
Preliminary Proceedings

5th International Workshop on

Security Issues in Concurrency (SecCo’07)

Lisbon, Portugal

September 3rd, 2007

Editors:

Daniele Gorla

Catuscia Palamidessi

ii

Contents

Preface v

Cédric Fournet (Invited Speaker)
A Type Discipline for Authorization in Distributed Systems 1

Stéphanie Delaune, Steve Kremer, Mark Ryan (Short Paper)
Symbolic bisimulation for the applied pi calculus (extended abstract) . 2

Chiara Bodei, Pierpaolo Degano, Han Gao, Linda Brodo
Detecting and Preventing Type flaws: a Control Flow Analysis with tags 7

Mikkel Bundgaard, Thomas Hildebrandt, Jens Chr. Godskesen
Modelling the Security of Smart Cards by Hard and Soft Types for
Higher-Order Mobile Embedded Resources . 23

Ilaria Castellani
State-oriented noninterference for CCS . 38

Srečko Brlek, Sardaouna Hamadou, John Mullins
A probabilistic scheduler for the analysis of cryptographic protocols . . 53

Sabrina De Capitani di Vimercati, Steve Kremer, Pasquale
Malacaria, Peter Ryan, David Sands (Panel discussion)
Information hiding: state-of-the-art and emerging trends 68

iii

iv

Preface

This volume contains the proceedings of the Fifth Workshop on Security Issues
in Concurrency (SecCo’07). The workshop was held in Lisbon (Portugal) on
September 3rd, 2007, as a satellite event to CONCUR’07. Previous editions
of this workshops have been organized in Eindhoven (2003), London (2004)
and San Francisco (2005); the 2006 edition in Bonn did not received enough
submissions and so the meeting was not held.

The aim of the SecCo workshops is to cover the gap between the security and
the concurrency communities. More precisely, the workshop promotes the ex-
change of ideas, trying to focus on common interests and stimulating discussions
on central research questions. In particular, we called for papers dealing with
security issues (such as authentication, integrity, privacy, confidentiality, access
control, denial of service, service availability, safety aspects, fault tolerance,
trust, language-based security) in emerging fields like web services, mobile ad-
hoc networks, agent-based infrastructures, peer-to-peer systems, context-aware
computing, global/ubiquitous/pervasive computing.

We received 13 submissions (including one short submission) and we have ac-
cepted 5 of them. The selection has been carried out by the program committee
of SecCo’07, which consisted of

• Michael Backes (Saarland Univ., G);

• Tom Chothia (CWI, NL);

• Véronique Cortier (CNRS Loria, F);

• Yuxin Deng (Univ. of New South Wales, AUS);

• Daniele Gorla (Univ. “La Sapienza”, IT) – co-chair;

• Heiko Mantel (RWTH, G);

• Mogens Nielsen (BRICS, DK);

• Flemming Nielson (DTU, DK);

• Catuscia Palamidessi (INRIA and Ecole polytechnique, F) – co-chair;

• Mark Ryan (Univ. of Birmingham, UK);

• Luca Viganò (Univ. Verona, IT);

• Jan Vitek (Purdue Univ., USA).

The papers were mostly refereed by the program committee and every paper
received 3 or 4 reviews. In the reviewing phase, we have also been helped by
some outside referees: Andy Brown, Stéphanie Delaune, Han Gao, Jun Pang,
Henning Sudbrock, Terkel Tolstrup and Chenyi Zhang.

v

We had an invited talk shared with the EXPRESS’07 workshop that was
given Cédric Fournet (Microsoft Research - Cambridge, UK) on “A Type Dis-
cipline for Authorization in Distributed Systems”. We concluded the workshop
with a panel discussion on “Information hiding: state-of-the-art and emerging
trends”. This was a venue where researchers from different areas of computer
security presented common/orthogonal problems, techniques and goals related
to information hiding. The panelists covered various aspects including data
secrecy, anonymity, database security, information flow and protocol analysis;
the approaches proposed ranged from language-based security to quantitative
aspects and access control. The panelists were:

• Sabrina De Capitani di Vimercati (Univ. Milano, I);

• Steve Kremer (INRIA and ENS Cachan, F);

• Pasquale Malacaria (Queen Mary, UK);

• Peter Ryan (Newcastle Univ., UK);

• David Sands (Chalmers Univ., SE).

They presented their point of view on the topic and took questions from the
audience.

We would like to thank whoever has contributed to SecCo’07. First of
all, the program committee, the external reviewers, the invited speaker and
the panelists. Then, we are very grateful to the CONCUR’07 workshop
co-chairs, Antonio Ravara and Francisco Martins, for taking care of all the local
organization and for managing the printing of these proceedings. We thanks
the Elsevier Science B.V. (that will publish these proceedings electronically in
the ENTCS series), and in particular Mike Mislove, Managing Editor of the
ENTCS series. Last but not least, we are very grateful to all the authors that
submitted a paper and to all the participants that attended the meeting.

Rome and Paris, July 27th, 2007
Daniele Gorla

Catuscia Palamidessi
SecCo’07 co-chairs

vi

Invited Talk (joint with EXPRESS’07)

A Type Discipline for Authorization in
Distributed Systems

Cédric Fournet1

Microsoft Research (Cambridge – UK)

Abstract

We consider the problem of statically verifying the conformance of the code of a system to an explicit
authorization policy. In a distributed setting, some part of the system may be compromised, that is,
some nodes of the system and their security credentials may be under the control of an attacker. To help
predict and bound the impact of such partial compromise, we advocate logic-based policies that explicitly
record dependencies between principals. We propose a conformance criterion, ”safety despite compromised
principals”, such that an invalid authorization decision at an uncompromised node can arise only when
nodes on which the decision logically depends are compromised. We formalize this criterion in the setting
of a process calculus, and present a verification technique based on a type system. Hence, we can verify
policy conformance of code that uses a wide range of the security mechanisms found in distributed systems,
ranging from secure channels down to cryptographic primitives, including secure hashes, encryption, and
public-key signatures.

1 Joint work with Andrew Gordon and Sergio Maffeis.

Symbolic bisimulation for the applied pi
calculus (extended abstract) ?

Stéphanie Delaunea, Steve Kremerb, Mark Ryanc

a LORIA, CNRS & INRIA, Nancy, France

b LSV, CNRS & ENS de Cachan & INRIA, France
c School of Computer Science, University of Birmingham, UK

Abstract

Recently, we have proposed in [10] a symbolic semantics together with a sound symbolic labelled bisimulation
relation for the finite applied pi calculus. By treating inputs symbolically, our semantics avoids potentially
infinite branching of execution trees due to inputs from the environment. This work is an important step
towards automation of observational equivalence for the finite applied pi calculus, e.g. for verification of
anonymity or strong secrecy properties. We present some of the difficulties we have encountered in the
design of the symbolic semantics.

1 Introduction

The applied pi calculus [1] is a derivative of the pi calculus that is specialised for mod-
elling cryptographic protocols. Participants in a protocol are modelled as processes,
and the communication between them is modelled by means of channels, names and
message passing. These messages are generated by a term algebra and equality is
treated modulo an equational theory. For instance the equation dec(enc(x, y), y) = x

models the fact that encryption and decryption with the same key cancel out. Active
substitutions model the availability of data to the environment.

As an example consider the following reduction step:

νs.k.out(c, enc(s, k)).P
νx.out(c,x)−−−−−−−→ P | {enc(s,k)/x}.

The process outputs on the channel c a secret name s encrypted with the key k.
The active substitution {enc(s,k)/x} gives the environment the ability to access the

? This work has been partly supported by the RNTL project POSÉ, EPSRC projects EP/E029833, Ver-
ifying Properties in Electronic Voting Protocols and EP/E040829/1, Verifying anonymity and privacy
properties of security protocols and the ARTIST2 Network of Excellence. We thank Magnus Johansson and
Björn Victor for interesting discussions.

Delaune and Kremer and Ryan

term enc(s, k) via the fresh variable x without revealing either s, or k. The applied
pi calculus generalizes the spi calculus [2] which only allows a fixed set of primitives
built-in (symmetric and public-key encryption), while the applied pi calculus allows
one to define these and other less usual primitives by means of an equational theory.

One of the difficulties in automating proofs in such a calculus is the infinite
number of possible behaviours of the attacker, even in the case that the protocol
process itself is finite. When the process requests an input from the environment,
the attacker can give any term which can be constructed from the terms it has
learned so far in the protocol, and therefore the execution tree of the process is
potentially infinite-branching. To address this problem, researchers have proposed
symbolic abstractions of processes, in which terms input from the environment are
represented as symbolic variables, together with some constraints. These constraints
describe the knowledge of the attacker (and therefore, the range of possible values
of the symbolic variables) at the time the input was performed.

Reachability properties and also existence of off-line guessing attacks can be ver-
ified by solving the constraint systems arising from symbolic executions (e.g. [3,4]).
Observational equivalence properties express the inability of the attacker to distin-
guish between two processes no matter how it interacts with them. These properties
have been found useful for modelling anonymity and privacy properties (e.g. [9]), as
well as other requirements [5,2]. Symbolic methods have already been used in the
case of observational equivalence or bisimulation properties in classical process alge-
bras (e.g. [11,6]). In particular, Borgström et al. [7] have defined a sound symbolic
bisimulation for the spi calculus.

To show that a symbolic bisimulation implies the concrete one, we generally
need to prove that the symbolic semantics is both sound and complete. Defining a
symbolic semantics for the applied pi calculus has shown to be surprisingly difficult
technically. In this paper, rather than describing our symbolic semantics we present
several difficulties that we encountered and motivate some of our design choices.
A complete description of the semantics and a sound symbolic bisimulation are
available in [10].

2 Towards a symbolic semantics

In this section, we demonstrate some of the difficulties in defining a symbolic se-
mantics for the applied pi calculus that is both sound and complete. Details about
syntax and semantics of the original applied pi calculus are not given here. We
will just recall some notions when we need them to explain the difficulties we have
encountered.

2.1 Structural equivalence

The semantics of the applied-pi calculus is defined by structural rules defining three
relations: structural equivalence (≡), internal (→) and labelled (α−→) reduction. The
last two relations are closed under structural equivalence. Hence, the natural first
step seems to define a symbolic structural equivalence (≡s) which is sound and
complete in the following (informal) sense:

3

Delaune and Kremer and Ryan

Soundness: Ps ≡s Qs implies for any valid instantiation σ, Psσ ≡ Qsσ;
Completeness: Psσ ≡ Q implies ∃ Qs such that Ps ≡s Qs and Qsσ = Q.

However, it seems difficult to achieve this. Before explaining the difficulty, we in-
troduce structural equivalence more formally. Structural equivalence is the smallest
equivalence relation ≡ on extended processes that is closed under α-conversion on
names and variables, application of evaluation contexts (an extended process with a
hole), and some other standard rules such as associativity and and commutativity of
the parallel operator and commutativity of the bindings. In addition the following
three rules are related to active substitutions and equational theories.

νx.{M/x} ≡ 0 {M/x} | A ≡ {M/x} | A{M/x}
{M/x} ≡ {N/x} if M =E N

Consider the process P = in(c, x).in(c, y).out(c, f(x)).out(c, g(y)) which can be
reduced to P ′ = out(c, f(M1)).out(c, g(M2)) where M1 and M2 are two arbitrary
terms provided by the environment. When f(M1) =E g(M2), i.e. f(M1) and g(M2)
are equal modulo the equational theory, we have that P ′ ≡ νz.(out(c, z).out(c, z) |
{f(M1)/z}), but this structural equivalence does not hold whenever f(M1) 6=E g(M2).

The symbolic process P ′
s = out(c, f(x)).out(c, g(y)) has to represent the different

cases where f(x) and g(y) are equal or not. Hence, the question of whether the
structural equivalence P ′

s ≡s νz.(out(c, z).out(c, z) | {f(x)/z}) is valid cannot be
decided, as it depends on the concrete values of x and y. Therefore, symbolic
structural equivalence cannot be both sound and complete. This seems to be an
inherent problem and it propagates to internal and labelled reduction, since they
are closed under structural equivalence.

2.2 Intermediate semantics

The absence of sound and complete symbolic structural equivalence, mentioned
above, significantly complicates the proof of our main result given in [10]. We
therefore split it into two parts. We define a more restricted semantics which will
provide an intermediate representation of applied pi calculus processes. These in-
termediate processes are a selected (but sufficient) subset of the original processes.
One may think of them as being processes in some kind of normal form. They
only have name restriction (no variable restriction) and all restrictions have to be
in front of the process. They have to be name and variable distinct meaning that
we have to use different names (resp. variables) to represent free and bound names
(resp. variables), and also that any name (resp. variable) is at most bound once.
Moreover, we require an intermediate process to be applied meaning that each
variable in the domain of the process occurs only once. For instance, the process
A↓ = νb.in(c, y).out(a, f(b)) is the intermediate process associated to the process
A = νx.(in(c, y).νb.out(a, x) | {f(b)/x}).

Then, we equip these intermediate processes with a labelled bisimulation that
coincides with the original one. The intermediate semantics differs from the seman-
tics of the original applied pi calculus. In particular, we do not consider the three
rules, given in Section 2.1, related to active substitution for structural equivalence
and we do not substitute equals for equals in structural equivalence, but only in a
controlled way in certain reduction rules. Thus, we avoid the problem mentioned

4

Delaune and Kremer and Ryan

in the previous section.
Finally we present a symbolic semantics which is both sound and complete with

respect to the intermediate one and give a sound symbolic bisimulation. Another
way to tackle this problem may be to define a symbolic structural equivalence which
is not complete and to prove directly completeness of the symbolic reduction and
labeled transition without having completeness for structural equivalence, but we
have not been able to carry this through to completion and therefore we did not
take that approach.

2.3 Separate constraint systems and explicit renaming

To keep track of the constraints on symbolic variables we have chosen to associate
a separate constraint system to each symbolic process. Keeping these constraint
systems separate allows us to have a clean separation between the bisimulation and
the constraint solving part. In particular we can directly build on existing work [4]
and decide our symbolic bisimulation for a significant family of equational theories
whenever the constraint system does not contain disequalities. This corresponds to
the fragment of the applied pi calculus without else branches in the conditional. For
this fragment, one may also notice that our symbolic semantics can be used to verify
reachability properties using the constraint solving techniques from [8]. Another
side-effect of the separation between the processes and the constraint system is that
we forbid α-conversion on symbolic processes as we lose the scope of names in the
constraint system. Thus, we have to deal with explicit renaming when necessary.
This adds some additional complexity, but the benefit of keeping the constraints
separate seems to be appealing in view of an implementation.

3 Conclusion and future work

Designing a symbolic semantics for the applied pi calculus has revealed to be much
more difficult technically than expected. In this paper we have highlighted some
difficulties we encountered and motivated some of our design choices. The result
of these design choices is given in [10]. The obvious next step is to study solving
constraint systems in the presence of disequalities. This would enable us to decide
our bisimulation even in the case of else branches.

References

[1] M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In Proc. 28th
Symposium on Principles of Programming Languages, pages 104–115. ACM Press, 2001.

[2] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi calculus. In Proc. 4th
Conference on Computer and Communications Security, pages 36–47. ACM, 1997.

[3] R. Amadio, D. Lugiez, and V. Vanackère. On the symbolic reduction of processes with cryptographic
functions. Theoretical Computer Science, 290:695–740, 2002.

[4] M. Baudet. Sécurité des protocoles cryptographiques : aspects logiques et calculatoires. Thèse de
doctorat, Laboratoire Spécification et Vérification, ENS Cachan, France, 2007.

[5] B. Blanchet, M. Abadi, and C. Fournet. Automated Verification of Selected Equivalences for Security
Protocols. In Proc. 20th Symposium on Logic in Computer Science, pages 331–340. IEEE Comp. Soc.
Press, 2005.

5

Delaune and Kremer and Ryan

[6] M. Boreale and R. D. Nicola. A symbolic semantics for the pi-calculus. Information and Computation,
126(1):34–52, 1996.

[7] J. Borgström, S. Briais, and U. Nestmann. Symbolic bisimulation in the spi calculus. In Proc. 15th
Int. Conference on Concurrency Theory, volume 3170 of LNCS, pages 161–176. Springer, 2004.

[8] S. Delaune and F. Jacquemard. A decision procedure for the verification of security protocols with
explicit destructors. In Proc. 11th ACM Conference on Computer and Communications Security
(CCS’04), pages 278–287. ACM Press, 2004.

[9] S. Delaune, S. Kremer, and M. D. Ryan. Coercion-resistance and receipt-freeness in electronic voting.
In Proc. 19th Computer Security Foundations Workshop, pages 28–39. IEEE Comp. Soc. Press, 2006.

[10] S. Delaune, S. Kremer, and M. D. Ryan. Symbolic bisimulation for the applied pi calculus. Research
Report LSV-07-14, Laboratoire Spécification et Vérification, ENS Cachan, France, Apr. 2007. 47 pages.

[11] M. Hennessy and H. Lin. Symbolic bisimulations. Theoretical Computer Science, 138(2):353–389, 1995.

6

Detecting and Preventing Type flaws:
a Control Flow Analysis with tags 1

Chiara Bodei1 Pierpaolo Degano1 Han Gao2 Linda Brodo3

1 Dipartimento di Informatica, Università di Pisa, Via Pontecorvo, I-56127 Pisa - Italia -
{chiara,degano}@di.unipi.it

2 Informatics and Mathematical Modelling, Technical University of Denmark, Richard Petersens Plads
bldg 321, DK-2800 Kongens Lyngby - Denmark - hg@imm.dtu.dk

3 Dipartimento di Scienze dei Linguaggi, Università di Sassari, via Tempio,9, I-07100 Sassari - Italia -
brodo@uniss.it

Abstract

A type flaw attack on a security protocol is an attack where an honest principal is cheated on interpreting
a field in a message as the one with a type other than the intended one. In this paper, we shall present an
extension of the LySa calculus with tags attached to each field, indicating the intended types. We developed
a control flow analysis for analysing the extended LySa, which over-approximates all the possible behaviour
of a protocol and hence is able to capture any type confusion that may happen during the protocol execution.
The control flow analysis has been applied to a number of security protocols, either subject to type flaw
attacks or not. The results show that it is able to capture type flaw attacks on those security protocols.

Keywords: Security Protocol, Control Flow Analysis, Type Flaw Attacks

1 Introduction

A type flaw attack on a security protocol arises when a field, originally intended
to have one type, is instead interpreted as having another type. To prevent such
attacks, the current techniques [11,12] consist in systematically associating each
message field with a tag representing its intended type. Therefore fields with dif-
ferent types cannot be mixed up. Nevertheless, these may result in requiring extra
and somehow unnecessary computational power and network transmission band.
This is particularly heavy, when resources are limited such as in battery-powered
embedded systems like PDAs, cell phones, laptops, etc.

In this paper, we explore these issues and propose a static analysis technique,
based on Control Flow Analysis, for detecting potential type flaw attacks in the
presence of a Dolev-Yao attacker [7]. The proposed approach abstracts the fields of
protocol messages to a lower level, such that the misinterpretation can be formally

1 This work has been partially supported by the project SENSORIA.

Bodei, Degano, Gao and Brodo

modeled. To this end, we extend the LySa calculus [2,3] with special tags, which
represent the type of terms. The Control Flow Analysis approximates the behaviour
of protocols in terms of the possibly exchanged messages and potential values of
variables. The analysis can be working in either a prescriptive way, such that
type flaws are avoided; or a descriptive way, such that type flaws are detected and
recorded as violations of the intended types. Furthermore, if no type violation is
found, we can prove that the protocol is free of type flaw attacks at run time. The
analysis is fully automated and always terminates. It has been successfully applied
to a number of protocols, such as Woo-Lam π1[19] and Andrew Secure RPC [17].

LYSA has been given different kinds of annotations for checking other security
properties, e.g. confidentiality [9] and freshness [8]. It is very easy to combine
tags with those techniques, thus giving a more comprehensive results of analysing
security protocols.

The paper is organised as follows. In Section 2, we present the LySa calculus with
tags for type flaw attacks, both the syntax and semantics are defined. We introduce
the Control Flow Analysis in Section 3, which captures any type-mismatching that
may happen. In Section 4, we show how the Control Flow Analysis works on two
example protocols that are subject to type flaw attacks. In Section 5, we conclude
with an assessment of our approach and a comparison with related work.

2 Calculus

The LySa calculus [2,3] is a process algebra, in the tradition of the π- [14] and
Spi- [1] calculi. It differs from these essentially in two aspects. The first is the
absence of channels: all processes have only access to a single global communication
channel, the ether. The second aspect concerns the inclusion of pattern matching
into the language constructs where values can become bound to values, i.e. into input
and into decryption. This is different from having a separate matching construct,
usually an if-then construct as in other process calculi and lead to more succinct
specifications of protocols. We use here a dialect of LySa, which presents a more
general pattern matching than the one in [2,3]. See also [5,16] for an alternative
treatment.

Syntax of Terms
The basic blocks of LySa are values, used to represent agent names, nonces, keys.

Syntactically, they are described by terms that may either be standard terms E or
matching terms M . Standard terms – that can be names or variables – are used for
modeling outputs and encryptions. Instead, for modeling inputs and decryptions we
use matching terms, that, in turn, can be standard terms, or variables. We distin-
guish between definition (or binding) occurrences and use (or applied) occurrences
of variables. A definition occurrence is when a variable gets its binding value, while
an use occurrence is an appearance of a variable where its binding value is used.

The distinction is obtained by means of syntax: the definition occurrence of
a variable x is denoted by \x, while in the scope of the declaration, the variable
appears as x. Furthermore, this notation distinguishes variables from occurrences
of standard terms in tuples of matching terms, by implicitly partitioning them into

8

Bodei, Degano, Gao and Brodo

standard terms or variables. In pattern matching, the first are checked for matching,
while the others are bound in case of successful matching (see below).

S ::= standard terms

n name (n ∈ N)

x use variable (x ∈ XS)

S ::= matching standard terms

S standard terms

\x definition variable (x ∈ XS)

Here N , XS , denote sets of names and of applied occurrences of variables, respec-
tively. The name n is used to represent keys, nonces and names of principals.
Type Tagging We extend the syntax of standard LySa to cope with types, by using
tags to represent the types of terms. Following [11], we assume to have a tag for each
base type, such as nonce, key, etc. Moreover, we assume that the attacker is able
to change only the types of terms that he can access. For malleability reasons, we
choose to tag only encryptions and decryptions. In fact, by making the assumption
of perfect cryptography, we have that only cleartext can be altered. Attackers can
only forge an encryption when possessing the key used to cipher it.

Tag 3 Tag ::= agent | nonce | key | . . .

There are type variables, that are to standard variables such as tags are to closed
terms (i.e. terms without variables). Similarly to the \-notation, we syntactically
distinguish the defining occurrences of type variables (in the form]t), from the
corresponding use occurrences (in the form t). Syntactically, we have the following
two new categories, where XT denote sets of applied occurrences of type variables.

T ::= type terms

Tag type tags (Tag ∈ Tag)

t use type variable (t ∈ XT)

T ::= matching type terms

T type terms

]t defining type variable (t ∈ XT)

Furthermore, we can merge the above syntactic categories with the ones for standard
terms in order to obtain the two more general syntactic categories for terms E and
matching terms M . Encryptions are tuples of terms E1, · · · , Ek encrypted under a
term E0 representing a shared key.

