
A Distributed Calculus for Rôle-Based
Access Control

Chiara Braghin
Dip. Informatica

Univ. “Ca’ Foscari” di Venezia

Daniele Gorla
Dip. di Informatica

Univ. di Roma “La Sapienza”

Vladimiro Sassone
Dept. of Informatics
University of Sussex

Technical Report 08/2004, Dip. di Informatica, Univ. di Roma “La Sapienza”

Abstract

Rôle-based access control (RBAC) is increasingly attracting attention because it reduces the
complexity and cost of security administration by interposing the notion of rôle in the assignment
of permissions to users. In this paper, we present a formal framework relying on an extension
of the π-calculus to study the behaviour of concurrent systems in a RBAC scenario. We define a
type system ensuring that the specified policy is respected during computations, and a behavioural
equivalence to equate systems. We then consider a more sophisticated feature that can be easily
integrated in our framework, i.e., the possibility of automatically adding rôle activations and de-
activations to processes to be run under a given policy (whenever possible). Finally, we show how
the framework can be easily extended to express significant extensions of the core RBAC model,
such as rôles hierarchies or constraints determining the acceptability of the system components.

Keywords: RBAC, Process Calculi, Type Systems, Behavioural Equivalences

Introduction

R ôle-based access control (RBAC) [10, 23] has recently emerged as an alternative to classical discre-
tionary and mandatory access controls: a standard is currently under development by the National In-
stitute of Standards and Technology (NIST) [11] and several commercial applications directly support
some forms of RBAC, e.g., Oracle, Informix and Sybase in the field of commercial database man-
agement systems. Furthermore, the RBAC technology is finding applications in areas ranging from
health-care to defence, in addition to the commerce systems for which it was originally designed.

RBAC is a flexible and policy-neutral access control technology: it regulates the access of users
to information and system resources on the basis of activities they need to execute in the system. The
essence of RBAC lies with the notions of user, rôle and permission: users are authorised to use only
the permissions assigned to the r ôles they belong to. More specifically, RBAC allows for a preliminary
assignment of permissions to r ôles (thus abstracting from which users will play the various r ôles at
run-time). A user may then establish multiple sessions, e.g., by signing on to the system, during which
he activates a subset of r ôles that he is a member of. This greatly simplifies system management, as it
reduces the cost of administering access control policies, as well as making the administration process
less error-prone. In fact, by assigning to users predefined r ôles that naturally express the organisation’s
structure, the administrative process of establishing permissions is streamlined, and management time
for reviewing permissions assignment is reduced. Anyway, the complexity of the models (e.g., in

1

large systems the number of r ôles can exceed hundreds or thousands) demands a structured approach
to the analysis and design of such systems.

This paper aims at developing a theory for reasoning about system behaviours in a RBAC scenario;
to the best of our knowledge this is the first attempt in this direction. Our reference model is the so-
called RBAC96 model, introduced by Sandhu et al. in their seminal paper [23]. More advanced
RBAC models include r ôle hierarchies and constraints such as r ôle mutual exclusion, separation of
duties, delegation of authority and negative permissions. Our starting point is the π-calculus [24],
which provides well-established mathematical tools for expressing concurrent and possibly distributed
systems. Essentially, our idea is to equip the π-calculus with the notion of users: we tag processes
with a (not necessarily unique) name representing the user that activated them – this is very similar
to the located threads of the Dπ [14]. Moreover, we add two new constructs, that enable processes to
activate/deactivate r ôles in the user session where they run, and we include a way to grant permissions
to r ôles. Thus, each process is associated with a name (representing the user owning it) and with a
set ρ recording the r ôles activated during the current session. Hence, the term r{| P |}ρ represents a
session of the user r, running a process P with active r ôles ρ. We model r ôle’s activation/deactivation
by exploiting the following reductions:

r{| role R.P |}ρ 7−→ r{| P |}ρ∪ {R} r{| yield R.P |}ρ 7−→ r{| P |}ρ \{R}

Intuitively, when a process activates a r ôle R during a session, R must be added to the set of activated
r ôles ρ and the continuation P will be executed with the set ρ updated. Vice versa for the deactivation
of R.

As an example, the following system

client{| role auth client.port 80〈index.html〉.P |}ρ ‖ server{| port 80(x).Q |}ρ′

models the interaction between a client and a HTTP server. The system contains two users, client and
server, running in parallel. It may evolve as follows. First, user client activates the r ôle auth client
by exercising the role action, which in practice would involve to authenticate himself by means of a
secure certificate. Then, he sends the request to the HTTP server along the usual port 80 by performing
an output action along the channel port 80.

The introduction of named users immediately suggests the idea of a distributed system. In such
systems, as e.g. the Internet, the notion of global, non-located channels as port 80 is quite an abstrac-
tion over what is realistically achievable. We therefore use a notion of localised channels à la Dπ [14],
where each channel is associated with a single user. Syntactically, we implement this feature by tag-
ging output actions to specify the user (or location) where the exchange is supposed to take place. On
the other hand, input actions are not tagged with any user name, as they are supposed to take place
locally. Thus, the example above may be rewritten as:

client{| role auth client.port 80server〈index.html〉.P |}ρ ‖ server{| port 80(x).Q |}ρ′

We also allow user names to be exchanged during communications. This feature adds flexibility and
realism to the language, since in distributed systems users have only a partial and evolving knowledge
of their execution environment. For example, the client above can be generalised to leave the server
identity unspecified and to dynamically retrieve it with an input from channel choose a server:

client{| role auth client.choose a server(x).port 80x〈index.html〉.P |}ρ

More details on the calculus, together with an illustrative example, will be given in Section 1.

2

The mapping among users, r ôles and permissions, which controls the access of subjects to objects,
is achieved by a pair of relations (U ;P), called RBAC schema. In (U ;P), the relationU is the r ôles-
to-users association, while P is the permissions-to-r ôles association. As a first contribution of this
paper, in Section 2 we define a type system which complements the dynamics of the calculus: it
provides us with static guarantees that systems not respecting a given RBAC schema are rejected.
In the client/server example above, a client not authenticated (i.e. interacting with the server without
having previously performed a role auth client) would be rejected, if the RBAC schema enabled
only authorised users to perform HTTP requests.

As a second contribution of this paper, in Section 3 we study the behavioural semantics of the
calculus via a standardly defined (typed) barbed congruence. The behavioural semantics allows us
to study the behaviour of systems, concentrating on their functionalities while abstracting from their
syntax. In particular, the barbed congruence allows us to prove some interesting algebraic laws that
hold in our framework. As an example, we show how RBAC schemata may change the algebraic
theory of the π-calculus. Consider the following system, adapted from the client/server example
above:

(ν port 80server:R)(client{| port 80server〈index.html〉.P |}∅ ‖ server{| port 80(x).Q |}ρ′)

where (ν port 80server : R) is the standard restriction operator of a typed π-calculus (it declares
port 80server at type R and limits the visibility of the channel to client and server only). By resuming
the assumption that only authorised users can perform HTTP requests, the above system is blocked
because the client has not been authenticated before performing the output. On the contrary, by re-
moving the assumption that each action must be authorised by the activation of a proper r ôle, the term
above would have been equivalent to

(ν port 80server:R)(client{| P |}∅ ‖ server{|Q[index.html/x] |}ρ′)

that is the term resulting from the client/server exchange (Q[index.html/x] denotes the process Q where
each occurrence of x has been replaced by the value index.html). By the way, this is exactly what
would have happened in a similar term of the π-calculus, since the name port 80 is restricted and no
authorisation is needed to perform input/output actions.

As highlighted by the example above, the essence of our calculus resides in the assumption that
each action can be performed only if a privilege enabling it is available in the user session where the
action is executed. Since privileges are associated to r ôles, it is fundamental to properly program r ôle
activations and deactivations within user sessions. To this aim, in Section 4 we describe an algorithm
to automatically add r ôle activations/deactivations within a system in such a way that the resulting
system can be executed under a given schema, whenever possible.

In Section 5, we describe how our simple framework can be extended to express extensions of the
core RBAC model. For example, r ôles can be hierarchically ordered to reflect in a natural way the
different levels of authority, responsibility and competency of the employees working in an enterprise.
Moreover, the system administrator may want to enforce constraints limiting the set of r ôles that can
be activated during a session. Both extensions can be expressed in a uniform and scalable way by
enriching the RBAC schema.

We conclude by comparing our approach with related work in Section 6. Appendix A contains
the proofs of some results stated in the paper, while Appendix B provides a sound proof technique for
barbed congruence in terms of a labelled transition system and a labelled bisimulation.

This paper is an extended and revised version of [4]; with respect to the extended abstract, in
this paper we give all the technical details and proofs, we expand one of the possible examples of our

3

Rôles R, S , ... ∈ R
Names a, b, ..., r, s, ..., x, y, ... ∈ N
Values m, n, ... ∈ N ∪ N ×N

Processes P,Q ::= nil inactive process
| P | Q parallel composition
| !P replication
| (νa :R)P name restriction
| [m = n]P value matching
| a(x).P input
| m〈n〉.P output
| role R.P rôle activation
| yield R.P rôle deactivation

Systems A, B ::= 0 empty system
| r{| P |}ρ user session
| A ‖ B parallel composition
| (νar :R)A channel restriction

Table 1: Syntax of the Calculus

framework, and we show how advanced RBAC features may be added in a modular way to the general
picture.

1 The Language

In this section we formally introduce our calculus. First, we define its syntax and operational se-
mantics; then, we formalise the RBAC schema to describe the r ôles-to-users and permissions-to-r ôles
assignments.

1.1 Syntax

Since the calculus is an extension of the π-calculus [19, 24], we assume the reader be somehow
acquainted with its basic features. The syntax of the calculus is given in Table 1; we assume two
countable and pairwise disjoint sets: R of rôles, ranged over by R, S , . . ., and N of names. Names
can serve three (logically) different purposes: they can be used as user names (in this case, we prefer
letters r, s, . . .), channel names (in this case, we prefer letters a, b, . . .) or input variables (in this case,
we prefer letters x, y, ...). As we have discussed in the Introduction, channels are associated with users.
Thus, the set of values of our calculus includes not only raw names but also pairs of names, written
ar; such pairs are called channels and include the name of the channel, a, and the user it is associated
with, r.

Processes nil, P | Q, !P, [m = n]P, (νa : R)P, a(x).P, m〈n〉.P are derived from the corre-
sponding π-like constructs. They represent, respectively, the inactive process, parallel composition
of processes, replication (to model recursive processes), value matching, restriction of channel names
and input/output actions over channels. Notice that input channels are not decorated with a user
name: this is a syntactic means to localise them, as input channels implicitly belong to the user they
appear in. The main novelty of the calculus resides in the actions role R and yield R that implement
activations/deactivations of r ôles in the user session they belong to, and modify the session r ôles ac-
cordingly.

4

S ystem F() B()

0 ∅ ∅

r{| P |}ρ {r} ∪ Fr(P) Br(P)
A ‖ B F(A) ∪ F(B) B(A) ∪ B(B)

(νar :R)A F(A) \ {ar} B(A) ∪ {ar}

Process Fr() Br()

nil ∅ ∅

a(x).P {ar} ∪ Fr(P) {x} ∪ Br(P)
m〈n〉.P {m, n} ∪ Fr(P) Br(P)
role R.P Fr(P) Br(P)
yield R.P Fr(P) Br(P)

!P Fr(P) Br(P)
P|Q Fr(P) ∪ Fr(Q) Br(P) ∪ Br(Q)

(νa :R)P Fr(P) \ {ar} Br(P) ∪ {ar}

[m = n]P {m, n} ∪ Fr(P) Br(P)

Table 2: Free and Bound Channels

The syntax of processes we have just presented is too permissive, as it also contains meaningless
terms. For example, when a name represents a channel, it cannot be transmitted as such, since it makes
little sense without the indication of the user owning it. Similarly, output channels must indicate the
name of the user containing the invoked channel. For example, a process like a(x).b x〈n〉.P can be
accepted but, in order to be executed, at run-time x must be assigned a user name r which owns an
input channel br. One of the aims of the type system in Section 2 is to restrict the admissible language
terms, thus rejecting terms that contain any kind of anomalies.

Systems consist of the parallel composition of user sessions that can share private channels (the
latter ones are decorated with a r ôle as described later, in Section 1.3). A user session r{| P |}ρ represents
a process spawned by a user named r, with code P and with ρ ⊆ R recording the r ôles activated so far.
Observe that different sessions of the same user can run in parallel within a system A, either with the
same or with different activated r ôles: this is the usual notion of sessions in RBAC models.

The constructs (νa : R)P, (νar : R)A and a(x).P act as binders for a, ar and x, respectively. Thus,
we need to extend the standard notion of free and bound names of the π-calculus to encompass free
and bound channels too. The formal definition of functions F(A) and B(A) is given in Table 2; it
exploits the auxiliary functions Fr(P) and Br(P) for processes of user r. Alpha-conversion, written
=α, is then standardly defined and it allows the renaming of bound channels and names. Throughout
the paper, we always assume that bound channels and names are pairwise distinct and different from
the free ones; by using alpha-conversion, this requirement can be always satisfied.

Finally, observe that user names cannot be restricted, since the creation of a new user is a sensitive
operation: it has to be performed only by the system administrator, as it may affect the RBAC policy
underlying the entire system.

Notation. In this paper, we use ‘ ’ as a generic placeholder; thus, we denote with ˜ a (possibly
empty) tuple of entities of kind . Moreover, we write ãr : R̃ to denote the tuple ar

1 : R1, . . . , ar
k : Rk,

for k ≥ 0. Sometimes, we shall use tuples as sets (i.e., without considering the order of their elements)
and we write, e.g., bs ∈ ãr or bs : S ∈ ãr : R̃. We use Πk

i=1Pi as a shorthand for P1 | · · · | Pk. Finally,
as usual, we will omit trailing inactive processes.

5

Axioms for Structural Congruence:

(S-A) (S-I)
A ≡ B if A =α B A ‖ 0 ≡ A

(S-PC) (S-A)
A ‖ B ≡ B ‖ A (A ‖ B) ‖ C ≡ A ‖ (B ‖ C)

(S-E) (S-LC)
r{| [n = n]P |}ρ ≡ r{| P |}ρ r{| (νa :R)P |}ρ ≡ (νar :R)r{| P |}ρ if a , r

(S-R) (S-RC)
r{| !P |}ρ ≡ r{|P | !P |}ρ (νar :R)(νbs :S)A ≡ (νbs :S)(νar :R)A

(S-S) (S-E)
r{|P | Q |}ρ ≡ r{|P |}ρ ‖ r{|Q |}ρ (νar :R)A ‖ B ≡ (νar :R)(A ‖ B) if ar

< F(B)

Rules for Reduction Relation:

(R-R) (R-C)
r{| role R.P |}ρ 7−→ r{|P |}ρ∪ {R} r{| a(x).P |}ρ ‖ s{| ar〈n〉.Q |}ρ′ 7−→ r{| P[n/x] |}ρ ‖ s{|Q |}ρ′

(R-Y) (R-P)

r{| yield R.P |}ρ 7−→ r{|P |}ρ \{R} A 7−→ A′

A ‖ B 7−→ A′ ‖ B

(R-R)
A 7−→ A′

(νar :R)A 7−→ (νar :R)A′

(R-S)
A ≡ A′ A′ 7−→ B′ B′ ≡ B

A 7−→ B

Table 3: Dynamic Semantics of the Calculus

1.2 Dynamic Semantics

The dynamics of the calculus is given in the form of a reduction relation. As customary, the reduc-
tion semantics is based on an auxiliary relation called structural congruence which allows to freely
re-arrange systems in order to make reduction rules applicable. The key feature of the structural con-
gruence is to equate terms that describe the same system; indeed, the syntax of the calculus provides
a way to describe system behaviours, and the same behaviour can be described in different ways. For
example, A ‖ B describes a system of two parallel components that coincides with the system de-
scribed by B ‖ A. The reason to split reductions and structural rules is to reserve reductions for actual
computations, i.e. where the system actually performs some action, and keep them free of spurious
term manipulation artifacts. In this way, reductions reflect at a glance the foundational building blocks
of the computation, at the chosen abstraction level.

