to o itself

2 o 6∈ H:

C = edges conflicting with o it was examined for insertion:
w(o) ≤ 2w(C ), since o was not inserted
If C = {e}: charge w(o) ≤ 2w(e) to e
If C = {e1, e2}: charge

w(o)w(e1)

w(e1) + w(e2)
≤ 2 w(e1) to e1

w(o)w(e”)

w(e′) + w(e”)
≤ 2 w(e2) to e2

(a) Charge of o ∈ M∗ to any edge e ∈ H ≤ 2w(e)
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Initial charging

Σ = 〈 (c , f , 2) (b, e, 10) (h, i , 4) (e, f , 30) (h, f , 50)

(e, g , 40) (d , e, 62) (a, d , 120) (d , g , 130) 〉

M∗ = {(a, d), (e, g), (h, f )}

(d,g)

120
62

10 2
30

50
440130

a b c

fed

g h i (c,f) (b,e)

(e,f)

Replacement forest

(d,e)

(h,i)

(b) Any edge of H charged by at most two edges of M∗, one per
endpoint.
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Charging redistribution

If o ∈ M∗ charges e ∈ H, e replaced by e ′ ∈ H, e ′ and o incident,
transfer charge of o from e to e ′.

(d,g)

120
62

10 2
30

50
440130

a b c

fed

g h i (c,f) (b,e)

(e,f)

Replacement forest

(d,e)

(h,i)

(a) Charge of o ≤ 2w(e) ≤ 2w(e ′)
(b) Any edge of H charged by at most two edges of M∗, one per
endpoint (redistribution preserves incidence)
(c) Each edge e ∈ H \M charged by at most one edge in M∗
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Analysis: summing up

Charge of o ∈ M∗ to any edge e ∈ H ≤ 2w(e)

Edges in H \M charged by at most one edge in M∗

Edges in M charged by at most two edges in M∗

w(M∗) ≤
∑

x∈H\M

2w(x) +
∑
e∈M

4w(e)

Since H \M = ∪e∈MR(e):

w(M∗) ≤
∑

x∈H\M

2w(x) +
∑
e∈M

4w(e) =
∑
e∈M

2w(R(e)) +
∑
e∈M

4w(e)

Since replacement edges have small weight w(R(e)) ≤ w(e):

w(M∗) ≤
∑
e∈M

6w(e) = 6w(M)
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Lower bounds
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Communication complexity

Important technique for proving streaming lower bounds:
reducing communication complexity problems to streaming problems

Lower bounds known in communication complexity yield streaming
lower bounds

Example related to triangle counting:

To determine whether T3 > 0, we need Ω(n2) space, even using a
randomized algorithm

T3 = number of triangles

87 / 99 Irene Finocchi Algorithms for data streams



Intro Puzzles Sampling Sketches Graphs Lower bounds Summing up Thanks!Communication complexity

2-player set-disjointness

Alice has n× n matrix A
Bob has n × n matrix B

A
0 1 0
0 0 0
0 0 1

B
0 0 0
1 1 0
0 0 1

Alice and Bob wish to determine if A ∩ B 6= ∅

A ∩ B 6= ∅ ⇔ ∃i , j : A[i , j ] = 1 and B[i , j ] = 1

By a communication complexity lower bound, this requires Ω(n2)
bits even for protocols that are correct with probability 3/4
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Is T3 > 0? Graph construction

Alice has n× n matrix A
Bob has n × n matrix B

A ∩ B 6= ∅?

A
0 1 0
0 0 0
0 0 1

B
0 0 0
1 1 0
0 0 1

u1 u2 v1 v2

u3 v3

w1 w2

w3

Build graph G = (V ,E ) as follows:

V = {u1, u2, ... un}∪
{v1, v2, ... vn}∪
{w1,w2, ...wn}

E = {(ui , vi ) : i ∈ [1, n]}∪
{(ui ,wj) : A[i , j ] = 1}∪
{(vi ,wj) : B[i , j ] = 1}

Triangles can only have the form 〈ui , vi ,wj〉
G contains a triangle ⇔ ∃j : A[i , j ] = 1 and B[i , j ] = 1
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The reduction

A = s-bit streaming algorithm that determines whether T3 > 0

Use A to solve set disjointness as follows:

1 Alice creates a stream with blue and red edges, and runs the
algorithm on the stream

2 Then she sends s bits (her memory content) to Bob
3 Bob runs the algorithm, starting from Alice memory content,

on the remaining yellow edges
4 He finally communicates 1 bit (the result) to Alice

Communication: s + 1 bits
⇒ s = Ω(n2)
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Conclusions
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More streaming algorithms...