E ::= terms

S standard terms

T type terms

{E1, · · · , Ek}E0 symmetric encryption (k > 0)

M ::= matching terms

S matching standard terms

T matching type terms

We call V al the set of values, i.e. closed terms. Each value can have a type tag
associated with it. From here on, for readability, we usually associate standard
terms and type terms in encryptions and decryptions.

Syntax of Processes
In addition to the classical constructs for composing processes, our calculus

also contains an input construct with matching and a decryption operation with
matching. Furthermore, to keep track of the decryptions in which a violation occurs,

9

Bodei, Degano, Gao and Brodo

we decorate each decryption with a label l (from a numerable set C). Labels are
mechanically attached to program points in which decryptions occur (they are nodes
in the abstract syntax tree of processes). Finally, by overloading the symbol ν, we
use a new process construct to declare the expected type of a type variable.

P ::= processes

〈E1, . . . , Ek〉.P output

(M1, . . . ,Mk).P input

decrypt E as {M1, . . . , Mk}l
E0

in P decryption with matching

(ν n)P restriction

(ν]t : Tag)P type declaration

P1 | P2 parallel composition

!P replication

0 nil
The sets of free variables, resp. free names, and of bound variables and names, of a
term or a process are written fv(·), fn(·), bv(·), bn(·), respectively. they are defined
in the standard way. As usual, we omit the trailing 0 of processes.

Our patterns – in the form (M1, · · · ,Mk) – are matched against tuples of terms
(E1, · · · , Ek). Note that, at run time, each (E1, · · · , Ek) only includes closed terms,
i.e. each variable composing each one of the Ei has been bound in the previous
computations. Instead, matching terms Mi can be partitioned in closed terms and
variables to be bound. Intuitively, the matching succeeds when the closed terms,
say Mi, pairwise match to the corresponding terms Ei, and its effect is to bind
the remaining terms Ej to the remaining variables \xj . To exemplify, consider the
following two processes, where only standard terms are present.

P = decrypt {A,wn}K as Q = decrypt {A,NB}K as

{\xa, NB}lP
K in P ′ {\xa, \yn}lQ

K in Q′

The decryption in P succeeds only if wn = NB: in this case \xa will be bound to
A. Instead, the second decryption in Q always succeeds, and results in binding \xa

to A, and \yn to NB.
The roles played by tags and type variables in the pattern matching are the

same played by terms and variables. Suppose, e.g. to have the following processes:

R = (ν]tk : key)decrypt {(A, agent), (NB, nonce), (z, key)}K as

{(A, agent), (NB, nonce), (\zk,]tk)}lR
K in R′

R̃ = (ν]tk : key)decrypt {(A, agent), (NB, nonce), (z, nonce)}K as

{(A, agent), (NB, nonce), (\zk,]tk)}lR
K in R′

S = decrypt {(A, agent), (NB, nonce), (z, t)}K as

{(A, agent), (NB, nonce), (\zk, key)}lS
K in S′

10

Bodei, Degano, Gao and Brodo

The decryptions in R and R̃ always succeed and result in binding \zk to (the values
assumed by) z, and]tk to key or to nonce. In particular, in R̃ the decryption
succeeds, even though the declared type for]tk is key. In the decryption in S only
if t successfully matches with key then \zk is bound to z.

Operational Semantics
Below we slightly modify the standard structural congruence ≡ on LySa pro-

cesses, also to take care of type declarations. It is the least congruence satisfying
the following clauses:

• P ≡ Q if P and Q are disciplined α-equivalent (as explained below);
• (P/≡, |, 0) is a commutative monoid;
• (νn)0 ≡ 0, (νn)(νn′)P ≡ (νn′)(νn)P , (νn)(P | Q) ≡ P | (νn)Q if n 6∈ fn(P),

(ν]t : Tag)0 ≡ 0, (ν]t : Tag)(ν]t′ : Tag)P ≡ (ν]t′ : Tag)(ν]t : Tag)P ,
(ν]t : Tag)(P | Q) ≡ P | (ν]t : Tag)Q if]t 6∈ bv(P);

• !P ≡ P | !P

To simplify the definition of our control flow analysis in Section 3, we discipline
the α-renaming of bound values and variables. To do it in a simple and “implicit”
way, we assume that values and variables are “stable”, i.e. that for each value
n ∈ N there is a canonical representative bnc for the set {n, n0, n1, · · ·} and simi-
larly, for each variable x ∈ XS ∪ XT there is a canonical representative bxc for the
set {x, x0, x1, · · ·}. Then, we discipline α-conversion as follows: two values (resp.
variables) are α-convertible only when they have the same canonical value (resp.
variable). In this way, we statically maintain the identity of values and variables
that may be lost by freely applying α-conversions. Hereafter, we shall simply write
n (resp. x) for bnc (resp. bxc).

Following the tradition of the π-calculus, we shall give LySa a reduction se-
mantics. The reduction relation →R is the least relation on closed processes that
satisfies the rules in Table 1. It uses structural congruence, as defined above, and
the disciplined treatment of α-conversion. We consider two variants of reduction
relation →R, graphically identified by a different instantiation of the relation R,
which decorates the transition relation. Both semantics use the type environment
Γ, which maps a type variable in a set of tags.

Γ : XT → ℘(Tag)

One variant (→RM) takes advantage of checks on type associations, while the other
one (→) discards them: essentially, the first semantics checks for type matching,
while the other one does not (see below):

• the reference monitor semantics Γ ` P →RM Q takes

R(E, M) =





false if M =]t ∧ E 6∈ Γ(]t)

true otherwise

This function affects only type variables, i.e. only matching terms M in the form
]t. It checks whether the type (Γ(]t)) associated with the variable includes E.

11

Bodei, Degano, Gao and Brodo

• the standard semantics Γ ` P → Q takes, by construction, R to be universally
true (and therefore the index R is omitted).

Moreover, we define two auxiliary functions that handle the difference between
closed terms and variables to be bound, by implicitly partitioning the tuples and
treating the respective elements differently. We use a slightly modified notion of
substitution applied to a process P , P [E/M], where M can be either \x or]t.

P [E/M] =





P [M 7→ E] if M ∈ {\x| x ∈ XS} ∪ {]t| t ∈ XT }
P otherwise

The pattern matching function comp(E, M) compares E against M only when M

is a closed term and not a variable.

comp(E, M) =





false if E 6= M ∧ fv(M) ∪ bv(M) = ∅
true otherwise

The judgement Γ ` P →R P ′ means that the process P can evolve into P ′, given
the type environment Γ. The rule (Com) expresses that an output 〈E1, . . . , Ek〉.P

(Com)
∧k

i=1comp(Ei,Mi)
Γ ` 〈E1, . . . , Ek〉.P | (M1, . . . , Mk).Q→R P | Q[E1/M1, . . . , Ek/Mk]

(Dec)
∧k

i=0comp(Ei,Mi) ∧ ∧k
i=1 R(Ei,Mi)

Γ ` decrypt {E1, . . . , Ek}E0 as {M1, . . . , Mk}l
E0

in P →R P [E1/M1, . . . , Ek/Mk]

(Type Decl) (Res)
Γ[]t 7→ Tag] ` P →R P ′

Γ ` (ν]t : Tag)P →R (ν]t : Tag)P ′
Γ ` P →R P ′

Γ ` (ν n)P →R (ν n)P ′

(Par) (Congr)
Γ ` P1→R P ′

1

Γ ` P1 | P2→R P ′
1 | P2

P ≡ P ′ ∧ Γ ` P ′→R P ′′ ∧ P ′′ ≡ P ′′′

Γ ` P →R P ′′′

Table 1
Operational semantics, Γ ` P →R P ′, parameterised on R.

is matched by an input (M1, . . . ,Mk) by checking whether the closed terms Mi

are pairwise the same with the corresponding Ei (i.e. if comp(Ei,Mi)). When the
matchings are successful, the remaining Ej are bound to the corresponding Mj (that
are variables or type variables).

Similarly, the rule (Decr) expresses the result of matching an encryption
{E1, . . . , Ek}E0 with decrypt E as{M1, . . . , Mk}l

E′0
in P . As it was the case for com-

munication, the closed terms Mi must match with the corresponding Ei, and ad-

12

Bodei, Degano, Gao and Brodo

ditionally the keys must be the same. When the matching is successful the re-
maining terms Ej are bound to the corresponding Mi (that are definition vari-
ables or definition type variables). Recall that in the reference monitor seman-
tics we ensure that the components of the decrypted message have the types ex-
pected, by checking whether the]t are bound to a type tag that is included in
Γ(]t). In the standard semantics the condition R(E, M) is universally true and
thus can be ignored. Back to our example processes R, R̃, S, we have that in R,
comp(z, \zk) = comp(key,]t) = true and R(key,]t) = true (because key ∈ Γ(]t)),
while in R̃, comp(z, \zk) = comp(nonce,]t) = true, but R(nonce,]t) = false (be-
cause nonce 6∈ Γ(]t)). Note also that in S, comp(t, key) = true only if t = key, and,
in this case P [z/\zk] = P [\zk 7→ z].

The rule (Type Decl) records the new association between the type variable]t

and the type Tag in the type environment Γ. The updating of Γ is indicated as
Γ[]t 7→ Tag].

The rules (Repl), (Par) and (Congr) are standard.

Dynamic Property
As for the dynamic property of the process, we shall consider a process free

of type flaw attack, when in all computations, each type variable is bound to the
expected type. Consequently, the reference monitor will never stop any execution
step. Note that we only consider the type flaws occurring inside encryptions and
decrytpions.

Definition 2.1 A process P is free of type flaw attacks when for each step Γ ` P →
P ′, we always have Γ ` P →RM P ′.

3 Static Analysis

We develop a control flow analysis for analysing tagged LYSA processes. The aim
of the analysis is to safely over-approximate all the possible protocol behaviour
which permits to safely approximate when the reference monitor may abort the
computation of a process P . The approximation is represented by a tuple (Γ, ρ, κ, ψ)
(resp. a pair (ρ, ϑ) when analysing a term E), called estimate for P (resp. for E), that
satisfies the judgements defined by the axioms and rules of Table 2. In particular,
the analysis records which value tuples may flow over the network and which values
may be bound to each definition variable (e.g. \x) and definition type variable (e.g.
]t). Moreover, at each decryption place, the analysis checks whether a type tag
(e.g. Tag) bound to each definition type variable is the intended one, or a violation
is reported. The analysis is defined in the flavor of Flow Logic [15].

Analysis of Terms
The judgement for analysing terms is ρ |= E : ϑ. The analysis keeps track of the

potential values of variables or type variables, e.g. x or t, by recording them into
the global abstract environment ρ:

• ρ : XS ∪XT → ℘(V al) maps variables and type variable to the sets of values that
they may be bound to.

13

Bodei, Degano, Gao and Brodo

The judgement is defined by the axioms and rules in the upper part of Table 2.
Basically, the rules amount to demanding that ϑ contains all the values associated
with the components of a term, e.g. a name n evaluates to the set ϑ, provided that
n belongs to ϑ; similarly for a variable x, provided that ϑ includes the set of values
ρ(x) to which x is associated with.

Analysis of Processes
In the analysis of processes, the information on the possible values, that may

flow over the network, is collected into the component κ:

• κ ⊆ ℘(V al∗): the abstract network environment that includes all the value-tuples
forming a message that may flow on the network.

The judgement for processes takes the form: ρ, κ, Γ |= P : ψ, where the com-
ponents ρ, κ, and Γ are as above (recall that Γ : XT → ℘(Tag)), while ψ ⊆ C,
is the (possibly empty) set of “error messages” of the form l, indicating that a
type-mismatching (or violation) may happen at the decryption, labelled l. The
judgement is defined by the axioms and rules in the lower part of Table 2 (where
X ⇒ Y means that Y is only evaluated when X is True) and are explained later.

Before commenting on the analysis rules, we introduce three auxiliary functions,
all of which generate some logic formulas to be used in the analysis rules. See some
examples below.

The first one is the matching function, which takes care of pattern matching
a value v to a matching term M . Remember that pattern matching cannot be
performed on either \x or]t, requiring that M has to be some S or T . If this is the
case, matching succeeds when v is an evaluation of the value of S or T .

match(v, M, ρ) =





false if M ∈ {S, T} ∧ v 6∈ ϑ where ϑ is s.t. (ρ |= M : ϑ)

true otherwise

The second one is a substitution function, which corresponds to the notion of variable
binding. Intuitively, it only makes sense to bind a value to either a definition variable
or a definition type variable. So the substitution function binds the value v to M

only when M is variable \x or a type variable]t.

sub(v,M) =





false if v 6∈ ρ(M) with M ∈ {\x| x ∈ XS} ∪ {]t| t ∈ XT }
true otherwise

The last function is about type checking. Given a type environment Γ, it checks
whether v is the expected type of a definition type variable]t. If it is not the case,
the decryption labeled l, is recorded in the error component ψ. Note that in order
to let the type checking work, M has to be a definition type.

chk(v, M,Γ, l, ψ) =





(v 6= Γ(]t) ⇒ l ∈ ψ) if M ∈ {]t| t ∈ XT }
true otherwise

14

Bodei, Degano, Gao and Brodo

match(m,n) = (ρ |= n : ϑ ∧ m ∈ ϑ) match(m, \x) = true

sub(m, \x) = (m ∈ ρ(x)) sub(m,n) = true

chk(m,]t,Γ, l) = (m 6= Γ(t) ⇒ l ∈ ψ) chk(m, n,Γ, l) = true

(Const)
N ∈ ϑ

ρ |= N : ϑ
(N = Tag or n) (V ar)

ρ(X) ⊆ ϑ

ρ |= X : ϑ
(X = x or t)

(Encr)

∧k
i=0 ρ |= Ei : ϑi ∧

∀v0, . . . , vk : ∧k
i=0 vi ∈ ϑi ⇒ {v1, . . . , vk}v0 ∈ ϑ

ρ |= {E1, . . . , Ek}E0 : ϑ

(Out)

∧k
i=1 ρ |= Ei : ϑi ∧

∀v1, . . . , vk : ∧k
i=1vi ∈ ϑi ⇒ 〈v1, . . . , vk〉 ∈ κ ∧
ρ, κ, Γ |= P : ψ

ρ, κ, Γ |= 〈E1, . . . , Ek〉.P : ψ

(In)

∀〈v1, . . . , vk〉 ∈ κ ∧k
i=1 (match(vi,Mi) ⇒ sub(vi,Mi)) ∧
ρ, κ,Γ |= P : ψ

ρ, κ, Γ |= (M1, . . . , Mk).P : ψ

(Dec)

ρ |= E : ϑ ∧ ρ |= E0 : ϑ0 ∧
∀{v1, . . . , vk}v0 ∈ ϑ : v0 ∈ ϑ0 ⇒

∧k
i=1(match(vi, Mi) ⇒ (sub(vi, Mi) ∧ chk(vi, Mi, Γ, l))) ∧

ρ, κ,Γ |= P : ψ

ρ, κ,Γ |= decrypt E as {M1, . . . , Mk}l
E0

in P : ψ

(TNew)
(]t, Tag) ∈ Γ ∧ ρ, κ,Γ |= P : ψ

ρ, κ, Γ |= (ν]t : Tag)P : ψ
(Par)

ρ, κ, Γ |= P1 : ψ ∧ ρ, κ, Γ |= P2 : ψ

ρ, κ, Γ |= P1 | P2 : ψ

(Res)
ρ, κ, Γ |= P : ψ

ρ, κ, Γ |= (ν n)P : ψ
(Rep)

ρ, κ, Γ |= P : ψ

ρ, κ, Γ |=!P : ψ
(Nil) ρ, κ, Γ |= 0 : ψ

Table 2
Analysis of tagged Lysa Terms: ρ |= E : ϑ, and Processes: ρ, κ, Γ |= P : ψ

We now briefly comment on the rules for analysing processes. In the premises
of the rule for k-ary output (Out), we require that all the terms are abstractly
evaluated, and that all the combinations of these values are recorded in κ, since
they are the values that may be communicated. Finally, the continuation process
must be analysed.

The rule (In) describes the analysis of pattern matching input and uses both
the match function and substitution. The idea is to examine all the sequences of
〈v1, ..., vk〉 in the κ component and to point-wise compare it against the tuple of
matching terms (M1, ..., Mk). The matching function selects only the closed terms

15

Bodei, Degano, Gao and Brodo

and for each of them, say Mi, checks whether the corresponding vi is included in
ϑi, i.e. the result of the analysis for Mi. If the matching succeeds for all the closed
terms, then, the substitution function takes care of binding the remaining values vj

to the corresponding definition variables or definition type variables Mj . Moreover,
the continuation process must be analysed.

The rule for decryption (Dec) is quite similar to the rule for input : matching
and substitution are handled in the same way. The values to be matched are those
obtained by evaluating the term E and the matching ones are the terms inside the
decryption. If the matching succeeds for all closed terms, then the substitution is
applied to the remaining values that are bound to the corresponding definition vari-
ables or definition type variables. When processing the substitution, type checking
is also performed to capture violations. These occur when a definition type vari-
able is bound to an unexpected type. In this case, the label l of the decryption is
recorded in the error component ψ. Both in the case of input and decryption we
make sure only to analyse the continuation process P in those cases where the input
or decryption could indeed succeed.

The rule for type declaration (TNew) requires that the declared type is recorded
in the type environment Γ.

The rule for the inactive process (Nil) does not restrict the analysis result, while
the rules for parallel composition (Par), restriction (Res), and replication (Rep)
ensure that the analysis also holds for the immediate subprocesses.

Semantic properties
Our analysis is semantically correct regardless of the way the semantics of LySa

is parameterised (see [4] for the formal proofs). More precisely, we proved a subject
reduction theorem for both the standard and the reference monitor semantics: if
(ρ, κ, Γ) |= P : ψ, then the same tuple (ρ, κ, ψ,Γ) is a valid estimate for all the states
passed through in a computation of P , i.e. for all the derivatives of P .

Theorem 3.1 (Subject reduction) If Γ ` P → Q and ρ, κ, Γ |= P : ψ then also
ρ, κ, Γ |= Q : ψ. Furthermore, if ψ = ∅ then P →RM Q

In addition, when analysing a process P if the error component ψ is empty then
the reference monitor cannot stop the execution of P . This means that our analysis
correctly predicts when we can safely do without the reference monitor.

Theorem 3.2 (Static check for reference monitor) If ρ, κ, Γ |= P : ψ and
ψ = ∅ then RM cannot abort P .

Example
Consider a scenario in which a principal A sends out an encrypted nonce onto the
network and another principal B is expecting an encrypted key receiving from the
network. Assume both encryptions use the same key K, obviously, B could be
cheated on accepting the nonce as the key.

A → : {N}K

→ B : {K ′}K

16

Bodei, Degano, Gao and Brodo

Our control flow analysis can work in two ways depending on how the protocol is
modelled: either detecting what B received is a wrong one or preventing B from
accepting it.
• In case the goal is to detect any type flaw attack may happen to the protocol,
we can model it as follows,

〈A, {(N,nonce)}K〉.0
| (ν]txn : key) (A, \xenc). decrypt xenc as {(\xn,]txn)}l

K in 0

where the type of the encrypted message that B received, i.e.]txn, is declared to
be key. The analysis then gives rise to the analysis components ρ, κ,Γ and ψ with
the following entries:

〈A, {(N, nonce)}K〉 ∈ κ (]txn, key) ∈ Γ l ∈ ψ

{(N,nonce)}K ∈ ρ(xenc) N ∈ ρ(xn) nonce ∈ ρ(txn)

which show that the attack is captured by l ∈ ψ

• In case one wants to prevent such a type flaw attack from happening, the protocol
can be modelled as,

〈A, {(N, nonce)}K〉.0
| (A, \xenc). decrypt xenc as {(\xn, key)}l

K in 0

It requires that the message inside the encryption that B got has to be a key. In
this case, the analysis result becomes:

〈A, {(N, nonce)}K〉 ∈ κ Γ = ∅ ψ = ∅
{(N, nonce)}K ∈ ρ(xenc) ρ(xn) = ∅

Now ρ(xn) = ∅ shows that no value binds to the variable xn, i.e. the type flaw
attack is successfully prevented.

Modelling the Attacker
In our work, the protocol and the attacker are formally modelled as two parallel

processes, Psys | P•, where Psys represents the protocol process and P• is some
arbitrary attacker. The attacker considered here is the Dolev-Yao attacker [7],
who is an active attacker and assumed to have the overall control of the network,
over which principals exchange messages. Therefore he has access to messages
transmitted over the network and is able to eavesdrop or replay messages sending
over the network but also to encrypt, decrypt or generate messages provided that
the necessary information is within his knowledge. Instead, secret messages and
keys, e.g. (νKAB), are restricted to their scope in Psys and thus not immediately
accessible to the attacker. To deal with types, we require that the attacker is able
to change types of terms that are accessible to him. Due to space limitations,
we shall not go further into details here, rather we refer to [3] for a description
about modelling the attacker in a similar setup, as well as for a similar treatment
of semantic correctness.

17

Bodei, Degano, Gao and Brodo

4 Validation

To verify the usefulness of our Control Flow Analysis, a number of experiments
have been performed on security protocols from the literature. In this section, we
shall show the analysis results of some example protocols, which are subject to
type flaw attacks, namely the Woo and Lam protocol, version π1 and the Andrew
Secure RPC protocol (both the original version and the BAN version with type flaw
corrected). The analysis results show that those type flaw attacks are successfully
captured. Furthermore, it proves that after BAN’s correction, the Andrew Secure
RPC protocol does not suffer from type flaw attacks any longer.

Woo and Lam Protocol π1

Woo and Lam [19] introduced a protocol that ensures one-way authentication
of the initiator of the protocol, A, to a responder, B. The protocol uses symmetric-
key cryptography and a trusted third-party server, S, with whom A and B share
long-term symmetric keys. The protocol uses a fresh nonce NB produced by B.
The protocol narration is listed in the left part of the figure below, where KAS and
KBS represent the long-term keys that A and B share with the trusted server S.

1. A → B : A

2. B → A : NB

3. A → B : {A,B, NB}KAS

4. B → S : {A,B, {A,B,NB}KAS
}KBS

5. S → B : {A,B, NB}KBS

the protocol narration

1. M(A) → B : A

2. B → M(A) : NB

3. M(A) → B : NB

4. B → M(S) : {A,B, NB}KBS

5. M(S) → B : {A,B, NB}KBS

the type flaw attack

The Woo-Lam protocol is prown to a type flaw attack, which is shown in the
right part of the figure. The attacker replays the nonce NB to B in step 3, which B

accepts as being of the form {A,B, NB}KAS
. B then encrypts whatever he received

and then sends it out in step 4. The attacker intercepts it and replays it to B in
step 5 and therefore fools B to believe that he has authenticated A, whereas A has
not even participated in the run.

In LYSA, the Woo-Lam protocol is modelled as three processes, A,
B and S, running in parallel within the scope of the shared keys, say
PWL = (ν KAS)(ν KBS)(A | B | S), each of which represents the sequence of
actions of one principal as listed below. For clarity, each message begins with the
pair of principals involved in the exchange.

Principal A : (ν]txnb : nonce)

/ ∗ 1 ∗ / 〈A,B, A〉.
/ ∗ 2 ∗ / (B, A, (\xnb,]txnb)).

/ ∗ 3 ∗ / 〈A,B, ({A,B, (xnb, txnb)}KAS
, {agent, agent, nonce}key)〉.0

18

Bodei, Degano, Gao and Brodo

Principal B : / ∗ 1 ∗ / (A, B,A).