The structural congruence relation, ≡, is the least congruence on systems that is closed under the
rules of the upper part of Table 3. Rule (S-A) equates alpha-convertible systems. Rules (S-I),
(S-PC) and (S-A) state that ‘‖’ is a commutative monoidal operator, with ‘0’ as identity. Rules
(S-LC), (S-RC) and (S-E) regulate the scope of restricted names. In particular, (S-LC)
can be used to turn a restriction of a name inside a user into a restriction over the corresponding

6

channel at the system level; (S-RC) allows to swap restrictions; (S-E) allows to extend the scope
of a bound channel to include further parallel components, provided that this does not cause any
name capture. Rule (S-E) states that a satisfied equality test does not affect the behaviour of the
continuation process. Rule (S-R) allows to freely fold/unfold a replicated process. Finally, rule
(S-S) states that a session of user r with r ôles ρ hosting two parallel processes P and Q denotes the
same system as two parallel sessions of r with r ôles ρ hosting P and Q in isolation. Indeed, the key
issues of a session are the user owning it and the activated r ôles. Rewriting one in the other represents
no system computation, but only a different way of describing the same system, exactly like A ‖ B
and B ‖ A.

The reduction relation is defined by the axioms and rules in the lower part of Table 3. Rule (R-
R) adds R to the r ôles ρ activated in the current session, while (R-Y) removes R from ρ. Here
and in what follows, ‘∪’ and ‘\’ denote the usual union and difference operations between sets; in
particular, ρ \ {R} is defined even if R < ρ. Rule (R-C) regulates the inter-process communication.
It states that, whenever a process in s sends a message n along channel ar and a process in r is waiting
for a message on such a channel, an interaction occurs; as a result, n replaces each occurrence of the
input variable x in the process P prefixed by the input action. Finally, rules (R-P) and (R-R) state
that reductions are preserved by system contexts; rule (R-S) states that structurally equivalent
systems have the same reductions.

Notice that, by exploiting rules (S-S), (R-R) and (R-Y), the user session r{| role R.P |
yield S .Q |}ρ may evolve into r{| P |}ρ∪ {R} ‖ r{|Q |}ρ \{S }, i.e., actions role/yield only affect the process
thread executing them. Moreover, a single session with r ôle R activated can later split in two distinct
sessions; thus, a single r ôle activation can be “closed” by several r ôle deactivations.

1.3 RBAC Schema

So far, we discussed the way in which RBAC sessions can be modelled in our calculus. We now
present a way to model in our framework the remaining features of the core RBAC96 model. To this
aim, we need to define the RBAC schema, i.e., the r ôles-to-users and permissions-to-r ôles associations,
where permissions enable the actions a user can perform within a system (in our framework, input and
output actions only).

Managing r ôles and their interrelationships is a difficult and sensitive task that is often centralised
and delegated to a small team of security administrators. Traditionally, the RBAC schema consists of
a pair of partial functions with finite domains (Uu ;P), whereUu assigns r ôles to users and P assigns
permissions to r ôles. Formally,

Uu : N ⇀fin 2R P : R⇀fin 2A

where A , R × {!, ?} represents the set of performable actions. For notational convenience, we write
the pairs (R, !) and (R, ?) as R! and R?, respectively. Intuitively, permissions R? and R! determine
the possibility of performing input and output actions over a channel of r ôle R, respectively. Thus,
input/output permissions are not defined in terms of channels, but of r ôles. To this aim, we assume a
partial function with finite domain,Uc, assigning a r ôle to a channel1 , i.e.

Uc : N ×N ⇀finR

In this way, we are flexible enough to model both the permission to communicate over a single channel
(when the relation Uc maps only one channel to a r ôle), and the permission to communicate over the

1Since located channels can be considered as functionalities provided by users, it seems reasonable that each channel is
associated with only one r ôle.

7

member of a group of channels (when the relation Uc maps more than one channel to the same r ôle).
This case may be useful in situations where more channels can handle the same kind of requests (cf.
Example 1 for a possible situation). Observe that in A no permission represents actions role and
yield. Indeed, we assume that a r ôle can be activated if (and only if) it is assigned by Uu to the user
willing to perform the action; a r ôle can be deactivated if (and only if) it has been activated before.

For notational convenience, we mergeUu andUc together and denote withU their union. More-
over, we also assume that r ôles associated with channels (grouped together in Rc) are not included in
the domain of P, i.e., P matters only for r ôles assigned to users (grouped together in Ru). Clearly,
Rc and Ru are assumed to be disjoint. To sum up, in our framework RBAC schemata are defined as
follows.

Definition 1.1 (RBAC Schema). A RBAC schema S is a pair of partial functions with finite domains
(U;P) such that

• U : (N ∪ N×N) ⇀fin (2R ∪ R) such that, for any r and as in the domain ofU, it holds that
U(r) ∈ 2R andU(as) ∈ R;

• P : Ru ⇀fin 2A, where A , Rc × {!, ?}, Ru ∪ Rc ⊆ R and Ru ∩ Rc = ∅.

To conclude the presentation of our language, we now give an example using the features intro-
duced so far.

Example 1. Let us now formalise a scenario where a bank client is waiting to be served by one of the
branch cashiers available. There are two users, r and s, representing respectively the client and the
bank branch, while cashiers are modelled as channels named c1, . . . , cn located at user s. The r ôles
available are client and cashier. The relation U assigns r ôle client to user r and cashier to
channels ci, while P assigns to client the permission to communicate with any of the cashiers, i.e.,
cashier! ∈ P(client). In this way, r can indistinctly interact with any of the cashier available. The
overall system can be described as follows:

r{| role client.signals〈r〉.served(z).z〈req1〉. · · · .z〈reqk〉.z〈stop〉.yield client |}∅ ‖

s{| (ν free : scheduling)(!signal(x).free(y).served x〈y〉 | Πn
i=1 frees〈cs

i 〉 |

Πn
i=1 !ci(x).([x = withdrw req] <handle withdraw request>

| [x = dep req] <handle deposit request>
| [x = stop]frees〈cs

i 〉)) |}ρ′

Once the client enters the bank (i.e., he activates r ôle client), he signals his presence to the bank and
waits to be served. When one of the cashiers becomes available (information maintained internally
by the bank via the reserved channel free used for cashiers’ scheduling), the client is notified and can
make requests along the received channel z, referring to the available cashier. Then cashiers repeatedly
receive and handle requests. For simplicity, we only assume functionalities to handle money withdraw
and deposit. Moreover, we do not consider the order in which clients arrive; a system of queues can
however be added routinely [24]. �

2 Static Semantics

We now describe a type system that provides us with static guarantees that the set of actions performed
by any user during the computation respects the RBAC schema. Moreover, as already discussed when
presenting the syntax of the calculus, it is also used to reject ill-formed terms.

8

The syntax of types is defined by the following productions:

Value Types T ::= ρ[̃a : C̃] | C
Channel Types C ::= R(T)

Type ρ[a1 : R1(T1), . . . , an : Rn(Tn)] can be assigned to a user r belonging to r ôles in ρ and owning
channels ãr ordinately of type R̃(T). Type R(T) can be assigned to channels of r ôle R along which
values of type T can be exchanged. Notice that the base case of the recursive definition of types is
when the set ã : C̃ in a type ρ[̃a : C̃] is empty.

Notation. Here and in the rest of the paper, P(ρ) denotes the set
⋃

R∈ ρP(R). Moreover, we denote
with] the union of partial functions with disjoint domains.

A typing environment Γ is a partial mapping with finite domain from N into types and it can be
extended as follows:

Γ, x : T , Γ] {x : T }

Γ, ar : C , Γ′ , for Γ′(s) =

{
Γ(s) if s , r
ρ[a : C, b̃ : C̃] if s = r and Γ(r) = ρ[̃b : C̃] and a < b̃

Remarkably, the extension of a typing environment could be undefined (e.g., if x ∈ dom(Γ) in the
first case or if a ∈ b̃ in the second case). A typing environment Γ can be used to type a system under
a schema (U;P) only if the r ôle information in Γ ‘respects’ the associations in U. This intuition is
formalised by the following definition.

Definition 2.1. Given a RBAC schema (U;P) and a typing environment Γ, we say that Γ respects
U if, for all r ∈ dom(Γ), it holds that Γ(r) = ρ[a1 : R1(T1), . . . , an : Rn(Tn)] with U(r) = ρ and
U(ar

i) = Ri, for all i = 1, . . . , n.

The primary judgements of the type system are of the form Γ `S A. Such a judgement states
that A is well-formed with respect to Γ and S; this implies that A respects the RBAC schema S. To
infer the main judgement, we rely on two auxiliary judgements, one for values and one for processes.
Judgement Γ ` n : T states that the value n has type T in Γ; judgement Γ; ρ `Sr P states that P respects
Γ and S when it is run in a session of r with r ôles ρ activated.

The typing rules are collected in Table 4. Most of them are self-explanatory; we only comment
below the most significant ones, i.e. those related to the actions in our calculus. The idea beyond these
rules is that an action can be executed only if the current session has activated a r ôle enabling the
action. Rule (T-I) states that, for typing a(x).P in a session of r where r ôles ρ are activated, we
need to establish that ar has type R(T) in Γ, that inputs over a channel of group R can be performed
when playing r ôles ρ and that P is typeable once assumed that x has type T . Rule (T-O) is
similar: it checks that an output over a channel of group R is allowed when r ôles in ρ are activated;
moreover, it also requires that the transmitted value n can be assigned type T in Γ. Rule (T-R ̂)
states that, for typing process role R.P in a session of r where r ôles ρ are activated, we need to check
that r can assume r ôle R and that P is typeable for r having activated ρ ∪ {R}. Rule (T-Y) states
that process yield R.P is legal for r only when R has been previously activated and if P is typeable for
r when R is off. Finally, notice that in rules (T-R) and (T-SR) the type of the restricted channel
is not tracked in the restriction construct. Indeed, for type checking purposes, it suffices to ensure that
the new channel is used coherently by all the processes accessing it. To this aim, we only need to
invent a suitable T when applying the rules and verify that all the accesses to the channel conform to
T .

9

Typing Values:

(T-I1)

Γ(r) = ρ[̃a : C̃]

Γ ` r : ρ[̃a : C̃]

(T-I2)

Γ(r) = ρ[̃b : C̃, a : C, b̃′ : C̃′]

Γ ` ar : C

Typing Processes:

(T-N)

Γ; ρ `Sr nil

(T-I)

Γ ` ar : R(T) R?∈ P(ρ) Γ, x : T ; ρ `(U;P)
r P

Γ; ρ `(U;P)
r a(x).P

(T-P)

Γ; ρ `Sr P Γ; ρ `Sr Q

Γ; ρ `Sr P | Q

(T-O)

Γ ` m : R(T) Γ ` n : T R!∈ P(ρ) Γ; ρ `(U;P)
r P

Γ; ρ `(U;P)
r m〈n〉.P

(T-R)

Γ; ρ `Sr P

Γ; ρ `Sr !P

(T-R̂)

Γ ` r : ρ′ [̃a : C̃] R ∈ ρ′ Γ; ρ ∪ {R} `Sr P

Γ; ρ `Sr role R.P

(T-R)

Γ, ar: R(T); ρ `Sr P

Γ; ρ `Sr (νa :R)P

(T-Y)

R ∈ ρ Γ; ρ \ {R} `Sr P

Γ; ρ `Sr yield R.P

(T-M)

Γ; ρ `Sr P

Γ; ρ `Sr [m = n]P

Typing Systems:

(T-E)

Γ `S 0

(T-S)

Γ ` r : ρ′ [̃a : C̃] ρ ⊆ ρ′ Γ; ρ `Sr P

Γ `S r{|P |}ρ

(T-SP)

Γ `SA Γ `S B

Γ `SA ‖ B

(T-SR)

Γ, ar: R(T) `SA

Γ `S (νar :R)A

Table 4: Typing Rules

Definition 2.2 (Well-typedness). Given a RBAC schema S = (U;P) and a system A, we say that A
is well-typed in S if there exists a typing environment Γ respecting U such that Γ `SA.

Example 2. Let us consider the banking scenario described in Example 1. To illustrate the type
system introduced above, let us give a suitable typing for the system. Let

Tcsh , cashier({request}[])

be the type of the cashiers, i.e., channels belonging to r ôle cashier and exchanging values of type
{request}[]. Type {request}[] represents the possible requests of clients; values of this type are

10

names belonging to r ôle request which do not provide any channel. Moreover, we let

Tcl , {client}[served : cashier get(Tcsh)]

be the type of user r. This represents users belonging to r ôle client and owning a channel named
served of type cashier get(Tcsh). Then, a suitable typing environment Γ is

r 7→ Tcl

s 7→ ρ′[signal : cashier req(Tcl), c1 : Tcsh, . . . , cn : Tcsh]

withdrw req 7→ {request}[]

dep req 7→ {request}[]

stop 7→ {request}[].

The system of Example 1 is then well-typed in any schema (U,P) such that Γ respects U and P is
such that

{cashier req!, cashier get?, cashier!} ⊆ P(client)

A ∪ {cashier req?, cashier get!, cashier?,

scheduling?, scheduling!} ⊆ P(ρ′)

where A ⊆ A is a set of action permissions that allow the handling of client’s requests. �

Example 3. In the real world, it is unrealistic to allow any bank client to ask for any kind of bank
operation. For instance, when a client applies for a credit card, he is always asked for some credentials.
To model this finer scenario, we let each available operation to be modelled as a specific process,
which can be activated through a specific channel (e.g., channel wdrw handles withdraw requests and
activates process Pwdrw, opn handles open account requests, cc handles credit card requests). The
communication along different channels requires different r ôles and, thus, it is a way to control the
credentials of the client. In this setting, the cashier ci of Example 1 is implemented by the following
process (the remaining behaviour of the bank is implemented as in Example 1):

ci(x).([x = withdrw req] wdrw(y).Pwdrw | [x = open req] opn(y).Popn |

[x = creditcard req] cc(y).Pcc | [x = stop] frees〈cs
i 〉)

Let U assign to channel wdrw (resp., opn and cc) the group wdrw (resp., opn and cc), and let P
be such that cc! ∈ P(rich client), wdrw! ∈ P(client) and opn! ∈ P(user). Under this schema,
the following client is not well-typed, as he has not activated the correct r ôle to perform credit card
requests:

r{| role client.signals〈r〉.served(z).z〈creditcard req〉.ccs〈signature〉.z〈stop〉 |}∅

Indeed, the type checking fails when applying the rule (T-O) to action cc s〈signature〉 because
cc!
< P({client}). On the contrary, assuming that rich client ∈ U(r1), client ∈ U(r2) and

user ∈ U(r3), and that {cashier req!, cashier get?, cashier!} ⊆ P(user) ∩ P(client) ∩
P(rich client), the following clients are well-typed:

r1{| role rich client.signal s〈r〉.served(z).z〈creditcard req〉.ccs〈signature〉.z〈stop〉 |}∅
r2{| role client.signals〈r〉.served(z).z〈withdrw req〉.wdrws〈sum〉.z〈stop〉 |}∅
r3{| role user.signals〈r〉.served(z).z〈open req〉.opns〈personal data〉.z〈stop〉 |}∅

Indeed, actions ccs〈signature〉, wdrws〈sum〉 and opns〈personal data〉 are all enabled by the r ôles pre-
viously activated by users, viz. rich client, client and user, respectively. �

11

(E-S)
ρ * U(r)

r{| P |}ρ (U;P)

(E-R̂)
R < U(r)

r{| role R.P |}ρ (U;P)

(E-Y)
R < ρ

r{| yield R.P |}ρ S

(E-I)

U(br) = S S ?
< P(ρ)

r{| b(x).P |}ρ (U;P)

(E-O)

U(bs) = S S !
< P(ρ)

r{| bs〈n〉.P |}ρ (U;P)

(E-P)
A S

A ‖ B S

(E-R)
A (U]{ar :R};P)

(νar :R)A (U;P)

(E-S)
A ≡ B B S

A S

Table 5: Run-time Errors

We now establish the soundness of our type system in the standard way, i.e. by proving subject
reduction and type safety. The first result states that well-typedness is preserved along reductions;
the second result ensures that only systems abiding by the RBAC schema are allowed (i.e., users only
perform actions permitted by their duly activated r ôles). The proofs are in Appendix A.1.

