Information hiding: state-of-the-art and emerging trends

Quantified Information Flow
Pasquale Malacaria
(Queen Mary, London)
State-of-the-art

Two main quantitative techniques:
1-Information Theory: *How much information is leaked.*
2-Measuring bisimulation: *How bisimilar two systems are (e.g. DiPierro-Hankin-Wikickli).*

This talk will expand on Information Theory
State-of-the-art

• How confidentiality is quantified using Information theory: Shannon's Mutual Information $I(A;B)$ measure the dependency between r.v. A and B

• $I(A;B|C)$ (conditional Mutual Information) measures the dependency between A and B given knowledge of C

• $I(Secret;Process|Public Input)$=measure of the dependency between the process and the secret given knowledge of the public input = leakage
How Information Theory works

- \(P = \text{if } (h=0) \text{ access else deny}, \)
- \(h \) boolean var (uniform distribution). Then 1 bit is leaked:
 \[
 P(h=0) \text{ Info(access)} + P(h=1) \text{ Info(deny)} = \text{Entropy}(P) = l(h,P|\text{low}) = 0.5 \ 1 + 0.5 \ 1 = 1
 \]
- Notice: \(P \) is not secure (motivation for quantitative analysis)
• $I(\text{Secret};\text{Process}/\text{Public Input})$ pop out in different contexts to quantify interference (or related notions):
 - Gray, Millen, (Abstract Machines)
 - Clark-Hunt-Malacaria (Programming Languages),
 - Boreale (Process Calculi)
 - Chatzikokolakis-Palamidessi-Panangedan (Anonymity Protocols)
• The definition is supported by a "Non interference" theorem:

• $I(Secret;Process|Public Input) = 0 \iff$ the system is “secure”: proved by

• Millen (Abstract machines, 1987)
• Clark-Hunt-Malacaria (programming languages, 2002) ~ Classical non Interference
• Boreale (process algebra, 2006) ~ Abadi Gordon Secrecy
Challenges

- How do we compute leakage in big real world programs?
- How do we integrate quantitative and qualitative security?
- How do we integrate quantitative and databases security (statistical inference)?
- Do quantitative bisimulation and Information Theory measure the same?