/ ∗ 2 ∗ / (ν NB) 〈B, A, (NB, nonce)〉.
/ ∗ 3 ∗ / (A, B, (\yaenc,]tyaenc)).

/ ∗ 4 ∗ / 〈B, S, {A,B, (yaenc, tyaenc)}KBS
〉.

/ ∗ 5 ∗ / (S, B, (\ysenc,]tysenc)).

decrypt ysenc as {A,B, (NB, nonce)}l1
KBS

in 0

Server S : (ν]tzaenc : enc) (ν]tznb : nonce)
/ ∗ 4 ∗ / (B, S, (\zyenc,]tzyenc)).

decrypt zyenc as {A,B, (\zaenc,]tzaenc)}l2
KBS

in

decrypt zaenc as {A,B, (\znb,]tznb)}l3
KAS

in

/ ∗ 5 ∗ / 〈S, B, {A,B, (znb, tznb)}KBS
〉.0

For the Woo and Lam protocol, we have (ρ, κ,Γ) |= PWL : ψ, where ρ, κ and Γ have
the following non-empty entries (we only list here the interesting ones):

ρ(zaenc) = {{A,B, (NB, nonce)}KAS
, NB} (]tzaenc, enc) ∈ Γ

ρ(tzaend) = {{agent, agent, nonce}key, nonce} {l2} ∈ ψ

The error component has a non-empty set, ψ = {l2}, showing that a violation may
happen in the decryption marked with label l2 (the second line of step 4 in S). This
is the place where S is trying to decrypt and bind values to the variable zaenc and its
type variable tzaenc, which, as indicated by Γ, can only be {A, B, (NB, nonce)}KAS

.
However, ρ(zaenc) and ρ(tzaenc) suggest that zaenc may also have the value NB

and tzaenc may have the value nonce. This violates the type assertion and amounts
to the fact that, in step 4, S receives the message {A,B, NB}KBS

instead of the
expected one {A,B, {A,B, NB}KAS

}KBS
. This exactly corresponds to the type flaw

shown before.

Andrew Secure RPC protocol
The goal of the Andrew Secure RPC protocol is to exchange a fresh, authenti-

cated, secret key between two principals sharing a symmetric key K. In the first
message, the initiator A sends a nonce NA, the responder B increments and returns
it as the second message together with his nonce NB. A accepts the value and
returns the NB + 1, B receives and checks the third message and if it contains the
nonce incremented, then he sends a new session key, K ′ to A together with a new
value N ′

B to be used in subsequent communications.

1. A → B : A, {NA}K

2. B → A : {NA + 1, NB}K

3. A → B : {NB + 1}K

4. B → A : {K ′, N ′
B}K

the protocol narration

1. A → B : A, {NA}K

2. B → A : {NA + 1, NB}K

3. A → M(B) : {NB + 1}K

4. M(B) → A : {NA + 1, NB}K

the type flaw attack
19

Bodei, Degano, Gao and Brodo

Also, the Andrew Secure RPC protocol [17] is subject to type flaw attack as
shown above in the right part of the figure: by replaying the message from step 2
to B in step 4, the attacker can successfully force A to accept NA + 1 as the new
session key. The protocol makes use of an operation to increment NA, in step 2,
and NB, in the third step (see [3] for the possible model of SUCC)).

The protocol can be modelled as PAndrew = (ν K)(A | B), where K is the
shared key and A and B are defined as follows (we only list the relevant steps).

Principal A : (ν NA) (ν]txk : key) (ν]txnb′ : nonce)
/ ∗ 1 ∗ / 〈A,B, A, {(NA, nonce)}K〉. . . .
/ ∗ 4 ∗ / (B, A, \xenc).

decrypt xenc as {(\xk,]txk), (\xnb′ ,]txnb′)}lx1
K in 0

Principal B : (ν NB)(ν N ′
B)(ν K ′)(ν]tyna : nonce)

/ ∗ 1 ∗ / (A,B, A, \yenc).

decrypt yenc as {(\yna,]tyna)}ly1

K in

/ ∗ 2 ∗ / 〈B, A, {(yna + 1, tyna), (NB, nonce)}K〉. . . .

For the Andrew Secure RPC protocol, we have (ρ, κ, Γ) |= PAndrew : ψ, where ρ, κ

and Γ have the following non-empty entries (we only list here the interesting ones):

〈B, A, {(NA + 1, nonce), (NB, nonce)}K〉 ∈ κ

ρ(xk) = {K ′, Na + 1} ρ(txk) = {key, nonce}
(]txk, key) ∈ Γ (lx1) ∈ ψ

The component κ collects all the messages potentially flowing over the network, in-
cluding the one sent by B in step 2, namely 〈B, A, {(NA+1, nonce), (NB, nonce)}K〉.
This message could be received by A in his fourth step (e.g. replayed by an attacker)
and consequently binding NA + 1 to \xk and nonce to]txk, which can be verified
by examining the content of ρ (i.e. NA + 1 ∈ ρ(xk) and nonce ∈ ρ(txk)). How-
ever, as suggested by Γ, the expected type of the type variable txk can only be key

(by Γ(txk) = {key}) but not nonce. This violation is captured by the analysis by
recording the label lx1 in the error component ψ (by lx1 ∈ ψ).

Andrew Secure RPC protocol with type flaw corrected
An improved version of Andrew Secure RPC protocol is suggested in [6] in order

to prevent the above mentioned type flaw attack. The fixing amounts to inserting
another component NA into the encryption in the fourth message, as shown below,

4′. B → A : {K ′, N ′
B, NA}K

Now the encryption in step 2 has two fields and in step 4′, A is expecting an
encryption of 3 fields, therefore the attacker is no longer able to replay the message
from step 2 and consequently make A accept nonce as a fresh key. This claim is
verified by applying our analysis, which gives an empty error component, i.e. ψ = ∅.

20

Bodei, Degano, Gao and Brodo

5 Conclusion and Related Work

A type flaw attack happens when a field in a message is interpreted as having a type
other than the originally intended one. In this paper, we extended the syntax of
the process calculus, LYSA, with tags, which represent the intended types of terms.
The semantics of the tagged LYSA makes use of a reference monitor to capture
type-mismatching at run time.

On the static side, we developed a control flow analysis for the tagged LYSA pro-
cesses to check at each decryption place that whether the received, secret data has
the right type. The static analysis ensures that, if each component of an encryption
received by a principal is of the intended type, then the process is not subject to
a type flaw attack at execution time. Actually, for malleability reasons, we only
consider type flaws attacks occurring inside encryptions and decryptions. As far as
the attacker is concerned, we adopted the notion from Dolev-Yao threat model and
extended it with tags in order to fit it into our setting. The control flow analysis
has been applied to a number of protocols, e.g. Woo-Lam π1 and Andrew Secure
RPC as shown in Section 4, and has confirmed that we can successfully detect type
flaw attacks on the protocols.

Type flaw attacks on security protocols have been studied for some years, e.g. [11]
also adopted the technique of tagging each message field with intended type, and
later on, [12] simplified the tag structure for encryption. However these works
aim at preventing type flaw attacks in the protocol execution stage by attaching
some extra bits, representing types, to the messages transmitted over the network,
and consequently the size of each message is increased, which results in raising
unnecessary burden to the underlying network. Other works on type flaw attacks
include applying type and effect system to security protocols, e.g. [10], such that a
protocol is free of type flaw attacks if it is type checked. Type Systems are normally
prescriptive(i.e. they infer types and impose the well-formedness conditions at the
same time), while Control Flow Analysis is normally descriptive (i.e. it merely infers
the information and then leave it to a separate step to actually impose demands on
when programs are well-formed). Our approach offers a mix of both ways. Indeed,
it can be either descriptive, i.e. it describes when the protocol does not respect the
typing (via binding of type variables) or prescriptive, i.e. some flaws are avoided
(via matching of tag terms). Under this regard, launching the tool implementing
our analysis can then correspond to a sort of approximate type checking. More
specifically, our control flow analysis can be used to 1) detect type flaw attacks:
it can be applied in the protocol design stage: once a tagged protocol process is
analyzed to be free of type flaw attacks, it can be used untagged while still ensures
security; or 2) prevent type flaw attacks: the tags work in a way such that fields
with different types cannot be mixed up. Therefore, it offers flexibility in satisfying
different needs.

LYSA has been developed to be decorated by several kinds of annotations and
successfully applied for checking different security properties, e.g. confidentiality [9]
and freshness [8]. It is very easy to combine tags with those techniques, thus ob-
taining a more general form of analysis. The core analysis can remain the same:
different inspections of a solution permit to check different security properties of a

21

Bodei, Degano, Gao and Brodo

protocol, with no need of re-analysing it several times.
The control flow analysis presented here is designed to capture simple type flaw

attacks, i.e. one field is confused with another single field. Future work will extends
the analysis to deal with more complex ones [18], as considered in [13], e.g. when
a single field in a message is confused with a concatenation of fields. Furthermore,
we can think about more complex kinds of tags.

Acknowledgments. We are grateful to Hanne Riis Nielson and Terkel K.
Tolstrup for their helpful discussions and comments.

References

[1] M. Abadi and A.D. Gordon. A Calculus for Cryptographic Protocols: The Spi Calculus. Information
and Computation, 148(1), pp.1-70, 1999.

[2] C. Bodei, M. Buchholtz, P. Degano, F. Nielson and H.R. Nielson. Automatic Valication of Protocol
Narration. In Proc. of CSFW’03, IEEE Press.

[3] C. Bodei, M. Buchholtz, P. Degano, F. Nielson and H.R. Nielson. Static Validation of Security Protocols.
Journal of Computer Security, 13(3), pp.347 - 390, 2005.

[4] C. Bodei, P. Degano, H. Gao, L. Brodo. Detecting and Preventing Type flaws: a Control Flow Analysis
with tags. TR-07-16, Dipartimento di Informatica, Università di Pisa, 2007.

[5] M. Buchholtz, F. Nielson and H.R. Nielson. A Calculus for Control Flow Analysis of Security Protocols.
International Journal of Information Security, 2(3-4), pp.145-167, 2004.

[6] M. Burrows and M. Abadi and R. Needham. A Logic of Authentication. ACM. Transactions in
Computer Systems, 8(1), pp. 18-36, 1990.

[7] D. Dolev and A.C. Yao. On the Security of Public Key Protocols. IEEE TIT, IT-29(12):198-208, 1983.

[8] H. Gao, P. Degano, C. Bodei and H.R. Nielson. Detecting Replay Attacks by Freshness Annotations.
In Proc. of International Workshop on Issues in the Theory of Security (WITS 2007).

[9] H. Gao and H.R. Nielson. Analysis of LySa-calculus with explicit confidentiality annotations. In Proc.
of Advanced Information Networking and Applications (AINA 2006), IEEE Computer Society.

[10] A.D. Gordon and A. Jeffrey. Types and Effects for Asymmetric Cryptographic Protocols. In Proc. of
15th Computer Security Foundations Workshop, pp. 77-91, IEEE Computer Society, 2002.

[11] J. Heather, G. Lowe and S. Schneider. How to prevent type flaw attacks on security protocols. In Proc.
of the 13th Computer Security Foundations Workshop, IEEE Computer Society Press, 2000.

[12] Y. Li, W. Yang and J. Huang. Journal of Information Science and Engineering, 21:59-84, 2005.

[13] C. Meadows. Identifying potential type confusion in authenticated messages. In. Proc. of Workshop
on Foundation of Computer Security, pp. 75-84, 2002.

[14] R. Milner. Communicating and mobile systems: the π-calculus. Cambridge University Press, 1999.

[15] H.R. Nielson and F. Nielson. Flow Logic: a multi-paradigmatic approach to static analysis. The Essence
of Computation: Complexity, Analysis, Transformation LNCS 2566: 223-244, Springer Verlag, 2002.

[16] C.R. Nielsen, F. Nielson, H.R. Nielson. Cryptographic Pattern Matching. ENTCS 168, pp. 91-107, 2007.

[17] M. Satyanarayanan. Integrating security in a large distributed system. ACM Transactions on Computer
Systems, 7(3):247–280, 1989.

[18] E. Snekkenes. Roles in cryptographic protocols. In Proc. of the 1992 IEEE Computer Security
Symposium on Research in Security and Privacy, pp.105-119. IEEE Computer Society Press, 1992.

[19] T.Y.C. Woo and S.S. Lam. A lesson on authentication protocol design. Operating Systems Review,
28(3):24-37, 1994.

22

Modelling the Security of Smart Cards by
Hard and Soft Types for Higher-Order Mobile

Embedded Resources 1

Mikkel Bundgaard and Thomas Hildebrandt2

Jens Chr. Godskesen3

IT University of Copenhagen
Rued Langgaards Vej 7, DK-2300 Copenhagen S, Denmark

{mikkelbu, hilde, jcg}@itu.dk

Abstract

We provide a type system inspired by affine intuitionistic logic for the calculus of Higher-Order Mobile
Embedded Resources (Homer), resulting in the first process calculus combining affine linear (non-copyable)
and non-linear (copyable) higher-order mobile processes, nested locations, and local names. The type
system guarantees that linear resources are neither copied nor embedded in non-linear resources during
computation.
We exemplify the use of the calculus by modelling a simplistic e-cash Smart Card system, the security of
which depends on the interplay between (linear) mobile hardware, embedded (non-linear) mobile processes,
and local names. A purely linear calculus would not be able to express that embedded software processes
may be copied. Conversely, a purely non-linear calculus would not be able to express that mobile hardware
processes cannot be copied.

Keywords: Higher-order process passing, linear types, copyable and non-copyable resources,
nested locations, security, smart cards

1 Introduction

Following the seminal work on Mobile Ambients [10], several process calculi, in-
cluding variations of Mobile Ambients [18,4], the Seal calculus [11], and the Homer
calculus [15], have been proposed that combine (1) mobile processes, (2) nested
explicit locations and (3) local names. These models are motivated by scenarios
in global ubiquitous computing: Mobile processes are employed to represent both
mobile computing devices (i.e. non-copyable devices such as laptops, PDAs, and
smart cards), as well as mobile computations (i.e. copyable software agents and

1 This research is supported by the Danish Research Agency grants no: 274-06-0415 (CosmoBiz), no:
272-05-0258 (Mobile Security) and no: 2059-03-0031 (BPL).
2 Programming, Logic and Semantics Group.
3 Computational Logic and Algorithms Group.

Bundgaard, Hildebrandt, and Godskesen

migrating processes). Nested explicit locations are typically used to represent ad-
ministrative domains, firewalls, physical boundaries of mobile devices, boundaries
of software messages and processes such as encryption, sand-boxes and locations of
data in memory. Finally, local names are used to represent private keys and scope
of references to locations in memory.

In the present paper we argue that mobile computing hardware devices are
intrinsically linear, while mobile computations in software are intrinsically non-
linear : A hardware device cannot easily be copied, and the security of a system
often depends on this fact, for instance for smart cards. Contrarily, software must
usually be explicitly protected against copying, e.g. by enclosing it in a tamper-proof
(and non-copyable) hardware device.

The Mobile Ambients calculus and its descendants combine linear mobile pro-
cesses (the ambients) and non-linear, copyable messages (values). These features
make the calculi suitable for modelling mobile computing. But since none of the
calculi allow general duplication of processes inside ambients, it becomes difficult
to represent copyable, mobile computations. On the other hand, the more recent
higher-order process calculi, such as the Seal calculus [11] and Homer [15], have ex-
plicitly introduced copyable mobile resources in the context of nested locations. But
by assuming that all resources are copyable these calculi in turn become unrealistic
as models of non-copyable mobile computing devices.

Somewhat surprisingly, we found no calculus combining linear and non-linear
mobile embedded processes and local names. In the present paper we thus present
an extension, inspired by affine intuitionistic linear logic, of the type and effect sys-
tem for Homer presented in [13]. The extension allows us to distinguish between
affine linear and non-linear uses of variables (as in the linear lambda calculus) and
to type the names of locations (akin to reference types) and thereby to restrict the
content of locations to be either linear or non-linear. We define non-linear to be a
subtype of affine linear, which enable non-linear (software) locations to be embed-
ded in linear (hardware) locations. This also ensures that non-linear resources can
be used as affine linear resources. On the other hand, the type system guarantees
that linear resources are never copied nor embedded in non-linear resources: If a
linear resource could be embedded within a non-linear resource it could be copied
by copying the embedding resource. In Homer it is possible to reference nested
resources using composite location paths. To type these paths we introduce com-
posite reference types guaranteeing that linear locations within non-linear locations
are never referenced.

We claim that the calculus captures the intrinsic copyability features of mobile
computing hardware devices and software processes as outlined above. We justify
this claim by giving in Sec. 5 an example of a simplistic e-cash system, the security
of which depends on the non-copyability of smart cards and the ATM itself. Dually,
the copyability of software processes, in this case encrypted messages, constitutes
an important security threat. We do not claim that the example prove the security
of a realistic smart card system, but that it shows that a realistic model for both
mobile computing and computations should allow for both linear and non-linear
mobile processes.

The type system has consequences for the treatment of infinite behaviours. In

24

Bundgaard, Hildebrandt, and Godskesen

most (untyped) higher-order calculi (HOπ [19], λ-calculus, CHOCS [23], Homer
[15]) one can encode infinite behaviour by process passing (and process duplica-
tion). Constructors such as the Y-combinator, replication, or general recursion is
then taken not as primitives, but rather as derived constructions. However, the
encoding of recursion in Homer [15] depends on the ability to copy resources. Thus,
we can only encode recursion (and hence replication) of non-linear resources. Since
replication does make sense for linear resources, allowing the availability of an ar-
bitrary number of the same resource, we introduce this as a primitive constructor
in the calculus.

In the full paper [7], we extend the work in [15] to the linear and non-linearly
typed calculus by providing a barbed bisimulation congruence, weak and strong
labelled bisimulations, and prove that Howe’s method extends to this richer typed
setting and thus provides a technique for contextual reasoning about linear and
non-linear mobile embedded resources. We show that the labelled bisimulation
congruences are sound with respect to the barbed bisimulation congruences, and
also complete in the strong case.

The structure of the paper is as follows. In Sec. 2 we present the Homer calculus,
and in Sec. 3 we give it transition semantics. The type system for Homer is presented
in Sec. 4, and we provide the Smart Card example in Sec. 5. In Sec. 6 we conclude
and propose future work.

Related work
The interplay between linearity and non-linearity has been studied thoroughly in

variations of Intuitionistic Linear Logic and the corresponding denotational models,
term models, and substructural type systems. The models and type systems have
been used to describe and reason about co-existing linear and non-linear resources
in functional programming, e.g. for memory management and references to system
resources [24], in recent languages for quantum computing with classical control [22],
and for controlling the use of names (and thus mobility) in the π-calculus [17]. We
found no prior studies of linear and non-linear mobile processes combined with
nested locations and local names.

The Homer calculus extends Plain CHOCS, but shares ideas with recent cal-
culi for mobility such as the Seal calculus [11], the M-calculus [20] (and its recent
successor the Kell calculus [21]), in particular the ability to represent copyable (non-
linear), objectively mobile anonymous resources in nested named locations. Type
systems have been introduced for the M-calculus (and the Kell calculus [3]) which
ensure unity of location names (used for deterministic routing). A type system for
Seal calculus is presented in [11], the type system both type active processes and
locations, thus enabling one to declare the type of processes that can enter and exit
a location.

The composite address paths in Homer are in some respects similar to the com-
posite channel names found in the π-calculus with polyadic synchronisation [9]. In
[8] a type system for polyadic synchronisation is given, based on Milner’s type sys-
tem for the polyadic π-calculus. Composite channel names which are typed with
the type of the first (or last) element in a composite channel is also suggested, but
the idea is not pursued.

25

Bundgaard, Hildebrandt, and Godskesen

Linear types have been studied in great detail in the π-calculus [17,16] by
Kobayashi et al. Recently Berger, Honda, and Yoshida [1,2] have investigated the
connection between sequential functional computation and typed π-calculus. For
a higher-order π-calculus Yoshida and Hennessy [27,26] have examined a type sys-
tem which captures the effect of mobile processes by typing each process with an
interface which describes the resources which the process can access.

A first version of the type system for linear and non-linear resources was proposed
in [12] for the calculus of Mobile Resources [14], the predecessor of Homer, but the
theory was never developed. Homer was originally presented in [15], together with
an adaptation of Howe’s method to prove that late contextual bisimulation is a
sound characterisation of barbed bisimulation congruence. In [13] the results were
extended to prove that input-early strong bisimulation congruence is both a sound
and complete characterisation of barbed bisimulation congruence. Homer has also
been examined in the setting of bigraphs [5] and its expressivity have been studied
in an encoding of the π-calculus [6].

2 Homer

In this section we present the syntax of Homer. The only difference from [13] is that
we have extended the syntax with replication.

We assume an infinite set of names N ranged over by m and n, and let ñ

range over finite sets of names. We let δ range over non-empty finite sequences of
names, referred to as paths and let δ denote co-paths. Paths and co-paths are used
to reference arbitrarily deeply nested resources. We let ϕ range over δ and δ and
define δ = δ. We assume an infinite set of process variables V ranged over by x and
y. The sets p of process expressions ranged over by p, a of abstractions ranged over
by a, and c of concretions ranged over by c are defined by the grammar:

p ::= 0 | x | ϕe | p ‖ p′ | (n)p | !p , e ::= a | b ,

a ::= (x)p , b ::= 〈p′ : ñ〉p , c ::= b | (n)c ,

where b ranges over unrestricted concretions. We let t, ranged over by t, denote
the set p ∪ a ∪ c. Whenever e denotes an abstraction we let e denote a concretion,
and vice versa. The process p′ in the concretion (referred to as the resource) is
annotated by a finite set of names. Intuitively, this set of names can be thought of
as the names allocated by the resource. The annotation is used to control dynamic
scope extension when a resource is moved. The annotation is needed because one
can define a context that tests if a name is free in a mobile resource. Without the
annotations any two processes that do not contain the same names during their
computation would be distinguishable (for a full description of this problem and its
solution see [13,15]). The type system presented in Sec. 4 guarantees that this set
contains all names appearing in the process p′.

The process constructors are the standard constructors from concurrent process
calculi: the inactive process, 0, process variables, x, action prefixing, ϕe, parallel
composition, ‖, restriction of the name n in p, (n)p, and replication of p, !p. Homer is
defined as a simple extension of the higher-order calculus Plain CHOCS [23] to allow

26

Bundgaard, Hildebrandt, and Godskesen

for active processes at named locations denoted by prefixes of the form n〈p′ : ñ〉p
and a corresponding prefix denoted by n(x)q for moving the process at the location
named n and substituting it in for the variable x in q. When the active process is
moved, the location disappears (as in Seal) and the residual process is activated. The
two prefixes complement the usual prefixes for passive process passing in CHOCS
denoted by n〈p′ : ñ〉p and n(x)q. By active and passive we mean that the process p′

in the prefix n〈p′ : ñ〉p may perform internal reactions as well as interactions with
processes outside the location, whereas the process p′ in n〈p′ : ñ〉p, as in CHOCS,
can neither react nor interact with other processes. Interactions with embedded
resources are obtained by the use of name paths, allowing a process to pass another
process to (or to move) an arbitrarily deeply nested active embedded resource. For
instance, we have the reductions (ignoring the type annotations)

n〈m(x)q〉 ‖ nm〈p〉p′ −→ n〈q[p/x]〉 ‖ p′ (1)

and
n〈m〈p〉p′〉 ‖ nm(x)q −→ n〈p′〉 ‖ q[p/x] , (2)

where nm is the name path consisting of the name n followed by the name m.
As usual, (x) bind the variable x and (n) bind the name n. We define the no-

tions of free and bound names (fn(t) and bn(t)) and variables of t (fv(t) and bv(t))
as standard with the sole exception that fn(〈p′ : ñ〉p) = ñ ∪ fn(p), ie. the annota-
tion determines the free names of a resource. We will call a process without free
variables closed, and let tc and pc denote the classes of closed terms and processes,
respectively. We will throughout the paper consider terms up to α-equivalence, and
we will write t/α and p/α for the set of α-equivalence classes of terms and processes,
respectively. We will also extend this notion to the sets of closed processes and
terms. We use standard shorthands and often elide 0 in a process, e.g. writing
〈p : ñ〉 instead of 〈p : ñ〉0. For a set of names ñ = {n1, . . . , nk} we will write (ñ)t for
(n1) · · · (nk)t. We will also write n for the singleton set {n} and when convenient
let δ and δ denote the set of names in the path. For any two sets s and s′ we will
write ss′ for the union of s and s′ under the assumption that s ∩ s′ = ∅.