Theorem 2.1 (Subject Reduction). If Γ `SA and A 7−→ A′, then Γ `S A′.

To state type safety, we first need to formally define what situations our type system wants to
avoid. Thus, in Table 5, we introduce the notion of run-time errors and prove that they never arise
in any well-typed system. Intuitively, run-time errors are generated in three possible ways: whenever
a session is equipped with r ôles not assigned to the user owning that session (see law (E-S));
whenever a r ôle is activated (resp., deactivated) by a user (resp., by a session) not owning such a
r ôle (see laws (E-R ̂) and (E-Y), resp.); whenever an input/output action is performed in a user
session where no privilege enabling such an action is provided by the r ôles active in that session (see
laws (E-I) and (E-O)).

Theorem 2.2 (Type Safety). If A is well-typed in S, then A S cannot hold.

We conclude this section remarking that our type system is not powerful enough to type all legal
systems. For example, the system r{| ar〈r〉 |}ρ is untypeable. Similarly, we have no notion of subtyp-
ing; thus, a channel must always carry values exactly of the same type. We now sketch how these
deficiencies could be remedied, by following standard techniques; full details are omitted, as they are
completely well understood and orthogonal w.r.t. the new ideas of our work.

Recursive Types In order to type r{| ar〈r〉 |}ρ, we would need a typing environment Γ assigning to
r a type T such that T = ρ′[ar : R(T)], for some ρ′ ⊇ ρ and R. Clearly, such a type T is not
expressible with our type syntax, as it would require an infinite nesting of type constructors, i.e.
ρ′[ar : R(ρ′[ar : R(· · ·)])]. By following [8, 20, 24], this problem can be solved by using equations
between type expressions whose solutions are infinite types, like T above. To this aim, we assume a
set of type variables Ξ, ranged over by ξ, and extend the syntax of value types as follows:

T ::= ρ[̃a : C̃] | C | ξ | µξ.T

Intuitively, µξ.T stands for the solution of the (recursive) equation ξ = T . However, to avoid nonsen-
sical expressions like µξ.ξ, we impose the constraint that in µξ.T the variable ξ occurs guarded in T ,

12

i.e. it occurs underneath at least one of the other type constructors. Moreover, we only consider closed
type expressions, i.e. expressions in which each occurrence of a type variable ξ is underneath a µξ.
construct. By exploiting these two assumptions, it can be standardly proved that the set of types is a
c.p.o. and, thus, the solution of an equation µξ.T is unique and can be obtained with a least fix-point
construction.

If we now represent (the unfolding of) a (possibly recursive) type as its (possibly infinite) parse
tree, we can deem two types equivalent, written T1 � T2, if and only if they represent the same tree.
A lot of literature on type systems is devoted to compute � algorithmically (see, e.g., [2, 20]); for our
purposes, it suffices to remember that � is a congruence on types such that µξ.T � T [µξ.T/ξ].

If we now add the rule

(T-I-R)
Γ ` n : T T � T ′

Γ ` n : T ′

to the type system of Table 4 and modify rule (T-I2) to be

Γ(r) � ρ[̃b : C̃, a : C, b̃′ : C̃′]

Γ ` ar : C

it is easy to see that Γ `(U;P) r{| ar〈r〉 |}ρ , whenever Γ(r) , µξ.ρ[ar : R(ξ)] and R! ∈ P(ρ).

Subtyping Subtyping is a preorder on types that can be thought of as inclusion between the set
of the values of the types. If T ′ is subtype of T , then a value of type T ′ is also of type T ; thus,
any expression of type T ′ can always replace an expression of type T , without compromising well-
typedness. In traditional programming languages, this feature is used to reduce the size of a program,
as the same function can be invoked on parameters of different types, without writing a ‘copy’ of the
same function for each subtype. For example, assume, as usual, that int is a subtype of real and that
there is a function to multiply two reals. Then, the same function can also be used to multiply two
integers.

In our setting, we can define an ordering on types to allow the passage of values of different
(yet somehow related) types along the same channel. We sketch here a very basic form of subtyping
inspired by [14]; for more elaborated settings see, e.g., [21, 24]. First, we need to define the subtyping
relation, v, that is the least preorder on types satisfying the following rules:

ρ ⊆ ρ′ h ≤ k ∀ i = 1, ..., h . Ci v C′i

ρ[a1 : C1, . . . , ah : Ch] v ρ′[a1 : C′1, . . . , ak : C′k]

R = R′ T v T ′

R(T) v R′(T ′)

Then, we need to update rule (T-O) to become

Γ ` m : R(T) Γ ` n : T ′ T v T ′ R!∈ P(ρ) Γ; ρ `(U;P)
r P

Γ; ρ `(U;P)
r m〈n〉.P

In this framework, we can type the system

r{| a(x).bx〈n〉 |}ρ ‖ s{| ar〈r1〉 |}ρ1
‖ t{| ar〈r2〉 |}ρ2

‖ r1{| b(y).c(z) |}ρ′ ‖ r2{| b(y).c′(z) |}ρ′

Indeed, it suffices to take Γ such that Γ(n) = T , Γ(r1) = ρ′[b : R(T), c : C], Γ(r2) = ρ′[b : R(T), c′ : C′]
and Γ(r) = ρ[a : S (ρ′[b : R(T)])], for some R and S .

13

3 Behavioural Semantics

One of the main advantages of process calculi is the possibility of developing over them behavioural
equivalences, that abstract a term from its syntax and concentrate on its functionalities. To this aim, we
consider a standardly defined typed behavioural congruence, viz. reduction barbed congruence [15].
This is a touchstone equivalence defined in terms of the reduction relation and of a notion of observa-
tion, and then closed under all possible system contexts. The reason to consider a typed congruence
is that only well-typed contexts guarantee a reduction behaviour abiding by the RBAC policy.

In its typed version, barbed congruence is tagged with an environment Γ and RBAC schema S, to
signify that it equates terms that are typeable under Γ and S. Moreover, only contexts typeable under
Γ and S are considered in the definition of the congruence. Thus, following the style of [13], we write
Γ |=S A1 � A2 to mean that Γ `S Ai, for i = 1, 2, and that A1 and A2 exhibit the same behaviour in all
environments ‘compatible’ with Γ and S.

We now formally define barbed congruence. As usual, we denote with 7−→∗ the reflexive and
transitive closure of the reduction relation 7−→.

Definition 3.1 (Barbs). The observation predicate A ↓ η holds if

• either η = ar and A ≡ (ν b̃s : R̃)(A′ ‖ r{| a(x).P |}ρ) for ar
< b̃s,

• or η = ar and A ≡ (ν b̃s : R̃)(A′ ‖ s′{| ar〈n〉.P |}ρ) for ar
< b̃s.

The predicate A ⇓ η holds if there exists A′ such that A 7−→∗ A′ and A′ ↓ η.

We remark that the chosen barbs only express the ability to interact over channels. Indeed, observing
r ôle activations/deactivations is not reasonable, as no context can determine whether a user performs
a role/yield: these operations only affect the thread performing them.

Definition 3.2 (Reduction Barbed Congruence). Reduction barbed congruence is the largest binary
and symmetric typed relation over systems such that, whenever Γ |=S A1 � A2, it holds that

1. (Barb preservation) if A1 ↓ η, then A2 ⇓ η

2. (Reduction closure) if A1 7−→ A′1, then there exists a system A′2 such that A2 7−→
∗ A′2 and

Γ |=S A′1 � A′2
3. (Contextuality) let S be (U;P); then,

(a) for all P′ and ñ : T̃ such that ñ∩ dom(U) = ∅, it holds that Γ, ñ : T̃ |=(U∪ ñ : T̃ ;P∪P′) A1 � A2

(b) for all systems B such that Γ `S B, it holds that Γ |=S A1 ‖ B � A2 ‖ B

(c) for all ar : R(T) such that Γ = Γ′, ar : R(T) and U = U′] {ar : R}, it holds that
Γ′ |=(U′;P) (νar :R)A1 � (νar :R)A2.

The less intuitive condition of the above definition is contextuality. Essentially, it requires that the
equated systems A1 and A2 be equivalent in any execution context. An execution context can affect
the behaviour of such systems in three ways: it can extend the RBAC schema, thus enabling more
functionalities of A1 and A2; it can provide more parallel components that, by interacting with A1 and
A2, could change their behaviours; it can hide channels and, hence, delete observable behaviours of
A1 and A2. These aspects are handled by the sub-conditions (a), (b) and (c), respectively.

The problem with this definition of barbed congruence is that it must be proved by analysing all the
system contexts, which makes it hardly tractable. In Appendix B, we provide a more tractable proof-
technique for � . Since this task requires several technicalities taken from the field of process calculi,

14

we leave it to the interested reader; the other readers should only know that tools for establishing
barbed congruence in a simpler way do exist.

To conclude, we now list a few algebraic laws that illustrate some key features of our framework.
In what follows, we fix a RBAC schema S and a suitable typing environment Γ. The first equation
states that a terminated session of a user does not affect the evolution of a system. Indeed, it holds that

Γ |=S r{|nil |}ρ � 0.

This is different from some distributed calculi, like e.g. the Ambient calculus [7] or K [9], where
the presence of a place for computations is relevant. Moreover, differently from several distributed
languages, the user performing an output action is irrelevant; the only relevant aspect is the set of
permissions activated when performing the action. This is summarised in the following law:

Γ |=S r{| bs〈n〉 |}ρ � t{| bs〈n〉 |}ρ.

A similar law holds for the yield action. Notice that only for these two actions the identity of the user
performing them is irrelevant. For example, relocating an input action breaks the equivalence between
processes, as input channels implicitly refer the user owning them. Indeed, we have that

Γ |=S r{| a(x).P |}ρ 6� t{| a(x).P |}ρ

Similarly, it is possible to move a role R prefix between two users only when R is assigned to both of
them.

By exploiting these observations, we develop in the following example a relocation procedure to
establish whether a process can be moved from a user to another. This procedure can be exploited to
reduce the number of users in a system, while maintaining the overall system behaviour.

Example 4. We now give simple procedure to infer judgements of the form Γ |=S r{| P |}ρ � s{| P |}ρ.
This judgement says that process P can be indifferently executed by r and s without altering its ob-
servable functionalities. Thus, session r{| P |}ρ can be replaced by s{| P |}ρ. If no other session of r is left
in the system, then r itself has been removed.

The procedure is very simple. Try to infer both Γ; ρ `Sr P and Γ; ρ `Ss P without using rules (T-
I) and (T-R). If you succeed, then Γ |=S r{| P |}ρ � s{| P |}ρ, otherwise Γ |=S r{| P |}ρ 6� s{| P |}ρ.
We cannot use rule (T-I) because, as we have already discussed, we cannot relocate processes
containing input prefixes. A similar problem arises also for restriction (thus, we cannot use rule (T-
R)). Indeed, the interplay between user names, restricted channel names and restricted channels is
subtle. For example, consider the system P , (νa :R)ar〈as〉, try to run it in users r, s and t, and put the
resulting session in an arbitrary system context. In the first case, P cannot be engaged in any reduction,
as it emits a value on a channel known only by P itself; in the second case, P sends a bound value; in
the third case, P sends a free value. Thus, relocating processes with restrictions breaks equivalences,
in general.

It can now be easily proved that this procedure is a sound and complete proof-technique for judge-
ment Γ |=S r{| P |}ρ � s{| P |}ρ, whenever P does not contain restrictions and input prefixes. �

4 Adding Rôle Activations and Deactivations

In this section, we show how our framework can be adapted to encompass more advanced features.
Usually, the task of properly putting role/yield operations within a system is tedious and error-prone;

15

moreover, it assumes a full knowledge of the RBAC schema at programming time. We now describe
a way to add r ôle activations/deactivations within a system in such a way that the resulting system
can be executed under any given schema (U;P), whenever possible, i.e., when users are allowed to
activate the r ôles required by the actions they are willing to perform.

A first technique rewrites a system A without actions role/yield by activating at the beginning of
each session of a generic user r all the r ôles in U(r). Intuitively, the refined system contains all the
legal behaviours of A with respect to the RBAC schema given. However, the fact that all the r ôles
assigned to a user are always activated violates a basilar RBAC design principle: a r ôle should be
active only when needed.

A second naı̈ve algorithm replaces each input/output prefix α.Q occurring in each session of a
generic user r with role R.α.yield R.Q, where r ôle R belongs to U(r) and enables action α. The
algorithm is very simple but it presents several drawbacks: it always adds a pair of auxiliary actions
role/yield for every prefix α occurring in the process, although it could be that r ôle R enables also the
following prefixes in Q. Furthermore, when rewriting α.Q, it is possible that several r ôles enable α: in
this case, a thorough choice of which r ôle to activate may minimise the number of role/yield actions.

We now present an algorithm that adds a smaller number of actions role/yield. The algorithm
works on a tree-representation of the process in each session of a generic user r: first, the tree is
partitioned into subtrees by collecting together nodes (i.e., actions) which require the same r ôle in
order to be executed correctly; then a role R auxiliary action is added before the root of each subtree
requiring r ôle R, and dually a yield R action is added after the leaf of each such subtree.

More specifically, a process P running inside a session of user r is translated into an annotated
binary tree, where nodes represent process operators and each node is annotated with the set of r ôles
whose permissions enable the action associated with the node (if the node is not associated with an
input/output action, any r ôle available for user r will enable it). The tree is expressed in terms of a
tuple t = (V, E, rt, φ), where V is a finite set of nodes, E ⊆ V ×V is the set of the edges (i.e., (v, v′) ∈ E
iff there is an edge from v to v′), rt ∈ V is the root of the tree, and φ : V −→ 2R is the assignment
of r ôles to nodes used to annotate each node. The annotated tree associated with a finite process
P (without role/yield actions) running inside a session of user r may be generated by the function
Tr

Γ;P(P) described below, with (U;P) a RBAC schema and Γ a typing environment respecting U.

In the definition, we write Γ{r} for the set ρ such that Γ ` r : ρ[̃a : C̃]; thus, R ∈ Γ{r} is a shortcut for

16

Γ ` r : ρ[̃a : C̃] ∧ R ∈ ρ.