Many others fundamentals have been studied, not covered here

Different stream data types:
geometric data (location streams)
permutations
graphs and hypergraphs

Different streaming models:
time-conscious models: sliding windows, exponential decay
non adversarial models: random order streams, skewed streams

Different streaming scenarios:
distributed computations
sensor network computations
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Directions: time-conscious models

Which is more popular between
Star Wars - Episode IV (1977)

and Mission Impossible -
Ghost Protocol (2011)?

Are N tickets sold in each of the last 20 years
better than N tickets sold in the last week?

Recent past in some cases more important than distant past
⇒ windowed streaming:

fixed size window
decaying window: influence of items on the result decreases
exponentially
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Directions: graphs

Rich graph structure in Web data: conversations, friendships, video,
images...
Billions of dollar industry applications rely on analyzing Web info

Graph problems are very challenging:

More dense graph problems in semi-streaming (so far,
matching, spanners, shortest paths and diameter)
Space/passes tradeoffs: reduce or annotate the stream, taking
multiple passes on less and less elements
Look at graphs as matrices: can we compute fundamental
properties such as eigenvalues?
Many natural graph questions are “hard” in standard models:
more realistic and tractable models?
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Directions: distributed streams

Data progressively seen from distributed sources, a central monitor
(coordinator) needs to estimate some quantity

Goal: minimize total number of bits communicated by the
distributed streams to the coordinator

Can we continuously track a (global) query over streams while
bounding the communication with the coordinator?
Can we design stream summary data structures that can be
combined to summarize the union of streams?
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Directions: beyond adversarial order

In practice, not all frequency distributions are worst case

Can we prove stronger algorithmic results for:

Skewed data (e.g., "Zipfian” distribution)

Small-world scale-free models for graphs

Random order streams

Semi-random streams: can we develop algorithms whose
performance degrades smoothly as the stream ordering
becomes “less-random”?

96 / 99 Irene Finocchi Algorithms for data streams



Intro Puzzles Sampling Sketches Graphs Lower bounds Summing up Thanks!More streaming algorithms What’s next?

Results in these lectures: references

Reservoir sampling. J. S. Vitter. Random Sampling with a Reservoir, ACM
Transactions on Mathematical Software, 11(1), 37-57, 1985

Heavy hitters. G. S. Manku & R. Motwani. Approximate Frequency
Counts over Data Streams, VLDB 2002

Distinct items. P. Flajolet, G. N. Martin. Probabilistic Counting
Algorithms for Data Base Applications. J. Comput. Syst. Sci. 1985

Frequency moments. N. Alon, Y. Matias and M. Szegedy. The Space
Complexity of Approximating the Frequency Moments. J. Comput. Syst.
Sci. 1999

Triangle counting. L. Buriol, G. Frahling, S. Leonardi, A.
Marchetti-Spaccamela, & C. Sohler. Counting Triangles in Data Streams.
PODS 2006

Weighted matching. J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, J.
Zhang. On graph problems in a semi-streaming model. Theor. Comput.
Sci. 2005
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Online resources

Too many papers to be comprehensive... Some surveys and interesting pointers:

1 Data streams: algorithms and applications, S. Muthukrishnan
http://www.cs.rutgers.edu/∼muthu/

2 Sketch techniques for massive data, G. Cormode
Continuous distributed monitoring: a short survey, G. Cormode
http://dimacs.rutgers.edu/∼graham/

3 Algorithms for data streams, C. Demetrescu & I. Finocchi
twiki.di.uniroma1.it/pub/Ing_algo/WebHome/DFchapter08.pdf

4 Andrew McGregor’s crash course and blog
http://polylogblog.wordpress.com/2010/09/08/some-slides/

5 IITK Workshop on Algorithms for Processing Massive Data Sets,
IIT-Kanpur, India, 2009
http://www2.cse.iitk.ac.in/∼fsttcs/2009/wapmds/

6 Open problems in data streams, property testing, and related topics,
Indyk et al., 2011 (the Bertinoro and Kanpur lists)
http://polylogblog.wordpress.com/category/open-problems/
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Thanks!
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