We will say that a relation R on processes is a congruence if 0 R 0 and x R x,
and p R p′ and q R q′ implies p ‖ q R p′ ‖ q′, (n)p R (n)p′, ϕ(x)p R ϕ(x)p′, and
ϕ〈q : ñ〉p R ϕ〈q′ : ñ〉p′. We then define structural congruence ≡ as the least relation
on p/α that is a congruence and that satisfies the (usual) monoid rules for (‖,0)
and scope extension as for the π-calculus.

We define the application between an abstraction and a concretion as usual,
except that the substitution updates the type annotation in locations.

Definition 2.1 (application and substitution) For a concretion c = (m̃)〈p : ñ〉p′
and an abstraction a = (x)p′′, where m̃ ∩ fn(p′′) = ∅, we define their application by

c · a = (m̃)(p′ ‖ p′′[p:ñ/x]) and a · c = (m̃)(p′′[p:ñ/x] ‖ p′) ,

where the capture free substitution p′′[p:ñ/x] is defined inductively in the structure
of p′′ as usual, except that in the case for concretions, the annotation of the sub-
resource is updated, if the variable appears free in the sub-resource. That is, if

27

Bundgaard, Hildebrandt, and Godskesen

Table 1
Transition rules.

(prefix)
ϕe

ϕ−→ e
(nesting)

p
π−→ t

δ〈p : ñ〉p′ δ · π−→ δ〈t : ñ〉p′

(rest)
p

π−→ t

(n)p π−→ (n)t
, n 6∈ fn(π) (sync)

p
ϕ−→ e p′

ϕ−→ ē

p ‖ p′ τ−→ e · ē

(par)
p

π−→ t

p ‖ p′ π−→ t ‖ p′
(par’)

p′ π−→ t

p ‖ p′ π−→ p ‖ t

(repl1)
p

π−→ t

!p π−→ t ‖ !p
(repl2)

p
ϕ−→ a p

ϕ−→ c

!p τ−→ (a · c) ‖ !p

x ∈ fv(q) then (〈q : m̃′〉q′)[p:ñ/x] = 〈q[p:ñ/x] : m̃′ ∪ ñ〉q′[p:ñ/x]. If x 6∈ fv(q) then
(〈q : m̃′〉q′)[p:ñ/x] = 〈q : m̃′〉q′[p:ñ/x].

Note that the substitution discards the type when a variable is reached (see Ap-
pendix A for the full definition of application and substitution).

3 Transition semantics

In this section we provide Homer with a labelled transition semantics. As in the
previous section, the only difference from [13] is that we have extended the semantics
with rules for replication.

We let π range over the set Π of labels, defined as π ::= τ | ϕ (recall ϕ ::= δ | δ).
The set of free names in π, fn(π), is fn(δ) whenever π = δ or π = δ̄ and ∅ otherwise.
The rules in Table 1 then define a labelled transition system

(tc/α, −→ ⊆ pc/α ×Π× tc/α)

for α-equivalence classes of closed processes.
To allow for a more succinct presentation of the transitions of nested active

resources we close concretions and abstractions under process operators. Hence,
whenever c = (ñ)〈p1 : ñ1〉p and assuming ñ∩(fn(p′)∪n∪δ) = ∅ (using α-conversion
if needed) we let c ‖ p′ denote (ñ)〈p1 : ñ1〉(p ‖ p′), we let (n)c denote (nñ)〈p1 : ñ1〉p,
if n ∈ ñ1 and otherwise it denotes (ñ)〈p1 : ñ1〉(n)p, and we let δ〈c : ñ′〉p′ denote
(ñ)〈p1 : ñ1〉δ〈p : ñ′ñ〉p′. Similarly, whenever a = (x)p and assuming x 6∈ fv(p′)
(using α-conversion if needed) we let a ‖ p′ denote (x)(p ‖ p′), (n)a for (x)(n)p,
and we let δ〈a : ñ〉p′ denote (x)δ〈p : ñ〉p′. These shorthands are applied in the rules
(nesting), (rest), (par), (par ′) and (repl1).

The rules conservatively extend the rules for Plain CHOCS. Note that the rule
(sync) covers the two different kind of interactions: the active and passive resource
movement as described in the previous section, and that the rule (nesting) permits
arbitrarily deeply nested active resources to be moved, receive resources, and per-
form internal computation steps. To allow these three kinds of actions we use an

28

Bundgaard, Hildebrandt, and Godskesen

operation δ · () for extending location paths, defined by:

δ · τ = τ , δ · δ′ = δδ′ .

Note that the operation is not defined for δ since δ is directed “downward” and
thus not visible outside the resource. Since δ · τ = τ , the nesting rule implies that
δ〈p : ñ〉p′ τ−→ δ〈t : ñ〉p′, if p

τ−→ t.
As an example of using the rules (and shorthands for concretions and abstrac-

tions) the reduction (1) in the previous section can be derived from m(x)q m−→ (x)q,
so n〈m(x)q : ñ〉 nm−→ (x)n〈q : ñ〉. Combining with nm〈p : ñ′〉p′ nm−→ 〈p : ñ′〉p′ we ob-
tain

n〈m(x)q : ñ〉 ‖ nm〈p : ñ′〉p′ τ−→ (x)n〈q : ñ〉 · 〈p : ñ′〉p′ .

By Def. 2.1 we get (x)n〈q : ñ〉 · 〈p : ñ′〉p′ = n〈q[p:ñ′/x] : ñ ∪ ñ′〉 ‖ p′ (if x ∈ fv(q)).
Similarly for the reduction (2) we have that m〈p : ñ′〉p′ m−→ 〈p : ñ′〉p′, so

n〈m〈p : ñ′〉p′ : ñ′′〉 nm−→ 〈p : ñ′〉n〈p′ : ñ′′〉 .

Combining this transition with nm(x)q nm−→ (x)q we obtain

n〈m〈p : ñ′〉p′ : ñ′′〉 ‖ nm(x)q τ−→ 〈p : ñ′〉n〈p′ : ñ′′〉 · (x)q ,

which by Def. 2.1 is the process n〈p′ : ñ′′〉 ‖ q[p:ñ′/x].

4 Type system

We are now ready to present the extension of the type and effect system given for
Homer in [13] to allow a distinction between affine linear and non-linear resources.

We will assume a set S = {aff, un}, of affine and unrestricted (i.e. non-linear)
sorts, and let S range over sorts. Furthermore, we will assume the subtyping re-
lation ≤ on S such that un < aff, which corresponds with our intuition that an
unrestricted process can be used instead of an affine process. Or concretely, as ex-
emplified by the model of the e-cash system in Sec. 5 below, that software can be
embedded in, and used as, hardware, but not the other way around.

Process types consist of two parts written as S ñ. The first part, the sort
S, records if the process is affine linear or non-linear. The second part, ñ, was
introduced by the type system in [13] and can be regarded as an effect that captures
the names used or allocated by the process, as described in Sec. 2. The type system
guarantees that this set is a superset of the free names in the process. Besides
process types, we also define concretion and abstraction types. The concretion type
〈S〉S′ ñ′ types a concretion (m̃′)〈p : m̃〉p′ in which the transferred process p has sort
S and where the entire concretion has the sort S′ and effect ñ′. The abstraction type
S _ S′ ñ types an abstraction (x)p that itself has sort S′ and effect ñ and accepts
a process of sort S. We will only consider abstraction and concretion types where
S ≤ S′, and this is ensured by the typing rules.

29

Bundgaard, Hildebrandt, and Godskesen

Table 2
Typing address paths.

Γ, n : S ` n : S Ref S

Γ, n : S ` δ : S′′ Ref S′

Γ, n : S ` δn : S′′ Ref S
(S ≤ S′)

Γ ` δ : S Ref S′

Γ ` δ : S Ref S′

Definition 4.1 (types) We define three kinds of types, process types Tp, concre-
tion types Tc, and abstraction types Ta, by the following grammar

T ::= Tp | Tc | Ta

Tp ::= S ñ , Tc ::= 〈S〉Tp , Ta ::= S _ Tp

For n 6∈ ñ we write (S ñ)n for the process type S ñn and (〈S〉S′ ñ)n for the
concretion type 〈S〉S′ ñn. We write T ∪ ñ′′ for the (not necessarily disjoint) name
extension of the type T defined by

(S ñ) ∪ ñ′′ = S ñ ∪ ñ′′

(〈S〉Tp) ∪ ñ′′ = 〈S〉Tp ∪ ñ′′

(S _ Tp) ∪ ñ′′ = S _ Tp ∪ ñ′′ .

Type environments Γ assign sorts to names and variables.

Definition 4.2 (type environment) A type environment Γ is a partial function
Γ : N] V ⇀ S from names and variables to sorts. We will write domn(Γ) and
domv(Γ) for respectively names and variables in the domain of Γ, and let dom(Γ) =
domn(Γ) ∪ domv(Γ). If n 6∈ domn(Γ) we write Γ, n : S for the extension of Γ with
the mapping from n to S, and similarly for variables. We will let ∆ range over
environments with no variable mappings.

To present our typing rules we need to be able to combine two environments in a
way that, as usual for linear type systems, constrain the presence of linearly used
variables. Letting l range over both names and variables, we define the combination
Γ′′ of two type environments Γ and Γ′, denoted Γ¯Γ′ = Γ′′, by Γ∪Γ′ if {x | Γ(x) =
aff}∩{x′ | Γ′(x′) = aff} = ∅, and if l ∈ dom(Γ)∩dom(Γ′) implies Γ(l) = Γ′(l). The
requirements enforce that for Γ¯Γ′ = Γ′′, any name occurring in Γ′′ can either occur
in Γ, Γ′, or in both (if it has the same sort). The same is the case for unrestricted
variables, whereas the same affine linear variable cannot in occur in both Γ and Γ′.
This underlines, that our type system is concerned with linear use of processes and
not of names, as in [17].

We also need typing of address paths: Γ ` ϕ : S Ref S′, as defined by the rules
in Table 2. The type S Ref S′ is read as a reference via S to S′. The rules ensure
that the sorts of the names in an address path typed S Ref S′ form a non-strictly
descending chain, ensuring that an affine resource cannot be referenced inside an
unrestricted resource, and that the first name of the address path has sort S and
the last name of the path has sort S′. For instance, letting Γ = m : aff, n : un, we
can derive Γ ` mm : aff Ref aff and Γ ` mmn : aff Ref un, but we cannot derive
neither Γ ` nm : un Ref aff nor Γ ` mnm : aff Ref aff.

30

Bundgaard, Hildebrandt, and Godskesen

Table 3
Typing rules for affine linear and non-linear Homer

(variable)
Γ, x : S ` x : S ñ

(ñ ⊆ domn(Γ)) (inactive)
Γ ` 0 : un ñ

(ñ ⊆ domn(Γ))

(parallel)
Γ ` p : S ñ Γ′ ` p′ : S ñ′

Γ¯ Γ′ ` p ‖ p′ : S ñ ∪ ñ′
(rest)

Γ, n : S ` p : Tpn

Γ ` (n)p : Tp

(rest-conc)
Γ, n : S ` (m̃)〈p : m̃nñ〉p′ : Tcn

Γ ` (m̃n)〈p : m̃nñ〉p′ : Tc
(embed)

Γ ` p : un ñ

Γ ` p : aff ñ

(repl)
Γ ` p : Tp

Γ ` !p : Tp
(∀x ∈ fv(p). Γ(x) = un) (abs)

Γ, x : S′ ` p : S ñ

Γ ` (x)p : S′ _ S ñ
(S′ ≤ S)

(conc)
Γ ` p : S ñ Γ′ ` p′ : S′ ñ′

Γ¯ Γ′ ` 〈p : ñ〉p′ : 〈S〉S′ ñ ∪ ñ′
(S ≤ S′)

(pre-abs)
Γ ` a : S′ _ S ñ Γ ` ϕ : S′′ Ref S′

Γ ` ϕa : S ñ ∪ ϕ
(S′′ ≤ S)

(pre-conc)
Γ ` b : 〈S′〉S ñ Γ ` ϕ : S′′ Ref S′

Γ ` ϕb : S ñ ∪ ϕ
(S′′ ≤ S)

We define the typing of processes, abstractions, and concretions using the rules
in Table 3. The type system conservatively generalises the prior type (effect) system
for Homer [13], which we can obtain by removing the (embed) rule and taking S to be
a singleton set, making it possible to delete all references to sorts from abstraction
and concretion types, and completely remove side-conditions and environments.
We only explain some of the rules, the rest should be self-explanatory. The (conc)
rule allows us to type a basic concretion, if the extruded process has a sub-sort of
the residual process. We can type an abstraction with (abs), if we can type the
body of the abstraction under an extended environment, where x is given a sub-
sort of the sort of the abstraction. The rule (pre-abs) allows us to form a process
from an abstraction as long as the sort of the received process is the sort that the
abstraction expects from the address path. The rule (embed) corresponds to the
usual subsumption rule in type systems with subtyping, concretely it allows us to
treat unrestricted processes as affine processes. The side-condition in the rule (repl)
ensures us that all variables in Γ that occur free in p are unrestricted, however Γ
may contain affine variables which do not occur free in p.

The typing rules for processes employ the path types to make sure that the
resource provider and receiver agrees on what is being communicated, combining
ideas of reference types, which constrain the types of the referenced resources, and
types for process calculi, which constrain the types of objects being communicated
on channels. Thus for a typed address path Γ ` ϕ : S Ref S′ both the resource
provider and receiver agree on that the communicated process has sort S′ (this
constraint can be weakened by subsumption for the provider’s part, and narrowing
for the receiver’s part). The sort S of the outermost name of the address path in

31

Bundgaard, Hildebrandt, and Godskesen

the path type is used in the side-conditions of the rules (pre-conc) and (pre-abs) to
ensure that any process using a path has a super-sort of S, which means that affine
names can never occur in paths inside unrestricted resources. For instance, if n is
affine and m is unrestricted then in the process nm〈p : ñ′〉q : S ñ the resource p is
unrestricted, but the typing rules enforce that S = aff, meaning that the entire
process is typed as affine. This is a restricted use of linear resources, but it fits well
with the scenario of linear, mobile computing devices containing non-linear mobile
computations: A mobile computing device can never be contained in or manipulated
by a software process.

We have implemented a typing algorithm by eliminating the rule (embed) and
following the approach for linear type systems [25]. The typing algorithm requires
that we annotate name restriction with a sort, as we cannot infer the correct sort
from the restriction. See the full paper for this algorithm [7].

We can prove the standard properties about the type system: strengthening of
unused names and variables, invariance under structural congruence etc. Again, we
refer to the full paper for these results [7] and only present the main results here.
As expected in a type system with subtyping we have narrowing of variables.

Proposition 4.3 (narrowing of variables) If Γ, x : S ` t : T and S′ ≤ S then
Γ, x : S′ ` t : T .

Note that we in general cannot use narrowing (or widening) for names, as this
can make address paths ill-typed, i.e. the ordering can be destroyed, if we allow to
change the type of a name.

Lemma 4.4 (substitution lemma) Let ∆ ` p : S ñ be a closed process and let
Γ′, x : S ` t′ : T ′ be a term with ∆ ¯ Γ′ defined then ∆¯ Γ′ ` t′[p:ñ/x] : T ′′, where
T ′′ = T ′ ∪ ñ if x ∈ fv(t′) and T ′′ = T ′ otherwise.

Our type system ensures us that well-typed terms satisfies several properties, below
we state the main properties. The properties imply that the annotation of resources
contains the free names of the resource, that affine terms cannot be contained in
unrestricted terms, and that affine terms cannot be duplicated.

Lemma 4.5 (properties of well-typed terms) Writing n(T) for the names and
s(T) for the sort of the type T , defined as ñ and S, if T is of the form S ñ, S′ _ S ñ,
or 〈S′〉S ñ. If Γ ` t : T then

• fn(t) ⊆ n(T) ⊆ domn(Γ) and fv(t) ⊆ domv(Γ).
• If x : aff ∈ Γ then x occurs free at most once in t.
• If x : aff ∈ Γ and x ∈ fv(t) then s(T) = aff.
• If s(T) = un then for every sub-derivation Γ′ ` t′ : T ′ we have s(T ′) = un.

Theorem 4.6 (subject reduction, labelled transition relation) Suppose Γ `
p : S ñ and p

π−→ t then one of the following cases hold.

• π = τ , t = p′ and Γ ` p′ : S ñ.
• π = ϕ, t = a and Γ ` a : S′ _ S ñ and Γ ` ϕ : S′′ Ref S′ for some S′ and

S′′ ≤ S.
• π = ϕ, t = c and Γ ` c : 〈S′〉S ñ and Γ ` ϕ : S′′ Ref S′ for some S′ and S′′ ≤ S.

32

Bundgaard, Hildebrandt, and Godskesen

5 An e-cash Smart Card application

In this section we provide a simple model of an e-cash system that illustrates the
combination of linear and non-linear mobile resources, nested locations, and local
names. Consider first a process defined by

crypte,k = e(x)e〈k〈x : ∅〉 : {k}〉 .

The process is able to receive a resource on the name e, which is then placed inside
a location named k nested in a location named e. If k is cryptographic key, one can
think of the process as being able to perform a single encryption of a process (or
message) communicated on the public channel e. This can be utilised in a simple
e-cash system consisting of an ATM that is able to provide a coin c〈0 : ∅〉, if the
process in the location v can encrypt a nonce n with the private key k:

atm = (k)
(
v〈crypte,k : {e, k}〉 ‖ cashk

)

cashk = !(n)
(
ve〈n〈0 : ∅〉 : {n}〉vekn(x)c〈0 : ∅〉) .

In the control process cashk of the ATM a nonce process n〈0 : ∅〉 is sent to the
location e inside the process in the location v. Subsequently, a process is retrieved
from the sub location vekn. If this succeeds, it must be the case that the process
inside the location v has embedded the nonce in the location k, and the ATM then
emits a coin. Hence we get the following sequence of transitions

atm τ−→≡ (k)
(
(n′)(v〈e〈k〈n′〈0 : ∅〉 : {n′}〉 : {k, n′}〉 : {e, k, n′}〉 ‖
vekn′(x)c〈0 : ∅〉) ‖ cashk

)
τ−→≡ (k) (p ‖ cashk) ‖ c〈0 : ∅〉 ,

where p =def (n′) (v〈e〈k〈0 : {n′}〉 : {k, n′}〉 : {e, k, n′}〉) is a slot containing a ”used”
smart card, i.e. where the nonce has been removed.

The control process can potentially be executed any number of times. The
intended behaviour is however, that only one coin will ever be delivered, since the
method on the card can only encrypt once. Alas, if the process in the slot v can be
copied, the security is broken. A e-cash copying thief may be defined by

thief = v(x) (v〈x : ∅〉 ‖ v〈x : ∅〉) ,

which picks up the e-cash process by v(x) and creates two copies. Then (again
letting p =def (n′) (v〈e〈k〈0 : {n′}〉 : {k, n′}〉 : {e, k, n′}〉)) security will break down

atm ‖ thief τ−→≡ (k)
(
v〈crypte,k : {e, k}〉 ‖ v〈crypte,k : {e, k}〉 ‖ cashk

)
τ−→∗≡ (k) (p ‖ p ‖ cashk) ‖ c〈0 : ∅〉 ‖ c〈0 : ∅〉 .

The type system presented in the previous section allows us to type the location v

as affine linear. Thereby, we can model that the process in location v is intended

33

Bundgaard, Hildebrandt, and Godskesen

as being embedded in a non-copyable smart card (and also ensure that the entire
system cannot be copied either). First, we show that the system is well-typed.

Lemma 5.1 Let ∆ = e : un, c : aff, v : aff, then ∆ ` atm : aff {e, c, v}.
We then show, that we cannot type the system atm ‖ thief , if the slot v is linear,
as this makes it impossible to copy the content of the slot, i.e. the smart card.

Proposition 5.2 For any ∆, v : aff, ñ and sort S it is not possible to derive
∆, v : aff ` atm ‖ thief : S ñ.

Proof (Sketch) Assume that it is possible to derive ∆, v : aff ` atm ‖ thief :
S ñ, by inspecting the derivation, and without loss of generality, is must also be
possible to derive ∆, v : aff, x : aff ` v〈x : ∅〉 ‖ v〈x : ∅〉 : S ñ, but this contradicts
Lemma 4.5 (that x occurs free at most once). 2

Note that the encrypted nonce is unrestricted. The security would be broken, if
we repeatedly had used the same secret name n as challenge for the card, i.e. swap-
ping the local name (n) and the replication in the definition of the control process,
defining cashk as (n)!

(
ve〈n〈0 : ∅〉 : {n}〉vekn(x)c〈0 : ∅〉), A thief which interrupts

the ATM just after the name n has been send (and encrypted at the card) and
which copies the encrypted content of the card could be defined by

thief ′ = ve(x)(v〈e〈x : ∅〉 : {e}〉 ‖ ve(x′)v〈e〈x : ∅〉 : {e}〉) ,

where the right-hand side of the parallel composition receives and discards the
challenge message the second time it is send by the ATM, and provides a card with
the copied encrypted content. Letting

p =def !
(
ve〈n〈0 : ∅〉 : {n}〉vekn(x)c〈0 : ∅〉) ,

q =def v〈e〈k〈0 : {n}〉 : {k, n}〉 : {e, k, n}〉, and

q′ =def v〈e〈k〈n〈0 : ∅〉 : {n}〉 : {k, n}〉 : {e, k, n}〉

we have the following transitions

atm ‖ thief ′ τ−→∗≡ {k, n}(v〈0 : {e, k, n}〉 ‖ vekn(x)c〈0 : ∅〉 ‖ p ‖ q′ ‖ ve(x′)q′
)

τ−→∗≡ {k, n}(v〈0 : {e, k, n}〉 ‖ p ‖ q ‖ q
) ‖ c〈0 : ∅〉 ‖ c〈0 : ∅〉 .

This security threat would not show in a purely linear calculus. We leave for
future work to apply the bisimulation congruence presented in [7] to prove that the
typed atm is indeed secure in any context.

6 Conclusions and future work

We have successfully extended the prior type and effect system for Homer to pro-
vide the first process calculus combining affine linear and non-linear nested mobile
embedded processes with local names. By a concrete e-cash Smart Card system we

34

Bundgaard, Hildebrandt, and Godskesen

have exemplified that the calculus captures the difference between mobile comput-
ing hardware and embedded mobile software computations, which is crucial for the
security of pervasive and ubiquitous computing.