Tr
Γ;P(nil) , ({v}, ∅, v, {v 7→ Γ{r}})

Tr
Γ;P(a(x).P) , (V ∪ {v}, E ∪ {(v, rt)}, v, φ ∪ {v 7→ ρ})

where Tr
Γ,x:T ;P(P) = (V, E, rt, φ), v < V,Γ ` ar : S (T)

and ρ = {R ∈ Γ{r} : S ? ∈ P(R)}

Tr
Γ;P(m〈n〉.P) , (V ∪ {v}, E ∪ {(v, rt)}, v, φ ∪ {v 7→ ρ})

where Tr
Γ;P(P) = (V, E, rt, φ), v < V, Γ ` ar : S (T),

Γ ` n : T and ρ = {R ∈ Γ{r} : S ! ∈ P(R)}

Tr
Γ;P(P1 | P2) , (V1 ∪ V2 ∪ {v}, E1 ∪ E2 ∪ {(v, rt1), (v, rt2)}, v,

φ1 ∪ φ2 ∪ {v 7→ Γ{r}})
where Tr

Γ;P(Pi) = (Vi, Ei, rti, φi) for i ∈ {1, 2},
V1 ∩ V2 = ∅ and v < V1 ∪ V2

Tr
Γ;P((νa : R)P) , (V ∪ {v}, E ∪ {(v, rt)}, v, φ ∪ {v 7→ Γ{r}})

where Tr
Γ,ar:R(T);P(P) = (V, E, rt, φ), v < V

and Γ, ar : R(T);Γ{r} `(U;P)
r P

Tr
Γ;P([m = n]P) , (V ∪ {v}, E ∪ {(v, rt)}, v, φ ∪ {v 7→ Γ{r}})

where Tr
Γ;P(P) = (V, E, rt, φ) and v < V

Example 5. Let us consider a system consisting of a single user r running the following process

P = a(x).([x = br]ar〈x〉 | [x = s](νc : S)(ar〈x〉 | as〈cr〉))

and the RBAC schema (U;P) defined as

U : r 7→ {R1,R2} P : R1 7→ {R!,R?}

ar 7→ R R2 7→ {S !}

as 7→ S

A pictorial representation of Tr
U;P(P) is given in Figure 1, where each node is explicitly named

(the name is shown on the left-hand side of the node), the process operator associated with the node is
written within the node, and the annotation (i.e., the set of r ôles associated with the node) is depicted
on the right-hand side of the node. Notice that in this case it suffices to parameterise Tr

U;P only
with a r ôles-to-users assignmentU instead of a (more complex) typing environment Γ (respectingU)
because no received value is used as an output channel. �

Once process P has been translated into an annotated binary tree, the problem of finding a minimal
refinement of P (in terms of the number of actions role/yield added) for user r under the schema
(U;P) can be reformulated as the problem of finding a partition of nodes such that:

• the partition generates the minimum number of blocks;

• each block is a subtree2;

• all the nodes v belonging to the same block have in common one of their annotating r ôles, i.e.,
there exists R ∈ R such that R ∈ φ(v) for all v in the block.2Here, we use the term subtree to refer any connected subgraph of the given tree.

17

n8 | {R1 , R2 }

n1 a(x) {R1 }

n2 | {R1 , R2 }

n3 [x=br] {R1 , R2 }

n5 a
rx {R1 }

n4 [x=s] {R1 , R2 }

n6 (νc:S) {R1 , R2 }

n7 nil {R1 , R2 }

n9 a
rx { R1 } n10 a

scr {R2 }

n11 nil {R1 , R2 } n12 nil {R1 , R2 }

Figure 1: The annotated binary tree for process P from Example 5

We call such a problem the minimal partition problem.
We now describe a way to find a minimal partition of t and assign to each node v a label taken from

φ(v). To this aim, for every node v and r ôle R, the number m[v,R] denotes the minimum number of
blocks that can be obtained in the subtree rooted in v when v is labelled with R; we let m[v,R] = ∞ if
R < φ(v). An algorithm for calculating the quantity m[v,R] is given in Table 6. Intuitively, we work in
a bottom-up fashion on the tree. When we consider a leaf v and a r ôle R that authorises it, we can use
R to generate a singleton tree (hence, m[v,R] = 1); if, on the other hand, R cannot authorise the (action
associated with) the node, then it can be ignored because it cannot induce any block in the partition
(hence, m[v,R] = ∞). When we consider an internal node v with just one child v′ and a r ôle R suitable
for v, we can either try to include v in the subtree of v′ induced by R (hence, m[v,R] = m[v′,R]), or
we can put it in a new subtree (that can possibly grow up when analysing v’s ancestors). In the latter
case, the new subtree is induced by R, while the subtree for v′ can be induced by any other r ôle S ;
thus, m[v,R] = 1 + minS,R{m[v′, S]}. Finally, the case for a node v with two children is similar, but it
requires to examine four possible situations (according to whether v is included in both, in none, or in
just one of the subtrees induced by R for v1 and v2).

Now, we can compute, for every node v, a r ôle (v) which represents the r ôle common to
all the nodes in the block which v belongs to. To this aim, we assume a standard function (v)
returning the father of node v in t (if any).

18

Visit t in postorder

When visiting the node v do

• if v is a leaf then

m[v,R] B

{
∞ if R < φ(v)
1 otherwise

• if v has only one child (and let it be v′) then

m[v,R] B

∞ if R < φ(v)

min{ m[v′,R] ,
minS,R{m[v′, S]} + 1 } otherwise

• if v has children v1 and v2 then

m[v,R] B

∞ if R < φ(v)

min{ m[v1,R] + m[v2,R] − 1 ,
minS,R{m[v1, S]} + minS,R{m[v2, S]} + 1
m[v1,R] + minS,R{m[v2, S]} ,
minS,R{m[v1, S]} + m[v2,R] } otherwise

Table 6: Computing function m[v,R]

Visit t in preorder
When visiting the node v do

mv B {R : m[v,R] = minS ∈φ(v){m[v, S] } }
if v = rt or ((v)) < mv

then (v) B R, where R ∈ mv

else (v) B ((v))

Notice that the choice of R ∈ mv (in the ‘then’ branch) is totally arbitrary: any such R can be chosen,
since mv only contains r ôles that minimise m[v,]. We can now formulate the soundness of the
algorithm presented so far; a sketch of the proof is in Appendix A.2.

Proposition 4.1. Function can be used to induce a partition of t’s nodes in subtrees satisfying
the requirements of the minimal partition. Moreover, the overall procedure takes O(|V | × K 2), where
K is the size of the largest set annotating a node of the tree.

A solution of the original problem of properly putting actions role/yield in a process P can be
then extracted easily from t = Tr

Γ;P(P) and from the associated function . Each block of the
partition induced by represents the set of process operators in P that are under the influence of
the r ôle labelling the block. If the tree consists of a single node, then P must be nil and no auxiliary
action is needed. Otherwise, the annotated (and partitioned) tree can be visited in preorder: depending
on the value of (v) a pair of role/yield auxiliary actions are either added or not. In particular, the
operator corresponding to the root is prefixed in P with role R, where R = (rt). Then, no other
actions are added until (v) , ((v)). In this case, the operator associated with node v
is prefixed with yield R.role S , where R = ((v)) and S = (v). We denote the process
resulting from this procedure as Rr

Γ;P(P).

19

Example 6. Consider again Example 5 and the process P running inside user r:

P = a(x).([x = br]ar〈x〉 | [x = s](νc : S)(ar〈x〉 | as〈cr〉))

In this case, we have that function m[v,R] is

n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12

R1 2 2 1 2 1 2 1 2 1 ∞ 1 1
R2 ∞ 3 2 2 ∞ 2 1 2 ∞ 1 1 1

Thus, a minimal partition of Tr
U;P(P) is given by the following two blocks

b1 = {n1, n2, n3, n4, n5, n6, n7, n8, n9, n11} , b2 = {n10, n12},

from which we can extract the refined process

Rr
Γ;P(P) = role R1.a(x).([x = br]ar〈x〉 |

[x = s](νc : S)(ar〈x〉 | yield R1.role R2.as〈cr〉))
�

The correctness of the approach can be stated as follows; some details on the proof are in Appen-
dix A.2. Recall from the definition of the type system that r can run P if Γ;U(r) `(U;P)

r P.

Proposition 4.2. Let S = (U;P) be a RBAC schema and P be a finite process without role/yield to
be run by user r. Then

1. Γ;U(r) `Sr P implies that Rr
Γ;P(P) is defined;

2. symmetrically, Γ respects U and Rr
Γ;P(P) = P′ imply that Γ; ∅ `Sr P′.

Intuitively, the first implication ensures that every process P that can be run by r under the schema
S can be properly annotated with actions role and yield. The second implication states that the
result of the annotation procedure we have just presented is a well-typed process for r in the schema
given. Notice that Rr

Γ;P(P) is the minimal typeable process obtained from P by adding actions
role/yield: this is an easy corollary of Propositions 4.1 and 4.2(2).

Finally, by Proposition 4.1, the overall procedure is linear in the size of P (i.e., in the number of its
operators). Indeed, |V | is proportional to the size of P andU(r) is an upper bound to the sets annotating
the nodes of the tree (usually, |U(r)| is a small constant). This is the best asymptotic performance we
could aim at, since we at least have to parse all P to properly add actions role/yield.

Least Privilege. Example 5 can be easily adapted to enforce the least privilege property [22, 26].
This is a well-known property requiring that every program and every user of the system operate
using the least set of privileges necessary to complete their job.3 Primarily, this principle limits the
damage that can result from an accident or error. It also reduces the number of potential interactions
among privileged programs to the minimum for correct operation, so that unintentional, unwanted, or
improper uses of privileges are less likely to occur.

3To be precise, one should use the term minimal privilege instead of least privilege. Indeed, imagine that you have only
two r ôles, R1 and R2, such that R1 enables actions {R?, S !} and R2 enables actions {R?, S ?}; then, it is unclear which one would
be the r ôle giving the least privilege to execute an input from a channel of r ôle R. Nevertheless, the current terminology in
computer security uses the word “least” instead of “minimal”; we adhere to this trend.

20

In our setting, we can say that a user r satisfies this property w.r.t. a schema (U;P) while
running in A if, whenever A 7−→∗ (νãr : R̃)(A′ ‖ r{|α.P |}ρ), it holds that ρ is a minimal (w.r.t.
|P(·)|, i.e. the cardinality of the set of privileges associated to ·) set of r ôles assignable to
r that enables α. The approach presented in this section can be easily adapted to encompass
the least privilege. The only thing we need to modify in the algorithm given above is the
definition of function φ when building the tree for a process prefixed by action α. Let v be
the node associated to α. By letting enable(v) = {R ∈ Γ{r} : P(R) enable action α}, we let
φ(v) = {R ∈ enable(v) : |P(R)| = minS ∈ enable(v){ |P(S)| } }.

Example 7. Consider a user r that connects to a mail server to read his e-mail and changes
his password before quitting. Suppose that (U;P) is such that {user, admin} ⊆ U(r),
U(logine−server) = login, U(read mailr) = read mail, U(change pwde−server) = change pwd,
{login!, read mail?} ⊆ P(user) and P(admin) = P(user)∪ {change pwd!}. Remarkably, the r ôle
admin gives r the permission to change his password. The following two systems

A1 = r{| logine−server〈pwd〉.read mail(x).change pwde−server〈pwd′〉 |}{admin}
A2 = r{| logine−server〈pwd〉.read mail(x).role admin.

change pwde−server〈pwd′〉.yield admin |}{user}

are both well-typed in (U,P). However, they differ in the auxiliary actions used: system A2 satisfies
the least-privilege requirement, since at each execution step user r owns a minimal set of permissions
required to execute the action, while A1 does not, since it activated the r ôle admin also to login and
read mails. �

5 Possible Extensions of the Core RBAC Model

There is a wide spectrum of RBAC models differing on the operations supported. For example, [10,
23] propose various extensions of the core RBAC96 model we have used up to now, that in loc. cit. is
referred to as RBAC0. In particular, two variants are proposed: RBAC1, adding r ôle hierarchies, and
RBAC2, introducing constraints to permissions a user can exploit. In this section, we describe how
these extensions can be easily expressed also in our framework.

5.1 Hierarchical RBAC

Hierarchies are a natural means for structuring r ôles to reflect the organisational structure of an enter-
prise. A hierarchy is a partial order defining a seniority relation between r ôles, whereby senior r ôles
acquire the permissions of their juniors, and junior r ôles acquire the users authorised for their senior
r ôles. For example, in a health-care scenario, a r ôle cardiologist is hierarchically superior to the
r ôle doctor, thus the cardiologist should have all the permissions of the doctor as well, and all the
users that are authorised for the cardiologist r ôle should be authorised also for the doctor r ôle.
This approach can increase the administrative efficiency of the enterprise: rather than specifying all
the permissions of the junior r ôle for the senior r ôle, the junior r ôle is specified as a permission of the
senior r ôle.

Our framework can be easily extended to express r ôle hierarchies by adding a third component �,
a partial order on R, to the RBAC schema which becomes a triplet (U;P;�). More specifically, when
R � S , R is a junior rôle of S or, similarly, S is a senior rôle of R. Once a hierarchical RBAC schema

21

(U;P;�) has been fixed, we can define the set of junior r ôles with respect to a given r ôle R, or to a
given set of r ôles ρ, as jnr(R) , {S : S � R} and jnr(ρ) ,

⋃
R ∈ρ jnr(R). Then, we may re-define

P(ρ) as P(ρ) ,
⋃

R ∈ jnr(ρ) P(R) and adapt both the type system and the barbed congruence take into
account the hierarchy relation. In particular, in Definition 3.3.3(a) we can also extend the partial order
� with all �′ such that � ∪ �′ is still a partial order. These modifications suffice to let the theory
presented in Sections 2 and 3 properly work.

Example 8. Consider the health-care scenario again. In a hospital there is often a strict hierarchy
establishing which operations are permitted depending on the position of the different employees.
For example, the r ôle specialist usually contains the r ôles doctor and intern. This means that
users activating r ôle specialist are implicitly associated also with the permissions associated with
the doctor and intern r ôles, without the administrator having to explicitly list the doctor and
intern permissions. This is an example of multiple inheritance, which provides us with the ability
to inherit permissions from two or more r ôle sources. Indeed, a r ôle is composed from multiple
subordinate r ôles with fewer permissions as in the organisation and business structure which these
r ôles are intended to represent.

This hierarchy can be expressed by having intern � specialist and doctor � specialist.
Moreover, the r ôles cardiologist and radiologist could each contain the specialist r ôle. In
this case, we also let specialist � cardiologist and specialist � radiologist, leading to,
e.g., jnr(radiologist) = {radiologist, specialist, doctor, intern}. Now let

U(prescr aspirinpatient) = prescr aspirin

U(use XRayshospital) = use XRays

prescribe aspirin! ∈ P(doctor)
use XRays! ∈ P(radiologist)

then the user

r{| role radiologist. use XRayshospital〈patient〉. prescr aspirinpatient 〈posology〉 |}∅

is typeable by only assuming that U(r) = {radiologist}. �

5.2 Constrained RBAC

The core RBAC model can be further extended by requiring different kinds of constraints to be sat-
isfied before allowing a user to activate a r ôle, or when defining the RBAC schema. According
to [11], there are two possible forms of constraints: static and dynamic. The first ones deal with
the permissions-to-r ôles and with the r ôles-to-users assignments. For example, it might be required
that a user cannot be assigned some specified r ôles at the same time, or that the same permission is not
assigned to different r ôles. These constraints are usually enforced during the definition of the RBAC
schema [1, 16, 17, 25]. On the contrary, dynamic constraints deal with user sessions. By exploiting
this form of constraints, it is possible, e.g., to assign to the same user two conflicting r ôles, although
requiring that these r ôles are never activated simultaneously (for most practical purposes, this kind of
requirement suffices).

We can easily extend our framework to deal in a uniform way also with different dynamic con-
straints. In this case, another component C is added to the RBAC schema. C is a finite set of binary
predicates (that in this paper we assume to be first-order logic formulae built up over the atoms R)
relating a r ôle and a set of r ôles. Given a constrained RBAC schema (U;P;C), we let C(R, ρ) be

22

∧
constr ∈C constr(R, ρ). As for the hierarchy extension, both the type system and the barbed congru-

ence must be parameterised also with respect to C. Moreover, in rule (T-R ̂), the premise C(R, ρ)
must be added. With respect to Definition 3.3.3(a), we want to remark that extending C usually re-
duces the set of possible evolutions. Thus, instead of requiring that the equivalence holds in every
extended schema, we now require that the equivalence is preserved when making the schema more
liberal, i.e. when reducing the set of constraints.

By adapting the logic formulae in C to different situations, we are able to express the most typical
examples of constraints:

1. Mutual exclusion: the same user can activate simultaneously at most one r ôle in a mutually
exclusive set. For example, if r ôles R and S are mutually exclusive, R cannot be activated in a
user session where r ôle S is already active, and vice-versa. This can be formalised as

constr R⊕ S (R′, ρ) , ((R′ = R)⇒ (S < ρ)) ∧ ((R′ = S)⇒ (R < ρ))

2. Prerequisite rôle: a user can activate r ôle R only if he has already activated r ôle S . This can be
written as

constrS→R(R′, ρ) , (R′ = R)⇒ (S ∈ ρ)

3. Cardinality constraints (1): at most n r ôles can be activated in each user session. This can be
expressed as

constr|·| ≤ n(R, ρ) , | ρ ∪ {R} | ≤ n

4. Cardinality constraints (2): each user can own at most n permissions simultaneously. This can
be enforced by requiring that

constr|P(·)| ≤ n(R, ρ) , |P({R} ∪ ρ)| ≤ n

Example 9 (Prerequisite r ôle). The concept of prerequisite rôle is based on competency: in some
circumstances, one may want to require a r ôle to be activated only by a user already playing a certain
r ôle. For example, a common feature of a bank policy is to require an authentication phase to identify
clients before any sensible operation, like money withdrawal. In practice, this amounts to ask for a
valid identity document or a secret code/password. In our refined framework, this scenario can be
modelled by letting the RBAC schema (U;P;C) be such that {client, authenticated} ∈ U(r),
U(wdrwbank) = wdrw, wdrw! ∈ P(client) and constrauthenticated→client ∈ C. Hence, client

r{| role client.wdrwbank〈amount〉 |}∅

cannot be typed, as the activation of r ôle client is forbidden by C, while client

r{| role authenticated.role client.wdrwbank〈amount〉 |}∅

can be typed. �

Example 10 (Mutual Exclusion). For the sake of fairness, sometimes it is desirable to control the
distribution of sensible permissions; e.g., a user willing to perform a sensible operation should be
different from the user in charge of controlling the legality of such an operation. Consider a scenario
where some scientists submit a paper to a journal. Clearly, the reviewers of that paper cannot be
chosen among the authors of the paper itself. This requirement can be modelled in our framework
by having two r ôles, paperP : author and paperP : reviewer, such that C contains the constraint
constrpaperP:author⊕ paperP:reviewer. �

23

6 Related Work

To the best of our knowledge, no previous study building on process-calculi has ever been conducted
on RBAC. A number of papers have instead dealt with the formal specification and verification of
RBAC schemata. In [16, 25] formal methods are used only to verify the correctness of the schema
definition but not of the whole system. In [25], the ALLOY language is used to detect possible con-
flicts in RBAC schemata supporting simultaneously delegation of authority and separation of duties.
A constraint analyser allows the schema validation to be computed automatically. In [16, 17], the au-
thors use a graph transformation which combines an intuitive visual description of the RBAC schema
with solid semantical foundations. In [1], Ahn et al. introduce a formal language for the specification
of more sophisticated r ôle-based authorisation constraints, such as prohibition and obligation con-
straints. These approaches are complementary to ours: they can be integrated with our technique in
order to verify the consistency of a schema S, but they do not give any hint about the correct execution
of a system as our method does.

In [3], Bertino et al. develop a logical framework for reasoning about access control models. The
framework is general enough to model discretionary, mandatory and r ôle-based access control models.
Such a framework is useful for comparing the expressive power of the models, but it cannot be used
to verify the correct execution of a system under a given schema.

Probably, the most related work, although not aiming at studying RBAC systems, is [6], insofar as
r ôles can be understood as (privilege) groups. Groups are introduced in loc. cit. as types for channels,
and used to limit their visibility. A type system ensures that channels belonging to a fresh group
can be only used by processes within the initial scope of the group. Thus, processes can access
channels according to their physical distribution (with respect to group restrictions). In our work
this feature is modified so that not only the place where the process runs (i.e., the user running the
process) but also its execution history (i.e., the user session where the process runs and the associated
activations/deactivations of r ôles) is relevant to execute an action. E.g., outputs over ar of group R can
be executed only by processes whose user r is such that R! ∈ P(U(r)); moreover, such an action must
be enabled by at least one of the r ôles active in r’s session. The set of such sessions changes according
to the computation and, thus, the processes enabled to access a channel change dynamically. In this
sense, this work can be seen as a calculus of dynamic groups.

Acknowledgements. This work has been partially supported by EU FET – Global Computing ini-
tiative, projects MIKADO IST-2001-32222 and MyThS IST-2001-32617, and by the FIRB project
RBAU018RCZ 002. The funding bodies are not responsible for any use that might be made of the
results presented here.

A first draft of this paper has been improved by following the valuable suggestions and comments
of the CSFW’04 and of the JCS anonymous referees. The second author is very grateful to Angelo
Monti for his fundamental support in the development of the algorithm in Table 6.

A Technical Proofs

In this section, we give details on the proofs omitted from the body of the paper.

A.1 Proofs of Section 2

To prove subject reduction, we first need three lemmata, that are standard results for a type system.
The first one states that names can be replaced with other names of the same type. The second

24

one states that enlarging the assumptions in a type judgement does not compromise the inference of
the judgement itself. Finally, the third result states that well-typedness is an invariant of structural
congruence. To prove the latter, we formally define a system context, as ≡ is closed under all such
contexts. Formally, a context C[·] is a system with an occurrence of a ‘hole’ to be filled with any
system A, thus yielding C[A]. Formally,

C[·] ::= [·] | C[·] ‖ B | (νar :R)C[·]

Lemma A.1 (Substitution). If Γ, x : T,Γ′; ρ `Sr P and Γ ` n : T, then Γ,Γ′; ρ `Sr P[n/x].

Proof. The proof is by induction on the depth of the inference of the type judgement Γ, x : T,Γ ′; ρ `Sr
P. The proof is quite standard and faithfully rephrases the corresponding result for the pure π-calculus;
thus, we omit it. �

Lemma A.2 (Weakening). If Γ `(U;P)A then Γ, ñ : T̃ `(U∪ñ:T̃ ;P∪P′)A for all P′ and ñ : T̃ such that
ñ ∩ dom(U) = ∅.

Proof. The proof is by induction on the depth of the inference for Γ `(U;P)A. �

Lemma A.3. If Γ `S A and A ≡ B, then Γ `S B.

Proof. By mutual induction on the depth of the inferences for A ≡ B and B ≡ A. Let us consider how
A ≡ B has been inferred; the case for B ≡ A is similar. The base case covers the axioms in Table 3. All
the cases are simple; we consider two samples, viz. (S-LC) and (S-E). Let A , r{| (νa :R)P |}ρ and
B , (νar : R)r{| P |}ρ (the converse is similar). By hypothesis, using rules (T-S) and (T-R), we
have that Γ ` r : ρ′[̃a : C̃], ρ ⊆ ρ′ and Γ, ar : R(T); ρ `Sr P; this suffices to conclude Γ `S B, by using
rules (T-S) and (T-SR). The case when A , (νar : R)A′ ‖ B′ and B , (νar : R)(A′ ‖ B′) is
similar (the converse is symmetric): the typing of A has been inferred via (T-SP) and (T-SR);
thus, B can be typed by using the same rules in the reverse order.

The inductive steps for symmetry and transitivity follow straightforwardly. For context closure,
let A , C[A1] and B , C[B1], for some A1 ≡ B1. We now work by induction on the structure of
C[·]. The base case is when C[·] , [·] and is trivial. For the inductive case, let us reason by case
analysis on the outermost operator of C[·]. If C[·] , D[·] ‖ Ā, then, by using (T-SP), we know by
hypothesis that Γ `SD[A1] and Γ `S Ā. By induction hypothesis, as D[·] is smaller than C[·], it holds
that Γ `SD[B1]; then, by (T-SP), Γ `S B. The case for C[·] , (νar :R)D[·] is similar, but relies on
(T-SR). �

Theorem 2.1 (Subject Reduction). If Γ `SA and A 7−→ A′, then Γ `SA′.

Proof. By induction on the depth of the derivation of A 7−→ A′.
Base Step: By case analysis on the axioms of the second part of Table 3.

(R-C) By hypothesis, we have that Γ `S r{| a(x).P |}ρ ‖ s{| ar〈n〉.Q |}ρ′ . Due to the form of the system
involved, (T-SP) is the last rule applied to deduce the type judgement, hence we also have
that Γ `S r{| a(x).P |}ρ and Γ `S s{| ar〈n〉.Q |}ρ′ . The latter two judgements must have been derived
by using (T-S), with Γ ` r : ρ′′[̃a : C̃] and ρ ⊆ ρ′′, Γ ` s : ρ′′′[̃a′ : C̃′] and ρ′ ⊆ ρ′′′,
Γ; ρ `Sr a(x).P and Γ; ρ′ `Ss ar〈n〉.Q. Judgement Γ; ρ `Sr a(x).P must have been derived by
using (T-I), with Γ ` ar : R(T) and Γ, x : T ; ρ `Sr P, whereas judgement Γ; ρ′ `Ss ar〈n〉.Q
must have been derived by using (T-O), with Γ ` ar : R(T), Γ ` n : T , and Γ; ρ′ `Ss Q.
By Lemma A.1, we get that Γ; ρ `Sr P[n/x]. By a double application of (T-S) and of
(T-SP), we get that Γ `P r{| P[n/x] |}ρ ‖ s{|Q |}ρ′ , as required.

25

(R-R) By hypothesis, we have that Γ `S r{| role R.P |}ρ. Due to the form of the system involved,
(T-S) is the last rule applied to deduce the type judgement, hence we also have that Γ `
r : ρ′ [̃a : C̃], ρ ⊆ ρ′ and Γ; ρ `Sr role R.P. Judgement Γ ` r : ρ′ [̃a : C̃] must have been derived
by using (T-I1), with Γ(r) = ρ′[̃a : C̃]; judgement Γ; ρ `Sr role R.P has been derived by using
(T-R ̂), with Γ ` r : ρ′[̃a′ : C̃′], Γ; ρ ∪ {R} `Sr P and R ∈ ρ′′. Then, ρ ∪ {R} ⊆ ρ′; by rule
(T-S), we can derive Γ `S r{| P |}ρ∪{R}, as required.

(R-Y) By hypothesis, we have that Γ `S r{| yield R.P |}ρ. Due to the form of the system involved,
(T-S) is the last rule applied to deduce the type judgement, hence we also have that Γ `
r : ρ′[̃a : C̃], Γ; ρ `Sr yield R.P and ρ ⊆ ρ′. Judgement Γ; ρ `Sr yield R.P has been derived by
using (T-Y), with Γ; ρ \ {R} `Sr P and R ∈ ρ. By applying rule (T-S) to Γ; ρ \ {R} `Sr P,
we can derive Γ `S r{| P |}ρ\{R}, as required.

Inductive Step: By case analysis of the last applied operational rule of the second part of Table 3.

(R-R) By definition, A , (νar :R)B and A′ , (νar :R)B′, where B 7−→ B′; moreover, by hypothesis,
we have that Γ `S (νar :R)B. By rule (T-SR), we have that Γ, ar: R(T) `S B, for some T . By
induction hypothesis, Γ, ar: R(T) `S B′ that, by rule (T-SR), implies Γ `S A′.

(R-P) By hypothesis, A , A1 ‖ B is well-typed; hence, A1 and B are well-typed too. Moreover,
A1 7−→ A′1 and the induction hypothesis imply that A′1 is well-typed; thus, A′1 ‖ B , A′ is
well-typed too.

(R-S) We now have that A ≡ A1 7−→ A2 ≡ A′. By well-typedness of A and Lemma A.3, it
follows that A1 is well-typed; by induction hypothesis, it follows that A2 is well-typed and,
again by Lemma A.3, A′ is well-typed. �

Theorem 2.2 (Type Safety). If A is well-typed in S, then A S cannot hold.

Proof. We prove the contrapositive, i.e. A S implies that A cannot be well-typed in S; this is done
by induction on the depth of the inference for A S. Let S be (U;P). For the base case, we consider
only one sample, namely when the judgement has been inferred via (E-I); the other cases are similar.
By definition, A is r{| b(x).P |}ρ and S ?

< P(ρ), for S = U(br). Thus, for any Γ respecting U, it cannot
hold that Γ; ρ `Sr b(x).P: indeed, the premises of rule (T-I) (that is the only applicable to infer the
judgement) cannot be satisfied.

For the inductive step, we only consider the case when the last rule used is (E-R); the cases
for (E-P) and (E-S) are simpler (the latter one relies on Lemma A.3). By definition, A is
(νar :R)B and B (U]{ar:R};P). By induction hypothesis, B cannot be well-typed in (U] {ar : R};P),
i.e. for every Γ respecting U] {ar : R}, judgement Γ `(U]{a

r:R};P) B cannot be inferred. Since Γ
respects U] {ar : R}, it must be that Γ = Γ′, ar : R; this easily implies that there is no Γ′ such that
Γ′ `S (νar :R)B, as desired. �

A.2 Proofs of Section 4

Proposition 4.1. Function can be used to induce a partition of t’s nodes in subtrees satisfying
the requirements of the minimal partition. Moreover, the overall procedure takes O(|V | × K 2), where
K is the size of the largest set annotating a node of the tree.

Proof. Having computed function (·), we proceed in the following way:

26

Visit t in preorder
When visiting the node v do

if v = rt or (v) , ((v))
then add v in a new block
else add v in the block of (v)

It should be clear that the output of this procedure is a partition of V (no block is empty and each node
is inserted in exactly one block); we call it the partition induced by (·). We have to prove that
this partition satisfies the following conditions: (a) each block is a subtree of t; (b) each block β is
such that ∃R ∈ R ∀v ∈ β : R ∈ φ(v) (in this case, we call R the pivot for β); (c) it has the minimum
number of blocks satisfying the previous two properties.

Condition (a) is proved by induction on the size of the generic block β. The base case is for β = {v}
and is trivial, as a single node is a subtree of t. For the inductive step, let β = β′ ∪ {v}, where v is
the last node added by the above procedure. By construction, it must be that (v) ∈ β′ and, by
induction hypothesis, β′ is a subtree of t. Thus, easily, also β is a subtree of t. Condition (b) is simple:
by construction, it holds that (v) = (v′) and (v) ∈ φ(v), for every v and v′ belonging to
β. Condition (c) easily follows, once we prove the following Lemma.