We believe that the type system presented for Homer in the present paper can be
adapted to other calculi combining mobile embedded resources with local names, as
for instance Mobile Ambients and the Seal calculus. We expect to investigate other
variations and applications of linear types and more expressive type systems for
Homer within the research projects for Mobile Security and Computer Supported
Mobile Adaptive Business Processes (CosmoBiz) at the IT-University of Copen-
hagen.

References

[1] Berger, M., K. Honda and N. Yoshida, Sequentiality and the π-calculus, in: S. Abramsky, editor,
Proceedings of the 5th International Conference on Typed Lambda Calculi and Applications (TLCA’01),
Lecture Notes in Computer Science 2044 (2001), pp. 29–45.

[2] Berger, M., K. Honda and N. Yoshida, Genericity and the π-calculus, Acta Informatica 42 (2005),
pp. 83–141.

[3] Bidinger, P. and J.-B. Stefani, The Kell calculus: Operational semantics and type system, in: E. Najm,
U. Nestmann and P. Stevens, editors, Proceedings of the 5th IFIP International Conference on Formal
Methods for Object-Based Distributed Systems (FMOODS’03), Lecture Notes in Computer Science
2884 (2003), pp. 109–123.

[4] Bugliesi, M., G. Castagna and S. Crafa, Access control for mobile agents: The calculus of boxed
ambients, ACM Transactions on Programming Languages and Systems (TOPLAS) 26 (2004), pp. 57–
124.

[5] Bundgaard, M. and T. Hildebrandt, Bigraphical semantics of higher-order mobile embedded resources
with local names, in: A. Rensink, R. Heckel and B. König, editors, Proceedings of the Graph
Transformation for Verification and Concurrency workshop (GT-VC’05), Electronic Notes in
Theoretical Computer Science 154 (2006), pp. 7–29.

[6] Bundgaard, M., T. Hildebrandt and J. C. Godskesen, A CPS encoding of name-passing in higher-order
mobile embedded resources, Theoretical Computer Science 356 (2006), pp. 422–439.

[7] Bundgaard, M., T. Hildebrandt and J. C. Godskesen, Typing linear and non-linear higher-order mobile
embedded resources with local names, Technical Report TR-2007-97, IT University of Copenhagen
(2007), available from http://www.itu.dk/~mikkelbu/typedHomer.pdf.

[8] Carbone, M., “Trust and Mobility,” Ph.D. thesis, BRICS (2005).

[9] Carbone, M. and S. Maffeis, On the expressive power of polyadic synchronisation in π-calculus, Nordic
Journal of Computing 10 (2003), pp. 70–98.

[10] Cardelli, L. and A. D. Gordon, Mobile ambients, Theoretical Computer Science 240 (2000), pp. 177–213.

[11] Castagna, G., J. Vitek and F. Z. Nardelli, The Seal calculus, Journal of Information and Computation
201 (2005), pp. 1–54.

[12] Godskesen, J. C. and T. Hildebrandt, Copyability types for mobile computing resources (2004),
presented at the International Workshop on Formal Methods and Security, Nanjing, China.

[13] Godskesen, J. C. and T. Hildebrandt, Extending Howe’s method to early bisimulations for typed mobile
embedded resources with local names, in: Proceedings of the 25th Conference on the Foundations of
Software Technology and Theoretical Computer Science (FSTTCS’05), Lecture Notes in Computer
Science 3821 (2005), pp. 140–151.

[14] Godskesen, J. C., T. Hildebrandt and V. Sassone, A calculus of mobile resources, in: L. Brim, P. Jancar,
M. Kret́ınský and A. Kucera, editors, Proceedings of the 13th International Conference on Concurrency
Theory (CONCUR’02), Lecture Notes in Computer Science 2421 (2002), pp. 272–287.

[15] Hildebrandt, T., J. C. Godskesen and M. Bundgaard, Bisimulation congruences for Homer — a calculus
of higher order mobile embedded resources, Technical Report TR-2004-52, IT University of Copenhagen
(2004).

35

Bundgaard, Hildebrandt, and Godskesen

[16] Kobayashi, N., Type systems for concurrent programs (2002), in Proceedings of UNU/IIST 10th
Anniversary Colloquium.

[17] Kobayashi, N., B. C. Pierce and D. N. Turner, Linearity and the pi-calculus, ACM Transactions on
Programming Languages and Systems (TOPLAS) 21 (1999), pp. 914–947.

[18] Levi, F. and D. Sangiorgi, Mobile safe ambients, ACM Transactions on Programming Languages and
Systems (TOPLAS) 25 (2003), pp. 1–69.

[19] Sangiorgi, D., “Expressing Mobility in Process Algebras: First-Order and Higher-Order Paradigms,”
Ph.D. thesis, Department of Computer Science, University of Edinburgh (1992).

[20] Schmitt, A. and J.-B. Stefani, The M-calculus: A higher-order distributed process calculus, in:
Proceedings of the 30th ACM SIGPLAN–SIGACT Symposium on Principles of Programming
Languages (POPL’03) (2003), pp. 50–61.

[21] Schmitt, A. and J.-B. Stefani, The Kell calculus: A family of higher-order distributed process calculi,
in: C. Priami and P. Quaglia, editors, Proceedings of the International Workshop on Global Computing
Workshop (GC’04), Lecture Notes in Computer Science 3267 (2004), pp. 146–178.

[22] Selinger, P. and B. Valiron, A lambda calculus for quantum computation with classical control, Journal
of Mathematical Structures in Computer Science 16 (2006), pp. 527–552.

[23] Thomsen, B., Plain CHOCS: A second generation calculus for higher order processes, Acta Informatica
30 (1993), pp. 1–59.

[24] Turner, D. N. and P. Wadler, Operational interpretations of linear logic, Theoretical Computer Science
227 (1999), pp. 231–248.

[25] Walker, D., Substructural type systems, in: B. C. Pierce, editor, Advanced Topics in Types and
Programming Languages, MIT Press, 2004 pp. 3–43.

[26] Yoshida, N., Channel dependent types for higher-order mobile processes (extended abstract), in:
N. D. Jones and X. Leroy, editors, Proceedings of the 31st ACM SIGPLAN–SIGACT Symposium
on Principles of Programming Languages (POPL’04) (2004), pp. 147–160.

[27] Yoshida, N. and M. Hennessy, Assigning types to processes, Journal of Information and Computation
174 (2004), pp. 143–179.

36

Bundgaard, Hildebrandt, and Godskesen

A Application and substitution

Definition A.1 (application and substitution) Given a concretion c = (m̃)〈p : ñ〉p′
and an abstraction a = (x)p′′ we define their application as follows whenever m̃ ∩
fn(p′′) = ∅

c · a = (m̃)(p′ ‖ p′′[p:ñ/x]) and a · c = (m̃)(p′′[p:ñ/x] ‖ p′)

where p′′[p:ñ/x] is defined inductively in the structure of p′′.

0[p:ñ/x] = 0

x[p:ñ/x] = p

x′[p:ñ/x] = x′ if x 6= x′

(q ‖ q′)[p:ñ/x] = q[p:ñ/x] ‖ q′[p:ñ/x]

((n)q)[p:ñ/x] = (n)(q[p:ñ/x]) if n 6∈ ñ

(!q)[p:ñ/x] = !(q[p:ñ/x])

(ϕe)[p:ñ/x] = ϕe[p:ñ/x]

(〈q : m̃′〉q′)[p:ñ/x] = 〈q[p:ñ/x] : m̃′ ∪ ñ〉q′[p:ñ/x] if x ∈ fv(q)

(〈q : m̃′〉q′)[p:ñ/x] = 〈q : m̃′〉q′[p:ñ/x] if x 6∈ fv(q)

((x′)q)[p:ñ/x] = (x′)(q[p:ñ/x]) if x 6= x′

B Results

We will write ϕi for the i’th element of the path ϕ, and length(ϕ) for the length of
the path ϕ.

Proposition B.1 domn(Γ) ⊇ ϕ and ∀i, j with 1 ≤ i ≤ j ≤ length(ϕ) we have
Γ(ϕj) ≤ Γ(ϕi) and Γ(ϕ1) = S and Γ(ϕlength(ϕ)) = S′ iff Γ ` ϕ : S Ref S′.

We combine both weakening propositions in one, and let l range over names and
variables.

Proposition B.2 (weakening) If Γ ` t : T and l 6∈ dom(Γ) then Γ, l : S ` t : T .

Proposition B.3 (strengthening, names) Assume n 6∈ fn(t) and Γ, n : S ` t :
T then Γ ` t : T \ n.

Proposition B.4 (strengthening, variables) Assume x 6∈ fv(t) and Γ, x : S `
t : T then Γ ` t : T .

Proposition B.5 If Γ ` t : T and n : S′ ∈ Γ then Γ ` t : T ∪ n.

Proposition B.6 (structural congruence and typing) If f ≡ f ′ then Γ ` t :
T iff Γ ` f ′ : T .

Proposition B.7 (well-typed application) If Γ ` a : S′′ _ S′ ñ′′ is an closed
abstraction and Γ′ ` c : 〈S′′〉S′ ñ′ is a closed concretion with c · a and Γ¯Γ′ defined
then Γ¯ Γ′ ` c · a : S′ ñ′′ ∪ ñ′ is a closed process.

37

State-oriented noninterference for CCS

Ilaria Castellani1 ,2

INRIA Sophia Antipolis
2004 route des Lucioles, BP 93,

06902 Sophia Antipolis Cedex, France

Abstract

We address the question of typing noninterference (NI) in the calculus CCS, in such a way that Milner’s
translation into CCS of a standard parallel imperative language preserves both an existing NI property and
the associated type system. Recently, Focardi, Rossi and Sabelfeld have shown that a variant of Milner’s
translation, restricted to the sequential fragment of the language, maps a time-sensitive NI property to that
of Persistent Bisimulation-based Non Deducibility on Compositions (PBNDC) on CCS. However, since CCS
was not equipped with a type system, the question of whether the translation preserves types could not be
addressed. We extend Focardi, Rossi and Sabelfeld’s result by showing that a slightly different variant of
Milner’s translation preserves a time-insensitive NI property on the full parallel language, by mapping it
again to PBNDC. As a by-product, we formalise a folklore result, namely that Milner’s translation preserves
a behavioural equivalence on programs. We present a simple type system ensuring PBNDC on CCS, inspired
from existing type systems for the π-calculus. Unfortunately, this type system as it stands is too restrictive
to grant the expected type preservation result. We suggest a solution to overcome this problem.

Keywords: Noninterference, type systems, parallel imperative languages, process calculi, bisimulation.

1 Introduction

The issue of secure information flow has attracted a great deal of interest in re-
cent years, spurred by the spreading of mobile devices and nomadic computation.
The question has been studied in some depth both for programming languages
(see [26] for a review) and for process calculi [24,8,13,21,11,14,12,5,17,10]. We shall
speak of “language-based security” when referring to programming languages, and
of “process-based security” when referring to process calculi.

The language-based approach is concerned with secret data not being leaked by
programs, that is, with the security property of confidentiality. This property is
usually formalized via the notion of noninterference (NI), stating that secret inputs
of programs should not influence their public outputs, since this could allow - at
least in principle - a public user to reconstruct secret information.

The process-based approach, on the other hand, is concerned with secret actions
of processes not being publicly observable. Although bearing a clear analogy with

1 Work partially supported by the ANR SETI-06-010 grant.
2 Email: Ilaria.Castellani@sophia.inria.fr

Castellani

the language-based approach - security levels are assigned in both cases to informa-
tion carriers, respectively variables and channels - the process-based approach does
not rely on quite the same simple intuition. Indeed, there are several choices as to
what an observer can gather by communicating with a process. This is reflected
in the variety of NI properties proposed for process calculi, mostly based on trace
equivalence, testing or bisimulation (cf [8] for a review). In general, these properties
do not clearly distinguish between the flow of data and the flow of control, which
are closely intertwined in process calculi. Let us consider some examples.

In the calculus CCS with value passing [18], an input process a(x). P receives a
value v on channel a and then becomes P{v/x}. Symmetrically, an output process
a〈e〉. P emits the value of expression e on channel a and then becomes P . Then
a typical insecure data flow is the following, where subscripts indicate the security
level of channels (h meaning “high” or “secret”, and ` meaning “low” or “public”):

geth(x). put`〈x〉
Here a value received on a high channel is retransmitted on a low channel. Since
the value for x may be obtained from some high external source, this process is
considered insecure. However, there are other cases where low output actions carry
no data, or carry data that do not originate from a high source, as in:

geth(x). a` ch. put`〈v〉 geth(x). put`〈v〉
where a`, ch are channels without parameters and v is a constant value. Although
these processes do not directly transfer data from high to low level, they can be
used to implement indirect insecure flows, as in the following process (where x is a
boolean and actions on channels ch and dh are restricted and thus not observable):

P = ((geth(x). if x then ch else dh) | (ch. put`〈0〉 + dh. put`〈1〉)) \ {ch, dh}
The above examples suggest a simple criterion for enforcing noninterference on CCS,
namely that high actions should not be followed by low actions. Admittedly, this
requirement is very strong. However, it may serve, and indeed has been used, as a
basis for defining security type systems for process calculi.

In the language-based approach, theoretical results have often lead to the design
of tools for verifying security properties and to the development of secure imple-
mentations. Most of the languages examined so far have been equipped with a type
system or some other tool to enforce the desired security property [19,20,23,22].

By contrast, the process-based approach has remained at a more theoretical level.
Type systems for variants of the π-calculus, which combine the control of security
with other correctness concerns, have been proposed by Hennessy et al. in [11,12]
and by Honda et al. in [13,14]. A purely security type system for the π-calculus was
presented by Pottier in [21]. More recently, different security type systems for the
π-calculus were studied by Crafa and Rossi [10] and by Kobayashi [17] (this last
work also provides a type inference algorithm). Other static verification methods
have been proposed for a variant of CCS in [5].

We address the question of unifying the language-based and process-based ap-
proaches, by relating both their security notions and the associated type systems.
A first step in this direction was taken by Honda, Vasconcelos and Yoshida in [13],
where a parallel imperative language was embedded into a typed π-calculus. This
work was pursued by Honda and Yoshida in [14], where more powerful languages,

39

Castellani

both imperative and functional, were considered. In [9], Focardi, Rossi and Sabelfeld
showed that a variant of Milner’s translation of a sequential imperative language
into CCS preserves a time-sensitive NI property, by mapping it to the property of
Persistent Bisimulation-based Non Deducibility on Compositions (PBNDC), intro-
duced by Focardi and Rossi in [7]. However, since CCS was not equipped with a
security type system, the question of type preservation could not be addressed.

Taking [9] as our starting point, we extend its result by showing that a new
variant of Milner’s translation preserves a time-insensitive NI property on a parallel
imperative language, mapping it again to PBNDC. As a by-product, we show that
the translation preserves a behavioural equivalence on programs. We also propose a
type system for ensuring PBNDC, inspired by the type systems of [21,11,12] for the
π-calculus. Unfortunately, this type system is too restrictive as it stands to reflect
any of the known type systems for the source language. However, it can be used as
a basis to derive a suitable type system, which is briefly sketched here.

The rest of the paper is organised as follows. In Section 2 we recall the definitions
of BNDC and PBNDC for CCS and we present a type system ensuring the latter.
In Section 3 we introduce the parallel imperative language and the time-insensitive
NI property for it; we then propose an adaptation of Milner’s translation of this
language into CCS, and show that it preserves our NI property. We conclude with
a discussion about type preservation. Proofs are omitted and may be found in [6].

2 A simple security type system for CCS

In this section we present a security type system for CCS, inspired by those proposed
for the π-calculus by Pottier [21] and by Hennessy and Riely [11,12]. We prove
that this type system ensures the property of Persistent Bisimulation-based Non
Deducibility on Compositions (PBNDC), introduced by Focardi and Rossi in [7].

2.1 The process calculus CCS

Our chosen process calculus is CCS with value passing and guarded sums. We
start by recalling the main definitions. We assume a countable set of channels or
names N , ranged over by a, b, c, with the usual notational conventions for input
and output. Similarly, let V ar be a countable set of variables, disjoint from N and
ranged over by x, y, z, and V al be the set of data values, ranged over by v, v′. We
define Exp, ranged over by e, e′, to be the set of boolean and arithmetic expressions
built from values and variables using the standard total operations. Finally, we let
val : Exp → V al be the evaluation function for expressions, satisfying val(v) = v

for any value v. We will use the notation ~x (resp. ~v or ~e) to denote a sequence
〈x1, . . . , xn〉 (resp. a sequence 〈v1, . . . , vn〉 or 〈e1, . . . , en〉).

The syntax of process prefixes, ranged over by π, π′, is given by:

π ::= a(x) | a〈e〉 | a | a

Simple prefixes of the form a and a will be used in examples but omitted from our
technical treatment, since they are a simpler case of a(x) and a〈e〉.

To define recursive processes, we assume a countable set I = {A,B, . . .} of
parametric process identifiers, each of which is supposed to have a fixed arity. We

40

Castellani

then define the set of parametric terms, ranged over by T, T ′, as follows:

T ::= A | (rec A(~x) . P)

where P is a CCS process, as defined next.
A term (recA(~x) . P) is supposed to satisfy some standard requirements: (1) all

variables in ~x are distinct; (2) the length of ~x is equal to the arity of A; (3) all free
variables of P belong to ~x; (4) no free process identifier other than A occurs in P ;
(5) recursion is guarded: all occurrences of A in P appear under a prefix.

The set Pr of processes, ranged over by P, Q,R, is given by the syntax:

P,Q ::=
∑

i∈I πi.Pi | (P | Q) | (νa) P | T (~e)

where I is an indexing set. We use 0 as an abbreviation for the empty sum∑
i∈∅ πi.Pi. Also, we abbreviate a unary sum

∑
i∈{1} πi.Pi to π1.P1 and a binary

sum
∑

i∈{1,2} πi.Pi to (π1.P1 + π2.P2). In a process A(~e) or (rec A(~x) . P)(~e), the
length of ~e is assumed to be equal to the arity of A. Finally, if ~a = 〈a1, . . . , an〉,
with ai 6= aj for i 6= j, the term (νa1) · · · (νan) P is abbreviated to (ν~a) P . If
K = {a1, . . . , an}, we sometimes render (ν~a) P simply as (νK) P , or use the origi-
nal CCS notation P \K, especially in examples.

The set of free variables (resp. free process identifiers) of process P will be
denoted by fv (P) (resp. fid (P)). We use P{v/x} for the substitution of the variable
x by the value v in P . Also, if ~x = 〈x1, . . . , xn〉 and ~v = 〈v1, . . . , vn〉, we denote by
P{~v/~x} the substitution of each variable xi by the value vi in P . Finally, P{T/A}
stands for the substitution of the parametric term T for the identifier A in P .

The semantics of processes is given by labelled transitions of the form P
α−→P ′.

Transitions are labelled by actions α, β, γ, which are elements of the set:

Act def= {av : a ∈ N , v ∈ V al} ∪ {āv : a ∈ N , v ∈ V al} ∪ {τ}
The subject of a prefix is defined by subj (a(x)) = subj (a〈e〉) = a, and the subject
of an action by subj (av) = subj (āv) = a and subj (τ) = τ . The complementation
operation is extended to input and output actions by letting av = āv and āv = av.

The operational rules for CCS processes are recalled in Figure 1. A nondeter-
ministic sum

∑
i∈I πi.Pi executes one summand πi.Pi, simultaneously discarding the

others. A summand a(x). Pi receives a value v on channel a and then replaces it
for x in Pi. A summand a〈e〉. Pi emits the value of expression e on channel a and
then becomes Pi. The parallel composition P | Q interleaves the executions of P

and Q, possibly synchronising them on complementary actions to yield a τ -action.
The restriction (νb)P behaves like P where actions on channel b are forbidden.

2.2 Security properties for CCS

We review two security properties for CCS: Bisimulation-based Non Deducibility
on Compositions (BNDC), introduced by Focardi and Gorrieri [8] and reformulated
by Focardi and Rossi in [7], and Persistent Bisimulation-based Non Deducibility on
Compositions (PBNDC), proposed in [7] as a strenghtening of BNDC, better suited
to deal with dynamic contexts.

41

Castellani

(SUM-OP1)
∑

i∈I πi.Pi
av−→Pi{v/x}, if πi = a(x) and v ∈ V al

(SUM-OP2)
∑

i∈I πi.Pi
av−→Pi , if πi = a〈e〉 and val(e) = v

(PAR-OP1)
P

α−→P ′

P | Q α−→P ′ | Q
(PAR-OP2)

Q
α−→Q′

P | Q α−→P | Q′

(PAR-OP3)
P

α−→P ′ Q
α−→Q′

P | Q τ−→P ′ | Q′
(RES-OP)

P
α−→P ′ b 6= subj (α)

(νb)P α−→ (νb)P ′

(REC-OP)
P{~v/~x}{ (rec A(~x) . P) /A } α−→P ′ ~v = val(~e)

(rec A(~x) . P)(~e) α−→P ′

Fig. 1. Operational Semantics of CCS Processes

We start by recalling the definition of weak bisimulation. We adopt the usual
notational conventions:

• For any α ∈ Act, let P
α=⇒P ′ def= P

τ−→ ∗ α−→ τ−→ ∗
P ′

• For any α ∈ Act, let P
α̂=⇒P ′ def=





P
α=⇒P ′ if α 6= τ

P
τ−→ ∗

P ′ if α = τ

Definition 2.1 [Weak Bisimulation] A symmetric relation S ⊆ (Pr×Pr) is a weak
bisimulation if P S Q implies, for any α ∈ Act:

If P
α−→P ′ then there exists Q′ such that Q

α̂=⇒Q′ and P ′ S Q′.

P and Q are weakly bisimilar, P ≈ Q, if P S Q for some weak bisimulation S.

To set up the scenario for BNDC, we need a few more definitions.

Definition 2.2 [High and low channels] The set N of channels is partitioned into
a subset of high (secret) channels H and a subset of low (public) channels L.

Input and output actions are then defined to be high or low according to the level
of their supporting channel. No security level is given to τ -actions.

Definition 2.3 [Syntactically high processes w.r.t. H]

The set of syntactically high processes with respect to H, denoted PrHsyn, is the set
of processes that contain only channels in H.

The property of Bisimulation-based Non Deducibility on Compositions (BNDC)
of [8], in its reformulation given by Focardi and Rossi [7], is now defined as follows:

42

Castellani

Definition 2.4 [BNDCH] Let P ∈ Pr and H ⊆ N be the set of high channels.
Then P is secure with respect to H, P ∈ BNDCH, if for every process Π ∈ PrHsyn ,
(νH)(P | Π) ≈ (νH)P .

When there is no ambiguity, we write simply BNDC instead of BNDCH. Let us
point out two typical sources of insecurity:

(i) Insecurity may appear when a high name is followed by a low name in P ,
because in this case the execution of (νH)P may block on the high name,
making the low name unreachable, while it is always possible to find a high
process Π that makes the low name reachable in (νH)(P | Π). Let for instance
P = ah. b`. Choosing Π = ah, one obtains (νH)(P | Π) 6≈ (νH)P .

(ii) Insecurity may also appear when a high name is in conflict with a low name,
as in P = ah + b`. Here again, taking Π = ah one gets (νH)(P | Π) 6≈ (νH)P ,
since the first process can do a silent move τ−→ leading to a state equivalent
to 0, which the second process cannot match. Note on the other hand that
Q = ah. b` + b` is secure, because in this case, the synchronisation on channel
ah in (νH)(Q | Π) may be simulated by inaction in (νH)Q.