Lemma A.4 (Soundness of the algorithm in Table 6). If m[v,R] = h , ∞, then there
exists a partition of the subtree rooted in v with h blocks such that it satisfies conditions
(a) and (b) above, and R is the pivot of v’s block; moreover, each partition satisfying these
properties has at least h blocks.

Proof. By induction on the height of the tree rooted in v. For notational convenience, we
denote the subtree of t rooted in v as tv. The base case is when v is a leaf and is trivial. For
the inductive step, we only consider the case when v has just one child, v′; the case when
v has two children is similar. Since m[v,R] , ∞, it holds that R ∈ φ(v); thus, R can be the
pivot of v’s block. Since (·) is defined (by the hypothesis of Proposition 4.1), there
must exist S ∈ φ(v′); thus, m[v′, S] , ∞. By induction hypothesis, there exists a partition
of tv′ with m[v′, S] blocks that satisfies conditions (a) and (b), and with S as pivot of v′’s
block; moreover, each partition satisfying these properties has at least m[v′, S] blocks. If
R is not one of such S , then a minimal partition of tv with R as pivot of v’s block can be
obtained by putting v is a block on its own and by considering the partition of tv′ induced
by a S that minimises m[v′,]. Otherwise, adding v to the block of v′ in the partition
of tv′ induced by R could generate a minimal partition of tv or not. In the first case, the
partition of tv has m[v′,R] blocks; in the second case, we put v in a block on its own and
the resulting partition has m[v′,R] + 1 blocks. In both cases, it is easy to prove that no
partition with less blocks can exist. �

Now, let (rt) = R. Trivially, the partition induced by function (·) has m[rt,R] blocks; thus,
by Lemma A.4, each partition satisfying (a) and (b) has at least m[rt,R] blocks. This proves (c).

We conclude with the complexity of the overall algorithm. The algorithm in Table 6 to compute
m[,] works in O(|V | × K2). Indeed, matrix m has |V | rows and K columns, and each element of this
matrix is written exactly once. Moreover, to write a generic element m[v,R], we have to check whether
R ∈ φ(v) (this requires O(K), as |φ(v)| ≤ K) and to analyse the rows associated to the children of v (if
any); the latter task requires O(K), that leads the overall complexity to O(|V | × K 2). The algorithm
for computing function works in O(|V | × K). Indeed, for each node v, it has to compute mv:

27

this requires O(K), as it has to scan all the row of m associated to v. Finally, the partition induced by
(·) is derived by a preorder visit, that is linear in |V |. �

We now consider Proposition 4.2 and prove its two claims separately; for both of them, we only
present a key sample, leaving the other cases (that are similar) to the interested reader.

1. Let S = (U;P) be a RBAC schema and P be a finite process without role/yield to be run by
user r. Then Γ;U(r) `Sr P implies that Rr

Γ;P(P) is defined.

Proof. The proof is by structural induction on P. The base step is trivial: P is nil and, by definition,
Rr

Γ;P(nil) = nil. For the inductive step, we only consider the case for P = a(x).Q. By hypothesis
and by rule (T-I), we have that

Γ ` ar : R(T) R?∈ P(U(r)) Γ, x : T ;U(r) `Sr Q

Γ;U(r) `Sr P

By induction hypothesis, Rr
Γ,x:T ;P(Q) is defined; this implies that Tr

Γ,x:T ;P(Q) is defined and
is equipped with the matrix m[· , ·]. Now, by construction, Tr

Γ;P(P) is defined; moreover, it can be
equipped with a matrix m′[· , ·] such that

m′[x,R] =

m[x,R] if x is not the root of Tr
Γ;P(P)

min{ m[v′,R] ,
minS,R{m[v′, S]} + 1 } otherwise

where, in the second case, v′ is the root of Tr
Γ,x:T ;P(Q). By the premise of (T-I), we know that

there exists a r ôle S ∈ U(r) such that R?∈ P(S). This fact, together with the fact that Rr
Γ,x:T ;P(Q)

is defined, implies that there exists S ∈ U(r) such that m′[v, S] , ∞, where v is the root of Tr
Γ;P(P).

This fact suffices to conclude that Rr
Γ;P(P) is defined. �

2. Let S = (U;P) be a RBAC schema, Γ be a typing environment respecting U and P be a finite
process without role/yield to be run by user r. Then Rr

Γ;P(P) = P′ implies that Γ; ∅ `Sr P′.

Proof. Again, the proof is by structural induction on P. The base step is trivial: P = P′ , nil and
Γ; ∅ `Sr nil. For the inductive step, we only consider the case for P = a(x).Q. By construction, we
have that P′ = role R.a(x).Q′, where R is the label of the root of Tr

Γ;P(P), that exists by hypothesis.
By construction, this latter fact implies that Tr

Γ,x:T ;P(Q) exists and that Γ ` ar : S (T), for some
r ôle S and type T . Let us now consider the matrix m′[· , ·] obtained from the matrix m[· , ·] for
Tr

Γ;P(P) by deleting the row associated with the root of Tr
Γ;P(P). We can now say that there

exists a r ôle R′ such that m′[v′,R′] , ∞, where v′ is the root of Tr
Γ,x:T ;P(Q).4 This suffices to

conclude that Rr
Γ,x:T ;P(Q) is defined; let us say that it returns the process Q′′. By induction

hypothesis, Γ, x : T ; ∅ `Sr Q′′. Again, by construction it must be that Q′′ = role R′′.Q̂; we now
consider the only possible cases:

4To see this, proceed by contradiction. Assume that, for all R′, m′[v′,R′] = ∞; then m[v,R′] = ∞, where v is the root of
TrΓ;P(P), for every r ôle R′ (see Table 6, second item). Thus, Rr

Γ;P(P) would be undefined, as function would
be. Contradiction.

28

• if (v) = (v′), i.e. R = R′′, then Q′ = Q̂. In this case, we have that

R ∈ Γ{r}

Γ ` ar : S (T) S ?∈ P(R) Γ, x : T ; {R} `Sr Q′

Γ; {R} `Sr a(x).Q′

Γ; ∅ `Sr P′

This inference holds by using rules (T-R ̂) and (T-I). Moreover, notice that R ∈ Γ{r} and
S ?∈ P(R) must hold, otherwise (v) cannot be R. Finally, Γ, x : T ; {R} `Sr Q′ is implied by
the induction hypothesis.

• if (v) , (v′), then Q′ = yield R.Q′′. This case is similar to the previous one, but
Γ, x : T ; {R} `Sr Q′ is inferred from the induction hypothesis, by using rule (T-Y). �

B Alternative Characterisation of Barbed Congruence

As pointed out in Section 3, barbed congruence is hard to prove because of its universal quantification
over language contexts. A standard way to overcome this problem is to reformulate the semantics
of the language via a labelled transition system (LTS for short), that makes apparent the external
interaction offered, and build up over it a bisimulation, adequate for barbed congruence. In this
section, we present a possible way to adapt known techniques to our framework; however, to make
the presentation lighter, most of the proofs in this section are only sketched; the interested reader is
referred to a technical report [5] for full details.

The LTS allows to study system components in isolation and compositionally. Thus, in general,
we cannot assume such components to be well-typed, as this would require a full knowledge of the
system. Hence, we embody in the LTS some dynamic policy checks. In this way, the LTS also
provides a tight operational specification for the minimal engine underlying any implementation of a
RBAC-based run-time system.

The standard way to describe the interactions a system can offer externally is by labelling the

system evolution with this information. Thus, we define a labelled transition system,
µ
−−→ , that makes

apparent the action performed (and, thus, the external interaction offered). In order to account for
systems’ r ôles varying over time, the LTS relates configurations, i.e. pairs S . A made up of a RBAC
schema S and a system A. Configurations are ranged over by D, E, The labels of the LTS are
derived from those of the π-calculus and can be described as follows.

µ ::= τ | arn | arn : R | arn | arn : R

Label τ represents an internal computation of the system. Labels arn and arn describe the intention
to send/receive value n, known to the environment, on/from channel ar. Labels arn : R and arn : R
are similar to but the value sent/received is ‘fresh’ (i.e. unknown to the environment) and has group
R. We now extend functions F() and B() to labels.

Label F() B()

τ ∅ ∅

arn {ar, n} ∅

arn {ar, n} ∅

arn : R {ar} {n}
arn : R {ar} {n}

29

(LTS-R̂)
R ∈ U(r)

(U;P) . r{| role R.P |}ρ
τ
−→ (U;P) . r{|P |}ρ∪{R}

(LTS-Y)
R ∈ ρ

S . r{| yield R.P |}ρ
τ
−→ S . r{|P |}ρ−{R}

(LTS-O)
U(as) = R R! ∈ P(ρ)

(U;P) . r{| as〈n〉.P |}ρ
asn
−−−→ (U;P) . r{|P |}ρ

(LTS-K-I)
U(ar) = R R? ∈ P(ρ) n ∈ dom(U)

(U;P) . r{| a(x).P |}ρ
arn
−−−→ (U;P) . r{| P[n/x] |}ρ

(LTS-F-I)
U(ar) = R R? ∈ P(ρ) n < dom(U)

(U;P) . r{| a(x).P |}ρ
arn:S
−−−−−→ (U] {n : S };P) . r{|P[n/x] |}ρ

Table 7: Axioms for the Labelled Transition System

The definition of
µ
−−→ is given in Tables 7 and 8. The overall structure of the LTS is similar to

π-calculus’ early-style one (see, e.g., [24]) and implicitly assumes alpha-conversion. The premises of
rules (LTS-K-I), (LTS-F-I), (LTS-O), (LTS-R ̂) and (LTS-Y) adapt respectively
the premises of the typing rules (T-I), (T-O), (T-R ̂) and (T-Y), and block the evolu-
tion of ill-typed systems. Rule (LTS-K-I) can be applied when the received value is known to the
schema, while (LTS-F-I) is used when a fresh value (i.e. unknown to the schema) is received. In
this case, the schema is extended to record the group of the fresh value. Similarly, when extruding a
restricted channel bs, rule (LTS-O) enlarges the relation U of the current configuration by record-
ing that bs has the r ôle declared in the restriction. The information about a fresh/extruded channel is
deleted from the schema when the channel is communicated: indeed, the restriction is pushed back
in the system and closes the scope of the channel – cf. rule (LTS-C). Notice that a bound output
can synchronise only with a fresh input (and vice versa), and the r ôle declared for the extruded/fresh
channel must be the same. Also observe that τ-moves do not modify the schema S.

The semantics given in Table 3 and the LTS just presented are related by the following Proposition.

Proposition B.1. If S . A
τ
−→ S . A′, then A 7−→ A′. Conversely, if A is well-typed in S, then

A 7−→ A′ implies S . A
τ
−→ S . B, for some B ≡ A′.

Proof. The first statement is proved by a simple induction over the depth of the inference for
τ
−→ .

The second statement is proved by induction over the depth of the shortest inference for 7−→. The
only complicate case is when the last rule applied to infer the reduction is (R-S), i.e. A ≡ B, and
B 7−→ B′ and B′ ≡ A′. We proceed by mutual induction on the depth of the inferences for A ≡ B and
B ≡ A. We reason on A ≡ B, but everything can be rephrased for B ≡ A. Moreover, we assume that
the last rule to infer B 7−→ B′ is not (R-S), otherwise the original inference of A 7−→ A′ could be
shortened, thanks to transitivity of ≡.

All the base cases are simple, except when we use rule (S-E) from left to right, i.e. when
A , (νar :R)A1 ‖ B1 and B , (νar :R)(A1 ‖ B1). By hypothesis, we have that ar

< F(B1); moreover,

by induction hypothesis, (νar : R)(A1 ‖ B1)
τ
−→ B′ (to simplify notations, in what follows we shall

omit the RBAC schema S whenever it does not come into the picture). By definition of the LTS,

30

(LTS-C)

S . A
arn
−−−→ S . A′ S . B

ar n
−−−→ S . B′

S . A ‖ B
τ
−→ S . A′ ‖ B′

(LTS-R)

(U] {ar:R};P) . A
µ
−−→ (U] {ar:R};P) . A′ ar

< F(µ)

(U;P) . (νar:R)A
µ
−−→ (U;P) . (νar :R)A′

(LTS-O)

(U] {bs:S };P) . A
ar bs

−−−−→ (U] {bs:S };P) . A′ ar
, bs

(U;P) . (νbs:S)A
ar bs:S
−−−−−→ (U] {bs:S };P) . A′

(LTS-C)

S . A
arbs:S
−−−−−→ S′ . A′ S . B

arbs :S
−−−−−→ S′ . B′ bs

< F(A)

S . A ‖ B
τ
−→ S . (νbs :S)(A′ ‖ B′)

(LTS-P)

S . A
µ
−−→ S′ . A′ B(µ) ∩ F(B) = ∅

S . A ‖ B
µ
−−→ S′ . A′ ‖ B

(LTS-R)

S . r{| P | !P |}ρ
µ
−−→ S′ . A

S . r{| !P |}ρ
µ
−−→ S′ . A

(LTS-E)

S . (νar :R)r{| P |}ρ
µ
−−→ S′ . A a , r

S . r{| (νa :R)P |}ρ
µ
−−→ S′ . A

(LTS-E)

S . r{| P |}ρ
µ
−−→ S′ . A

S . r{| [n = n]P |}ρ
µ
−−→ S′ . A

(LTS-S)

S . r{|P |}ρ ‖ r{|Q |}ρ
µ
−−→ S′ . A

S . r{|P | Q |}ρ
µ
−−→ S′ . A

plus the symmetric version of rules of (LTS-P), (LTS-C) and (LTS-C)

Table 8: Inference Rules for the Labelled Transition System

(LTS-R) is the last rule to infer such judgement; hence, A1 ‖ B1
τ
−→ A2, where B′ , (νar :R)A2. We

now examine how this τ-step could have been generated.

1. A1
τ
−→ A′1 and A2 , A′1 ‖ B1. Then, trivially, (νar : R)A1

τ
−→ (νar : R)A′1; hence A , (νar :

R)A1 ‖ B1
τ
−→ (νar :R)A′1 ‖ B1 ≡ (νar :R)(A′1 ‖ B1) ≡ B′ ≡ A′.

2. B1
τ
−→ B′1 and A2 , A1 ‖ B′1. Similar.

3. A1
bsn
−−−→ A′1, B1

bsn
−−−→ B′1 and A2 , A′1 ‖ B′1. Since ar

< F(B1), we have that ar
< {bs, n}. Thus,

(νar :R)A1
bsn
−−−→ (νar :R)A′1; hence A

τ
−→ (νar :R)A′1 ‖ B′1 ≡ A′.

4. A1
bsn
−−−→ A′1 (for n , ar), B1

bsn
−−−→ B′1 and A2 , A′1 ‖ B′1. Similar.

31

5. A1
bsar

−−−−→ A′1, B1
bsar

−−−−→ B′1 and A2 , A′1 ‖ B′1. Again, bs
, ar; thus, by rule (LTS-O),

(U;P) . (νar : R)A1
bsar :R
−−−−−→ (U] {ar : R};P) . A′1. By using (the symmetric version of)

rule (LTS-C), that can be used because ar
< F(B1), we have that A , (νar : R)A1 ‖

B1
τ
−→ (νar :R)(A′1 ‖ B′1) ≡ A′.

6. A1
bsar

−−−−→ A′1 and B1
bsar

−−−−→ B′1. This case is not possible, as ar
< F(B1).