In [7], Focardi and Rossi proposed a more robust property than BNDC, which they
called Persistent Bisimulation-based Non Deducibility on Compositions (PBNDC).

To define PBNDC, a more permissive notion of bisimulation is required, based

on a new transition relation
∼
α=⇒H , defined for any α ∈ Act by:

P
∼
α=⇒H P ′ def=





P
α̂=⇒P ′ or P

τ−→ ∗
P ′ if subj (α) ∈ H

P
α̂=⇒P ′ otherwise

Definition 2.5 [Weak bisimulation up-to-high]

A symmetric relation S ⊆ (Pr × Pr) is a weak bisimulation up to high if P S Q

implies, for any α ∈ Act:

If P
α−→P ′ then there exists Q′ such that Q

∼
α=⇒HQ′ and P ′ S Q′.

Two processes P, Q are weakly bisimilar up to high, written P ≈H Q, if P S Q for
some weak bisimulation up to high S.

Definition 2.6 [PBNDCH] Let P ∈ Pr. Then P is said to be persistently secure
with respect to H, P ∈ PBNDCH, if P ≈H (νH)P .

The transition relation
∼
α=⇒H is used in the definition of PBNDC to allow high

moves of P to be matched by (possibly empty) sequences of τ -moves of (νH)P .

It was shown in [7] that PBNDC is stronger than BNDC, and that requiring
PBNDC for P amounts to requiring BNDC for all reachable states of P . All the
examples considered above are treated in the same way by BNDC and PBNDC.
Examples of secure but not persistently secure processes may be found in [7] or [6].

43

Castellani

2.3 A security type system for PBNDC

In this section we present our security type system for CCS and we show that it
ensures the PBNDC property. This type system can be viewed as the reduction to
CCS of the security type systems proposed for the π-calculus by Pottier [21] and
by Hennessy et al. [11,12].

Security levels, ranged over by δ, θ, σ, are defined as usual to form a lattice
(T ,≤), where the order relation ≤ stands for “less secret than”. Here we assume
the lattice to be simply {`, h}, with ` ≤ h, to match the partition of the set of
channels into L and H.

A type environment Γ is a mapping from channels to security levels, together
with a partial mapping from process identifiers to security levels. This mapping is
extended to prefixes and visible actions by letting Γ(π) = Γ(subj (π)) and for any
α 6= τ , Γ(α) = Γ(subj (α)). Type judgements for processes have the form Γ `σ P .
Intuitively, Γ `σ P means that in the type environment Γ, σ is a lower bound on
the security level of channels occurring in P . The typing rules are as follows:

(Sum) (Par)

∀i ∈ I : Γ(πi) = σ Γ `σ Pi

Γ `σ
∑

i∈I πi.Pi

Γ `σ P Γ `σ Q

Γ `σ P | Q

(Res) (Sub)

Γ, b : θ `σ P

Γ `σ (νb)P

Γ `σ P σ′ ≤ σ

Γ `σ′ P

(Rec1) (Rec2)

Γ(A) = σ

Γ `σ A(~e)

Γ, A : σ `σ P

Γ `σ (rec A(~x) . P)(~e)

Let us briefly discuss rule (Sum), which is the less standard one. This rule imposes a
strong constraint on processes

∑
i∈I πi.Pi, namely that all prefixes πi have the same

security level σ and that the Pi have themselves type σ. In fact, since each judgement
Γ `σ Pi may have been derived using subtyping, this means that originally Γ `σi Pi

for some σi such that σ ≤ σi. Note that, as expected, ah. b` and ah + b` are not
typable. However, the secure process ah. b` + b` is not typable either. In [6] we
discuss a relaxation of Rule (Sum) which would allow this process to be typed.

We proceed now to establish the soundness of this type system for PBNDC. We
state here the most relevant results, referring the reader to [6] for more details.

Theorem 2.7 (Subject reduction)

For any P ∈ Pr, if Γ `σ P and P
α−→P ′ then Γ `σ P ′.

Lemma 2.8 (Confinement)

Let P ∈ Pr and Γ `σ P . If P
α−→P ′ and α 6= τ then Γ(α) ≥ σ.

The key for the soundness proof is the following property of typable programs:

44

Castellani

Lemma 2.9 (≈H – invariance under high actions)

Let P ∈ Pr, Γ `σ P and H = { a ∈ N : Γ(a) = h }. If P
α−→P ′ and Γ(α) = h then

P ≈H P ′.

Corollary 2.10 (Compositionality of ≈H for typable programs)

Let P, Q,R ∈ Pr and Γ be a type environment such that Γ `σ P , Γ `σ Q and
Γ `σ R .Then, if P ≈H Q, also P | R ≈H Q | R.

Note that ≈H is not preserved by parallel composition on arbitrary programs, as
shown by this example, where Pi ≈H Qi for i = 1, 2 but P1 | P2 6≈H Q1 | Q2:

P1 = ah Q1 = 0 P2 = Q2 = b` + ah

It is easy to see that P1 | P2 6≈H Q1 | Q2, since P1 | P2 can perform a τ -action
which Q1 | Q2 cannot match. Note that P2 is not typable. In fact P2 is insecure.
Indeed, the property of PBNDC itself is compositional, as shown in [7].

Using the above results, we may show that typability implies PBNDC:

Theorem 2.11 (Soundness)

If P ∈ Pr and Γ `σ P then P ≈H (νH)P , where H = { a ∈ N : Γ(a) = h }.

This concludes, for the time being, our discussion about security and types for CCS.

3 Translating parallel imperative programs into CCS

We focus here on the parallel imperative language studied by Smith and Volpano
in [30], which we call PARIMP. Several NI properties and related type systems
have been already proposed for this language [27,1,29,4], inspired by the pioneering
work of Volpano, Smith et al. [32,30,31]. There exists a well known translation of
PARIMP into CCS, presented by Milner in [18]. In [9], Focardi, Rossi and Sabelfeld
showed that a variant of this translation preserves – by mapping it to PBNDC –
a time-sensitive notion of NI for the sequential fragment of PARIMP. We shall be
concerned here with the full language PARIMP, and with a time-insensitive NI
property for this language. We will prove that this NI property is preserved by a
suitable variant of Milner’s translation. As a by-product, we will show that our
translation also preserves a behavioural equivalence on programs.

3.1 The imperative language PARIMP

In this section we recall the syntax and semantics of the language PARIMP, and we
define a time-insensitive NI property for it, inspired by that of [4].

We assume a countable set of variables ranged over by X, Y, Z, a set of values
ranged over by V, V ′, and a set of expressions ranged over by E,E′. Formally,
expressions are built using total functions F, G, . . . , which we assume to be in a 1
to 1 correspondence with the functions f, g, . . . used to build CCS expressions:

E ::= F (X1, . . . , Xn)

45

Castellani

The set C of programs or commands, ranged over by C, D, is defined by:

C, D ::= nil | X := E | C ; D | (if E then C else D) |
(while E do C) | (C ‖ D)

The operational semantics of the language is given in terms of transitions between
configurations 〈C, s〉 → 〈C ′, s′〉 where C, C ′ are programs and s, s′ are states or
memories, that is, mappings from a finite subset of variables to values. These map-
pings are extended in the obvious way to expressions, whose evaluation is assumed
to be terminating and atomic. We use the notation s[V/X] for memory update, 7→
for the reflexive closure of →, and →∗ for its reflexive and transitive closure. The
operational rules for configurations are given in Figure 2. The rules (ParL-Op2)

and (ParR-Op2) are introduced, as in [3], to allow every terminated configuration
to take the form 〈nil, s〉.

A configuration 〈C, s〉 is well-formed if fv (C) ⊆ dom(s). It is easy to see, by
inspection of the rules, that 〈C, s〉 → 〈C ′, s′〉 implies fv (C ′) ⊆ fv (C) and dom(s′) =
dom(s). Hence well-formedness is preserved by execution.

As for CCS, we assume variables to be partitioned into a set of low variables L

and a set of high variables H. In examples, we will use the subscripts L and H for
variables belonging to the sets L and H, respectively. We may now introduce the
notions of low-equality and low-bisimulation.

Definition 3.1 [L-Equality] Two memories s and t are L-equal, written s =L t, if
dom(s) = dom(t) and (X ∈ dom(s) ∩ L ⇒ s(X) = t(X)).

Definition 3.2 [L-Bisimulation]

A symmetric relation S ⊆ (C × C) is a L-bisimulation if C SD implies, for any pair
of states s and t such that s =L t and 〈C, s〉 and 〈D, t〉 are well-formed:

If 〈C, s〉 → 〈C ′, s′〉, then there exist D′, t′ such that

〈D, t〉 7→ 〈D′, t′〉 and s′ =L t′ and C ′ S D′.

Two programs C, D are L-bisimilar, C 'L D, if C S D for some L-bisimulation S.

Note that the simulating program is required to mimic each move of the first pro-
gram by either one or zero moves. This notion of low-bisimulation is inspired
from [4]. We could have chosen a weaker notion, where 7→ is replaced by →∗,
as proposed in [27]. However our choice allows for a more precise notion of security,
which respects “state-traces”, as illustrated by Example 3.4.

Definition 3.3 [L-Security] A program C is L-secure if C 'L C.

When L is clear, we shall speak simply of low-equality, low-bisimulation and security.

Example 3.4 The following program, where loop D
def= (while tt do D):

C = (if XH = 0 then loop (YL := 0 ; YL := 1) else loop (YL := 1 ; YL := 0))

is not L-secure since the branches of the conditional cannot simulate each other’s
moves in one or zero steps. However it would be secure according to the weaker
notion of L-bisimulation obtained by replacing 7→ with →∗ in Definition 3.2.

46

Castellani

(Assign-Op)
〈X := E, s〉 → 〈nil, s[s(E)/X]〉

(Seq-Op1)
〈C, s〉 → 〈C ′, s′〉

〈C;D, s〉 → 〈C ′; D, s′〉
(Seq-Op2)

〈nil; D, s〉 → 〈D, s〉

(Cond-Op1)
s(E) = tt

〈if E then C else D, s〉 → 〈C, s〉

(Cond-Op2)
s(E) 6= tt

〈if E then C else D, s〉 → 〈D, s〉

(While-Op1)
s(E) = tt

〈while E do C, s〉 → 〈C; while E do C, s〉

(While-Op2)
s(E) 6= tt

〈while E do C, s〉 → 〈nil, s〉

(ParL-Op1)
〈C, s〉 → 〈C ′, s′〉

〈C ‖ D, s〉 → 〈C ′ ‖ D, s′〉
(ParL-Op2)

〈nil ‖ D, s〉 → 〈D, s〉

(ParR-Op1)
〈D, s〉 → 〈D′, s′〉

〈C ‖ D, s〉 → 〈C ‖ D′, s′〉
(ParR-Op2)

〈C ‖ nil, s〉 → 〈C, s〉

Fig. 2. Operational Semantics of PARIMP

3.2 Milner’s translation of PARIMP into CCS

We now review Milner’s translation of the language PARIMP into CCS [18]. This
translation makes use of two new constructs of CCS, renaming and conditional,
whose semantics we assume to be known (see [18], or the full paper [6]).

First, registers are introduced to model the store. For each program variable X,
the associated register RegX , parameterised by the value it contains, is defined by:

RegX(v) def= putX(x).RegX(x) + getX〈v〉.RegX(v)

The translation [[s]] of a state s is then a pool of registers, given by :

[[s]] = RegX1
(s(X1)) | · · · | RegXn

(s(Xn)) if dom(s) = {X1, . . . , Xn}
The translation [[E]] of an expression E = F (X1, . . . , Xn) is a process which fetches
the values of registers RegX1

. . . , RegXn
into the variables x1, . . . , xn and then trans-

mits over a special channel res the result of evaluating f(x1, . . . , xn), where f is
the CCS function corresponding to the PARIMP function F :

[[F (X1, . . . , Xn)]] = getX1(x1). · · · . getXn(xn). res〈f(x1, . . . , xn)〉.0

47

Castellani

The channel res is used by the auxiliary operator Into, defined by:

P Into (x) Q
def= (P | res(x). Q)\res

To model sequential composition, a special channel done is introduced, on which
processes signal their termination. Channel done is used by the auxiliary operators
Done,Before and Par, defined as follows, assuming d, d1, d2 to be new names:

Done def= done.0

C Before D
def= (C[d/done] | d.D)\d

C1 Par C2
def= (C1[d1/done] | C2[d2/done] | (d1. d2.Done + d2. d1.Done))\{d1, d2}

The translation of commands is then given by:

[[nil]] = Done [[X := E]] = [[E]] Into (x) (putX〈x〉.Done)

[[C ; D]] = [[C]] Before [[D]] [[(C1 ‖ C2)]] = [[C1]]Par [[C2]]

[[(if E then C1 else C2)]] = [[E]] Into (x) (if x then [[C1]] else [[C2]])

[[(while E do C)]] = W
def= [[E]] Into (x) (if x then [[C]] Before W else Done)

Finally, the translation of a well-formed configuration 〈C, s〉 is defined by:

[[〈C, s〉]] = ([[C]] | [[s]]) \Accs ∪ {done}
where Accs

def= { getX , putX | X ∈ dom(s) } is the access sort of state s.
As noted by Milner in [18], the above translation does not preserve the atomicity

of assignment statements. Consider the program C = (X := X + 1 ‖ X := X + 1).
The translation of C is:

[[C]] = ((getX(x). res〈x + 1〉 | res(y). putX〈y〉. d1) \res
| (getX(x). res〈x + 1〉 | res(y). putX〈y〉. d2) \res
| (d1. d2.Done + d2. d1.Done)) \ {d1, d2}

Here the second getX action may be executed before the first putX action. This
means that the same value v0 may be read for X in both assignments, and thus the
same value v1 = v0 + 1 may be assigned twice to X. Hence, while C only produces
the final value v2 = v0 + 2 for X, [[C]] may also produce the final value v1 = v0 + 1.

It is then easy to see that the translation does not preserve security. Let
CL = (XL := XL + 1 ‖ XL := XL + 1) and DL = (XL := XL + 1 ; XL := XL + 1).
Let now Ĉ = (if zH = 0 then CL else DL). Then Ĉ is secure, but [[Ĉ]] is not.

It may be shown with similar examples [6] that, in order for the translation to
preserve security, it should also forbid the overlapping of assignments to different
variables, as well as the overlapping of assignments with expression evaluation. To
prevent such overlappings, we introduce a global semaphore for the whole store:

Sem def= lock. unlock.Sem

The translation of the assignment command then becomes:

[[X := E]] = lock. [[E]] Into (x) (putX〈x〉. unlock.Done)

48

Castellani

The translation of conditionals and loops is adapted in a similar way, by replacing
[[E]] with [[E]]at, the atomic translation of expression E, defined as follows:

[[F (X1, . . . , Xn)]]at = lock. getseq ~X(~x). res〈f(~x)〉. unlock.0

where getseq ~X(~x) is an abbreviation for the sequence getX1(x1). · · · . getXn(xn).

The translation of configurations 〈C, s〉 is then modified accordingly:

[[〈C, s〉]] = ([[C]] | [[s]] | Sem) \Accs ∪ {done, lock, unlock}

3.3 The translation preserves security

In this section we show that the translation just described preserves security. This
result will be based, as usual, on an operational correspondence between programs
(or more exactly, configurations) in the source language and their images in the
target language. In order to relate the behaviour of a configuration 〈C, s〉 with that
of its image [[〈C, s〉]] = ([[C]] | [[s]] | Sem) \Accs ∪ {done, lock, unlock}, we must
provide a means to observe the changes performed by [[C]] on [[s]] in CCS 3 . To
this end we introduce, as in [25] and [9], special channels dedicated to the exchange
of data between processes and the environment, which we call in and out: the
environment uses channel inX to feed a new value into register RegX , and channel
outX to retrieve the current value of RegX .

The definition of registers is then adapted to account for the new actions. Each
RegX in our translation is replaced by the observable register ORegX defined by:

ORegX(v) def= putX(x). ORegX(x) + getX〈v〉. ORegX(v) +

lock. (inX(x). unlock. ORegX(x) + unlock. ORegX(v)) +

lock. (outX〈v〉. unlock. ORegX(v) + unlock. ORegX(v))

Here the locks around the inX(x) and outX〈v〉 prefixes are used to prevent the
environment from accessing the register while this is being used by some process.
Note that after committing to communicate with the environment by means of a
lock action, an observable register can always withdraw its commitment by doing
an unlock action, and get back to its initial state.

Notation: Let Env be the set {inX , outX | X ∈ Var}. We define then the set of
environmental actions to be ActEnv

def= {α ∈ Act | subj (α) ∈ Env}.
As in [9], we define now labelled transitions inXv−−−→ and outXv−−−→ for configurations 4 :

(In-Op)
X ∈ dom(s)

〈C, s〉 inXv−−−→ 〈C, s[v/X]〉
(Out-Op)

s(X) = v

〈C, s〉 outXv−−−→ 〈C, s〉
We also extend τ -transitions to configurations by letting:

〈C, s〉 τ−→〈C ′, s′〉 ⇔def 〈C, s〉 → 〈C ′, s′〉
We may now define weak labelled transitions 〈C, s〉 α=⇒〈C ′, s′〉 on configurations,
where α ∈ ActEnv ∪ {τ}, exactly in the same way as for CCS processes.

3 Note that, as it stands, the translation maps any configuration 〈C, s〉 to an unobservable CCS process.
4 From now on we use v, v′ also for PARIMP values, assuming them to coincide with CCS values.

49

Castellani

The operational correspondence between well-formed configurations 〈C, s〉 and
their images in CCS is then given by the following two Lemmas:

Lemma 3.5 (Program transitions are preserved by the translation)

Let 〈C, s〉 be a well-formed configuration and α ∈ ActEnv. Then:

(i) If 〈C, s〉 α−→〈C ′, s′〉, then there exists P such that [[〈C, s〉]] α=⇒P = [[〈C ′, s′〉]]
(ii) If 〈C, s〉 τ−→〈C ′, s′〉, then there exists P such that [[〈C, s〉]] τ=⇒P ≈ [[〈C ′, s′〉]]
Lemma 3.6 (Process transitions are reflected by the translation)

Let 〈C, s〉 be a well-formed configuration and α ∈ ActEnv. Then:

(i) If [[〈C, s〉]] α=⇒P , then there exist C ′, s′ such that 〈C, s〉 α=⇒〈C ′, s′〉 and
P ≈ [[〈C ′, s′〉]].

(ii) If [[〈C, s〉]] τ=⇒P , then either [[〈C, s〉]] ≈ P or there exist C ′, s′ such that
〈C, s〉 τ=⇒〈C ′, s′〉 and P ≈ [[〈C ′, s′〉]].

Suppose that channels getX and putX have the same security level as variable X,
that channels lock, unlock, res and done have level h, and that renaming preserves
security levels. We may then show that the translation preserves security.

Theorem 3.7 (Security is preserved by the translation)

If C is a L-secure program, then for any state s such that 〈C, s〉 is well-formed,
[[〈C, s〉]] satisfies PBNDCH, where H def= {getX , putX , inX , outX | X ∈ H} ∪
{ lock, unlock, res, done }.
As a by-product, we show that the translation preserves the behavioural equivalence
which is obtained from low bisimilarity by assuming all program variables to be low.
If H = ∅, it is easy to see that L-bisimilarity reduces to the following:

Definition 3.8 [Behavioural equivalence on programs]

A symmetric relation S ⊆ (C × C) is a program bisimulation if C SD implies, for
any state s such that 〈C, s〉 and 〈D, s〉 are well-formed:

If 〈C, s〉 → 〈C ′, s′〉, then there exists D′ such that 〈D, s〉 7→ 〈D′, s′〉 and C ′ S D′.

Two programs C and D are behaviourally equivalent, written C ' D, if C S D for
some program bisimulation S.

Theorem 3.9 (Behavioural equivalence is preserved by the translation)

If C ' D, then for any s such that 〈C, s〉 is well-formed, [[〈C, s〉]] ≈ [[〈D, s〉]].
To sum up, our translation preserves two semantic notions: behavioural equivalence
and security.

3.4 The translation does not preserve security types

In this section, we show that the type system presented in Section 2 is not reflected
by our translation, and we suggest a solution to overcome this problem.

Consider the program C = (XH := XH + 1 ; YL := YL + 1), which is typable in
the type systems of [30,27,29,4]. This program is translated to the process [[C]]:

50

Castellani

(νd) (lock. (ν res1) (getXH
(x). res1〈x + 1〉 | res1(z1). putXH

〈z1〉. unlock. d) |
d. lock. (ν res2) (getYL

(y). res2〈y + 1〉 | res2(z2). putYL
〈z2〉. unlock. done))

Now, it is easy to see that there is no assignment of security levels for the channels
lock, unlock and d which would allow [[C]] to be typed. Note that giving all these
channels level h, as we did in the previous section, would not be appropriate here:
if d and lock had level h, then the second component of [[C]] would not be typable.

A possible solution to this problem is to relax the type system by treating more
liberally actions like lock, unlock and d (and hence done), which carry no values
and are restricted. The idea, borrowed from [16,14,15,33,17], is that these actions are
data flow irrelevant insofar as they are guaranteed to occur, since in this case their
occurrence does not bring any information. The typing rule (Sum) may then be
made less restrictive for these actions, while keeping their security level to h.

Note indeed that, as a consequence of Lemma 3.6, actions lock and unlock
are eventually enabled from any state of a process [[〈C, s〉]]. The situation is not as
simple as concerns action done, as its occurrence may be prevented by divergence or
deadlock. Note however that deadlock cannot arise in a process [[〈C, s〉]], because the
source configuration 〈C, s〉 can only contain livelocks, due to busy waiting and thus
to while loops. By imposing restrictions on the use of loops in programs (similar to
those of [30]), one may then enforce the occurrence of done in their images.

Acknowledgments

I would like to thank Maria-Grazia Vigliotti for her contribution at an early stage
of this work, Frédéric Boussinot for helpful remarks, and the anonymous referees
for useful feedback on the submitted version.

References

[1] Johan Agat. Transforming out timing leaks. Proceedings of POPL ’00, ACM Press, pages 40–53, 2000.

[2] A. Almeida Matos, G. Boudol and I. Castellani. Typing noninterference for reactive programs. Journal
of Logic and Algebraic Programming 72: 124-156, 2007.

[3] G. Barthe and L. Prensa Nieto. Formally verifying information flow type systems for concurrent and
thread systems. In Proceedings of FMSE’04, 2004.

[4] G. Boudol and I. Castellani. Noninterference for Concurrent Programs and Thread Systems. Theoretical
Computer Science 281(1): 109-130, 2002.

[5] A. Bossi, R. Focardi, C. Piazza and S. Rossi. Verifying persistent security properties. Computer
Languages, Systems and Structures 30(3-4): 231-258, 2004.

[6] I. Castellani. State-oriented noninterference for CCS (complete version). INRIA RR, to appear.

[7] R. Focardi and S. Rossi. Information flow security in dynamic contexts. In Proceedings of the 15th
IEEE Computer Security Foundations Workshop, 2002.

[8] R. Focardi and R. Gorrieri. Classification of Security Properties (Part I: Information Flow). In
Foundations of Security Analysis and Design - Tutorial Lectures (R. Focardi and R. Gorrieri, Eds.),
volume 2171 of LNCS, Springer, 2001.

[9] R. Focardi, S. Rossi and A. Sabelfeld. Bridging Language-Based and Process Calculi Security. In
Proceedings of FoSSaCs’05, volume 3441 of LNCS, Springer-Verlag, 2005.

[10] S. Crafa and S. Rossi. A theory of noninterference for the π-calculus. In Proceedings of Symp. on
Trustworthy Global Computing TGC’05, volume 3705 of LNCS, Springer-Verlag, 2005.

51

Castellani

[11] M. Hennessy and J. Riely. Information flow vs resource access in the asynchronous π-calculus. ACM
TOPLAS 24(5): 566-591, 2002.

[12] M. Hennessy. The security π-calculus and noninterference. Journal of Logic and Algebraic
Programming 63(1): 3-34, 2004.

[13] K. Honda, V. Vasconcelos and N. Yoshida. Secure information flow as typed process behavior. In
Proceedings of ESOP’00, volume 1782 of LNCS, pages 180-199, Springer-Verlag, 2000.

[14] K. Honda and N. Yoshida. A uniform type structure for secure information flow. In Proceedings of
POPL’02, ACM Press, pages 81-92. January, 2002.

[15] N. Yoshida, K. Honda and M. Berger. Linearity and bisimulation. In Proceedings of FoSSaCs’02,
volume 2303 of LNCS, pages 417-433, Springer-Verlag, 2002.

[16] N. Kobayashi, B. Pierce and D. Turner. Linearity and the π-calculus. In Proceedings of POPL’96,
ACM Press, pages 358-371, 1996.

[17] N. Kobayashi. Type-based Information Flow Analysis for the π-Calculus. Acta Informatica 42(4-5):
291-347, 2005.

[18] R. Milner. Communication and Concurrency. Prentice-Hall International, 1989.

[19] A. Myers. JFlow: practical mostly-static information flow control. In Proceedings of POPL’99, ACM
Press, pages 228-241, 1999.

[20] A. Myers, L. Zheng, S. Zdancewic, S. Chong and N. Nystrom. Jif: Java information flow. Software
release, http://www.cs.cornell.edu/jif, 2001.

[21] F. Pottier. A Simple View of Type-Secure Information Flow in the π-Calculus. In Proceedings of the
15th IEEE Computer Security Foundations Workshop, pages 320–330, 2002.

[22] F. Pottier and V. Simonet. Information flow inference for ML. ACM TOPLAS 25(1): 117-158, 2003.

[23] V. Simonet. The FlowCaml system: documentation and user manual. INRIA RR n. 0282, 2003.

[24] P. Ryan and S. Schneider. Process algebra and noninterference. In Proceedings of the 12th IEEE
Computer Security Foundations Workshop, pages 214–227, 1999.

[25] H. Mantel and A. Sabelfeld. A unifying approach to the security of distributed and multi-threaded
programs. Journal of Computer Security 11(4): 615–676, 2003.

[26] A. Sabelfeld and A. C. Myers, Language-based information-flow security. IEEE Journal on Selected
Areas in Communications 211:5-19, 2003.

[27] A. Sabelfeld and D. Sands. Probabilistic Noninterference for Multi-threaded Programs. In Proceedings
of the 13th IEEE Computer Security Foundations Workshop, pages 200-214, 2000.

[28] D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes. Cambridge University
Press, 2001.

[29] G. Smith. A new type system for secure information flow. In Proceedings of the 14th IEEE Computer
Security Foundations Workshop, pages 115–125, 2001.

[30] G. Smith and D. Volpano. Secure information flow in a multi-threaded imperative language. Proceedings
of POPL ’98, ACM Press, pages 355–364, 1998.

[31] D. Volpano and G. Smith. Probabilistic Noninterference in a Concurrent Language. Journal of
Computer Security 7(2-3): 231–253, 1999.

[32] D. Volpano, G. Smith and C. Irvine. A Sound Type System for Secure Flow Analysis. Journal of
Computer Security 4(3):167–187, 1996.

[33] S. Zdancewic and A. Myers. Secure information flow via linear continuations. Higher Order and
Symbolic Computation 15(2-3):209-234, 2002.

52

A probabilistic scheduler for the analysis of
cryptographic protocols 1

Srečko Brlek∗, Sardaouna Hamadou∗∗, John Mullins∗,∗∗

∗ Lab. LaCIM, Dép. d’Informatique, Université du Québec à Montréal.
CP 8888 Succursale Centre-Ville, Montreal (Quebec), Canada, H3C 3P8.

∗∗ Lab. CRAC, Dép. de Génie Informatique, École Polytechnique de Montréal
P.O. Box 6079, Station Centre-ville, Montreal (Quebec), Canada, H3C 3A7.

Abstract

When modeling cryto-protocols by mean of process calculi which express both nondeterministic and prob-
abilistic behavior, it is customary to view the scheduler as an intruder. It has been established that in
this case the traditional scheduler need to be carefully calibrated in order to reflect more accurately the
intruder’s capabilities to control communication channels. We propose such a class of schedulers through
a semantic variant called PPCνσ , of the Probabilistic Poly-time Calculus (PPC) of Mitchell et al. [11] and
we illustrate the pertinence of our approach by an extensive study of the Dining Cryptographers (DCP) [8]
protocol. Along the lines, we define a new characterization of the Mitchell et al.’s observational equiva-
lence [11] more suited to take into account any observable trace instead of a single action as it is required
in the analysis of the DCP.

Keywords: Process algebra, observational equivalence, probabilistic scheduling, analysis of cryptographic
protocols

1 Introduction

Systems that combine both probabilies and nondeterminism are very convenient for
modelling probabilistic security protocols. In order to model such systems, some
efforts have been undertaken in extending (possibilistic) models based on process
algebras such as the π-calculus or CSP, by including probabilities. One distinguish
two classes of such models. On one hand, we have all purpose probabilistic models
adding probabilities to nondeterministic models [1,6,3]. On the other hand, we
have process algebraic frameworks that define probabilistic models to the purpose
of making them more suitable to applications in security protocols [11,4,10].

While it’s customary to use schedulers for resolving non-determinism in prob-
abilistic systems, scheduling process must be carefully design in order to reflect as

1 Research partially supported by NSERC grants (Canada)

S. Brlek & S. Hamadou & J. Mullins

accurately as possible the intruder’s capabilities to control the communication net-
work without controlling the internal reactions of the system. Indeed, consider the
protocol c(a).0|c(b).0 transmitting the messages a and b over c and the intruder
c(x).0 eavesdropping on this channel. As the protocol is purely non deterministic,
the probability that the intercepted message to be either a or b should be the same.
A scheduler that could fix an arbitrary probabilistic distribution to these two mes-
sages could also force the protocol to transmit either a or b. Such schedulers are
too stong and hence should not be admissible. However restricting the power of
schedulers must be carefully done as well, otherwise it could result in too weak ad-
versaries. For example, forcing schedulers to give priority to internal actions makes
internal actions completely invisible to attackers. Indeed, an intruder is then unable
to distinguish a proccess P from another process which can do some internal action
and then behaves like P . But now consider the following process:

P = νc′(c(x).c′(x).0|c′(1).0|c′(y).[y = 0]c(secret).0).

In this obviously unsecure protocol, an intruder could send 0 to P over c and so,
allow P to publish the secret. Such a flaw will never be detected in a semantics
giving priority to internal actions since in that case, P will never broadcast secret
on the public channel c.
Contribution. Our contribution is threefold. Firstly, we define a semantic vari-
ant of the Probabilistic Polynomial-time Process Calculus PPC [11] (Section 2),
called PPCνσ in order to cope with the problem of caracterizing the intruders’s
power. Contrarily to most of probabilistic models, our operational semantics does
not normalize probabilities. The reason is that normalizing has the effect to carry
off the control on its own actions to the intruder. Consider the process P =
c(m).Q1|c(m).Q2. Depending on whether P represents a protocol or an intruder,
the scheduling of a component is respectively equiprobable or arbitrarily chosen by
the intruder. A solution might be to discriminate semantically between a protocol
and an intruder but it rapidly appears quite intricate since synchronization actions
could commit both. We propose here a simpler solution to this problem. It consists
to equip the intruder with an attack strategy i.e., a selection process called exter-
nal scheduler (Section 2.3) allowing him to choose at each evaluation step the next
action to perform. This scheduling is carefully designed to reflect as accurately as
possible the intruder’s real capabilities,that is to control the communication network
without controlling internal reactions of the system under its stimuli.

Secondly, we reformulate (Section 3) the observational equivalence of [11] into a
more amenable form to take into account any observable trace instead of a single
step.

Finally, to illustrate the pertinence of our approach, we conclude the paper by
an extensive case study (Section 4): the analysis of the Chaum’s Dining Cryptogra-
phers protocol [8]. We give a probabilistic version of the possibilistic specification
of anonymity property due to Schneider and Sidiropoulos [12], and prove that re-
stricting too much the scheduler’s power may lead to very weak models that cannot
detect a flawed specification of the protocol.
Related work. The technical precursor of our framework is the process calculus
of Mitchell et al. [11]. Though that any of the models [1,6,3,11,4,10] or any similar

54

S. Brlek & S. Hamadou & J. Mullins

framework could have been an interesting starting point, the framework of Mitchell
et al. [11] appears appropriate for the following reasons. Although it is a formal
model, it is yet closed to computational setting of modern cryptography since it
works directly on the cryptographic level. Indeed it defines an extension of the
CCS process algebra with finite replication and probabilistic polynomial-time terms
denoting cryptographic primitives. It turns that these probabilistic polynomial
functions are useful to model the probabilistic behaviour of security systems. Unlike
formalisms as [6,4,10], scheduling is probabilistic, reflecting so in a better way the
ability of the attacker to control the communication network. Finally it also appears
as a natural formal framework to capture and reason about a variety of fundamental
cryptographic notions.

The problem of characterizing the schedulers’ power has been recently consid-
ered in [5,7,9]. In [5] the authors treated the problem of too powerful adversarial
scheduler in the context of systems modelled in a Probabilistic I/O Automata frame-
work. They resticted the scheduler by defining two levels of schedulers. A high-level
scheduler called adversarial scheduler is a component of the system and controls the
communication network, i.e. it schedules public channels. This component has lim-
ited knowledge of the behaviour of other components in the system: their internal
choices and secret information are hidden. On the other hand, a low-level scheduler
called tasks scheduler resolves the remaining non-determinism by a task schedule
sequence. These tasks are equivalence classes of actions that are independent of the
high-level scheduler choices. We believe that these tasks may correspond to our
”strategically equivalent actions”.

In Garcia et. al. [9] is addressed a dual problem to the one we have considered
here, namely the problem that arises when traditional schedulers are too power-
ful. In the context of security protocols modelled by probabilistic automata, they
defined a probabilistic scheduler that imposes locally a probability distribution on
the possible non-deterministic next transitions. Unlike our scheduler, it is history
dependent since it defines equiprobable paths and it is not stochastic, and hence
may halt the execution at any time. Roughly speaking, admissible schedulers are
defined w.r.t bisimulation equivalence: any observably trace equivalent paths are
equiprobably scheduled and lead to bisimilar states.

Another recent paper on the scheduling issue is presented in [7]. Unlike our
scheduler and the one of [9] which are defined on the semantic level, [7] proposes
a framework in which schedulers are defined and controlled on the syntactic level.
They make random choices in the protocol invisible to the adversary. Note that we
achieve the same goal thanks to the operational semantics Eval rule which reduces
unblocked processes and our strategically equivalent classes of actions. However
these papers ([5,7]) are too recent and a more investigation is needed in order to
determine how each approach may benefit from and to another.

Finally an alternate approach is proposed in [4,10]. Instead of scheduling a
single action (like ours) or a path (like the one of [9]), a process is scheduled. The
problem of discriminating protocol’s actions and the intruder’s ones, and privileging
or not internal actions is meaningless in these models because scheduling is implicitly
included in the specification. In other words, the analyzer is the one who determines
when the control passes from the protocol to the attacker. Let us explain this last

55

S. Brlek & S. Hamadou & J. Mullins

point. Consider the protocol P = ν(c)(c(1).|c(x).c′(0).) which, after an internal
communication, outputs 0 on the public channel c′. In the frameworks of [4,10], it
may be specified in two different manners

P1 = ν(c)(start().c(1).0|c(x).c′(0).0)

and
P2 = ν(c)(start().c(1).0|c(x).contr2Intr().getContr().c′(0).0)

depending on whether we want to make the internal action completely invisible
to the attacker or not. In that way the user has total freedom and can eliminate
undesirable schedulers at the specification level. The drawback is that the protocol
analyzer who has incomplete knowledge about the system may specify his intuition
of the protocol and get some properties that may not be satisfied by the actual
protocol.

2 The PPCνσ model

The process algebra PPCνσ extends semantically the Probabilistic Polynomial-time
Process Calculus PPC [11] to better take into account the analysis of probabilistic
security protocols.

2.1 Syntax of PPCνσ

Terms. The set of terms T of the process algebra PPCνσ consists of variables
V, numbers N, pairs and a specific term N standing for the security parameter.
Security parameter may be understood as cryptographic primitives key length and
may appear in the probabilistic polynomial functions defined below. Formally we
have

t ::= n (integer) | x (variable) | N (secur. param.) | (t, t) (pair)
For each term t, fv(t) is the set of variables in t. A message is a closed term (i.e.
not containing variables). The set of messages is denoted M.
Functions. The call of probabilistic as well as deterministic cryptographic primi-
tives, such as keys and nonces generation, encryption, decryption, etc., is modeled
by probabilistic polynomial functions 2 Λ : Mk →M satisfying

∀(m1, . . . ,mk) ∈Mk, ∀m ∈M, ∀λ ∈ Λ, ∃p ∈ [0, 1] such that
Prob[λ(m1, · · · ,mk) = m] = p.

We denote λ(m1, · · · ,mk) ↪→ x the assignment of the value λ(m1, · · · ,mk) to
the variable x and by λ(m1, · · · ,mk)

p
↪→ m if λ(m1, · · · ,mk) evaluates to m with

probability p. From Definition A.1 (see Appendix A), the set

Im(λ(m1, · · · ,mk)) = {m | ∃p ∈]0..1] λ(m1, · · · ,mk)
p

↪→ m}

of m s.t. λ(m1, · · · ,mk) evaluates to m with non-zero probability is finite.

2 See Appendix A for a formal definition of a probabilistic polynomial function

56

S. Brlek & S. Hamadou & J. Mullins

For instance, RSA encryption which takes as parameters, a message m to encrypt
and an encryption key formed of the pair (e, n), and returns the number me mod n,
is the function λRSA(m, e, n) returning c with probability 1 if c = me mod n, and
0 otherwise. Similarly, we can model the key guessing attack of a cryptosystem by
the product [rand(1k) ↪→ key][dec(c, key) ↪→ x] where 1k is the size of the key
randomly generated by the function rand, and the decryption function dec returns
m with probability 1 if c is the cryptogram of m encrypted by k and key = k. The
success of such an attack has probability p = 1

2|k| . These few examples illustrate the
expressive power offered by these functions. We limit ourselves to the probabilistic
polynomial ones in order to model all attacks realizable (in the model) in polynomial
time.
Processes. Let C be a countable set of public channels. We assume that each
channel is equipped with a bandwidth given by the polynomial function bw : C −→
N. We say that a message m belongs to the domain of a channel c, written m ∈
dom(c), if the message length |m| is less than or equal to the channel bandwidth,
i.e. m ∈ dom(c) ⇐⇒ |m| ≤ bw(c). Note that |(m,m′)| = |m|+ |m′|+ r where r is
the length of a fixed bits string that allowed us to concatenate and decompose two
terms without any ambiguity.
Processes in PPCνσ are built as follows :

P ::= 0 | c(x).P | c(m).P | P |P | (νc)P | [t = t]P |
| !q(N)P | [λ(t1, · · · , tn) ↪→ x]P

Given a process P , the set fv(P) of free variables, is the set of variables x in P which
are not in the scope of any prefix either input (of the form c(x)) or probabilistic
evaluation (of the form [λ(t1, · · · , tn) ↪→ x]). A process without free variables
is called closed and the set of closed processes is denoted by Proc. Hereafter, all
processes are considered closed.

The mechanisms for reading, emitting, parallel composition, restriction and mat-
ching are standard. The finite replication !q(N)P is the q(N)−fold parallel compo-
sition of P with itself, where q is a polynomial function. The novelty is the call and
the return of probabilistic polynomial functions

[λ(t1, · · · , tn) ↪→ x]P

This feature allows to model (probabilistic) polynomial cryptographic primitives as
well as the probabilistic character of a protocol. Actually, it is the main source of
probability in this model.

2.2 Operational semantics

The set of actions

Act = {c(m), c(m), c(m) · c(m), c(m) · c(m), τ | m ∈M and c ∈ C}
consists of the set of partial input and output actions, of the set of synchronization
actions on public channels, and of the internal action τ :

Partial = {c(m), c(m) | m ∈M and c ∈ C}
Actual = {c(m) · c(m), c(m) · c(m), τ | m ∈M and c ∈ C}

57

S. Brlek & S. Hamadou & J. Mullins

The set of observable actions is given by Vis = Act−{τ}. The operational semantics
of PPCνσ is a probabilistic transition system (E , T , E0) generated by the inference
rules given in Table 1 where E ⊆ Proc is the set of states, T ⊆ E × Act× [0, 1]× E
the set of transitions and E0 ∈ Proc the initial state. The notation P

α[p]−→P ′ stands
for (P, α, p, P ′) ∈ T . It is an extension of the CCS semantics, with a mechanism for
calling probabilistic polynomial functions. We sketch it briefly here.

To make sure that internal computations of functions do not interfere with com-
munication actions and in particular with those on public channels controlled by
the intruder, all exposed functions in a process (Eval rule) are simultaneously eval-
uated by the probabilistic polynomial function eval defined in Table 2 below. This
evaluation step allows to get what we call a blocked process that is, a process having
no more internal computations to perform. The set of blocked processes is denoted
by Blocked . The output mechanism allows a principal A to send a message on public
channels (Output rule). Dually, the input mechanism must be ready to receive any
message on a public channel (Input rule). The parallelism (Par. rules) operator
is defined as usual. It is worth noting that the semantics keep track of information
involved into an interaction (the message and the communication channel) (Syn.
rules), contrarily to most of process algebra semantics where this information is
lost as the only action resulting from such a communication is usually the invisible
action τ . The restriction operator ν is used to model private channels. The process
(νc)P behaves like P restricted to actions not on c unless a synchronization occurs
on c (i.e. actions of the form c(m) · c(m) or c(m) · c(m)). In this case, they are
observed as an invisible action τ (Rest. rules).

Note that transitions systems generated by the operational semantics (Table 1)
of PPCνσ processes are not purely probabilistic. Consider for example process
P = c1(a)|c2(b). Clearly the sum of probabilities of outgoing transitions of P is
equal to 2. It is due to the parallel composition which introduces nondeterminism.
In order to resolve this nondeterminism it is mandatory to schedule at each evalu-
ation step of the process, all available distinct actions. However, security protocols

Eval.
eval(P)

p
↪→P ′ P 6∈Blocked

P
τ [p]−→P ′

Output
m ∈ dom(c)

c(m).P
c(m)[1]−→ P

ParL.
P1

α[p]−→P ′1 (P1|P2)∈Blocked

P1|P2

α[p]−→P ′1|P2

SyncL.
P1

c(m)[p1]−→ P ′1 P2

c(m)[p2]−→ P ′2

P1|P2

c(m).c(m)[p1.p2]−→ P ′1|P ′2

RestCL.
P

c(m).c(m)[p]−→ P ′

(νc)P
τ [p]−→(νc)P ′

Input
m ∈ dom(c)

c(x).P
c(m)[1]−→ P [m/x]

ParR.
P2

α[p]−→P ′2 (P1|P2)∈Blocked

P1|P2

α[p]−→P1|P ′2

SyncR.
P1

c(m)[p1]−→ P ′1 P2

c(m)[p2]−→ P ′2

P1|P2

c(m).c(m)[p1.p2]−→ P ′1|P ′2

RestCR.
P

c(m).c(m)[p]−→ P ′

(νc)P
τ [p]−→(νc)P ′

Rest
P

α[p]−→P ′ α 6∈{c(m),c(m),c(m)·c(m),c(m)·c(m):m∈M} P∈Blocked

(νc)P
α[p]−→(νc)P ′

Table 1
Operational semantics of PPCνσ

58

S. Brlek & S. Hamadou & J. Mullins

Prob[eval(0) = 0] = 1

Prob[eval(c(x).P) = c(x).P] = 1 and Prob[eval(c(m).P) = c(m).P] = 1

Prob[eval((νc)P) = (νc)Q] = Prob[eval(P) = Q]{
Prob[eval([m = m′]P) = Q] = Prob[eval(P) = Q] if m = m′

Prob[eval([m = m′]P) = 0] = 1 else

Prob[eval(P |Q) = P ′|Q′] = Prob[eval(P) = P ′]× Prob[eval(Q) = Q′]
Prob[eval([λ(m1, · · · , mk) ↪→ x]P) = Q] =∑

m∈Im(λ(m1,··· ,mk)) Prob[λ(m1, · · · , mk) = m]× Prob[eval(P [m/x]) = Q]

Table 2
Reduction of unblocked processes

are assumed to be executed in hostile environments, that is, with external intruders
having full control of the communication network, and that may assign any prob-
abilistic distribution to the controlled channels, i.e. to the public actions. This is
modeled by putting public actions under control of an external scheduler. Since we
don’t want to define a particular attack strategy, the scheduling is not included in
the semantics of processes, but rather in the intruder’s definition: the intruder is
then formed by the pair (Π, S) of process Π and scheduler S. One may view the
hostile environment as Π interacting with the protocol, and S as its attack strategy.

2.3 External Scheduler

Given a protocol P attacked by the intruder (Π, S), evaluation of P |Π along the
strategy S is a four step process consisting of:

Reduction: evaluation of all exposed probabilistic functions in P |Π.

Localization: indexing of executable actions along eval(P |Π) to discriminate whether
an executable action interferes or not with an intruder’s action.

Selection: scheduling 3 S among available actions.

Execution: the action chosen by S is executed and process is repeated until there
is no more executable action.

Localization. Scheduling should discriminate whether the intruder is attached to an
action or not. Since a system P attacked by the intruder Π is simply modeled by
P |Π, actions are indexed by the positions of the components they belong to, e.g. if
P and Π have respectively n and k parallel components, then P |Π consists of n + k

components. By convention the attacker is on the right side, so that actions indexed
by integers less than or equal to n belong to the protocol while those indexed by
integers greater than n belong to the intruder. A partial action is indexed with an
integer denoting the component to which it belongs, while a communication action
is indexed by a pair of integers denoting the components to which complementary
partial actions belong.

Let Index = N∪N2 and the function support : Act \ {τ} → C where support(α)
is the channel name where α occurred.

Definition 2.1 The localization function χ : Blocked −→ 2Act×Index is defined
recursively as follows:

3 Note that scheduling is defined only for blocked processes. Indeed, the only action available to an
unblocked process is the internal action corresponding to functions evaluation.