When A ≡ B has been inferred by symmetry and transitivity of ≡, the claim can be proved by an easy
induction. When A , C[A1], B , C[B1] and A1 ≡ B1, we reason by induction on the structure of C[·].
The base case is trivial. When C[·] , D[·] ‖ Ā, the last rule to infer D[B1] ‖ Ā 7−→ B′ is (R-P);
thus, by induction hypothesis and (LTS-P) we can conclude. The case for C[·] , (νar : R)D[·] is
similar, by using rules (R-R) and (LTS-R). �

Next, we build upon this LTS a standard bisimulation. As usual, =⇒ denotes the reflexive and

transitive closure of
τ
−→ , and

µ
==⇒ denotes =⇒

µ
−−→=⇒ . Finally,

µ̂
==⇒ is =⇒ if µ = τ, and

µ
==⇒

otherwise.

Definition B.1 (Bisimilarity). A bisimulation is a binary symmetric relation< between configurations

such that, if (D, E) ∈ < and D
µ
−−→ D′, there exists a configuration E′ such that E

µ̂
==⇒ E′ and (D′, E′) ∈

<. Bisimilarity, ≈, is the largest bisimulation.

We now state and prove some properties of ≈ . First, we consider the congruence properties of
≈ ; then, we prove that it is a sound proof technique for barbed congruence.

Theorem B.2 (Congruence Properties of ≈). The following facts hold.

1. If S1 . A1 ≈ S2 . A2 and S1 . B ≈ S2 . B, then S1 . A1 ‖ B ≈ S2 . A2 ‖ B .

2. If (U1] {ar : R};P1) . A1 ≈ (U2] {ar : R};P2) . A2, then (U1;P1) . (νar : R)A1 ≈

(U2;P2) . (νar :R)A2.

To prove Theorem B.2, we first need some preliminary results for the LTS and for the relation
≈. We write ar ∈ F(A, µ, b̃s, dom(U)) to mean that ar ∈ F(A) ∪ F(µ) ∪ b̃s ∪ dom(U); derived
notations have a similar meaning. A channel ar is said to be fresh for if it does not occur in , i.e. if
ar
< F()∪ B(); we shall not specify whenever it refers all the entities (i.e. systems, schemata,

sets of channels, . . .) involved, and simply say that ar is fresh. Moreover, bs : S denotes either
arbs : S or arbs : S ; similarly, ar denotes either arn or arn : S .

Lemma B.3. The following facts hold.

1. If (U;P) . A
µ
−−→ (U′;P) . A′ and ar fresh, then (U[ar

/br];P) . A[ar
/br]

µ[a
r
/br]

−−−−−−→ (U′[ar
/br];P) .

A′[ar
/br].

2. Let (U]{ar :R};P) . A
µ
−−→ (U′]{ar :R};P) . A′ and ar

< F(A). If ar ∈ F(µ), then µ = bsar

and (U;P) . A
bsar :R
−−−−−→ (U] {ar :R};P) . A′; otherwise, (U;P) . A

µ
−−→ (U′;P) . A′.

3. If (U1;P1) . A ≈ (U2;P2) . B and ar is fresh, then (U1] {ar : R};P1) . A ≈ (U2] {ar :
R};P2) . B.

32

Proof. The first claim is proved by an easy induction over the depth of the inference for
µ
−−→ .

The second claim is proved as follows. Let ar ∈ F(µ). Since ar is fresh for A, it can only be

µ = bsar; thus, by rule (LTS-F-I), (U;P) . A
bsar :R
−−−−−→ (U] {ar :R};P) . A′. On the contrary, if

ar
< F(µ), then ar is fresh for A, µ and dom(U); Thus, it is easy to prove, by induction on the depth

of the inference for
µ
−−→ , that (U;P) . A

µ
−−→ (U′;P) . A′.

Finally, the last claim is proved by showing that the relation

< , ≈ ∪ {((U1] {ar :R};P1) . A , (U2] {ar :R};P2) . B) :
(U2;P2) . A ≈ (U2;P2) . B ∧ ar

< F(A, B)}

is a bisimulation. Consider (U1] {ar :R};P1) . A
µ
−−→ (U′1] {a

r :R};P1) . A′. Because of case (2) of

this Proposition, if ar occurs in µ then µmust be bsar for some bs and (U1;P1) . A
bsar :R
−−−−−→ (U1]{ar :

R};P1) . A′. Thus, (U2;P2) . B
bsar :R
=====⇒ (U2] {ar : R};P2) . B′ and (U1] {ar : R};P1) . A′ ≈

(U2] {ar :R};P2) . B′. This implies that (U2] {ar :R};P2) . B
bsar

====⇒ (U2] {ar :R};P2) . B′ and
((U1] {ar : R};P1) . A′ , (U2] {ar : R};P2) . B′) ∈ <. The case when ar does not occur in µ is
simpler; just notice that, upon transitions, ar still remains fresh. �

Proof of Theorem B.2 Both the clauses of the theorem are proved once shown that relation

< , { ((U1;P1) . (ν ãr : R̃)(A1 ‖ B) , (U2;P2) . (ν ãr : R̃)(A2 ‖ B)) :
(U1] ãr : R̃;P1) . A1 ≈ (U2] ãr : R̃;P2) . A2 ∧

(U1] ãr : R̃;P1) . B ≈ (U2] ãr : R̃;P2) . B }

is a bisimulation. Let (U1;P1) . (ν ãr : R̃)(A1 ‖ B)
µ
−−→ (U′1;P1) . Ā1; by definition of the LTS, it

can only be one of the following cases.

1. (U1] ãr : R̃;P1) . A1
µ
−−→ (U′1] ãr : R̃;P1) . A′1 for B(µ) ∩ F(B) = ∅. Thus, Ā1 ,

(ν ãr : R̃)(A′1 ‖ B). By hypothesis, (U2] ãr : R̃;P2) . A2
µ̂
==⇒ (U′2] ãr : R̃;P2) . A′2 and

(U′1] ãr : R̃;P1) . A′1 ≈ (U′2] ãr : R̃;P2) . A′2. This implies that (U2;P2) . (ν ãr : R̃)(A2 ‖

B)
µ̂
==⇒ (U′2;P2) . (ν ãr : R̃)(A′2 ‖ B) and ((U′1;P1) . (ν ãr : R̃)(A′1 ‖ B) , (U′2;P2) . (ν ãr :

R̃)(A′2 ‖ B)) ∈ <. Indeed, if B(µ) = ∅ then U′i = Ui and the claim is trivial. Otherwise,
µ = bs : S for some S and U′i = Ui] {bs : S }. By hypothesis, bs is fresh for B and, thus, by
Proposition B.3(3) it holds that ((U′1] ãr : R̃;P1) . B ≈ (U′2] ãr : R̃;P2) . B.

2. (U1]ãr : R̃;P1) . B
µ
−−→ (U′1]ãr : R̃;P1) . B′ for B(µ)∩ F(A1) = ∅. By Proposition B.3(1),

the transition can be inferred also upon renaming of the (possible) bound channel in µ into a
channel fresh also for A2. The proof then proceeds like in the case 1.

3. µ = arbs : S and (U1] ãr : R̃;P1) . A1
arbs

−−−−→ (U1] ãr : R̃;P1) . A′1 for bs : S ∈ ãr : R̃ and

bs
< F(B). By letting c̃t : R̃′ be the set ãr : R̃ \ {bs : S }, we have that Ā1 , (ν c̃t : R̃′)(A′1 ‖ B)

and U′1 = U] {b
s : S }. By hypothesis, (U2] ãr : R̃;P2) . A2

arbs

====⇒ (U2] ãr : R̃;P2) . A′2
and (U1] ãr : R̃;P1) . A′1 ≈ (U2] ãr : R̃;P2) . A′2. This implies that (U2;P2) . (ν ãr :

R̃)(A2 ‖ B)
arbs:S
=====⇒ (U′2;P2) . (ν c̃t : R̃′)(A′2 ‖ B), forU′2 = U2]{bs :S }, and ((U′1;P1) . (ν c̃t :

R̃′)(A′1 ‖ B) , (U′2;P2) . (ν c̃t : R̃′)(A′2 ‖ B) ∈ <.

33

4. The case when µ = arbs : S and (U1] ãr : R̃;P1) . B
arbs

−−−−→ (U1] ãr : R̃;P1) . B′ for
bs :S ∈ ãr : R̃ is similar to case 3.

5. µ = τ, (U1] ãr : R̃;P1) . A1
arbs

−−−−→ (U1] ãr : R̃;P1) . A′1 and (U1] ãr : R̃;P1) .

B
arbs

−−−−→ (U1] ãr : R̃;P1) . B′. Thus, Ā1 , (ν ãr : R̃)(A′1 ‖ B′). By hypothesis, (U2] ãr :

R̃;P2) . A2
arbs

====⇒ (U2] ãr : R̃;P2) . A′2 and (U1] ãr : R̃;P1) . A′1 ≈ (U2] ãr : R̃;P2) . A′2.

Similarly, (U2] ãr : R̃;P2) . B
arbs

====⇒ (U2] ãr : R̃;P2) . B′ and (U1] ãr : R̃;P1) . B′ ≈
(U2] ãr : R̃;P2) . B′. Hence, (U2;P2) . (ν ãr : R̃)(A2 ‖ B) =⇒ (U2;P2) . (ν ãr : R̃)(A′2 ‖ B′)
and ((U1;P1) . (ν ãr : R̃)(A′1 ‖ B′) , (U2;P2) . (ν ãr : R̃)(A′2 ‖ B′)) ∈ <.

6. The case for µ = τ, (U1] ãr : R̃;P1) . A1
arbs

−−−−→ (U1] ãr : R̃;P1) . A′1 and (U1] ãr :

R̃;P1) . B
arbs

−−−−→ (U1] ãr : R̃;P1) . B′ is similar to case 5.

7. µ = τ, (U1] ãr : R̃;P1) . A1
arbs:S
−−−−−→ (U1] ãr : R̃] {bs : S };P1) . A′1 and (U1] ãr :

R̃;P1) . B
arbs:S
−−−−−→ (U1] ãr : R̃] {bs: S };P1) . B′. Thus, Ā1 , (ν ãr : R̃, bs : S)(A′1 ‖ B′). By

hypothesis, (U2] ãr : R̃;P2) . A2
arbs:S
=====⇒ (U2] ãr : R̃]{bs:S };P2) . A′2 and (U1] ãr : R̃]{bs:

S };P1) . A′1 ≈ (U2]ãr : R̃]{bs:S };P2) . A′2. Similarly, (U2]ãr : R̃;P2) . B
arbs:S
=====⇒ (U2]ãr :

R̃]{bs:S };P2) . B′ and (U1]ãr : R̃]{bs:S };P1) . B′ ≈ (U2]ãr : R̃]{bs:S };P2) . B′. Hence,
(U2;P2) . (ν ãr : R̃)(A2 ‖ B) =⇒ (U2;P2) . (ν ãr : R̃, bs: S)(A′2 ‖ B′) and ((U1;P1) . (ν ãr :
R̃, bs:S)(A′1 ‖ B′) , (U2;P2) . (ν ãr : R̃, bs:S)(A′2 ‖ B′)) ∈ <.

8. The case for µ = τ, (U1] ãr : R̃;P1) . A1
arbs:S
−−−−−→ (U1] ãr : R̃] {bs : S };P1) . A′1 and

(U1] ãr : R̃;P1) . B
arbs:S
−−−−−→ (U1] ãr : R̃] {bs:S };P1) . B′ is similar to case 7. �

We now turn to the main result of this section, i.e. that ≈ is a sound proof technique for � .
However, this result only holds for well-typed configurations, i.e. configurations S . A such that
A is well-typed in S. Indeed, as already said, ill-typed systems are not considered in the definition
of barbed congruence. Given a typing environment Γ, we let UΓ be the r ôles-to-users assignment
extracted from Γ, that is the least assignment such that, for any association r : ρ[̃a : R̃(T)] in Γ, it
holds that UΓ(r) = ρ and UΓ(ar) = R , for any a : R(T) ∈ ã : R̃(T). For notational convenience, we
write S . A ≈ S . B as S . A ≈ B.

Theorem B.4 (Soundness of ≈). Let S = (U;P), Γ `S A and Γ `S B. If (UΓ;P) . A ≈ B, then
Γ |=S A � B.

The proof relies on the following lemmata.

Proposition B.5. ≈ is an equivalence relation. Moreover, A ≡ B implies that S . A ≈ B, for all
RBAC schemata.

Proof. The first part trivially follows from Definition B.1. For the second part, we show that relation

< , {(S . A , S . B) : A ≡ B}

34

is a bisimulation. Let S . A
µ
−−→ S′ . A′. By mutual induction on the depth of the inferences for

A ≡ B and B ≡ A, we shall prove that S . B
µ
−−→ S′ . B′ and A′ ≡ B′; this suffices to prove

that (S′ . A′ , S′ . B′) ∈ <. The only tricky base case is when A , (νar : R)A1 ‖ B1 and
B , (νar : R)(A1 ‖ B1), for ar

< F(B1). Like in the proof of Theorem B.2 we have to examine eight
cases to distinguish how (νar : R)A1 ‖ B1 has generated µ. We only consider one of them; the other

ones are similar. Let S be (U;P) and A1
bsar

−−−−→ A′1; thus, µ = bsar : R, S′ = (U] {ar : R};P) and

A′ , A′1 ‖ B1. Then, easily, S . B
bsar :R
−−−−−→ S′ . A′1 ‖ B1; this suffices to conclude. For the inductive

step, symmetry and transitivity easily hold; thus, we only consider context closure, i.e. A , C[A1],
B , C[B1] and A1 ≡ B1. We now proceed by induction over the structure of the context. The base
step (when the context is [·]) is trivial. For the inductive step, we reason by case analysis on the last
operator used to build the context:

• C[·] , D[·] ‖ Ā. Then, S . D[A1] ‖ Ā
µ
−−→ S′ . A′ could have been inferred in eight ways (like

in the proof of Theorem B.2). When µ has been originated by Ā, then we trivially have that

S . B
µ
−−→ S′ . B′ and A′ ≡ B′. In all the other cases, it holds that S . D[A1]

µ′

−−→ S′′ . A′′,
for some µ′, S′′ and A′′. Since context D[·] is smaller than C[·], we can apply the induction

hypothesis and obtain that S . D[B1]
µ′

−−→ S′′ . B′′, for some B′′ ≡ A′′. Then, by mimicking

the steps leading from S . D[A1]
µ′

−−→ S′′ . A′′ to S . D[A1] ‖ Ā
µ
−−→ S′ . A′, we obtain that

S . D[B1] ‖ Ā
µ
−−→ S′ . B′, for some B′ ≡ A′.

• C[·] , (νar : R)D[·]. Then, by definition of the LTS, the last rule used to infer S . (νar :

R)D[A1]
µ
−−→ S′ . A′ can only be (LTS-R) or (LTS-O). In both cases, we have that S′′ .

D[A1]
µ′

−−→ S′′ . A′′, for some µ′, S′′ and A′′. The proof then proceeds like in the previous
case. �

Lemma B.6. Let S = (U;P). Then, the following facts hold.

1. If S . A
arn
−−−→ S . A′, then A ≡ (ν ãr : R̃)(B ‖ r{| ar(x).P |}ρ) for {ar, n}∩ ãr = ∅, n ∈ dom(U) and

A′ ≡ (ν ãr : R̃)(B ‖ r{| P[n/x] |}ρ). The converse holds true whenever R? ∈ P(ρ), forU(ar) = R.