59

S. Brlek & S. Hamadou & J. Mullins

χ(0) = ∅
χ(α.P) = {(α, 1)}
χ(P |Q) = χ(P) ∪ {(α, ρ(P) + i) | (α, i) ∈ χ(Q)}

∪{(α · α, i, ρ(P) + j) | (α, i) ∈ χ(Q) and (α, j) ∈ χ(Q)}
χ((νc)P) = {(τ, i, j) | (α · α, i, j) ∈ χ(P) and support(α) = c}

where α ∈ Partial , max(i, (j, k)) = max(i, j, k). and

ρ(P) =

{
max{ID ∈ Index | (β, ID) ∈ χ(P), β ∈ Vis} if χ(P) 6= ∅
0 otherwise

Selection. The function χ allows to localize actions, but for knowing whether an
indexed action interferes or not with an intruder’s component, more guidelines are
needed. Actually, here is needed a partition of the set of indexed actions into classes
of strategically equiprobable actions, that is, classes of actions uniformly chosen in a
strategy S. Intuitively, a class corresponds to actions which can not be discriminated
by any scheduler. The construction of the quotient set must agree with the following
principles:

(1) No strategy discriminates internal actions of a protocol.

(2) No strategy allows the intruder to control internal reactions of a protocol P to
any external stimulus. So, if P can react in many positions to a stimulus of
the intruder, then all these positions must have the same probability to react
to the intruder’s request.

(3) In any strategy, the intruder has complete control on its own actions.
Given a protocol P and an attacker Π, we use χ to compute two sets I1 and I2
s.t. indices corresponding to the protocol’s components belong to I1 and those
corresponding to the intruder’s ones belong to I2. Formally:

I1 =

{
{1, 2, · · · , ρ(eval(P))} if χ(eval(P)) 6= ∅
∅ otherwise

I2 =

{
{ρ(eval(P)) + 1, · · · , ρ(eval(P)) + ρ(eval(Π))} if χ(eval(Π)) 6= ∅
∅ otherwise

The quotient set of strategically equiprobable actions is summarized in Table 3
where [(α, ID)]I1×I2 denotes the equiprobable class of the indexed action (α, ID)
w.r.t. sets I1 and I2. Let us describe briefly these classes.

Due to principle (1), internal actions of P are equiprobable: it is reflected in the
definition of [(τ, i, j)]I1×I2 ; τ actions indexed by the components positions of P (i.e.
in I1) are equivalent. Otherwise [(τ, i, j)]I1×I2 is reduced to itself w.r.t (3). Due to
principle (2), partial outputs on a given public channel are equiprobable: although
the intruder can choose the public channel to spy, he has no control on messages
transmitted on it. Otherwise [(c(m), i)] is reduced to itself: being an intruder’s
action, he can choose both the message and the component to build his attack.
Partial input is the dual case of partial output, but contrarily to it, the intruder
controls the message (sent by himself) received by P . The same principles apply to
public synchronization. The intruder can choose a listening channel c and act just
as an observer, then any communication on c takes place between two components
of P . He has no control either on the message exchanged or on components where
communication occurs. However, if it arises from the protocol (output) to the

60

S. Brlek & S. Hamadou & J. Mullins

[(τ, i, j)]I1×I2 =

{
{(τ, i′, j′) | i′, j′ ∈ I1} if i, j ∈ I1

{(τ, i, j)} otherwise

[(c(m), i)]I1×I2 =

{
{(c(m′), i′) | i′ ∈ I1, m′ ∈ dom(c)} if i ∈ I1

{(c(m), i)} otherwise

[(c(m), i)]I1×I2 =

{
{(c(m), j) | j ∈ I1} if i ∈ I1

{(c(m), i)} otherwise

[(c(m)c(m), i, j)]I1×I2 =



{(αα, i′, j′) | i′, j′ ∈ I1, support(α) = c} if i, j ∈ I1

{(c(m′)c(m′), i′, j) | i′ ∈ I1, m′ ∈ dom(c)} if i ∈ I1, j ∈ I2

{(c(m)c(m), i, j)} otherwise

[(c(m)c(m), i, j)]I1×I2 =



{(αα, i′, j′) | i′, j′ ∈ I1, support(α) = c} if i, j ∈ I1

{(c(m)c(m), i′, j) | i′ ∈ I1} if i ∈ I1, j ∈ I2

{(c(m)c(m), i, j)} otherwise

Table 3
Strategically equiprobable actions

intruder (input), then the intruder can fix the channel and his (input) component.
For synchronization arising in the opposite direction, the intruder can fix not only
the channel but also the message and his output component as well. Finally, if it
arises between two intruder’s components then he controls everything.

Definition 2.2 [External scheduler] An external scheduler is a stochastic polyno-
mial probabilistic function S : 2Act×Index × 2N× 2N → Act×Index s.t. for any non
empty set A ⊆ Act× Index and any pair of sets I1, I2 ⊆ N (with I1 6= ∅ or I2 6= ∅)
satisfying ∀(i1,i2)∈I1×I2i1 < i2, the following holds:

(i)
∑

(τ,i,j)∈A,i,j∈I1
Prob[S(A, I1, I2) = (τ, i, j)] ∈ {0, 1}.

(ii) ∀α,β∈Aα ∈ [β]I1×I2 ⇒ Prob[S(A, I1, I2) = α] = Prob[S(A, I1, I2) = β].

The set of schedulers is denoted by Sched 4 .

From the stochasticity condition, being itself a progress condition since it states that
at each step of the process at least one of the executable actions will be scheduled,
we have the following result.

Lemma 2.3 Let P be a process s.t. A = χ(eval(P)) 6= ∅ then the following holds:
∀S∈Sched∃α∈AProb[S(A) = α] 6= 0.

Our main result on schedulers follows.

Theorem 2.4 The sum of probabilities of outgoing transitions in any state along
any external scheduler is smaller than or equal to 1.

2.4 Cumulative probability distribution

Transitions systems induced by the operational semantics of Table 1 may have a
state P with several outgoing transitions labeled by the same action and the same
probability. But to compute correctly the probability of outgoing transitions of P

4 Given a protocol P and an intruder (Π, S), we know how to compute I1 et I2 induced from A = χ(P |Π).
Hereafter, by sake of simplicity, we implicitely write S(A) for S(A, I1, I2).

61

S. Brlek & S. Hamadou & J. Mullins

according to a scheduler, we must ensure ourself that they can be uniquely identi-
fiable. If P is blocked then χ enables us to uniquely index the outgoing transitions
of P . If P is unblocked then there exists a finite number n = |Im(eval(P))| of

processes Qi (1 ≤ i ≤ n) s.t. ∃qi 6=0 P
τ [qi]−→Qi is an outgoing transition of P . We can

order Qi from 1 to n and use this ordering to index outgoing transitions of P s.t.

P
τ [qi]−→Qi being indexed by (i, i) 5 .
Let σ = (α1, id1) . . . (αn, idn) be a sequence of indexed actions. Then σ is a path

from P to Q if there exists nonzero probabilities p1, . . . , pn s.t.

P0
α1[p1]−→ P1

α2[p2]−→ · · · αn[pn]−→ Pn,

P = P0 and Q = Pn. Similarly, we say that P reaches Q by path σ with probability

p according to S, denoted by P
σ[p]
=⇒S Q, if the probability that S chooses σ is

Prob[S(σ)] =
∏

1≤i≤n qi = p where

qi =





pi if Pi−1 6∈ Blocked
Prob[S(χ(Pi−1)) = (αi, idi)]× pi otherwise

An α-path is a path of type (τ, id1)(τ, id2) . . . (τ, idn−1)(α, idn) (n ≥ 1). The notation

P
α[p]
=⇒S Q means that there exists an α-path σ s.t. P

σ[p]
=⇒S Q. Similarly P

α̂[p]
=⇒S Q

denotes P
α[p]
=⇒S Q if α 6= τ and P

τ∗[p]
=⇒S Q otherwise.

Let E ⊆ Proc be a set of processes and Q ∈ E . Let P be a process, and σ an
α-path from P to Q. Then σ is minimal w.r.t E if no other α-path σ′ exists from
P to Q′ s.t. σ′ is a prefix 6 of σ and Q′ ∈ E . We denote by Paths(P,

α=⇒,E) the set
of all minimal α-paths from P to an element of E .

Definition 2.5 Let E ⊆ Proc be a set of processes. The total probability that P
reaches a process in E by an α-path according to S is computed by the cumulative
probability function µ : Proc ×Act× 2Proc × Sched → [0, 1]

µ(P,
α̂

=⇒S , E) =

{
1 if P ∈ E , α = τ∑{Prob[S(σ)] : σ ∈ Paths(P,

α
=⇒, E)} otherwise

Theorem 2.6 The cumulative probability function is well defined i.e.
∀P,α,E ,S µ(P,

α̂=⇒S , E) ≤ 1.

3 Probabilistic behavioural equivalences

Now we plan to establish equivalences ensuring that a protocol satisfies a security
property if and only if it is observationally equivalent to an abstraction of the
protocol, satisfying the security property by construction. In other words we request
two processes to be equivalent if and only if, when subject to same attacks, they
generate “approximately” the same observations. By “approximately” we mean
asymptotically closed w.r.t. the security parameter 7 .

5 by analogy to the indexing of τ actions by χ
6 Note that prefixing does note care about index, i.e. (α1, id3) is a prefix of (α1, id1)(α2, id2) for all index
id1 and id3. Note also that the minimality condition applies only to τ -paths.
7 For verification purpose, all along this section, we consider only actual actions (i.e. actions in Actual)
keeping in mind that partial actions are never executable. So far partial actions have been considered purely

62

S. Brlek & S. Hamadou & J. Mullins

3.1 Asymptotic observational equivalence

We start by defining the notion of an observable and the probability that a given
process P generates a particular observable. An observable is simply a pair (c,m) of
a public channel and a message. The set of all observables is denoted by Obs. The
probability of observing (c, m) is defined as the sum of the probability of observing
it directly, i.e. the cumulative probability of executing an c(m) · c(m)-path or an
c(m) · c(m)-path to reach any state, and the probability of observing it indirectly,
i.e. by observing first some different visible actions before observing it. For that
purpose we extend the notion of cumulative probability to the so-called cumulative
probability up to H.

Definition 3.1 Let E ⊆ Proc be a set of processes, P a process, S a scheduler and
H ⊂ Actual \ {τ} a set of visible actions. The cumulative probability up to H is
defined inductively as follows: ∀α ∈ Actual \H

µ(P,
α̂

=⇒S/H , E) =





1 if P ∈ E and α = τ,

µ(P,
α̂

=⇒S , E)+
∑

β∈H, Q∈Proc µ(P,
β̂

=⇒S , {Q})µ(Q,
α̂

=⇒S/H , E) otherwise

Lemma 3.2 The cumulative probability up to H is well defined, i.e. ∀P, α,E , S

and H, µ(P,
α̂=⇒S/H , E) ≤ 1.

Definition 3.3 Let o = (c,m) be an observable and Lo = {c(m)·c(m), c(m)·c(m)}.
The cumulative probability that P generates o according to S is

Prob[P ÃS o] =
∑

α∈Lo

µ(P,
α̂=⇒S/(Actual\(Lo∪{τ})),Proc).

Lemma 3.4 The cumulative probability of an observable is well defined, i.e. ∀P, o,

and S, Prob[P ÃS o] ≤ 1.

We define our asymptotic observational equivalence relation stating that two
processes are equivalent if they generate the same observables with approximately
the same probabilities when they are attacked by the same enemy.

Definition 3.5 Let Poly : N → R+ be the set of positive polynomials and E =
Proc × Sched the set of attackers. Two processes P and Q are observational equiv-
alent, denoted by P ' Q, iff ∀q∈Poly, ∀o∈Obs , ∀(Π,S)∈E , ∃i0 s.t. ∀N≥i0

|Prob[P |Π ÃS o]− Prob[Q|Π ÃS o]| ≤ 1
q(N)

Theorem 3.6 ' is an equivalence relation.

In order to develop methods for reasoning about security properties of crypto-
protocols based on observable traces, we reformulate the observational equivalence
to take into account any observable trace.

by sake of semantic soundness and completeness.

63

S. Brlek & S. Hamadou & J. Mullins

3.2 Trace equivalence

We start by defining the cumulative probability that a process P generates a se-
quence of observables o1o2 · · · on recursivelly as the probability that it generates
directly the first observable o1 and reach any state Q times the cumulative proba-
bility that the process Q generates the remaining sequence.

Definition 3.7 Let o1o2 · · · on be a sequence of observables s.t. ∀i ≤ n, oi = (ci,mi)
and P be a process. Let αi = ci(mi) · ci(mi) and βi = ci(mi) · ci(mi) ∀1 ≤ i ≤ n.
The cumulative probability that P generates the sequence o1o2 · · · on according to
scheduler S is

Prob[P Ãtr
S o1o2 · · · on]

=
∑

Q∈Proc
(µ(P,

α̂1=⇒S , {Q}) + µ(P,
β̂1=⇒S , {Q}))Prob[Q Ãtr

S o2 · · · on].

Lemma 3.8 The cumulative probability of observing a sequence of observables is
well defined, i.e. ∀P, o1, o2, · · · , on and S, Prob[P Ãtr

S o1o2 · · · on] ≤ 1.

Definition 3.9 Two processes P and Q are trace equivalent, denoted by P 'tr Q,
iff ∀q∈Poly, ∀o1,o2,··· ,on∈Obs , ∀(Π,S)∈E , ∃i0 s.t. ∀N≥i0

|Prob[P |Π Ãtr
S o1o2 · · · on]− Prob[Q|Π Ãtr

S o1o2 · · · on]| ≤ 1
q(N)

Theorem 3.10 'tr is an equivalence relation.

Theorem 3.11 Trace equivalence is equivalent to the observational equivalence, i.e.

∀P,Q∈ProcP 'tr Q ⇔ P ' Q.

4 Case study: the Dining Cryptographers protocol

The Dining Cryptographers [8] protocol is a paradigmatic example of a protocol
which ensures anonymity property. Its author defines it as follows:

Three cryptographers are sitting down to dinner at their favorite restaurant. Their
waiter informs them that arrangements have been made with the maitre d’hotel
for the bill to be paid anonymously. One of the cryptographers might be paying
for the dinner, or it might have been NSA (U.S. National Security Agency). The
three cryptographers respect each other’s right to make an anonymous payment,
but they wonder if NSA is paying.

To fairly resolve their uncertainty, they carry out the following protocol: each
cryptographer flips a coin between him and the one on his right, so that only the
two of them can see the outcome. Each one then states whether the two coins he
can see fell on the same side or on different sides. A payer (if any!) states the
opposite of what he sees. The idea is that if the coins are unbiased and the protocol
is carried out faithfully then an odd number of“different” indicates that one of them
is paying and neither of the other two learns anything about his identity; otherwise
NSA is paying.

64

S. Brlek & S. Hamadou & J. Mullins

4.1 A flawed specification of the protocol

In the following specification 8 we suppose that the NSA makes his choice according
to a probabilistic distribution (known only by him-self) defined by the function
λNSA and informs each cryptographer over a secure channel if he is the payer or
not. To ensure fairness beetwen cryptographers, that is no one having advantage
over another, each coin flipping is made by an ”outside trusted third party” thanks
to the function flips and the result made avalable to both concerned cryptographers.

NSA ::= [λNSA(3) ↪→ x](
∏

0≤i≤3

[x = i]Payeri)

Payer3 ::= c0(nopay).c1(nopay).c2(nopay).0

Payeri ::= ci(pay).ci⊕1(nopay).ci⊕2(nopay).0 if 0 ≤ i ≤ 2.

Crypts ::= [flips(coin0) ↪→ y0][flips(coin1) ↪→ y1][flips(coin2) ↪→ y2]
∏

0≤i≤2

Crypti

Crypti ::= ci(zi).([zi = pay]Pi|[zi = nopay]Qi)

Pi ::= [yi = yi⊕1]pubi(desagree).0|[yi 6= yi⊕1]pubi(agree).0

Qi ::= [yi = yi⊕1]pubi(agree).0|[yi 6= yi⊕1]pubi(desagree).0

The protocol is then specified as follows: DC1 ::= νc0c1c2(NSA|Crypts)

4.2 Specification of anonymity

We give a probabilistic version of anonymity specification due to [12] in the pos-
sibilistic model CSP. The idea is that given two sets A and O of anonymous and
observable events respectively, a protocol P ensures anonymity of events A to any
observer who can see only events O if P doesn’t allow him to determine any causal
dependency beetwen the probabilistic distributions of A and O.

Definition 4.1 [Anonymity property] Let A and O be the sets of anonymous and
observable events respectively, Perm(A) is the set of permutations of the elements
of A. Let P be a process and π ∈ Perm(A) be a permutation, we denote by Pπ the
process obtained by replacing any occurrence of the event a in P by the event π(a).
Then P ensures anonymity of events A iff

∀π∈Perm(A)P 'tr Pπ

In the above specification the anonymous events are ADC = {(ci,m) | i =
0, 1, 2 and m = pay, nopay} and the observable events are any communication over
a public channel. Let

Schedτ = {S ∈ Sched |
∑

(τ,i,j)∈A,i,j∈I1

Prob[S(A, I1, I2) = (τ, i, j)] = 1}

denote the subset of schedulers that give priority to internal actions of the protocol
and 'tr

τ the observational trace equivalence induce by Schedτ . Then we have the
following results which show that Sched can detect the flaw in DC1 while Schedτ

cannot.

Theorem 4.2 With the notation above, the following conditions hold:

• ∀π∈Perm(ADC), if ∀i=0,1,2 Prob[flips(coini) = Head] = 1
2 then DC1 'tr

τ DC1
π.

8 where ⊕ is the addition modulus 2.

65

S. Brlek & S. Hamadou & J. Mullins

• Whatever the probabilistic distributions of the coins are, if π is not the identity
permutation then DC1 6'tr DC1

π.

The flaw in DC1 results from the fact that the real payer (if any) has advantage
over the others since he always gets his message before them. A scheduler that give
priority to observable actions (i.e. an intruder who attack the protocol as soon as
possible) will generate only observable traces begining only by the real payer public
channel. Under such schedulers, DC1 and DC1

π will generate different observable
traces and hence are not equivalent.

Acknowledgements. The authors are grateful to the reviewers for their careful
reading and helpful comments that improved paper’s readability.

References

[1] A. Aldini, M. Bravetti, and R. Gorrieri. A process algebra approach for the analysis of probabilistic
non-interference. Technical report, 2002.

[2] M.J. Atallah. Algorithms and Theory of Computation Handbook. CRC Press LLC, 1999.

[3] J. Bengt, K.G Larson, and W. Yi. Probabilistic extension of process algebra. In Handbook of process
algebra, page 565, 2002.

[4] Bruno Blanchet. A computationally sound mechanized prover for security protocols. In S&P, pages
140–154. IEEE Computer Society, 2006.

[5] Ran Canetti, Ling Cheung, Dilsun Kirli Kaynar, Moses Liskov, Nancy A. Lynch, Olivier Pereira, and
Roberto Segala. Time-bounded task-pioas: A framework for analyzing security protocols. In Shlomi
Dolev, editor, DISC, volume 4167 of Lecture Notes in Computer Science, pages 238–253. Springer,
2006.

[6] K. Chatzikokolakis and C. Palamidessi. A Framework for Analysing Probabilistic Protocols and its
Applications to the Partial Secrets Exchange. In Proc. of the Sym. on Trust. Glob. Comp. (STGC’05),
LNCS. Spr.-Ver., 2005.

[7] K. Chatzikokolakis and C. Palamidessi. Making random choices invisible to the scheduler. In Proc. of
CONCUR’07). To appear., 2007.

[8] David Chaum. The dining cryptographers problem: Unconditional sender and recipient untraceability.
J. Cryptology, 1(1):65–75, 1988.

[9] Flavio D. Garcia, Peter van Rossum, and Ana Sokolova. Probabilistic anonymity and admissible
schedulers. http://arxiv.org/abs/0706.1019, 2007.

[10] Peeter Laud and Varmo Vene. A type system for computationally secure information flow. In Maciej
Liskiewicz and Rüdiger Reischuk, editors, FCT, volume 3623 of Lecture Notes in Comp. Sc., pages
365–377. Springer, 2005.

[11] J.C. Mitchell, A. Ramanathan, A. Scedrov, and V. Teague. A probabilistic polynomial-time process
calculus for the analysis of cryptographic protocols. Theoretical Computer Science, 353:118–164, 2006.

[12] S. Schneider and A. Sidiropoulos. Csp and anonymity. In Proc. Comp. Security - ESORICS 96, volume
1146 of LNCS, pages 198–218. Springer-Vale, 1996.

66

S. Brlek & S. Hamadou & J. Mullins

A Probabilistic polynomial functions

The following definitions are standard: see for instance [2] (chapter 24, pp. 19-28).

Definition A.1 A probabilistic function F from X to Y is a function X × Y →
[0, 1] that satisfies the following conditions.

• ∀x ∈ X :
∑

y∈Y F (x, y) ≤ 1
• ∀x ∈ X, the set {y|y ∈ Y, F (x, y) > 0} is finite.

For x ∈ X and y ∈ Y , we say F (x) evaluates to y with probability p, written
Prob[F (x) = y] = p, if F (x, y) = p.

Definition A.2 The composition F = F1◦F2 : X×Z → [0, 1] of two probabilistic
functions F1 : X×Y → [0, 1] and F2 : Y ×Z → [0, 1] is the probabilistic function:

∀x ∈ X, ∀z ∈ Z : F (x, z) =
∑

y∈Y

F1(x, y) · F2(y, z).

Definition A.3 An oracle Turing machine is a Turing machine with an extra oracle
tape and three extra states qquery, qyes and qno. When the machine reaches the state
qquery, control is passed either to the state qyes if the contents of the oracle tape
belongs to the oracle set, or to the state qno otherwise.

Given an oracle Turing machine M , Mσ(−→a) stands for the result of the appli-
cation of M to −→a by using the oracle σ.

Definition A.4 An oracle Turing machine executes in polynomial time if there
exists a polynomial q(−→x) such that for all σ, Mσ(−→a) halts in time q(|−→a |), where−→a = (a1, · · · , ak) and |−→a | = |a1|+ · · ·+ |ak|.

Let M be an oracle Turing machine with execution time bounded by the poly-
nomial q(−→a). since M(−→a) may call an oracle with at most q(−→a) bits, we have a
finite set Q of oracles for which M executes in time bounded by q(−→a).

Definition A.5 We say that an oracle Turing machine is probabilistic polynomial
and write Prob[M(−→a) = b] = p the probability that M applied to −→a returns b is p,
if and only if, by choosing uniformly an oracle σ in the finite set Q, the probability
that Mσ(−→a) = b is p.

Definition A.6 A probabilistic function F is said polynomial if it is computable by
a probabilistic polynomial Turing machine, that is, for all input −→a and all output
b, Prob[F (−→a) = b] = Prob[M(−→a) = b].

67

Panel Discussion

Information hiding:
state-of-the-art and emerging trends

Sabrina De Capitani di Vimercati 1 Steve Kremer2

Pasquale Malacaria 3 Peter Ryan4 David Sands 5

Abstract

Information hiding is a field where researchers from different areas of computer science have collaborated to
solve common/orthogonal problems by means of different techniques and approaches. Information hiding
covers aspects like data secrecy, anonymity, database security, information flow, protocol verification... that
nowadays are well-established research fields for thousands of researchers around the world.
In this panel, five experts in the field will present approaches like language-based security, quantita-
tive approaches and access control to problems like database security, protocols for anonymity, quanti-
fied/functional information flow and automatic protocol verification. They will present their point of view
on the topic by answering to the following questions about their field of expertise

(i) which are the issues that nowadays could be declare ‘solved’?

(ii) which are the current research issues and how are they currently approached?

(iii) 3. which are the challenges for a near future?

and by taking questions from the audience.

1 Univ. Milano
2 INRIA and ENS Cachan
3 Queen Mary
4 Newcastle Univ.
5 Chalmers Univ.