2. If S . A
arn:R
−−−−−→ S′ . A′, then A ≡ (ν ãr : R̃)(B ‖ r{| ar(x).P |}ρ) for ar

< ãr, n < ãr ∪ dom(U),
S′ = (U] {n : R};P) and A′ ≡ (ν ãr : R̃)(B ‖ r{| P[n/x] |}ρ). The converse holds true whenever
R? ∈ P(ρ), forU(ar) = R.

3. If S . A
arn
−−−→ S . A′, then A ≡ (ν ãr : R̃)(B ‖ s{| ar〈n〉.P |}ρ) for {ar, n} ∩ ãr = ∅ and

A′ ≡ (ν ãr : R̃)(B ‖ s{| P |}ρ). The converse holds true whenever R! ∈ P(ρ), forU(ar) = R.

4. If S . A
arn:R
−−−−−→ S′ . A′, then A ≡ (νbs :R)(ν ãr : R̃)(B ‖ t{| ar〈bs〉.P |}ρ), n = bs, ar

< ãr ∪ {bs},
S′ = (U] {n : R};P) and A′ ≡ (ν ãr : R̃)(B ‖ t{| P |}ρ). The converse holds true whenever
R! ∈ P(ρ), forU(ar) = R.

Proof. The four points are all proved in the same way; we just sketch point 4. The first implication

is done by induction over the depth of the inference for
arn:R
−−−−−→ ; the second implication is based on

the definition of the LTS and is very simple. The base step requires the application of rules (LTS-
O) and (LTS-O), in sequence; thus, A , (νbs : R) t{| ar〈bs〉.P |}ρ, ar

, bs, A′ , t{| P |}ρ and

35

S′ = (U] {(νbs : R)};P). For the inductive step, we reason by case analysis on the last rule used
in the inference. We only explicitly consider (LTS-P); the case for (LTS-R) and (LTS-E) is

similar. By hypothesis, A , A1 ‖ A2, S . A1
arn:R
−−−−−→ S′ . A′1 and n < F(A2). By induction

hypothesis, A1 ≡ (νbs : R)(ν ãr : R̃)(B ‖ t{| ar〈bs〉.P |}ρ), n = bs, ar
< ãr ∪ {bs}, S′ = (U] {n : R};P)

and A′1 ≡ (ν ãr : R̃)(B ‖ t{| P |}ρ). Since ar
< F(A2), we can conclude, by rule (S-E), that

A ≡ (νbs : R)(ν ãr : R̃)(B ‖ A2 ‖ t{| ar〈bs〉.P |}ρ) and A′ ≡ (ν ãr : R̃)(B ‖ A2 ‖ t{| P |}ρ). This suffices
to conclude. �

Lemma B.7 (Weakening for ≈). If (U;P) . A ≈ B and A and B are well-typed in (U;P), then
(U]U′;P ∪ P′) . A ≈ B for allU′ and P′.

Proof. We have to prove that the relation

< , {((U]U′;P ∪ P′) . A , (U]U′;P ∪ P′) . B) : (U;P) . A ≈ B}

is a bisimulation. Let (U]U′;P ∪ P′) . A
µ
−−→ (U]U′]U′′;P ∪ P′) . A′. We now distinguish

on µ.

1. µ = arn. In this case,U′′ = ∅ and n ∈ dom(U]U′). We now distinguish whether n ∈ dom(U)
or n ∈ dom(U′).

(a) Let n ∈ dom(U); thus, because of well-typedness, (U;P) . A
µ
−−→ (U;P) . A′. By

hypothesis, (U;P) . B
µ
==⇒ (U;P) . B′ and (U;P) . A′ ≈ B′. Then, (U]U′;P∪P′) .

B
µ
==⇒ (U]U′;P∪P′) . B′ and ((U]U′;P∪P′) . A′ , (U]U′;P∪P′) . B′) ∈ <,

as required.

(b) Let n ∈ dom(U′); thus, (U;P) . A
arn:R
−−−−−→ (U]{n : R};P) . A′ for any R; in particular, we

can choose R ∈ U′(n) and letU = U′\{(n,R)}. By hypothesis, (U;P) . B
arn:R
=====⇒ (U]{n :

R};P) . B′ and (U] {n : R};P) . A′ ≈ B′. Then, (U] U′;P ∪ P′) . B
µ
==⇒ (U]

U′;P ∪ P′) . B′ and ((U]U′;P ∪ P′) . A′ , (U]U′;P ∪ P′) . B′) ∈ <, because
U]U′ = U] {n : R}] U.

2. µ = arn : R. In this case, U′′ = {n : R} since n < dom(U] U′). This implies that (U;P) .

A
µ
−−→ (U] U′′;P) . A′. By hypothesis, (U;P) . B

µ
==⇒ (U] U′′;P) . B′ and (U]

U′′;P) . A′ ≈ B′. Then, (U] U′;P ∪ P′) . B
µ
==⇒ (U] U′] U′′;P ∪ P′) . B′ and

((U]U′]U′′;P ∪ P′) . A′ , (U]U′]U′′;P ∪ P′) . B′) ∈ <.

3. µ = arn. This case is dealt with similarly to case 1.

4. µ = arn : R. This case is dealt with similarly to case 2.

5. µ = τ. This case is dealt with similarly to case 1(a). �

Proof of Theorem B.4 It suffices to prove that the relation

< , { Γ |=S (A, B) : Γ `SA ∧ Γ `SB ∧ (UΓ;P) . A ≈ B}

is barb preserving, reduction closed and contextual.

36

1. Let A ↓ ar. By Definition 3.1 and well-typedness, it holds that (UΓ;P) . A
ar

−−−→ , by ex-

ploiting Proposition B.6(1)/(2)); then, (UΓ;P) . B =⇒ (UΓ;P) . B′
ar

−−−→ . Again by Proposi-
tion B.6(1)/(2), Proposition B.1 and Definition 3.1, B ⇓ ar. The case for A ↓ ar is

2. Let A 7−→ A′. By Proposition B.1 and well-typedness, this implies that (UΓ;P) .

A
τ
−→ (UΓ;P) . A′. Thus, (UΓ;P) . B =⇒ (UΓ;P) . B′ and (UΓ;P) . A′ ≈ B′. Again

by Proposition B.1, B 7−→∗ B′ and Γ |=P A′< B′. Indeed, by Theorem 2.1, it holds that Γ `P A′

and Γ `P B′. Moreover, by using Proposition B.5, we have that (UΓ;P) . A′ ≈ A′′ and, thus,
(UΓ;P) . A′ ≈ B′.

3. We pick up Γ |=S A< B and analyse the three clauses defining the contextuality property.

(a) Let P′ be a permissions-to-r ôles assignment and ñ : T̃ be such that ñ ∩ dom(U) = ∅;
since Γ respects U, this implies that Γ, ñ : T̃ is defined. By Lemma A.2, we know that
Γ, ñ : T̃ `(U]ñ:T̃ ;P∪P′)A and Γ, ñ : T̃ `(U]ñ:T̃ ;P∪P′)B. Moreover, we letUñ:T̃ to be the r ôles-
to-users assignment such thatUñ:T̃ (r) = ρ, whenever r : ρ[̃a : C̃] ∈ ñ : T̃ , andUñ:T̃ (ar) =
R, whenever ar : R(T) ∈ ñ : T̃ . It is easy to check that U

Γ,̃n:T̃ = UΓ] Uñ:T̃ (indeed,

Γ, ñ : T̃ is defined if and only if names in ñ do not occur in the domain of Γ; thus,UΓ and
Uñ:T̃ have disjoint domains, and their union coincides withU

Γ,̃n:T̃). Thus, by Lemma B.7,

(U
Γ,̃n:T̃ ;P ∪ P′) . A ≈ B. This suffices to conclude that Γ, ñ : T̃ |=(U∪ ñ:T̃ ;P∪P′) A< B.

(b) Let Ā be a system such that Γ `S Ā. By Theorem B.2(1), we can state that (UΓ;P) . A ‖
Ā ≈ B ‖ Ā. Moreover, by rule (T-SP), it holds that Γ `S A ‖ Ā and Γ `S B ‖ Ā. Thus,
Γ |=S A ‖ Ā< B ‖ Ā, as required.

(c) Let Γ = Γ′, ar:R(T) andU = U′] {ar:R(T)}. It is easy to check thatUΓ = UΓ′] ar:R and,
thus, (UΓ′]ar:R;P) . A ≈ B. By Theorem B.2(2), this implies that (UΓ′ ;P) . (νar :R)A ≈
(νar : R)B; moreover, by rule (T-SR), Γ′ `(U

′;P) (νar : R)A and Γ′ `(U
′;P) (νar : R)B.

Thus, Γ′ |=(U′;P) (νar :R)A< (νar :R)B, as required. �

We remark that ≈ is used as a proof-technique for barbed congruence. Indeed, while the former
is easy to use, the latter is very hard to handle because of the contextual closure requirement. This
suffices for our purpose in the present paper, whose intention is to present the calculus and lay out its
main properties. Nevertheless, for theoretical reasons, it is often important to know whether ≈ is a
complete characterisation of �. This is a laborious question to answer. We leave it as future work to
follow well-known paths towards the answer (as, e.g. [12, 18]) to prove the converse of Theorem B.4,
i.e. that bisimilarity is complete for barbed congruence.

To conclude, we now briefly discuss some possible use of the bisimulation, apart from proving
barbed congruence. Mainly, its distinctive features are the possibility of relating ill-typed systems
and/or systems under different schemata. For example, by letting α to range over action prefixes (i.e.
inputs/outputs and role/yield), it holds that

S . r{|α.P |}ρ ≈ 0

whenever α is not legal for a session r{| · |}ρ with respect to S, that is, if the premises of rules (LTS-
R ̂), (LTS-Y), (LTS-K-I), (LTS-F-I) and (LTS-O) are not satisfied. This law
stresses that LTS and types both enforce the same requirements (compare the run-time checks of

37

the LTS with the run-time errors in Table 5 and, consequently, the results in Proposition B.1). As a
consequence, the following law differentiates our language from the π-calculus. Indeed, it holds that

S . (νar :R)(r{| a(x).P |}ρ ‖ s{| ar〈n〉.Q |}ρ′) ≈ 0

whenever R?
< P(ρ) or R!

< P(ρ′).
Finally, we can use the bisimulation to find a ‘minimal schema’ to run a given system without

altering its functionalities. Let A be a system well-typed in a RBAC schema S. Potentially, there
are many schemata under which the system can run correctly; thus, it seems reasonable to look for a
‘minimal’ such. According to the metrics chosen, several properties can be associated to this element.
For example, if the metrics is the size of the schema (seen as a pair of sets), the minimal element
would be one of the smallest; thus, its storage and handling would be cheaper. We now define the set
of configurations whose second component is A as follows:

CONFA = {S
′ . A : S′ is a RBAC schema}

We now partition CONFA with respect to ≈ and consider the equivalence class containing S . A,
called CONFSA. By fixing a metrics over schemata, the minimal schema to run the system A will be a
minimal element of CONFSA. Indeed, such an element behaves like S . A, because they both belong to
the same equivalence class CONFSA, but its schema is smaller, as its is a minimal element of CONFSA.
Clearly, the existence of such a minimal element and the way in which it is chosen depend on the
chosen metrics. Possible metrics could be based on the memory required to store the schema, on the
number of r ôles used to define the schema, on the weight of the permissions associated with some
users (once assumed a weight function to discriminate sensible permissions from common ones), on
the average number of permissions associated with each r ôle, and so on.

References

[1] G.-J. Ahn and R. Sandhu. Rôle-based authorisation constraints specification. ACM Transactions on
Information and System Security, 3(4):207–226, 2000.

[2] R. Amadio and L. Cardelli. Subtyping recursive types. ACM Transactions on Programming Languages
and Systems, 15(4):575–631, 1993.

[3] E. Bertino, B. Catania, E. Ferrari, and P. Perlasca. A logical framework for reasoning about access control
models. In Proc. of 6th SACMAT, pages 41–52. ACM Press, 2001.

[4] C. Braghin, D. Gorla, and V. Sassone. A distributed calculus for rôle-based access control. In Proc. of
17th Computer Security Foundations Workshop (CSFW’04), pages 48–60. IEEE Computer Society, 2004.

[5] C. Braghin, D. Gorla, and V. Sassone. A distributed calculus for rôle-based access control. Technical
Report 08/2004, Dip. di Informatica, Univ. di Roma “La Sapienza”, 2004.

[6] L. Cardelli, G. Ghelli, and A. D. Gordon. Secrecy and group creation. Information and Computation,
196(2):127–155, 2005.

[7] L. Cardelli and A. D. Gordon. Mobile ambients. Theoretical Computer Science, 240(1):177–213, 2000.

[8] F. Cardone and M. Coppo. Two extensions of Curry’s type inference system. In Logic and Computer
Science, pages 19–75. Academic Press, 1990.

[9] R. De Nicola, G. Ferrari, and R. Pugliese. K: a Kernel Language for Agents Interaction and Mobility.
IEEE Transactions on Software Engineering, 24(5):315–330, 1998.

38

[10] D. Ferraiolo and D. Kuhn. Rôle-based access control. In Proc. of the NIST-NSA National Computer
Security Conference, pages 554–563, 1992.

[11] D. Ferraiolo, R. Sandhu, S. Gavrila, D. Kuhn, and R. Chandramouli. Proposed NIST standard for rôle-
based access control. ACM Transactions on Information and System Security, 4(3):224–274, 2001.

[12] C. Fournet and C. Laneve. Bisimulations for the join-calculus. Theoretical Computer Science, 266(1-
2):569–603, 2001.

[13] M. Hennessy and J. Rathke. Typed behavioural equivalences for processes in the presence of subtyping.
Mathematical Structures in Computer Science, 14(5):651–684, 2004.

[14] M. Hennessy and J. Riely. Resource access control in systems of mobile agents. Information and Com-
putation, 173:82–120, 2002.

[15] K. Honda and N. Yoshida. On reduction-based process semantics. Theoretical Computer Science,
152(2):437–486, 1995.

[16] M. Koch, L. Mancini, and F. Parisi-Presicce. A formal model for rôle-based access control using graph
transformation. In Proc. of 5th ESORICS, volume 1895 of LNCS, pages 122–139. Springer, 2000.

[17] M. Koch, L. Mancini, and F. Parisi-Presicce. Decidability of safety in graph-based models for access
control. In Proc. of 7th ESORICS, volume 2502 of LNCS, pages 229–243. Springer, 2002.

[18] M. Merro and D. Sangiorgi. On asynchrony in name-passing calculi. Mathematical Structures in Com-
puter Science, 14(5):715–767, 2004.

[19] R. Milner. The polyadic π-calculus: a tutorial. In Logic and Algebra of Specification, volume 94 of Series
F: Computer and System Sciences. NATO Advanced Study Inst., 1993.

[20] B. C. Pierce. Types and programming languages. MIT Press, 2002.

[21] B. C. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes. Mathematical Structures in
Computer Science, 6(5):409–454, 1996.

[22] J. H. Saltzer and M. D. Schroeder. The protection of information in computer systems. Proceedings of
the IEEE, 63(9):1278–1308, 1975.

[23] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Rôle-based access control models. IEEE Computer,
29(2):38–47, 1996.

[24] D. Sangiorgi and D. Walker. The π-calculus: a theory of mobile processes. Cambridge University Press,
2001.

[25] A. Schaad and J. Moffett. A lightweight approach to specification and analysis of rôle-based access control
extensions. In Proc. of 7th SACMAT, pages 13–22. ACM Press, 2002.

[26] F. B. Schneider. Least privilege and more. Security and Privacy, 1(3):55–59, 2003.

39

